Array Resizing for Scientific Code Debugging,
Maintenance and Reuse

Corinne ANCOURT
CRI - ENSMP
35 rue Saint Honoré
77305 Fontainebleau Cedex, France

ancourt@cri.ensmp.fr

ABSTRACT

Software debugging, maintenance and reuse have to deal
with many problems from Fortran scientific codes that do
not fully respect the standard specification. Our study on
Linpack, PerfectClub and SPEC95 benchmarks and several
industrial software reveals a large number of unprecise vari-
able declarations that prevent program analysis, verification
and parallelization. Furthermore, they decrease the read-
ability of programs and make reverse-engineering more dif-
ficult.

This paper presents two different methods to compute the
exact size of arrays in Fortran codes that have pointer-type
REAL A(1) or assumed-size REAL A(x) declarations.

The first method uses the relationship between actual and
formal arguments from parameter-passing rules. New array
declarations in the called procedure are computed with re-
spect to the declarations in the calling procedures.

The second approach is based on an array region analysis
that gives information about the set of array elements ac-
cessed during the execution of code. This approach to array
resizing could be applied to other languages without array
declaration such as MATLAB and APL in order to reduce
the execution overhead of dynamic test and resizing.

Our two approaches are combined to yield very good re-
sults for Linpack, PerfectClub and SPEC95 benchmarks.

Keywords

program analysis, program comprehension, debug, reuse,
reverse-engineering, array declaration, array resizing, array
region.

1. INTRODUCTION

In many programming languages, array declarations are
very important for program analyses such as array aliasing,
array bound and array initialization checking. It is the re-
sponsibility of the programmer to allocate a large enough

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PASTE’ 01, June 18-19, 2001, Snowbird, Utah, USA..

Copyright 2001 ACM 1-58113-411-8/01/0006 ...$5.00.

Thi Viet Nga NGUYEN
CRI - ENSMP
35 rue Saint Honoré
77305 Fontainebleau Cedex, France

nguyen@cri.ensmp.fr

storage space for arrays since any attempt to read from or
write into a location outside the declared ranges is an er-
ror, and may result in unexpected results, security holes or
failures.

In many languages, some array dimension declarators of
formal arguments are implicit. In C and Java, the program-
mer can replace the first array dimension declarators by [J.
In Fortran, it is the last array dimension that can be declared
with an assumed-size declarator (*), because arrays are al-
located in column-major order. Array argument declarators
with 1 (which do not respect Fortran 77 standard) instead
of * are also encountered.

Our study of scientific applications from Linpack, Perfect-
Club [?] and SPEC CFP95 [?] benchmarks shows a large
number of unnormalized array argument declarations. Many
of them have 1 as the upper bound for the last dimension of
the array declaration although array references in the cor-
responding procedure are outside the defined extent of the
array. This causes premature aborts due to bound viola-
tions when the programs are compiled with an array range
checking option. In [?], the declarations had to be fixed
by hand, which is not an easy process. Like the assumed-
size array declarator, this unnormalized feature in Fortran
prevents array bound checking and alias analysis that are
critical for code safety and debugging.

Furthermore, when these kinds of array declarations are
used by programmers, code understanding, one of the core
software engineering activities, becomes more difficult. Pro-
gram comprehension is really needed to maintain, reuse, re-
engineer and enhance software systems.

The numbers of unnormalized and assumed-sized arrays
in Table 1 (fifth column: Total) show how often this kind
of declarations occurs, in 18 out of 23 programs (the bench-
mark adm from PerfectClub is not used because it is exactly
the same as benchmark apsi from SPEC CFP95). The av-
erage percentage of these declarations is 59.66% out of the
total array argument declarations in the 18 programs. To
ease code maintenance and debugging, an automatic phase
is essential if we do not want to infer thousands precise dec-
larations manually.

