Interprocedural Program Analyses for Efficient Array
Bound Checking

Thi Viet Nga NGUYEN
Francois IRIGOIN
Ecole des Mines de Paris

Array bound violations occur when accessing array elements with indexes that are out of the array
declared ranges in a specified program unit. Interprocedural array bound violations happen when
the size of an actual array argument is exceeded through procedure calls. Both intraprocedural and
interprocedural range checking are critical for software verification and validation. Commercial
implementations are currently limited to intraprocedural checking and are not really fulfilling user
expectations for execution speed and/or information about the violations.

In this paper, we study how interprocedural program analyses can be used to improve the
elimination of unnecessary bound checking within procedures. Instead of designing a new specific
algorithm, we implemented two algorithms representative of the main published approaches for
intraprocedural array bound checking by re-using available interprocedural analysis techniques
designed for automatic parallelization and code optimization. The first algorithm is based on
redundant bound check elimination and the second one is based on insertion of unavoidable tests.

We also show how an interprocedural array bound checker can be seen as a whole program
transformation. This is not covered in other studies. Program analysis helps software verification
by guaranteeing automatically the correctness of program, detecting statically real array access
errors and reducing the overhead of run-time array range checks. Not only compile-time and
run-time performance but also debugging capability are important criterias to evaluate different
compilers. Experiments with our array bound checkers and other compilers on three different
platforms for SPEC95 CFP benchmarks show improvements in execution times, compilation times
and information available about violations when they occur dynamically.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Assertion checkers; D.2.5 [Software Engineering]: Testing and Debugging—Debugging
aids, Symbolic ezecution; D.3.4 [Programming Languages|: Processors—Compilers, Optimiza-
tion

General Terms: Algorithms, Performance, Verification

Additional Key Words and Phrases: Intraprocedural analysis, interprocedural analysis, range
checking, array bound checking

This article is a revised version of a paper presented at the Second International Workshop on
Automated Program Analysis, Testing and Verification (WAPATV’01), May 2001, expanded with
a new contribution about the interprocedural array bound checking.

Address: Centre de Recherche en Informatique, Ecole des Mines de Paris, 35 rue Saint Honoré,
77305 Fontainebleau Cedex, France; email: nguyen@cri.ensmp.fr, irigoin@cri.ensmp.fr

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . T.V.N. Nguyen and F. Irigoin

1. INTRODUCTION

Array bound checking refers to determining whether all array references in a pro-
gram are within their declared ranges. These array bound checks may be analyzed
intraprocedurally or interprocedurally, depending on the need for safety. Such
checking is desirable for any program, regardless of the programming language
used, since bound violations are among the most common programming errors.

Subscripting arrays beyond their declared sizes may result in unexpected results,
security holes or failures. For the safety of execution, some languages such as Java
require that a program only be allowed to access elements of an array that are part
of the defined extent of the array.

But on the other hand, bound checking can be very expensive because every array
access must be preceded by two bound checks per dimension to assert the legality
of the access. This increases the size of the executable file, the compilation time
and the execution time. In fact, these two bound checks can be implemented as
one unsigned comparison instruction but the overhead still remains, in part because
other code transformations or optimizations are prevented by these bound checks.

Many compilers for other languages such as Pascal and Fortran solve this problem
by providing the user with a compile-time option to enable or disable the checking.
The purpose of this option is to allow users to enable checking in the development
and debugging runs of the program, and then, once all the defects are supposedly
found and fixed, to turn it off for the production version.

However, all software engineering studies of defects in programs indicate that ver-
sions of systems delivered to customers are likely to have bugs that were not even
observed during testing phases. Users are nowadays more motivated by safety,
and this approach to bound checking, therefore, is not highly appreciated. Rather,
bound checking is just as important for delivered versions of programs as for devel-
opment versions. Instead of providing a way to turn bound checking off, what is
needed is to optimize it so that it has a minimal overall cost.

The objective of this work is to see if it is possible to perform efficient range
checking by reusing interprocedural analysis techniques already implemented in
commercial compilers. Many routines are written to manipulate arrays of arbitrary
size, but are used in actual programs only on arrays whose sizes are determined in
the main program. So interprocedural analyses that propagate information through
procedure boundaries should allow us to eliminate more unnecessary bounds check-
ing and may result in significant speedups. Moreover, interprocedural translation
helps to prove the absence of interprocedural array bound violations or to detect
them at either compile-time or run-time.

The paper is organized as follows. Section 2 discusses the related work on op-
timization of array range checking and explains what is missing in these results.
An overview of PIPS [Irigoin et al. 1991], our research parallelizing compiler, and
its existing analyses used in the following sections are briefly described in Section
3. Section 4 presents our first intraprocedural bound checking approach based on
the elimination of redundant tests. Full information about the location of bound
violation is preserved. Section 5 presents the second approach, based on the in-
sertion of unavoidable tests. The precise location of the violation is lost but the
array improperly accessed is known. Section 6 describes the interprocedural array

Efficient Array Bound Checking . 3

bound checking. Results obtained with our intra- and inter-procedural techniques
are reported and compared to three commercial compilers in Section 7. Conclusions
are given in the last section.

2. RELATED WORK

Suzuki and Ishihata [1977] implemented a system that inserts logical assertions
before array element accesses and then uses theorem proving techniques to verify
the absence of array range violations. Such techniques are often expensive and are
restricted to programs written in a structured manner, i.e without goto statements.

Another approach was developed by Markstein, Cocke, and Markstein [1982],
M.Asuru [1992], Gupta [1990, 1993], Spezialetti and Gupta [1995], Kolte and Wolfe
[1995]. They introduce algorithms to reduce the execution overhead of range checks
through the elimination and propagation of bound checks by using data flow anal-
ysis. Their techniques became more and more sophisticated in order to improve
results. In Gupta [1993], a bound check that is identical or subsumed by other
bound checks is suppressed in a local elimination. In a global elimination, an algo-
rithm first modifies bound checks to create additional redundant checks and then
carries out the elimination of redundant checks by using the notions of available and
very busy checks. These two algorithms use backward and forward data flow anal-
yses to solve the problems. For the propagation of checks out of loops, R. Gupta
identifies candidates for propagation which include invariants, loops with increment
or decrement of one and variables of increasing or decreasing values. Then he uses
check hoisting to move checks out of loops. However, the results are not very con-
vincing because of the small size of his examples and because the optimizations
have only been applied by hand.

In their article, Kolte and Wolfe [1995] rely on a check implication graph where
nodes are sets of range checks in canonical form and edges denote implications
between these families. Like [Gupta 1993], they also compute the available and
anticipatable checks by solving forward and backward data flow problems. To create
more redundant checks, there are five schemes to insert checks at safe and profitable
program points: no-insertion, safe-earliest, latest-not-isolated placement, check-
strengthening and preheader insertion. They use partial redundancy elimination
after determining the most efficient places to move bound checks to.

Their implementation in the Fortran compiler Nascent [Kolte and Wolfe 1995)
with different techniques in range check optimization leads to experimental results
that show the necessity of range check optimization, the effectiveness and cost of
these optimizations. However, high percentages, even 99.99%, of eliminated tests
do not always mean faster execution times. This article lacks comparisons between
the execution times of codes with and without optimized bound checks to show the
impact of removed checks. Furthermore, there are no mentions of bound violations
in PerfectClub (mdg, spc77, trfd) and Riceps benchmarks (linpackd) which are
caused by formal array dimension declared 1.

The abstract interpretation approach proposed by Cousot and Cousot [1976],
Cousot and Halbwachs [1978] considers array range checking as an example of the
automated verification of execution properties of programs. Like [Schwarz et al.
1988], they use static data flow analysis information to prove at compile-time that
an array bound violation cannot occur at run-time and that the test for this vio-

4 . T.V.N. Nguyen and F. Irigoin

lation is unnecessary. Their algorithms for propagating and combining assertions
depend on the different rules they use. Since the algorithms in the abstract in-
terpretation and the program verification approaches do not perform any insertion
of checks in the program to create more redundant checks, they could only take
advantage of completely redundant checks. So the run-time overhead of the par-
tial redundant checks that cannot be evaluated at compile-time still remains. Also
present in this approach is the model checking group [Delzanno et al. 2000] who uses
fix point acceleration techniques to help the automated verification of programs.

Other articles by Midkiff, Moreira, Snir and M. Gupta [P.Midkiff et al. 1998;
Moreira et al. 2000] describe another approach to optimize array reference checking
in Java programs based on code replication. All the optimizations are based on
partitioning a loop nest, seen as an iteration space, into regions with different access
violation characteristics. In unsafe regions, run-time tests are performed, whereas
in other regions they are not necessary because all array indices are guaranteed
to be within bounds. The optimizations differ on their level of refinement and
practicality. These techniques are less complicated than the abstract interpretation
approach while still being effective. However, they do not use any control-flow
analysis to reduce code replication, and the optimizations here are mainly for Java
applications, because of its precise exception semantics. Another approach for
Java, based on an extended Static Single-Assignment graph representation, the
Eliminating Array Bound Checks on Demand in [Bodik et al. 2000] can remove
about 45% of dynamic bound checks of a representative set of Java programs.