Array declarations can raise problems not only in Fortran
but also in other class of programming languages that do
not have variable declarations. A large execution time over-
head for dynamic array allocation and resizing in MATLAB
[?] is due to repeated reallocation and copying. As ma-
trix and vectors sizes are not declared by the programmer,
the MATLAB interpreter allocates storage for these vari-

ables on demand, during program execution. An attempt
to write into a matrix element outside the bounds of the
matrix element causes the system to reallocate storage for
the entire matrix, copying over all elements from the old
storage to newly allocated space. This becomes very expen-
sive if these operations are done within loops. In JAVA,
the dynamic allocation of the Vector class exhibits the same
problem. In this case, an implicit appropriate preallocation,
when possible, would be interesting to improve performance.

A judicious use of declarations can significantly improve
the quality of code that can be generated by an APL com-
piler as shown in [?]. Precise array declarations are also im-
portant for data distribution in Fortran compilers for message-
passing machines as in [?]. Furthermore, our technical re-
port [?] shows that the normalization of array declaration
is unavoidable for array range checking.

As a result of these experiments, we developed two new
methods to find out automatically the proper upper bound
for the unnormalized and assumed-size array declarations,
a process we call array resizing. Both methods are imple-
mented in PIPS [?, ?, 7], a free, open and extensible work-
bench for automatically analyzing and transforming scien-
tific applications. The goals of PIPS are program compi-
lation, reverse-engineering, program verification, source-to-
source program optimization and parallelization. Its inter-
procedural analyses help with program understanding and
with checking the legality and the impact of automatic pro-
gram transformations.

The first approach to array resizing is a top-down analy-
sis based on the association rules of arguments in Fortran
standard [?]. This method, which is a whole program com-
pilation, tries to find the exact array argument declarations
in the called procedure with respect to the declarations in
the calling procedures.

The second approach is a bottom-up analysis using array
region analysis [?, ?]. New array sizes are computed from the
sets of actually accessed array elements during the execution
of the program. The main program is not always necessary
and this approach can also be used for library maintenance.

The paper is organized as follows. Section 2 contains a
running example to describe the problems and the two ap-
proaches. Section 3 and Section 4 present in detail, respec-
tively, the top-down and the bottom-up approaches. The
experimental results and the comparison between the two
algorithms are discussed in Section 5. Conclusions are given
in the last section.

2. RUNNING EXAMPLE

The example in Figure 1 is extracted from the Linpack
benchmark. It contains 7 unnormalized and assumed-size
array declarations that should be resized such as IPVT(1),
A(LDA,1) in DGESL and DX(*), DY(*) in DAXPY.

By propagating information down the call tree, the pro-
cedure call CALL DGESL(A,LDA,N,IPVT,B) in the main pro-
gram shows that the actual array MAIN:A(201,200) is as-
sociated with the formal array DGESL:A(LDA,1) and as we
have LDA = 201, the second dimension of the array DGESL: A
could be replaced by 1:200. In the same way, we have
new array declarations: DGESL:B(200), DGESL:IPVT(200),
DGEFA:B(200) and DGEFA:IPVT(200).

On the other hand, the intraprocedural array region anal-
ysis in subroutine DAXPY shows that array region DX(1:M)
must be read, and that DY(1:M) must be read and writ-

ten, assuming M > 1, which can be proven by using inter-
procedural information. So new declarations REAL DX (M)
and REAL DY(M) can be induced by finding the real array
accesses in this subroutine.

PROGRAM MAIN
REAL A(201,200),B(200)
INTEGER IPVT(200)

LDA = 201
N = 100

C P(LDA,N) {LDA==201, N==100}
CALL DGESL(A,LDA,N,IPVT,B)
CALL DGEFA(N,IPVT,B)

END

SUBROUTINE DGESL(A,LDA,N,IPVT,B)
INTEGER LDA,N,IPVT(1)
REAL A(LDA,1),B(1)
DO 10 K = 1, N-1
L = IPVT(X)
C P(LDA,N,K) {LDA==201, N==100, 1<K, K<99}
CALL DAXPY(N-K,L,A(K+1,K),B(K+1))
10 CONTINUE
END

SUBROUTINE DGEFA(N,IPVT,B)
INTEGER N,IPVT(1)

REAL B(1)
DO 20 K =1, N-1
L = IPVT(K)

c P(,K) {N==100, 1<K, K<99}
CALL DAXPY(N-K,L,B,B(K+1))
20 CONTINUE
END

SUBROUTINE DAXPY(M,DA,DX,DY)

REAL DX(x*),DY(*),DA
C <DX(PHIl)—EXACT—{1§PHIl, PHIiSM}>
C <DY(PHIl)—EXACT—{1§PHIl, PHIiSM}>

DO 30 I = 1,M

DY(I) = DY(I) + DA*DX(I)

30 CONTINUE

END

Figure 1: Running example, excerpt from Linpack

More details about the two above approaches are given in
the following sections.

3. TOP-DOWN APPROACH

This approach is based on the association rules of formal
and actual arguments' in Section 15.9.3.3 of the Fortran
77 standard [?]. In a program, the number and the size
of dimensions in an actual argument array declaration may
be different from those in an associated formal argument
array declaration (array reshaping). A formal array can
be associated with an actual array or with an actual array
element.

In the first case, the size of the formal argument array
must not exceed the size of the actual argument array. The
size of an array is equal to the number of elements in the
array: [[;_, di where n is the number of dimensions of array,
di = u; — i + 1 is the size of the i-th dimension in which |
and u; are respectively the corresponding lower and upper
bounds.

!The actual Fortran terminology is ”dummy” and ”actual”
arguments

In the second case, the size of the formal argument ar-
ray must not exceed the size of the actual argument array
plus one minus the subscript value of the array element.
As Fortran language allocates array in column-major order,
the subscript value of an array reference A(s1,s2, - ,8n) is

1+, ((si ~) T dj). Note that T[°, dj = 1.

procedure Top Down_Array Resizing(p)

/* p: current procedure */
begin
for each al € set of 1 and * arrays in p
V := () /* set of new bound values */

for each q € set of callers of p
for each ¢ € set of calls for p in q
a2 := corresponding_argument(al,c)
k := number_equal_dimensions(a2,al,c,p,q)
s2 := size_of_actual_array(a2,k,c,q)
s2’:= translate_to_callee_frame(p,s2,c,q)
if (s2’ !'= s2) then
sl := size_of_formal_array(al,k,p)
new_value := s2’/sl
else
new_value := *
endif
V := V U {new_value}
endfor
endfor
if |V[=1 then
last_upper_bound(al) := element(V)
else
last_upper_bound(al)
endif
endfor
end

*

Figure 2: The top-down array resizing algorithm

Our algorithm is a top-down traversal of the call graph of
the program that is described in Figure 1. We always begin
by the main program and the new sizes of array arguments
in the called procedure are computed with respect to the
actual declarations in the calling procedures.

Function number_equal _dimensions(a2, al, ¢, p, q) computes
k, the number of first equal dimensions of the actual array
a2 and the formal array al. When the actual argument is an
array element, k is also the number of first subscripts that
are equal to their corresponding lower bounds. This step
simplifies the computation of array sizes and the subscript
value expressions. The size of the actual array in procedure
q is calculated by using all dimensions but the first £ ones.
If the actual argument is an array element, their subscript
value expression is evaluated only from the subscript & + 1.
The size of the formal array is computed in the same way,
omitting the last dimension which has an unnormalized or
assumed-size bound to be replaced.

Function translate_to_callee_frame(p, s2, ¢, q) tries to trans-
late all variables in the size expression of the actual argu-
ment from the caller’s name space into the callee’s name
space, by using the relations between formal and actual ar-
guments, and between the declarations of global variables
in both routines. If the new values contain variables that
cannot be translated in the scope of the callee, or if these
values are different for different call sites, we have to keep
an assumed-size declarator for the array. If not, we have
the same values for different call sites and they are in the
callee’s frame, thus the array can be resized with this new
upper bound value.

Preconditions [?], an auxiliary analysis in PIPS, are also
taken into account. They are affine predicates over scalar
integer variable values that hold true before the execution of
the corresponding statement. Preconditions are propagated
from the module entry point down to the abstract syntax
tree leaves. Unstructured programs [?] are also handled in
PIPS.