Although there are many different techniques for array bound checking opti-
mization, we can partition them into two main approaches. The first approach
puts array bound checks at every array reference and removes a check if it is redun-
dant [Markstein et al. 1982; Gupta 1990; M.Asuru 1992; Gupta 1993; Kolte and
Wolfe 1995]. In the second approach, array bound checks are put at places where
it is not possible to prove them useless [Suzuki and Ishihata 1977; P.Midkiff et al.
1998; Schwarz et al. 1988; Cousot and Cousot 1976; Cousot and Halbwachs 1978;
Cousot 1990].

The first approach attempts to reduce the dynamic and static numbers of bound
tests and the overhead induced by a test even if it cannot be eliminated. This is done
by determining if a test is subsumed by another test, so that it can be eliminated.
Hoisting range checks out of loops is also applied when it is possible. The analyses
are simple or sophisticated depending on each technique. The question here is: is
it worth performing complicated range check optimizations when the hoisting of
array bound checks out from the innermost loop may be sufficient?

In the second approach, by using data flow information, if it is proven that
no array bound violation will occur at run-time in some region of code, tests are
unnecessary for this region. If it is proven that an access violation might occur,
tests are generated as needed. The number of generated tests is limited; range
checks are put only where there might be bound violations. But the difficulty of
this approach is that the information needed to prove that no violation will occur
may not be available at compile-time. Then tests may remain inside inner loops.

In addition, the amount of information about the violation is never discussed.
It is often reduced to ”a violation occured” with no information about the array
accessed nor the statement where the array element was referenced. Especially with

Efficient Array Bound Checking . 5

code hoisting, the information cannot always be preserved.

So both approaches have advantages and drawbacks when comparing the number
of needed transformations and analyses as well as information about array violation.
A goal of our work here is to compare the effectiveness and optimization costs of
two different algorithms for intraprocedural array bound checking. The first one is
based on test elimination without hoisting, and the second one is based on optimized
test insertion without code replication.

To complete array range checking, we introduce in this paper an interprocedural
phase to prove the absence of or to detect interprocedural bound violations. This
kind of out-of-bound error occurs when the size of a formal array parameter exceeds
that of its associated actual array parameter. If sufficient information is not avail-
able, run-time checks are generated before each call site to guarantee the program
correctness. This interprocedural array bound check analysis is neither addressed
in other work nor in commercial compilers. The three algorithms, two intraproce-
dural and one interprocedural, were implemented in PIPS, which is described in
the next section.

3. PIPS OVERVIEW

PIPS is an interprocedural parallelizing tool designed on top of a database to avoid
global recompilation whenever possible. Each analysis is performed only once on
each procedure and produces a summary result that is later used at call sites.
Forward and backward analyses are controlled by a make-file mechanism (pipsmake)
which makes sure that necessary information is available before a new analysis phase
is started.

PIPS consists of several analysis phases dealing with call graph computation,
dependences, transformers, preconditions, use-def chains, array regions and of pro-
gram transformations such as loop transformations, constant folding, dead code
elimination. The running example in Figure 1 is used to illustrate three important
analyses (transformers, preconditions, array regions) and our two intraprocedural
bound check optimizers. This example is extracted from the program swim, a
weather prediction program in the SPEC95 CFP benchmark with procedure calls
and array references, which are used to show the effect of interprocedural analyses.

3.1 Transformers

A transformer abstracts the effects of a program statement upon the values of
integer scalar variables by giving an affine approximation of the relations that exist
between their values before and after the execution of the statement. Transformers
are computed from elementary instructions to compound instructions such as basic
blocks, tests, loops. To deal with test statements, we first build a predicate that
is the transformer of the true branch, combined with the test condition if this test
is a convex polyhedron [Cousot and Halbwachs 1978]. Another predicate is the
transformer of the false branch, added with the negation of the test condition if it
is a convex polyhedron. The transformer of the test statement is the convex hull of
these two predicates. To handle loops, different kinds of fixed points are needed in
order to provide a flexible choice between efficiency and precision. Fast computation
uses primitive, non-iterative fixed point algorithm based on the transition function
associated to the loop body and which only handles equations. Full computation

6 . T.V.N. Nguyen and F. Irigoin

1 PROGRAM SHALOW

2 PARAMETER (N1=513, N2=513)

3 COMMON U(N1,N2), UNEW(N1,N2) C T(MN) {MN<=M, MN<=N}

4 COMMON /CONS/ M,N ¢ pu,N) {}

5 CALL INITAL MN = MIN(M, N)

6 MN = MIN(M, N) c 1O {}

7 UCHECK = 0.0 C P(M,MN,N) {MN<=M, MN<=N}

8 DO 35 I =1, MN UCHECK = 0.0

9 DO 35 J =1, MN ¢ T(I,J) {1<=1}

10 UCHECK = UCHECK+ABS(UNEW(I,J)) C P(M,MN,N) {MN<=M, MN<=N}

11 35 CONTINUE DO 35 I =1, MN

12 END ¢ T {1<=J}

13 C P(I,J,M,MN,N) {1<=I, I<=MN, MN<=M, MN<=N}
14 SUBROUTINE INITAL DO 35 J =1, MN

15 PARAMETER (N1=513, N2=513) c 1O {}

16 COMMON U(N1,N2), UNEW(N1,N2) € P(I,J,M,MN,N){1<=I,I<=MN,1<=J,J<=MN,MN<=M,MN<=N}
17 COMMON /CONS/ M,N UCHECK=UCHECK+ABS (UNEW(I,J))

18 READ (5, *) M, N
19 U(1,N+1) = U(M+1,1)
20 END
a) Initial code b) Code with transformers (T) and preconditions (P)

Fig. 1. Running example from benchmark swim, SPEC95 CFP

uses a derivative fixed point operator based on finite differences. The loop body
transformer on variable values is projected onto their finite differences. Invariants,
both equations and inequalities, are directly deduced from the constraints on the
differences and after integration. Unstructured statements [Irigoin et al. 1991] are
also handled in PIPS and can be accurately analyzed with non-iterative algorithm
for fixed points.

A summary transformer of a procedure is the transformer computed for the
procedure body after projecting its local variables. An interprocedural propagation
of transformers is realized by traversing procedures in the reverse invocation order,
which processes a procedure after its callees. Each time a procedure is called, its
summary transformer is translated to the frame of the calling procedure to provide
the transformer of the procedure call. This summary information is available and
updated in the database thanks to the pipsmake mechanism. The translation into
the calling frame uses the global variables information and the bindings between
actual and formal parameters.

3.2 Preconditions

This analysis tries to discover the constraints holding among variables of the pro-
gram. Preconditions are affine predicates over scalar integer variable that hold just
before the execution of the corresponding statement. They are propagated from
the module entry point down to the abstract syntax tree leaves. Transformers,
which are computed by a previous phase, are applied to preconditions to obtain
postconditions, which usually are the preconditions of the following statements.
The initial precondition of a procedure in the intraprocedural analysis is derived
from DATA or PARAMETER statements or, if no information is available, we use an
empty precondition P() {3} that represents all possible values. In the interprocedu-

Efficient Array Bound Checking . 7

ral analysis that is discussed below, the initial precondition of a procedure is derived
from its calling contexts. As for transformers, the postcondition of a test statement
is the convex hull of two predicates that are propagated along the true and false
branches. The accuracy of postconditions for loops and unstructured statements
also depends on the type of fixed point operators used. The fastest operator is the
projection along all variables that are used in the loop body and iterator or in the
unstructured statement. The most accurate solution is the derivative one, because
it handles both equalities and inequalities.

The interprocedural analysis of preconditions is performed in the invocation or-
der, which processes a procedure before all its callees. Each time a procedure is
invoked, the precondition of the current call site is available and is translated to the
frame of the called procedure. The summary precondition of the called procedure
is then replaced by its convex hull with the new translated precondition.

One main advantage of transformer and precondition analyses is that we can
deduce from the program semantics the information that is not stated explicitly. In
fact, transformers and preconditions are powerful symbolic analyses that abstract
relations between program states with polyhedra, and encompass most standard
interprocedural constant propagation as well as interval analyses.

3.3 Array Regions

Array region analysis collects information about the way array elements are used
and defined by programs. Different representations of array element sets such as
convex polyhedra, regular section descriptors, data access descriptors, guarded reg-
ular section descriptors are introduced in [Triolet et al. 1986; Callahan and Kennedy
1988; Feautrier 1991; Maydan et al. 1992; Gu and Li 2000]. As defined in PIPS
[Creusillet and Irigoin 1995; Irigoin 1993], a convex array region is a set of array
elements described by a convex polyhedron containing affine equalities and inequal-
ities. These constraints link the region parameters that represent the array dimen-
sions to the value of the program integer scalar variables (i.e {PHI1==I, PHI2==J}
is the region of an array reference A(I,J) where the region parameters PHI1 and
PHI2 respectively represent the first and second dimensions of A).

A region has the approximation MUST if every element in the region is certainly
accessed, and the approximation MAY if its elements are simply potentially accessed.
It is useful to distinguish the MUST versus MAY information because it tells us whether
a property must or may hold, and hence can be relied upon or not. The approx-
imation of a region is EXACT if the region exactly represents the requested set of
array elements. MAY and MUST, respectively are an over- and under-approximation
of EXACT: MUST C EXACT C MAY.