The precondition of the current call site gives more infor-
mation for the simplification and the translation steps.

SUBROUTINE DGESL(A,LDA,N,IPVT,B)
INTEGER LDA,N,IPVT(200)

REAL A(LDA,200),B(200)

END

SUBRQOUTINE DGEFA(N,IPVT,B)
INTEGER N,IPVT(200)

REAL B(200)

END

SUBROUTINE DAXPY(M,DA,DX,DY)
REAL DX(*),DY(M+100),DA
END

Figure 3: New declarations with top-down approach

For the running example, array element passing in
DGESL: CALL DAXPY(N — K, L, A(K 4+ 1,K),B(K 4+ 1)) and
DGEFA: CALL DAXPY(N — K, L,B,B(K + 1)) makes it more diffi-
cult to find the right sizes for arrays DAXPY:DX and DAXPY:DY.
For DX, the corresponding actual array size in the caller
DGESLisLDA%200+1 — (1 +(K+1—1)+ (K—1)*201) and
in the caller DGEFA is 200. By using the preconditions

DGESL : N = 100
and
DGESL : LDA = 201
shown in Figure 1, and the binding information
DGESL : N — DGESL : K = DAXPY : M

after the translation to the scope of DAXPY, we have two
different values: 20201 + 202 * M and 200. So array DX still
has an assumed-size array declaration.

However, all actual array sizes of array DY can be trans-
lated to 100 + DAXPY : M and the new declaration is DY(100 + M).
6 out of 7 arrays have been resized with appropriate bounds
(Figure 3).

4. BOTTOM-UP APPROACH

The bottom-up approach has been designed to normalize
programs when initial declarations are not explicit in the
main program or when the main program is missing e.g for
numerical libraries. A typical example is a program where
arrays are declared as pointers and dynamically allocated
by malloc-like functions. In its subroutines, these arrays are
passed as arguments but their actual sizes are not always in
the argument list.

One solution is to analyze the program behavior and to try
to extract information from the dynamic allocation function
arguments in order to find the actual array size and then
use the top-down approach. However, the allocation space
computation often depends on the type of the elements and

operators so this solution seems unrealistic. Furthermore,
when the main program itself is missing or for programming
languages with dynamic resizing, we need another method
to find actual array accesses.

The bottom-up approach computes, without knowledge
of the initial array declarations, adequate declarations. It is
based on a convex array access analysis whose purpose is to
identify the set of array elements accessed during the execu-
tion of a given section of code. An convex array region, as
defined in [?, 7], is a set of array elements described by a set
of affine equalities and inequalities. These constraints link
the region parameters that represent the array dimensions
to the values of the program integer scalar variables.

A region has the approximation MUST if every element in
the region is certainly accessed, and the approximation MAY
if its elements are simply potentially accessed. In fact, they
are under- and over-approximation of EXACT which means
that the region exactly represents the accessed set of array
elements. A major source of inexactness comes from the
lack of structure of programs when gotos are used instead
of structured tests and loops. The aggressive restructuring
phase implemented in PIPS is necessary to gather more in-
formation about array references. Another limitation is due
to nonlinear expressions or some convex region operators.
For instance, the region

< A(@1, $2) —EXACT — {¢ps = I, 1 = ¢po,1 ST <N} >

corresponds to an array element access A(I,I). The region
parameters ¢; and ¢» respectively represent the first and
second dimensions of A.

Regions are built bottom-up, intraprocedurally, from the
deepest nodes to the largest compound statement nodes in
the hierarchical control flow graph. At each meet point of a
control flow graph, the region information pieces from differ-
ent control branches are merged with a meet operator. The
approximation of regions is conservative. Intraprocedural
region analysis has to deal with elementary statements like
assignments, basic blocks, tests, loops and the control flow
graph.