Since array region analysis is introduced to support dependence analyses on array
structures, two kinds of effects on array elements are used: read region if they are
used and write region if they are defined.

Regions are built bottom-up from the deepest nodes to the largest compound
statement nodes in the hierarchical control flow graph [Irigoin et al. 1991]. It means
that at each meet point of a control flow graph, the region information from different
control branches are merged with a convex hull operator. The approximation of
regions is conservative. Intraprocedural region analysis has to deal with statements
like assignments, basic blocks, tests, loops and control flow graphs.

8 . T.V.N. Nguyen and F. Irigoin

The summary region of a procedure is computed by masking local effects from
the region for the procedure body. However, the interprocedural analysis of array
regions is more complicated than that of transformers and preconditions. Summary
region is translated from the callee’s name space into the caller’s name space at each
call site but array reshaping and the lack of non-linear expression analysis can cause
lost of accuracy during the translation.

4. ELIMINATION OF REDUNDANT TESTS

Our first implementation of an intraprocedural range check optimizer consists of
two phases: generation of bound checks and partial redundancy elimination

In essence, a partial redundancy [Muchnick 1997] is a computation that is per-
formed more than once on some path through a flow graph, i.e., some path through
the flow graph contains a point at which the given computation has already been
computed and will be computed again. To eliminate redundant bound checks, we
use information provided by the preconditions in PIPS. Preconditions, seen as in-
variant assertions, are very useful to detect bound violations or to remove redundant
checks. The algorithm Elimination of redundant tests works as follows:

(1) Generate non-trivial bound checks for every statement that has array references.
Each bound check is accompanied with a stop message. If a bound violation is
detected, the message tells the user in which array, on which dimension, and in
which line the subscript is out of range. The test for the i-th dimension of array
reference A(...,s;,...) is: IF ((s;.LT.l;).0R.(s;.GT.u;)) STOP message, where A is
declared as A(...,1; : u;,...).

(2) Compute transformers and preconditions for the new code with two options:
—Intraprocedural transformer and precondition analyses;

—Interprocedural transformer and precondition analyses;

(3) For each bound check, test the feasibility of the system built from the precon-
dition of the current statement and the bound check. The feasibility test of a
system of constraints is implemented in PIPS by using the linear programming
Simplex and Fourier-Motzkin algorithms for integer and rational coefficients
[Schrijver 1986].

(a) If the bound check is true with respect to the precondition, a bound viola-
tion is detected at compile-time;

(b) If the system is infeasible, the bound check is false and is removed;

(c) Otherwise, the bound check is preserved;

Figures (2a,2b) and Figures (2a,2c) illustrate this approach with the running ex-
ample in Figure 1 by using respectively, the intraprocedural and interprocedural
options. The left hand side part of each figure is the code after the generation of
bound checks. Preconditions of the new code are in comment lines. Some trivial
checks that are never true such as 1.LT.1,1.GT.513, or N-1.GT.N are not generated
by our bound checker. In both options, the preconditions {1<=I, 1<=J} after en-
tering the loop in SHALOW allow us to remove all lower bound checks. The difference
between the intraprocedural and the interprocedural options of transformers and
preconditions is that in Figure 2b, after the call to INITAL, we have an empty post-
condition while, in Figure 2c, we have P(M,N) {0<=M, M<=512, 0<=N, N<=512}.

Efficient Array Bound Checking . 9

SUBROUTINE INITAL SUBROUTINE INITAL
READ (5, *) M, N READ (5, *) M, N
¢ P(M,NM) {} IF (M+1.LT.1.0R.M+1.GT.N1) STOP
IF (M+1.LT.1.0R.M+1.GT.N1) STOP "Violation:1st dim,array U,line 19"
"Violation:1st dim,array U,line 19" IF (N+1.LT.1.0R.N+1.GT.N2) STOP
C P(M,N) {0<=M, M<=512} "Violation:2nd dim,array U,line 19"
IF (N+1.LT.1.0R.N+1.GT.N2) STOP U(1,N+1) = U(M+1,1)
"Violation:2nd dim,array U,line 19" END

C P(M,N) {0<=M, M<=512, 0<=N, N<=512}
U(1,N+1) = U(M+1,1)

END
a) Intraprocedural and interprocedural options for INITIAL
PROGRAM SHALOW PROGRAM SHALOW
c PO {} CALL INITAL
CALL INITAL MN = MIN(M, N)
c pu,N) {} UCHECK = 0.0
MN = MIN(M, N) DO 35 I =1, MN
C P(M,MN,N) {MN<=M, MN<=N} DO 35 J = 1, MN
UCHECK = 0.0 IF (J.GT.N2) STOP
C P(M,MN,N) {MN<=M, MN<=N} "Violation:2nd dim,array UNEW,line 10"
DO 35 I =1, MN IF (I.GT.N1) STOP
¢ P(I,J,M,MN,N) {1<=I,I<=MN, N<=M,MN<=N} "Violation:1st dim,array UNEW,line 10"
DO 35 J =1, MN UCHECK=UCHECK+ABS (UNEW(I,J))
¢ P(I,J,M,MN,N) {1<=I,I<=MN,1<=J,J<=MN,MN<=M,MN<=N} 35 CONTINUE

IF (J.LT.1.0R.J.GT.N2) STOP END
"Violation:2nd dim,array UNEW,line 10"

¢ P(I,J,M,MN,N) {1<=I,I<=MN,1<=J,J<=513,J<=MN,MN<=M,MN<=N}
IF (I.LT.1.0R.I.GT.N1) STOP
"Violation:1st dim,array UNEW,line 10"

C P(I,J,M,MN,N) {1<=I,I<=513,I<=MN,1<=J,J<=513,J<=MN, MN<=M,MN<=N}
UCHECK=UCHECK+ABS (UNEW(I,J))

35 CONTINUE

END
b) Intraprocedural option for SHALOW
PROGRAM SHALOW PROGRAM SHALOW
c PO {} CALL INITAL
CALL INITAL MN = MIN(M, N)
C P(M,N) {0<=M, M<=512, 0<=N, N<=512} UCHECK = 0.0
MN = MIN(M, N) D0 35 I =1, MN
C P(M,MN,N) {0<=M,M<=512,MN<=M,MN<=N,0<=N,N<=512} D0 35 J =1, MN
UCHECK = 0.0 UCHECK=UCHECK+ABS (UNEW(I,J))
C P(M,MN,N) {0<=M,M<=512,MN<=M,MN<=N,0<=N,N<=512} 35 CONTINUE
D03 I =1, MN END

¢ P(I,J,M,MN,N) {1<=I,I<=MN,0<=M,M<=512,MN<=M,MN<=N,0<=N,N<=512}
DO 35 J =1, MN

C P(I,J,M,MN,N) {1<=I,I<=MN,1<=J,J<=NN,0<=M,M<=512,MN<=M,MN<=N,0<=N,N<=512}
IF (J.LT.1.0R.J.GT.N2) STOP

C P(I,J,M,MN,N) {1<=I,I<=MN,1<=J,J<=MN,M<=512,MN<=M,MN<=N,N<=512}
IF (I.LT.1.0R.I.GT.N1) STOP

C P(I,J,M,MN,N) {1<=I,I<=MN,1<=J,J<=MN,M<=512,MN<=M,MN<=N,N<=512}
UCHECK=UCHECK+ABS (UNEW(I,J))

35 CONTINUE

END

c) Interprocedural option for SHALOW

Fig. 2. Running example with Elimination of redundant tests (declarations omitted - see Fig. 1)

10 . T.V.N. Nguyen and F. Irigoin

COMMON ITAB(10),J COMMON ITAB(10),J
REAL A(10) REAL A(10)
C <A(PHI1)-W-EXACT-{PHI1==11}> READ *,M
C <ITAB(PHI1)-W-MAY-{1<=PHI1}> IF (11.LE.M) STOP
READ *,M "Violation:1st dim,array ITAB"
J=11 STOP "Violation:1st dim,array A"
C <ITAB(PHI1)-W-EXACT-{1<=PHI1, PHI1<=M, J==11}> J =11
DO I =1,M DO I =1,M
C <ITAB(PHI1)-W-EXACT-{PHI1==I, J==11, 1<=I, I<=M}> ITAB(I) =1
ITAB(I) =1 ENDDQ
ENDDO A(J) =0
C <A(PHI1)-W-EXACT-{PHI1==J, J==11, 1+M<=I, 1<=I}>
A(J) =0
a) Code with array regions b) Code with unavoidable tests

Fig. 3. Array regions with incorrect code

This more exact postcondition helps to eliminate all upper bound checks (I.GT.N1
and J.GT.N2) in the nested loop in SHALOW. Here we see the strength of the in-
terprocedural precondition analysis because in the intraprocedural option, bound
checks are left inside loops, as long as code hoisting has not been applied. However,
for the subroutine INITAL, since we have no information about variables M and N,
no test is removed.

After the partial redundancy elimination transformation, the number of gener-
ated tests is greatly reduced. PIPS translates Fortran programs into instrumented
Fortran codes with bound checks which are then compiled and executed using their
standard input data sets. The experimental results with the benchmark SPEC95
CFP are given in Section 7.

5. INSERTION OF UNAVOIDABLE TESTS

The second intraprocedural array bound checker is based on the array region anal-
ysis phase. The array region information as well as other analyses in PIPS are
computed under the assumption that the code is correct. In the first approach,
Elimination of redundant tests, bound checks are generated before applying other
analyses. Array accesses are guaranteed to be within their bounds and transforma-
tions applied on this instrumented code are always safe. In the second approach,
the insertion of unavoidable tests is based directly on analyses computed for the
input code. The small example in Figure 3a shows how impact of the correct code
assumption can lead to a false region of array A. As a bound violation in ITAB can
modify the value of J (when M > 11), the region for A is not correct any more and
there is no overflow in array A but in ITAB. To cope with this problem, our analysis
is based on the insight that it is safe to propagate an array region from a program
point py up to an earlier point p; if and only if on every execution path from p; to
P2, any written reference to any array is inside the declared range. In other words,
an array region at point p; is said safe to be used if and only if all written array
references before ps are checked. Only written references are taken into account
because read references do not modify memory locations, so they have no effects
on the correctness of the array region computation. The write order is used to
decide which array region is checked firstly. We know that the region for array A

Efficient Array Bound Checking . 11

becomes false only when an element outside the declared range of ITAB is written.
So if bound checks for ITAB are always generated before testing regions of A, there
is no problem. The code with unavoidable tests is shown in Figure 3b. This is very
similar to code hoisting; we are only allowed to hoist code up to an earlier point if it
is safe doing so. A complete correctness proof of our algorithm is given in [Nguyen
and Irigoin 2001].

As mentioned above, regions are built bottom-up, from the elementary statements
to the compound statements. Our analysis is a top-down analysis: it begins with
the largest compound statement and if we have the answer about array element
accesses for this statement, we do not have to go down into its substatements. The
analysis can stop here, and bound checks can be inserted at the very beginning of
the module entry and outside loops if we have sufficient information. The algorithm
consists of two phases: array region computation and insertion of unavoidable tests.

To compute array regions, since transformers are used in the array region analysis
to model the effects of state transitions and preconditions are used to improve the
accuracy of over-approximated regions by filtering out some unreachable states, we
have choices between two options:

—Intraprocedural transformer and precondition analyses;

—Interprocedural transformer and precondition analyses;

The insertion of unavoidable array bound checks works as follows:

At a compound statement, the read and write regions of each array are used
to test the feasibility of the corresponding array bound checks. The regions of an
array are considered only when every array whose assignment occurs at least once
before another assigment on the concerning array has been already checked. In
case the write order cannot be established for this compound statement, we have
to go down to the substatements of the current statement (for instance, with the
sequence (s1;82;83): A(I) = ; (s1) BM,N) = ; (s2) A(J) = ; (s3), neither A nor
B is always written before the other, we have to go down and check the array region
for A at (s1), array region for B and then for A at (s2;s3)). Otherwise, for each
array dimension ¢, we build two systems: s; from the array region and the lower
bound check PHI; < l;, and so from the array region and the upper bound check
PHI; > w;. Then,

(1) If the region is a MAY region included in the declared dimensions of the array (s1
and s, are infeasible), no bound check is needed for the compound statement
and we stop the process for the array here;

(2) If the region is a MUST region that contains elements which are outside the
declared dimensions of the array (at least one of the two systems s; or sp is
feasible), there is certainly a bound violation. An error is detected at compile-
time;

(3) If the region is an EXACT region and it is possible to project all unnecessary
variables PHI from the systems s; and s2, we have unavoidable tests to insert
before the compound statement. Each bound check is accompanied with a stop
message that tells the user in which array and on which dimension the subscript
is out of range. The process stops here for the array;

12 . T.V.N. Nguyen and F. Irigoin

(4) Otherwise, we go down to the substatements of the current compound state-
ment, take the regions of the concerning array and repeat the above steps.

The algorithm terminates because we can always generate bound checks directly
for array references of elementary statements in the control flow graph.

Figures (4a,4b) and Figures (4a,4c) show the running example with the Insertion
of unavoidable tests approach, respectively for the intraprocedural and interproce-
dural options. For the procedure INITAL, we have two regions, a read and a write
region for array U and these regions are treated separately. Bound checks remain
for the first dimension PHI1 of the read region and for the second dimension PHI2
of the write region. For the procedure SHALOW in the intraprocedural version, the
cumulated region of the nested loop allow us to generate an upper bound check that
is outside the loop. Compared to the intraprocedural version of the first approach,
this is a point in favor of the second approach because it may lift test out of loops
automatically while the first one does not.

In the interprocedural version, after inserting unavoidable tests for INITAL, we
have more information from interprocedural analyses in the region of array UNEW in
SHALOW. Like the first approach, the interprocedural preconditions {M<=512, N<=512}
decide that no check is needed in SHALOW. We have the same result for both ap-
proaches.

The purpose of Insertion of unavoidable tests is to generate a minimum number of
bound checks using the available information from array regions. Bound checks are
inserted outside loops and at the beginning of the program. The other advantage
of this algorithm is that it detects the sure bound violations or indicates that there
is certainly no bound violation as early as possible, thanks to the context given
by the top-down analysis of insertion of tests. That is the goal of the second
approach group as explained in Section 2. Our region-based algorithm can be
parameterized with respect to different notions of array regions, not only convex
polyhedra region. Guarded regions, list of regions [Gu and Li 2000] or dimension
per dimension regions could be used to improve the computation time of convex
regions. Furthermore, we can consider to merge the read and write regions of the
same array, or detect arrays that have the same declarations and same regions in
order to reduce redundant checks.

6. INTERPROCEDURAL ARRAY BOUND CHECK

Interprocedural array bound checking refers to checking the declared size of a formal
array with respect to the range declaration of its corresponding actual argument.
A formal array can be associated with an actual array or with an actual array
element.

In the first case, the size of the formal argument array must not exceed the size of
the actual argument array. The size of an array is equal to the number of elements
in the array: [[i_; d; where n is the number of array dimensions; d; =u; —1; + 1 is
the size of the i-th dimension in which |; and u; are respectively the corresponding
lower and upper bound expressions.

In the second case, the size of the formal argument array must not exceed the
size of the actual argument array plus one minus the subscript value of the array
element. The subscript value of an array element determines the order of that

Efficient Array Bound Checking . 13

SUBROUTINE INITAL SUBROUTINE INITAL

READ (5, *) M, N READ (5, *) M, N
C <U(PH11,PHIZ)—R—EXACT—{PH11==M+1, PHIQ==1}> IF (513.LE.N) STOP "Violation:2nd dim,array U"
C <U(PHIl,PHI2)—W—EXACT—{PH11==1, PH12==N+1}> IF (1+N.LE.0) STOP "Violation:2nd dim,array U"

U(1,N+1) = U(M+1,1) IF (513.LE.M) STOP "Violation:1st dim,array U"
END IF (1+M.LE.0) STOP "Violation:1st dim,array U"
U(L,N+1) = U(M+L,1)
END

a) Intraprocedural and interprocedural options for INITIAL

PROGRAM SHALOW
C <UNEW(PHI1,PHI2)-R-EXACT-{1<=PHI1, PHI1<=MN, 1<=PHI2, PHI2<=MN, MN<=M, MN<=N}>

DO 35 I =1, MN
C <UNEW(PHI1,PHI2)-R-EXACT-{PHI1==I, 1<=PHI2, PHI2<=MN, 1<=I, I<=MN, MN<=M, MN<=N}>

DO 35 J = 1, MN
C <UNEW(PHI1,PHI2)-R-EXACT-{PHI1==I, PHI2==J, 1<=I, I<=MN, 1<=J, J<=MN, MN<=M, MN<=N}>
UCHECK = UCHECK + ABS(UNEW(I,J))

35 CONTINUE

END

PROGRAM SHALOW
CALL INITAL
MN = MIN(M, N)
UCHECK = 0.0
IF (514.LE.MN) STOP "Violation:1st dim,array UNEW"
DO 35 I =1, MN
DO 35 J =1, MN
UCHECK = UCHECK + ABS(UNEW(I,J))
35 CONTINUE
END
b) Intraprocedural option for SHALOW

PROGRAM SHALOW

C <UNEW(PHI1,PHI2)-R-EXACT-{1<=PHI1,PHI1<=MN,1<=PHI2,PHI2<=MN,MN<=M,M<=512,MN<=N,N<=512}>
DO 35 I =1, MN

C <UNEW(PHI1,PHI2)-R-EXACT-{1<=PHI1,PHI1<=MN,1<=PHI2,PHI2<=MN,MN<=M,M<=512,MN<=N,N<=512}>

DO 35 J = 1, MN
C <UNEW(PHI1,PHI2)-R-EXACT-{1<=PHI1,PHI1<=MN,1<=PHI2,PHI2<=MN,MN<=M,M<=512,MN<=N,N<=512}>
UCHECK = UCHECK + ABS(UNEW(I,J))

35 CONTINUE

END

PROGRAM SHALOW

CALL INITAL

MN = MIN(M, N)

UCHECK = 0.0

DO 35 I =1, MN

DO 35J =1, MN
UCHECK = UCHECK + ABS(UNEW(I,J))
35 CONTINUE

END

c) Interprocedural option for SHALOW

Fig. 4. Running example with Insertion of unavoidable tests (declarations omitted - see Fig. 1)

14 . T.V.N. Nguyen and F. Irigoin

PROGRAM VIOLATION SUBROUTINE ZERO(X,N,M)
COMMON /F00/ Z1(10,10), 22(10,10) REAL X(N,M)
CALL ZER0(Z1,10,20) DO 100 I = 1,N
PRINT *, Z1 DO 100 J = 1,M
PRINT *, Z2 X(1,J) = 1.
END 100 CONTINUE

END

Fig. 5. Interprocedural bound violation example

element in the array.