The interprocedural propagation of regions is a bottom-
up analysis of the program call graph. At each call site
the summary regions of the called subroutine are translated
from the callee’s name space into the caller’s name space,
using the relations between actual and formal parameters,
and between the declarations of global variables in both rou-
tines. Intraprocedural array regions are not sufficient when
an array is passed as an actual argument by nested subrou-
tines, but no array elements are accessed in these subrou-
tines except the last one. The ¢nterprocedural propagation
is needed to find the access region for this array.

In each routine, for each array argument with non-precise
declaration, the following steps are performed:

1. Compute the regions for read and written accesses to
the array in the routine using [?].

2. Fuse read and written accesses to the array.

3. Project unnecessary variables from the region:
¢;,V1 < j < n where n is the last array dimension.

4. Eliminate redundant constraints to get an accurate up-
per bound.

5. Compute the maximum value of the last dimension
variable ¢, from the remaining constraints. If the sys-
tem has several upper bounds and their relations are
known at compile time, the preconditions are taken
into account to find this maximum value.

As in the first approach, the implementation returns *

when the maximum operator fails. By applying the bottom-
up algorithm, array regions permit to resize 6 out of 7 arrays
for the running example (Figure 4). However, in subroutine
DGESL, as the reference B(L) is not affine (L = IPVT(K)), in-
formation about array regions is lost and we cannot find out
a new value for the upper bound of B.

SUBROUTINE DGESL(A,LDA,N,IPVT,B)
INTEGER LDA,N,IPVT(99)

REAL A(LDA,*),B(100)

END

SUBROUTINE DGEFA(N,IPVT,B)
INTEGER N,IPVT(99)

REAL B(100)

END

SUBROUTINE DAXPY(M,DA,DX,DY)
REAL DX(M),DY(M) ,DA
END

Figure 4: New declarations with bottom-up ap-
proach

Results of this approach depend on the accuracy of the
array region analysis. The execution time is longer than
with the first approach because of feasibility tests on linear
systems. But once regions are computed, execution times for
the two approaches are similar. The global execution time
could be improved using more sophisticated implementation
of array regions, such as guarded regions, list of regions [?]
or linear memory access descriptors [?]. However, in most
practical cases, the required time is acceptable and good
results for array resizing are reported in Section 5.

5. EXPERIMENTAL RESULTS

The percentages of arrays resized by the two methods
for 18 benchmarks from Linpack, PerfectClub and SPEC
CFP95 are shown in Table 1. The fifth column presents the
total number of unnormalized and assumed-size array dec-
larations. The 7th and 9th columns respectively show the
numbers of actual resized arrays (* is not included) by the
top-down and bottom-up approaches.

Over 18 benchmarks, the first approach gives 12 better,
1 equal and 5 worse results. It is specially good for bdna,
flo52, ocean, suZcor, hydro2d and applu with more than 80%
resized arrays. In benchmarks spice, trfd and apsi, it is not
a whole array but array elements that are passed in most
of the procedure calls. There are variables in the array size
and subscript value expressions that cannot be translated
into the callee’s space name. Or we may have several calls
to the same procedure from different callers and the new
upper values are different, as in the running example. Fur-
thermore, information is lost right after the beginning of the
top-down traversal in the callgraph so the results for these
three benchmark are not so good. In fact, the variables can-
not be translated into the callee’s frame because they are