Within a program unit, the array declaration given for an array provides all
range information needed for the array in an execution of the program unit. But
in the whole program, when a formal array argument is associated with an actual
array argument, we also have to ensure that there is no bound violation in every
array access in the called procedure with respect to the array declarations in the
calling procedure. If not, we cannot know what happens when accessing the mem-
ory beyond the allocated regions. The example in Figure 5 illustrates a simple
interprocedural bound violation.

Although exceeding the size of an actual argument array is strictly forbidden in
the Fortran standard [ANSI 1983], commercial compilers such as SUN Workshop
F77 version 5.0, SGI MIPSpro F90 version 7.3 and IBM XLF F77 version 7.1.0.0
do not check it. One can argue that this kind of violation is rare in practice or con-
versely, that is used voluntarily, but our implementation found an interprocedural
bound violation in one out of the ten benchmarks from SPEC95 CFP. Furthermore,
the fact that bugs related to interprocedural checking are much more difficult to
track than to intraprocedural one is not a good reason to omit the interprocedural
array bound check.

Our analysis traverses the call graph of programs in the invocation order. For
each procedure, each call site in this procedure and each actual array argument in
the parameter list, the following steps are performed:

1) Find the corresponding formal array argument;
Compute the size of the formal array;

(
(2)
(3) Translate this size expression to the frame of the caller;
(4) Compute the size of the actual array;

()

If the actual argument is passed as an array element, then subtract the subscript
value of this element from the actual array size and add one;

(6) Test the feasibility of the system built from the precondition of the call site
and from the inequality expressing an array bound violation: size of the actual
array < size of the formal array. Then:

—If the system is not feasible, there is no bound violation;

—If the inequality is true with respect to the precondition, there is a bound
violation;

—Otherwise, we have a test to put before the current call site;

This is a brief description of the algorithm, which, in fact, is a bit more com-
plicated. We use preconditions and information about global variables and calling

Efficient Array Bound Checking . 15

Program | Lines | Subroutines | Compile-time checks | Run-time checks
tomcatv 190 1 304 4933x107
swim 429 6 772 6991x107
su2cor 2332 35 4460 4810x107
hydro2d 4292 42 2016 6530x107
mgrid 484 12 1162 17608x107
applu 3868 16 9562 11562x107
turb3d 2101 23 1852 6081x107
apsi 7361 96 7172 3936x107
foppp 2784 38 2894 2928x107
waveb 7764 105 10546 3404x107

Table 1. SPEC95 CFP: numbers of lines, subroutines, compile-time and run-time checks

contexts, such as the relation between actual and formal arguments, to improve the
translation process and simplify the inequality characterizing the bound violation.

To compare the size of the actual and formal array arguments, we try to treat
dimensions independently by computing k, the number of equal values among the
first dimensions of the actual and formal arrays. When the actual argument is
an array element, k is also the number of first subscripts that are equal to their
corresponding lower bounds. This step simplifies the computation of array sizes and
subscript value expressions: the sizes of the actual and formal arrays are computed
using all dimensions but the first k£ ones. Similarly, if the actual argument is an array
element, its subscript value expression is evaluated only from the subscript &k + 1.
By doing this, the inequality between the sizes of the actual and formal arrays can
be simplified, and thus the feasibility test can also be simplified. For instance, in the
example in Figure 5, by knowing N == 10, we only have to check 10 < M instead
of introducing the non linear expression 10%¥20 < N*M. However, some problems
stemming from language features such as array reshaping (the number and size of
dimensions in an actual argument array declaration may be different from those in
an associated formal argument array declaration) can prevent this simplification.
Furthermore, assumed-size array declarations in Fortran can make this analysis
impossible so we use a preliminary phase in PIPS called array resizing [Ancourt
and Nguyen 2001] to deal with this problem. Our full-fledged algorithm handles all
these cases.

7. EXPERIMENTAL RESULTS

We used the SPEC CFP95 benchmark [Dujmovic and Dujmovic 1998], which con-
tains 10 applications written in Fortran. These are scientific benchmarks with float-
ing point arithmetic, and many of them have been derived from publicly available
application programs. Each benchmark contains a large amount of subscripted ref-
erences to arrays. The codes are instrumented and then executed using the standard
input data to compute the number of dynamic range checks. Table 1 summarizes
relevant information for each benchmark in SPEC CFP95. Note that three of them
do not meet the Fortran standard for array declaration and reference: they have
pointer-type declarations REAL A(1), although array references in the correspond-
ing procedures are outside the defined extent of the array. We added proper bounds
to the declarations in turb3d, apsi and fpppp by applying array resizing [Ancourt

16 T.V.N. Nguyen and F. Irigoin
Elimination of redundant tests Insertion of unavoidable tests
Intra Inter Intra Inter
Prog. Comp. Run Comp. Run Comp. Run Comp. Run
tomcatv | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00% | 100.00%
swim 97.00% 97.00% 98.45% 99.99% 84.60% 99.99% 84.72% 99.99%
su2cor 94.52% 95.20% 96.59% 97.54% 92.12% 96.60% 94.48% 97.66%
hydro2d 95.13% 93.50% 96.13% 94.14% 90.02% 97.70% 93.85% 99.46%
mgrid 91.32% 99.60% 94.92% 99.60% 96.61% 99.50% 97.93% 99.66%
applu 98.54% 96.75% 99.62% 97.09% 96.38% 99.80% 96.41% 99.87%
turb3d 92.23% 56.18% 97.62% 65.00% 87.03% 76.78% 98.97% 85.57%
apsi 97.08% 99.20% 98.02% 99.90% 98,70% 99.31% 99.79% 99.99%
foppp 94.12% 96.48% 94.61% 97.02% 92.18% 97.23% 95.82% 97.40%
waved 94.52% 86.26% 94.66% 86.86% 91.12% 89.83% 94.01% 91.29%
Table 2. SPEC95 CFP Intraprocedural Array Bound Check: Percentages of removed compile-

time and run-time checks

and Nguyen 2001] to avoid premature aborts due to bound violations.

7.1 Intraprocedural Array Bound Check - Removed Checks

Table 2 shows the percentages of bound checks removed by the two approaches for
intraprocedural array bound checking: Elimination of redundant tests and Inser-
tion of unavoidable tests. For each approach, we used the intraprocedural option
for transformers and preconditions analyses, which is faster but less accurate and
the interprocedural option, which is slower but improves the accuracy. For each
combination of approach and option, we measured the percentages of compile-time
and run-time checks removed. The number of eliminated compile-time checks may
be high, but if remaining checks are inside some frequently executed blocks of code,
we will not have much speed-up. Run-time checks are more interesting because
they have direct effects on execution time. So to compare between intraprocedural
and interprocedural analysis options, between the Elimination of redundant tests
and Insertion of unavoidable tests approaches, we use only run-time checks results.

In both approaches, we do not have much gain with interprocedural analysis if the
intraprocedural one has already done a good job (tomcatv, mgrid, applu). There
is more room left to improve the number of removed tests with turb3d (8.82%,
8.75%), sulcor (2.34%, 1.06%), swim (2.99% with Elimination approach), hydro2d
and waved (respectively, 1.76% and 1.36% with Insertion approach) because of
the smaller percentages of removed tests. For tomcatv, we can statically prove that
there is no intraprocedural bound violation by using either intra- or inter-procedural
analyses, which is an interesting result for verification purposes.

Comparing the two approaches, we see that the second works uniformly better.
We have almost no gain for tomcatv, mgrid and apsi, but there are very big gaps
between Insertion of unavoidable tests and Elimination of redundant tests for turb3d
(about 20.0% with both options), hydro2d (4.20% with intraprocedural option,
5.32% with interprocedural option) and wave5 (3.57% with intraprocedural option,
4.43% with interprocedural option).

The percentage of removed tests varies for different benchmarks, approaches and
options. It is not very high for turb3d and waves, since there are a lot of non-linear
expressions in array bound checks that has not yet been handled by PIPS.

Efficient Array Bound Checking . 17

Elimination Insertion SUN F77
Prog. Spd | PIPS | SUN | Tot. | Spd | PIPS | SUN | Tot. | WoC | + C
tomcatv | 55.5 0:02 0:02 0:04 | 22.2 0:05 0:02 0:07 0:03 0:13
swim 70.7 0:04 0:02 0:06 | 23.5 0:12 0:05 0:17 0:04 0:20

su2cor 39.4 0:40 0:25 1:05 10.5 2:28 0:33 3:01 0:33 2:23

hydro2d | 107.0 0:16 0:19 0:35 | 39.8 0:43 0:32 1:15 0:32 1:03

mgrid 85.2 0:04 0:07 0:11 8.9 0:38 0:06 0:44 0:08 0:37
applu 74.9 0:33 0:25 0:58 20.2 2:02 0:54 2:56 0:57 11:12
turb3d 86.0 0:15 0:16 0:31 19.8 1:05 0:17 1:22 0:17 0:44
apsi 55.8 1:16 1:02 2:18 9.1 7:42 1:03 8:45 1:16 3:15
fpppp 50.6 0:42 0:45 1:27 8.8 4:01 0:56 4:57 0:54 1:22
waveb 35.2 5:03 1:25 6:28 8.9 12:04 1:50 13:54 2:04 6:20

Table 3. SPEC95 CFP Intraprocedural Array Bound Check - Compilation times Ultra SPARC
360MHz - Optimized code (f77 -fast -xarch=v8plusa -fsimple=2 -xprefetch)

7.2 Intraprocedural Array Bound Check - Compilation Time

The compilation speeds, expressed in source lines per second, obtained with PIPS to
parse, analyze (transformers, preconditions, array regions), optimize (array bound
check) and generate Fortran code with its own range checking for SPEC CFP95 are
shown in Column 2 and 6, Table 3. The speeds are measured with interprocedural
analyses for transformers and preconditions, which are slower than the intraproce-
dural ones. Comment lines are not taken into account. The 10 benchmarks, with
20644 lines of code and 374 subroutines, are processed at an average speed of 66.07
lines per second for the Elimination of redundant tests and 17.24 lines per second
for the Insertion of unavoidable tests. The range check optimization phase only
takes a very small fraction of this compilation time but we have not attempted to
measure it because only the total time matters to the user.

The compilation times for the second approach are longer, especially for mgrid,
apsi, foppp and waves. It is due to the satisfiability test used in PIPS to compute
array regions. This could be improved by a more sophisticated implementation
of array regions as mentioned in Section 5. As shown in Table 2, the percentage
of removed checks of Insertion of unavoidable tests is high enough to pay for this
tradeoft.

Since PIPS is a Fortran source-to-source compiler, the code generated by PIPS
with its own range checking is then compiled by other compilers. We measured the
compilation times taken by PIPS as a preprocessor and by SUN Workshop F77 5.0
compiler for PIPS generated codes. The original codes of SPEC CFP95 are also
compiled with and without the array range checking option of SUN. Experimental
results show shorter times for the two implementations of PIPS than for SUN (see
columns Total of Elimination of redundant tests and of Insertion of unavoidable
tests and column With C of SUN F77).

7.3 Intraprocedural Array Bound Check - Execution Time

The execution times of SPEC CFP95 are measured on different platforms to see the
relation between the percentage of eliminated checks and the slowdown. This set
of experiments is reported with the optimizing options turned on, using the SPEC
measurement guidelines. The code generated by PIPS with its own range checking

18 . T.V.N. Nguyen and F. Irigoin

3000

1st: SUN F77 without array bound check
2nd: SUN F77 with array bound check
2500 |- M 3rd: PIPS Elimination of Redundant Tests_|
4th: PIPS Insertion of Unavoidable Tests

2000 —

1500 —

second

1000

SOZFHWFHWTHW%FWW Al

tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

Fig. 6. Execution time: SUN F77 and PIPS - Ultra SPARC 360MHz - Optimized code (f77 -fast
-xarch=v8plusa -fsimple=2 -xprefetch)

using the interprocedural option for transformers and preconditions is compiled
by other compilers to generate executable files. Experiments have been performed
with three commercial compilers: SUN Workshop F77 version 5.0, SGI MIPSpro
F90 version 7.3 and IBM XLF F77 version 7.1.0.0. There is no range checking
option for SGI F77 and GNU G77 compilers and we had to leave them out. For
IBM, because an internal compiler error occurred when compiling the Fortran code
with options -O5 and -C together, we used -0O3. In addition, there is an IO error
for apsi so we do not have results for this benchmark on the IBM machine. The
execution times of codes obtained with and without the bound checking option of
these compilers and with the PIPS versions are provided in Figure 6, Figure 7 and
Figure 8.

We can see the overheads of range checking in mgrid and applu for SUN (Figure
6), mgrid and swim for SGI (Figure 7) and tomcatv and turb3d for IBM (Figure
8). PIPS optimizing array bound checkers work very well for tomcatv, swim, mgrid
and applu. These benchmarks have more dynamic bound checks than others, as
shown in Table 1.

As the range checking of the IBM compiler is already optimized, the PIPS versions
work better than IBM in general but worse for turb3d benchmark. The reason is that
analyses of non-linear expressions are not implemented yet in PIPS. Comparing the
execution time of PIPS codes with that of other bound checked codes, on average,
PIPS Elimination of redundant tests is about 3.94 times faster than SUN, 1.88 times
faster than SGI and 1.03 times faster than IBM. PIPS Insertion of unavoidable tests
is about 4.37 times faster than SUN, 2.02 times faster than SGI and 1.07 times faster
than IBM. The execution times of programs with range checking added by PIPS are
slightly longer than that of the unsafe programs without bound checks. On average,
these times for PIPS Elimination of redundant tests are about 19.29% longer for
SUN, 7.05% longer for SGI and 16.59% longer for IBM. For PIPS Insertion of
unavoidable tests, they are about 5.33% longer for SUN, 0.61% longer for SGI and

Efficient Array Bound Checking . 19

2500
M 1st: SGI F77 without array bound check
2nd: SGI F77 with array bound check
3rd: PIPS Elimination of Redundant Tests
2000 = 4th: PIPS Insertion of Unavoidable Tests |
1500 - —
=}
=
15} —
(%]
[} =
2]
1000 —
500 —
0

tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

Fig. 7. Execution time: SGI F90 and PIPS - SGI MIPSpro F90 7.3, O2 R5000 195MHz, IRIX
6.3 - Optimized code (f90 -Ofast=ip32_5k)

SUN | SGI | IBM | PIPS Elimination | PIPS Insertion
Line X X
Array b'e x x
Dimension X X X

Table 4. Debugging information given by different compilers

10.62% longer for IBM.

7.4 Intraprocedural Array Bound Check - Debugging Information

The amounts of information given when a bound violation occured differ between
compilers. This information is shown in Table 4 by experiments with three original
benchmarks violating the standard for array references: turb3d, apsi and fpppp. The
SUN compiler -C option provides the lines of code, the arrays and the dimensions
associated to the violations. The SGI -C option does not provide any informa-
tion, which is particularly clear since the programs did not stop on the system we
used when they reached an out-of-bound trap. The IBM -C option spots errors
in programs with the ” Trace/BPT trap(coredump)” message. Meanwhile, our first
array bound checker provides full information about the location of the violations
and the second one gives information about the array and the dimension whose
bounds are violated. The PIPS Elimination of redundant tests has shorter compi-
lation time and execution time than the SUN compiler while preserving the same
diagnostic capabilities. As in code hoisting methods, PIPS Insertion of unavoidable
tests propagates bound checks outside loops and into the beginning of the program
so the precise location of the violation is lost. But compared to IBM’s compiler,
which is in the same performance range, the array and the dimension improperly
accessed are still known.

20 . T.V.N. Nguyen and F. Irigoin

200

1st: IBM F77 without array bound check

2nd: IBM F77 with array bound check M

3rd: PIPS Elimination of Redundant Tests L

4th: PIPS Insertion of Unavoidable Tests W
150 o —
100 ~ [] M — —

second

50
10 error
0

tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

Fig. 8. Execution time: IBM F77 and PIPS - IBM XL F77 7.1, RS/6000 44P-270 375MHz 4
CPU, AIX 4.3 - Optimized code (f77 -O3 -lmass)

Compilation Execution
Program | Checks | Time (second) Checks Slowdown
tomcatv 0 1 0 0.00%
swim 0 3 0 0.00%
su2cor 0 59 0 0.00%
hydro2d 0 21 0 0.00%
mgrid 24 5 40151 0.15%
applu 0 17 0 0.00%
turb3d 29 42 281417 2.12%
apsi 6 85 240127 1.67%
Torpp 2 149 727917 0.79%
waveb 34 156 | Bound violation | Bound violation

Table 5. SPEC95 CFP Interprocedural Array Bound Check: Number of added compile-time and
run-time checks, compilation time and execution slowdown

7.5 Interprocedural Array Bound Check

Table 5 shows the number of compile-time and run-time checks added, as well as
the compilation time and the slowdown caused by the interprocedural array bound
checking for the SPEC95 CFP benchmarks. By using static analyses, our check-
ing has proved that there is no interprocedural bound violation in 5 out of 10
benchmarks. Other bound checks are added before some procedure calls in the 5
remaining benchmarks. Since there is no other compiler that does this checking, we
cannot compare the effectiveness of our approach but the cost here is small enough.
A bound violation is detected in waved, an electromagnetic particle simulation pro-
gram. Figure 9 contains the piece of code that causes a bound violation for array
BX(NC1) when passing it as argument in procedure calls. The size of array TMP (NXD,
NY,2) in subroutine SLV2XY must be less than or equal to the size of array TMP (NX2,
*) in subroutine SOLV2Y and so less than or equal to the size of array BX(NC1) in sub-
routine FIELD. By using binding information between formal and actual arguments