Bench Array 1 * | Total | Percen || TD | Percen || BU | Percen || TD+BU | Percen
linpack 16 | 13 3 16 | 100.00% 10 | 62.50% 11 | 68.75% 14 | 87.50%
bdna 228 0| 191 191 | 83.77% || 172 | 90.05% 46 | 24.08% 186 | 97.38%
dyfesm 81 0] 19 19 | 23.46% 6 | 31.58% 1 5.26% 6 | 31.58%
flo52 73| 18 0 18 | 24.66% 18 | 100.00% 3| 16.67% 18 | 100.00%
mdg 40 | 29 0 29 | 72.50% 19 | 72.50% 12 | 41.38% 21 | 72.41%
mg3d 84 | 68 0 68 | 80.95% 54 | 79.41% 29 | 42.65% 62 | 91.18%
ocean 60 | 55 0 55 | 91.67% 47 | 85.45% 17 | 30.91% 50 | 90.91%
qcd 32 0| 11 11 | 34.38% 5| 45.45% 8| 72.73% 10 | 90.91%
spc77 286 | 11 0 11 3.85% 8| 72.73% 8| 72.73% 11 | 100.00%
spice 38 | 34 0 34 | 89.47% 1 2.94% 19 | 56.00% 20 | 58.82%
trfd 22 0] 13 13 | 59.09% 3| 23.08% 5| 38.46% 6| 46.15%
su2cor 47 0 5 5| 10.64% 5 | 100.00% 1| 20.00% 5 | 100.00%
hydro2d 28 0 7 71 25.00% 7 | 100.00% 1| 14.29% 7 | 100.00%
applu 20 0| 18 18 | 90.00% 17 | 94.44% 13 | 72.22% 18 | 100.00%
turb3d 60 | 43| 15 58 | 96.67% 45 | 77.59% 35 | 60.34% 45 | 77.59%
apsi 633 | 145 | 292 437 | 69.04% 8 1.83% || 211 | 48.28% 219 | 50.11%
fpppp 26 | 19 0 19 | 73.08% 8| 42.11% 3| 15.97% 8| 42.11%
waved 153 1] 69 70 | 45.75% 39 | 55.71% 26 | 37.14% 62 | 88.57%
Average 59.66% 62.80% 40.65% 79.18%

Table 1: Numbers of total array argument declarations, unnormalized array declarations, assumed-size array
declarations, number and percentage of unnormalized and assumed-size array declarations, number and
percentage of resized arrays by the top-down approach, number and percentage of resized arrays by the
bottom-up approach, number and percentage of resized arrays by the combined approach.

neither in the argument list nor in the common blocks and
the preconditions for non-linear expressions, indirections,...
are not available. The average percentage of resized arrays
is 62.80% with the current implementation.

The top-down approach could be improved by using more
accurate precondition analyses or code instrumentation.
One of our future work is to instrument the code by adding
new parameters that are array sizes or subscript values into
the argument list. By using this additional technique, 100%
unnormalized and assumed-sized array declarations are re-
sized but there is a trade-off between static and dynamic
analyses. For example, the stack sizes may be augmented
due to additional parameters.

The second approach is more time consuming and the av-
erage number of resized arrays is smaller than the first one,
40.65%. The reasons for these and possible improvements
are mentioned in Section 4. However, we have about 70%
resized arrays for linpack, qed, spc77, applu and much bet-
ter results for spice, apst where the first algorithm does not
work. Furthermore, this approach is more effective on pro-
grams having non-explicit initial declarations and it is the
only solution for libraries.

In fact, the return values of array bounds given by the
two approaches can be different because they are based on
different assumptions. The first approach is an interprocedu-
ral analysis that uses the association between two program
units. The new array declarations in the called procedure
are computed with respect to the declarations in the call-
ing procedure. As a consequence, these new declared ranges
can be too large for the actual array accesses or, by con-
trast, can detect intraprocedural array bound wviolations in
the execution of the called procedure.

On the other hand, the second approach is rather an in-
traprocedural analysis because it is based on actual array
references in one program unit. This method trusts the exe-
cution of code and there will be no more out-of-bound errors

for array arguments in the current procedure. But we can
always check for interprocedural array bound violation [?] in
the whole program.

So if the considered program is supposed to be correct,
there is no danger if either the first or the second approach
to array resizing is applied. Otherwise, if our purpose is
to verify the validation of program, both approaches can
be applied and they must be followed by the array bound
checking phase.

Since neither approach is always superior, it is desirable
to combine the two approaches to have as many as pos-
sible proper array declarations. A composed solution has
been implemented: the less expensive, top-down analysis, is
used first, then the second approach is applied only for sub-
routines in which precise declarations have not been found.
About 80% unnormalized and assumed-size arrays are re-
sized (two last columns in Table 1).

6. CONCLUSION

To our knowledge, there has not been much related work
done with array resizing. Our two methods have solved the
problems of unprecise array declarations in Fortran scien-
tific codes as discussed in the introduction section. In the
worst case, the pointer-type declarations A(1) that disable
many program analyses and optimization are replaced by
the assumed-size array declarations by both algorithms.

The first approach is appropriate for Fortran with its
assumed-size array declarations but it is not always appli-
cable to other programming languages. We get very good
results for Linpack, PerfectClub and SPEC CFP95 bench-
marks by using this approach. A higher percentage of re-
sized arrays could be achieved with code instrumentation
but there will be a trade-off between the static and dynamic
techniques. Our future work is to improve the static analy-
ses and to study the impact of code instrumentation in order
to combine these techniques.

However, when the array is allocated dynamically and its
real size is difficult to find, or when dealing with the class
of languages without variable declarations, the second ap-
proach is needed to find the explicit declarations. Further-
more, this method can also be applied to other program-
ming languages such as MATLAB, APL and JAVA to im-
prove performance by reducing the execution overhead of
dynamic resizing. And, of course, other program analyses
and verifications will be facilitated.

Fewer than 1000 lines of C code are sufficient to implement
both approaches in our research compiler PIPS. Encourag-
ing experimental results are achieved with not only these
three scientific benchmarks but also other large scale indus-
trial applications, over 100 000 lines. The PIPS software and
documentation as well as our array resizing implementations
are available on http://www.cri.ensmp.fr/pips.

7. REFERENCES

[1] Programming Language FORTRAN,ANSI X8.9-1978,
ISO 1539-1980. American National Standard
Institute, 1983.

T. Budd. An APL Compiler. Springer-Verlag, 1988.

[3] B. Creusillet and F. Irigoin. Interprocedural array
region analyses. In Lecture Notes in Computer Science
- Languages and Compilers for Parallel Computing,
pages 46-60. Springer-Verlag, August 1995.

[4] J. J. Dujmovic and I. Dujmoviv. Evolution and
evaluation of SPEC benchmarks. In
ACM:SIGMETRICS, pages 2-9, 1998.

[5] J. Gu and Z. Li. Efficient interprocedural array
data-flow analysis for automatic program
parallelization. IEEE Transactions on Software
Engineering, 26(3):244-261, March 2000.

[6] F. Irigoin. Interprocedural analyses for programming
environments. In Environments and Tools for Parallel
Scientific Computing, pages 333-350. Elsevier Science
Publisher, 1993.

o
L)

[7] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical
interprocedural parallelization: an overview of the
PIPS project. In International Conference on
Supercomputing, pages 144-151, June 1991.

[8] R. Keryell, C. Ancourt, F. Coelho, B. Creusile,

F. Irigoin, and P. Jouvelot. PIPS: A workbench for
building interprocedural parallelizers, compilers and
optimizers. Technical Report A/289/CRI, Ecole des
Mines de Paris, May 1996.

[9] A. Kubota, I. Miyoshi, K. Maeyama, S. Goto, S. Mori,
H. Nakashima, and S. Tomita. TINPAR: A
parallelizing compiler for message passing
multiprocessors. In International Symposium on
Parallel and Distributed Supercomputing, pages
214-223, September 1995.

[10] V. Menon and K. Pingali. A case for source-level
transformations in MATLAB. In ACM SIGPLAN 2nd
Conference on Domain-Specific Languages, volume 35,
pages 53-65, Austin, Texas, USA, October 1999.

[11] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[12] T. V. N. Nguyen, F. Irigoin, C. Ancourt, and
R. Keryell. Efficient intraprocedural array bound
checking. Technical Report A/316/CRI, Ecole des
Mines de Paris, November 2000.

[13] Y. Paek, J. Hoeflinger, and D. Padua. Simplication of
array access patterns for compiler optimizations. In
SIGPLAN Conference on Programming Language
Destgn and Implementation, June 1998.

[14] A. V.Aho, R. Sethi, and J. D.Ullman. Compilers
Principles, Techniques, and Tools. Addison-Wesley,
1986.

[15] R. W.Hockney. The Science of Computer
Benchmarking. STAM, 1996.