Efficient Array Bound Checking . 21

SUBROUTINE FIELD
PARAMETER (NC1 = 78885)
COMMON/EFIELD/EX(NC1) ,EY(NC1),EZ(NC1),BX(NC1) ,BY(NC1),BZ(NC1)

NX2 = NX + 2

NY2 = NY + 2

CALL SOLV2Y(NX2,NY2,HX,HY,0.0D0,V,BC,BDY1,BX)
END

SUBROUTINE SOLV2Y(NX2,NY2,HX,HY,DD,Q,BX,BY,TMP)

DIMENSION BX(4),Q(NX2,*),TMP(NX2,*),BY(4)

CALL SLV2XY(NX2-2,NY2-2,NX2,HX,HY,DUMMY,DD,Q,BX,BY,TMP,0)
END

SUBROUTINE SLV2XY(NX,NY,NXD,HX,HY,GX,DD,Q,BX,BY,TMP,IGXSW)
DIMENSION Q(NXD,*),TMP(NXD,NY,2),BX(4),GX(NXD),BY(4)

CALL VSLV1P(NX,NY,NXD,HX,GX,DIAG,Q(1,2),TMP,TMP(1,1,2),IGXSW, ISING)
END

Fig. 9. Interprocedural bound violation in waves, SPEC95 CPU

and preconditions, we have SLV2XY:NXD = SOLV2Y:NX2 = FIELD:NX2 = FIELD:NX
+2 and SLV2XY:NY = SOLV2Y:NY2-2 = FIELD:NY2-2 = FIELD:NY. So we have the
following check about array sizes: FIELD:NC1 < SLV2XY:NXD*SLV2XY:NY*2 that
is translated into the frame of FIELD by NC1 < (NX+2)*NY*2. When executing the
instrumented code with its standard input data where the grid size NX = 1250 and
NY = 60, we have 78885 < 1252%60%*2 is true, so there is a bound violation here.

Because BX is accessed outside it declared range by procedure calls and BY is
allocated just after BX in memory, the two arrays TMP and BY share some memory
locations if bound violations are not checked. So if interprocedural array bound
checking is omitted, bound violation makes other analyses such as alias analysis
become much more difficult.

8. CONCLUSION

We designed and experimented two intraprocedural and one interprocedural algo-
rithms for array bound checking. The number of removed/added bound checks, the
compilation and the execution times, the information about violations were mea-
sured for the SPEC95 CFP benchmarks with three different compilers and with our
experimental implementations.

Some other studies [Richardson and Ganapathi 1989] suggest that interprocedural
analyses give little benefit in optimization and are too expensive to be worthwhile.
However, our implementations show that with powerful and efficient interprocedural
analysis techniques, more redundant checks are removed and we can even prove the
absence of bound violations in some programs. Once again, it is still a question of
tradeoff between speed and accuracy, but in the domain of verification, proving the
correctness of code is the most important criterion.

The experimental results show the effectiveness and the limited optimization cost
of our two intraprocedural array bound check approaches: Elimination of redundant
tests and Insertion of unavoidable tests.

The first one puts array bound checks everywhere and then removes the redun-

22 . T.V.N. Nguyen and F. Irigoin

dant ones. This approach is simple and the number of eliminated tests depends on
the strength of data flow analyses, such as predicates over scalar integer variable
values, used to perform the elimination.

The second implementation inserts useful checks directly by using array region
analyses. It produces better results with a higher number of dynamic removed
checks and faster execution times. For a small program like tomcatv, the differences
between the two approaches are limited, but for large programs with more than 2000
lines of code, there are clear differences. The maximum improvement in dynamic
removed bound checks is 20.57% for turb3d. The main advantage of this top-down
analysis approach is that it detects the sure bound violations or indicates that there
is certainly no bound violation as soon as possible.

Within the SUN environment, we measured shorter compilation times using our
two intraprocedural source-to-source array bound checkers followed by F77 than
using F77 alone with its -C option. The compilation time speedups are 3.03 for
Elimination of redundant tests and 1.1 for Insertion of unavoidable tests.

At run-time, the slowdowns measured for SUN and SGI compilers are large
enough to make improvement easy. We mostly obtained speedups by adding array
bound checks of the Insertion of unavoidable tests version, in comparison with the
execution time with no bound checks of the SGI compiler. This is not the case with
IBM XLF compiler 7.1.0.0, which nevertheless is not uniformly efficient and which
breaks down with an internal error when combining options -C and -O5. However,
our execution times are in the same range as IBM’s, 7 times out of 9 slightly bet-
ter. Furthermore, as does the SUN compiler, our array bound checkers provide
programmers useful and precise information about the dimension and name of the
array experiencing a bound violation, even the line of code with the first approach,
while the IBM compiler only indicates that an overflow occurred somewhere. This
shows that a simple comparison of techniques is not possible since the amount of
information produced differs. Without good diagnostic capability, many hours can
be wasted in debugging the cause of an array bound violation message. It should
not be infer from Figure 6 and 8 that the SUN compiler is not as good as the IBM’s
one.

We could not directly compare our results with those presented in [Kolte and
Wolfe 1995] about the Perfect Club and Riceps benchmarks because the authors
do not include execution times. We observe that the percentage of removed checks
is not an accurate predictor of slowdown. These two numbers are not proportional
because they may depend on architectures and compilers. For example, the execu-
tion time of code without bound checks for swim is only 92.35% although 99.99%
of dynamic checks removed (see Table 2 and Figure 6). So to evaluate array bound
checking optimization, it is necessary to compare the execution times of generated
codes which is missing in [Kolte and Wolfe 1995]. However, their best figures are in
the very same range as ours and it is very interesting to see that specific techniques
do not work better than re-used techniques. Furthermore, no information about
the origin of violation is preserved.

Interprocedural array bound checking is as important as the intraprocedural one
because it allows us to detect complicated bugs. We developed an efficient algorithm
that guarantees the safety of code. This can be a complementary phase when doing
array range checking for whole programs.

Efficient Array Bound Checking . 23

Result analysis shows the importance of code quality. Proper array declarations
are needed to avoid out-of-bound errors caused by standard violation. Furthermore,
some benchmarks require more sophisticated techniques or modifications such as
cloning, parameter checking, scalarization for dealing with indirections, scalariza-
tion for loop bounds, loop increments different than one,... For example, we can
improve the percentage of removed checks in Elimination of redundant tests from
94.14% to 99.50% for hydro2d by cloning the subroutine ADLEN which has two totally
different behaviors for two parameter values: ”half” and ”full” step. The execution
time on SUN is reduced by 10%. The elimination percentage goes up to 100% from
97.09% for applu by adding one STOP statement after the parameter checking that
is performed for lower bound tests but not for upper bound test of read variables
(NX,NY,NZ in the main program APPLU). A 5.4% decrease of the execution time is
then measured on SUN. A poor code quality can make static analysis insufficient;
run-time checks remain and run-time failures cannot be eliminated.

Some analyses for non-linear expressions that have direct impact on array range
checking have not been implemented in PIPS, so we do not have very good results
for turb3d and waved in Elimination of redundant tests.

For the array region-based version, the number of bound checks could be reduced
by replicating code as in [P.Midkiff et al. 1998; Moreira et al. 2000] when MAY regions
give necessary but not sufficient conditions for a bound violation to occur. However,
the code size increase may raise problems that go beyond a simple reuse of existing
techniques.

The implementations in this paper suggest that commercial products with auto-
matic analyses could easily be improved to perform efficient array bound checking
without sacrificing information about the location of the violation. Less than 1600
additional lines of C code (comments included) are sufficient to implement both
intraprocedural and interprocedural checking in PIPS. The execution overhead is
small enough to consider the use of safe versions of programs for production activi-
ties. These array bound checkers could possibly be a source-to-source preprocessor
for GNU g77, since it does not have a range checking option.

Our approaches to optimizing bound checking could also be applied to other
imperative languages for scientific applications that require software verification
such as Ada, Java,... The PIPS software and documentation as well as the array
bound checking implementations are available on http://www.cri.ensmp.fr/pips.

ACKNOWLEDGMENTS

We would like to thank Béatrice Creusillet and Fabien Coelho for implementing
some key algorithms in PIPS as well as Corinne Ancourt, Pierre Jouvelot and
Ronan Keryell for their helpful comments. We also wish to give special thanks to
Serge Algarotti, Catherine Mongenet and Romaric David for letting us use their
IBM and SGI machines.

REFERENCES

AGGARWAL, A. AND RANDALL, K. H. 2001. Related field analysis. In International Confer-
ence on Programming Language Design and Implementation (Snowbird,Utah,USA, June
2001), pp. 214-220.

Awmi, T. L., Reps, T., SAcrv, M., AND WILHELM, R. 2000. Putting static analysis to work

24

. T.V.N. Nguyen and F. Irigoin

for verification: A case study. In ISSTA’00 (Portland, Oregon, 2000), pp. 26-38.

ANcOURT, C. AND NGUYEN, T. V. N. 2001. Array resizing for code debugging, maintenance
and reuse. In ACM SIGLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering - PASTE01 (Snowbird, Utah, USA, June 2001), pp. 32-37.

ANSI. 1983. Programming Language FORTRAN, ANSI X3.9-1978, ISO 1539-1980. Amer-
ican National Standard Institute.

AUSTIN, T. M., BREACH, S. E., AND SoHI, G. S. 1994. Efficient detection of all pointer and
array access errors. ACM SIGPLAN Notices 29, 6, 290-301.

Bobik, R., GupTA, R., AND SARKAR, V. 2000. ABCD: Eliminating Array Bounds Checks
on Demand. In International Conference on Programming Language Design and Imple-
mentation (Vancouver, British Columbia, Canada, 2000), pp. 321-333.

CALLAHAN, D. AND KENNEDY, K. 1988. Analysis of interprocedural side effects in a parallel
programming environment. Journal of Parallel and Distributed Computing 5, 517-550.
CHAMBERLAIN, B. L., LEwis, E. C., LIN, C., AND SNYDER, L. 1999. Regions: An abstraction

for expressing array computation. In APL’99 (Scranton, PA, USA, 1999), pp. 41-49. ACM.

CHIN, W.-N. AND GoH, E.-K. 1995. A reexamination of ” Optimization of array subscript
range checks”. ACM Transactions on Programming Languages and Systems 17, 2 (March),
217-227.

Cousort, P. 1990. Methods and logics for proving programs. In J. VAN LEEUWEN Ed., For-
mal Models and Semantics, Volume B of Handbook of Theoretical Computer Science, Chap-
ter 15, pp. 843-993. Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

Cousor, P. AND CousoT, R. 1976. Static determination of dynamic properties of programs.
In Second International Symposium on Programming (1976), pp. 106-130. Dunod, Paris,
France.

Cousor, P. AND CousoTr, R. 1977. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Fourth ACM
Symposium on Principles of Programming Languages (Los Angeles, California, January
1977), pp. 238-252.

CousoT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among
variables of a program. In Symposium on Principles of Programming Languages (January
1978), pp. 84-96.

CREUSILLET, B. AND IRIGOIN, F. 1995. Interprocedural array region analyses. In Interna-
tional Workshop on Languages and Compilers for Parallel Computing, Volume 1033 of
Lecture Notes in Computer Science (1995), pp. 46—60. Springer-Verlag.

CREUSILLET, B. AND IRIGOIN, F. 1996. Exact vs. approximate array region analyses. In
International Workshop on Languages and Compilers for Parallel Computing, Volume
1239 of Lecture Notes in Computer Science (1996), pp. 86-100. Springer-Verlag.

DELzANNO, G., JUNG, G., AND PODELSKI, A. 2000. Static analysis of array bounds as
infinite-state model checking. Extended abstract.

Dor, N., RoDEH, M., AND SAaGIv, M. 2001. Cleaness checking of string manipulation in c
programs via integer analysis. In Static Analysis, Volume 2126 of Lecture Notes in Com-
puter Science (2001), pp. 194-212. Springer-Verlag.

DUESTERWALD, E.; GUPTA, R., AND SOFFA, M. L. 1993. A practical data flow framework
for array reference analysis and its application in optimization. In International Conference
on Programming Language Design and Implementation (Albuquerque, N.M, June 1993),
pp. 68-77.

Duimovic, J. J. AND Duimovic, I. 1998. Evolution and evaluation of SPEC benchmarks.
ACM:SIGMETRICS, 2-9.

FEAUTRIER, P. 1991. Dataflow analysis of array and scalar references. International Journal
of Parallel Programming 20, 1, 23-53.

Gu, J. AND L1, Z. 2000. Efficient interprocedural array data-flow analysis for automatic
program parallelization. IEEE Transactions on Software Engineering 26, 3 (March), 244—
261.

Efficient Array Bound Checking . 25

GupTA, R. 1990. A fresh look at optimizing array bound checking. In International Con-
ference on Programming Language Design and Implementation (White Plains, New York,
June 1990), pp. 272-282.

GupTA, R. 1993. Optimizing array bound checks using flow analysis. ACM Letters on Pro-
gramming Languages and Systems 2, 1-4 (March-December), 135-150.

HARrrISON, W. H. 1977. Compiler analysis of the value ranges for variables. IEEE Trans-
actions on Software Engineering SE-3, 3 (May), 243-250.

IriGoiN, F. 1993. Interprocedural analyses for programming environments. In Environments
and Tools for Parallel Scientific Computing (1993), pp. 333-350. Elsevier.

IRIGOIN, F., JOUVELOT, P., AND TRIOLET, R. 1991. Semantical interprocedural paralleliza-
tion: an overview of the PIPS project. In International Conference on Supercomputing
(June 1991), pp. 144-151.

KorTe, P. AND WOLFE, M. 1995. Elimination of redundant array subscript range checks.
In International Conference on Programming Language Design and Implementation (La
Jolla, CA, USA, June 1995), pp. 270-278.

LIN, Y. AND PADUA, D. 1999. Demand-driven interprocedural array property analysis. In
International Workshop on Languages and Compilers for Parallel Computing (1999).
MARKSTEIN, V., COCKE, J., AND MARKSTEIN, P. 1982. Optimization of range checking.

ACM SIGPLAN Symposium on Compiler Construction, 114-119.

M.Asuru, J. 1992. Optimization of array subscript range checks. ACM Letters on Pro-
gramming Languages and Systems 1, 2 (June), 109-118.

MAYDAN, D. E. 1992. Accurate Analysis of Array References. Ph. D. thesis, Computer
Science Department, Stanford University.

MAYDAN, D. E., AMARASINGHE, S. P., AND Lam, M. S. 1992. Data dependence and data-
flow analysis of arrays. In International Workshop on Languages and Compilers for Parallel
Computing (1992).

MENON, V. AND PiNGALL, K. 1999. A case for source-level transformations in MATLAB.
In ACM SIGPLAN 2nd Conference on Domain-Specific Languages, Volume 35 (Austin,
Texas, USA, October 1999), pp. 53—-65.

MOREIRA, J. E., MIDKIFF, S. P., AND GUPTA, M. 2000. From flop to megaflops: JAVA for
technical computing. ACM Transactions on Programming Languages and Systems 22, 2
(March), 265-295.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kauf-
mann.

MUCHNICK, S. S. AND JONES, N. D. 1981. Program Flow Analysis: Theory and Applica-
tions. Prentice Hall.

NGuUYEN, T. V. N. AnD IRIGOIN, F. 2001. Interprocedural program analyses for efficient
array bound checking. Technical report, CRI-Ecole des Mines de Paris, France.

NGUYEN, T. V. N., IrR1GOIN, F.; ANCOURT, C., AND KERYELL, R. 2001. Efficient intrapro-
cedural array bound checking. In Second International Workshop on Automated Program
Analysis, Testing and Verification (Toronto, Canada, May 2001).

PAEK, Y., HOEFLINGER, J., AND PADUA, D. 2001. Efficient and precise array access analysis.

P.MIDKIFF, S., E.MOREIRA, J., AND M.SNIR. 1998. Optimizing array reference checking in
JAVA programs. IBM Systems Journal 37, 3, 409-453.

RICHARDSON, S. AND GANAPATHI, M. 1989. Interprocedural optimization: Experimental
results. Software - Practice and Ezperience 19, 2 (February), 149-169.

RuciNa, R. AND RINARD, M. 2000. Symbolic bounds analysis of pointers, array indices, and
accessed memory regions. In International Conference on Programming Language Design
and Implementation (Vancouver, British Columbia, Canada, 2000), pp. 182-195.

SCHRIJVER, A. 1986. Theory of Linear and Integer Programming. John Wiley & Sons.

SCHWARZ, B., KIRCHGASSNER, W., AND LANDWEHR, R. 1988. An optimizer for Ada - design,
experiences and results. In International Conference on Programming Language Design and
Implementation (Atlanta, Georgia, USA, June 1988), pp. 175-184.

26

. T.V.N. Nguyen and F. Irigoin

SPEZIALETTI, M. AND GUPTA, R. 1995. Loop monotonic statements. IEEE Transactions on
Software Engineering 21, 6 (June), 497-505.

STEFFEN, J. L. 1992. Adding run-time checking to the portable C compiler. Software -
Practice and Ezperience 22, 4 (April), 305-316.

Suzuki, N. AND ISHIHATA, K. 1977. Implementation of an array bound checker. In Sympo-
situm on Principles of Programming Languages (1977), pp. 132-143.

TRIOLET, R., FEAUTRIER, P., AND IRIGOIN, F. 1986. Automatic parallelization of Fortran
programs in the presence of procedure calls. Technical Report 120 (March), Universite P.
et M. Curie, Laboratoire MASI, Paris-France.

V.AHO, A., SETHI, R., AND D.ULLMAN, J. 1986. Compilers Principles, Techniques, and
Tools. Addison-Wesley.

WELSH, J. 1978. Economic range checks in Pascal. Software - Practice and Ezperience 8,
85-97.

WonNAcoTT, D. 2000. Extending scalar optimizations for arrays. In International Work-
shop on Languages and Compilers for Parallel Computing (New York, 2000), pp. 93-107.

X1, H. AND PFENNING, F. 1998. Eliminating array bound checking through dependent types.
ACM SIGPLAN Notices 33, 5, 249-257.

