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1 Aim of the paper

This short report deals with a decomposition of a square integral matrix M
of size n defined by:

M = N1 · U2 . . . Nm−1 · Um ·Nm · U0

with m ≤ n− 1 and such that :

• Ni are square diagonal integral matrices with nonnegative elements,
with Nik,k = gcd of the kth column of Mi = N1 · U2 . . . Ni−1 · Ui ·Ni

• Ui are integral unimodular matrices and for i ∈ [2..m], lower triangular
with nonnegative diagonal elements.

Let us try to characterize these matrices as precisely as possible. We will
further consider matrices as loop transformations, so the revealed properties
might help us to build proofs upon program transformations.

In section 2, we prove the existence of such a decomposition for any
full row rank matrix. Then, we give an algorithm to compute it in section
3. Both are based on the left Hermite Normal Form (HNF) of a matrix,
and on column division by its gcd. After that, we show in section 4 some
matrix properties that may be useful to exploit this decomposition in a
deeper way. Finally, we show how this decomposition applies more generally
to rectangular integral matrices in section 5, and we briefly present our
implementation of a C function performing the decomposition in section 6.
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2 Existence of the decomposition

We want to prove that such a decomposition exists for any square full rank
matrix M . First, there always exist a left HNF for M : M = H ·U0, where H
is a square lower triangular integral matrix with positive diagonal elements,
and U is a unimodular integral matrix. Let b = max{k|Hk,k > 1}.

1. • If ρ = det(H) > 1 : As H is integral with positive diagonal
elements, we have Hk,k = 1,∀k > b. Since H is a left HNF,
a diagonal element is stricly greater than the other elements of
its row ([Sch86], section 4.1). Therefore we have Hk,i = 0,∀k >
b,∀i < k. Thus, the elements of each row Hk,· with k > b are
equal to zero except the diagonal element, which equals 1. As
H is lower triangular, the only non-zero element of the columns
H·,i are the diagonal elements Hi,i,∀i ≥ b. In particular, the
bth column of H has only one non-zero element, whose value is
greater than 1.
Then H can be decomposed into :

H = K ·N,

where N is a diagonal integral matrix with{
Ni,i = 1 if i 6= b

Nb,b = Hb,b

and K is equal to H except that Kb,b = 1. Note that det(N) =
Nb,b > 1 so det(K) < det(H).

• If det(H) = 1, then H is the identity matrix, since it is a HNF
([Sch86], theorem 4.3).

2. Let K be the lower triangular integral matrix with positive diagonal
elements obtained by the decomposition in 1, with the same value
for b. Ki,b = δi,b, where δ is the kronecker symbol. As Kb,b = 1,
we can nullify all the elements of the bth row except the diagonal
element, by substracting integral multiples of the bth column to the
ith columns, i < b. Let H ′ be the resulting matrix : K = H ′ · U ′,
where U ′ describes the latter column operations. H ′ is a square lower
triangular matrix with nonnegative elements, equal to H except for
the bth row. Moreover, for each row the diagonal element is striclty
greater than the other elements. As a consequence H ′ is a left Hermite
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Normal Form of K. Since a Hermite Normal Form is unique, H ′ is the
left Hermite Normal Form of K. Thus, H ′ has the same properties as
H, with max{k|H ′k,k > 1} < b.

We see that the decomposition described in 1 and the HNF decomposi-
tion can be done one after each other (H ′ playing the role of H). Applying
1 and 2 to a lower triangular integral matrix with positive diagonal elements
H that is the left HNF of a matrix decomposes it into H = H ′.U ′.N , where
H ′ is a lower triangular integral matrix with positive diagonal elements that
is a left HNF of a matrix (namely K).

We can generalize the decomposition described in 1. Dividing H·,i by
its gcd still gives a lower triangular integral matrix with positive diagonal
elements. So we can decompose H in a more direct manner into H = K ·N ,
where K is a lower triangular integral matrix with positive diagonal elements
and N is a diagonal matrix with Ni,i = gcd(H·,i). In the following, let us
call this operation multidimensional linear compression. Note that it may
reduce the number of matrices in the decomposition.

Moreover, the first kind of decomposition concerns matrices with a de-
terminant det(H) greater than one, and the determinant of the resulting
matrix H ′ is less than det(H). Besides, the value of max{k|Hk,k > 1} de-
creases after applying the first and then the second decomposition. The
decreasing value of b and of the determinant, which both are integral and
have a lower bound, proves that the number of steps in the decomposition
is finite. So is the number of matrices in the decomposition, too.

The matrix decomposition proposed here consists in decomposing H by
the way described in 1: H = K ·N , then decomposing the lower triangular
integral matrix with positive diagonal elements K as in 2: K = H ′ · U ′.
Obviously, it is the principle of the algorithm we present in the next section.

3 Algorithm

The presented decomposition is actually made of two kinds of decomposi-
tion. One of the two is the left Hermite normal form, which is well-known,
and effectively implemented as well, notably in the Polylib [Wil93]. Here, it
will be called left HNF. The second one will be called Compression, as the
matrix N can be see as a linear compression matrix.

Compression(input : a square lower triangular integral matrix with
positive diagonal elements H of rank n)
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// first, initialize matrix N to null, and K = H .
for i = 1 to n

N [i, i] = gcd(H[., i])
for j = i to n

K[j, i] = H[j, i] / N [i, i]
enfor

endfor
→ output: K.N

Dec(input: a lower triangular integral matrix with positive diagonal
elements H of rank n)

K.N = Compression(H)
H ′.U ′ = left HNF(K)
→ output: if H = identitiy matrix: H;

else: Dec(H ′).U ′.N

Decomposition( input: a matrix M of full row rank n)

H.U = left HNF(M)
→ output : Dec(H) · U

The wanted decomposition of a matrix M is thus : Decomposition(M).

4 Some matrix properties

The purpose of this section is to exhibit some additional properties of the
matrix in the decomposition. In particular, the matrices Ui,∀i ∈ [2..m] are
unit lower triangular, i.e. lower triangular with diagonal elements equal to
1. We denote by A the set of unit lower triangular matrices.

4.1 Stability of A regarding product and inversion

Stability of A regarding matrix product is trivial, so it won’t be proven here.
The identity matrix I belongs to A. Let M ∈ A. We have M ·M−1 = I.
M is a lower triangular matrix, so M−1 is a lower trianguler matrix as well.
Moreover, expliciting the product gives us: Mk,k ·M−1

k,k = 1, k ∈ [1..n], which
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is equivalent to saying M−1
k,k = 1. Thus, M−1 ∈ A : A is stable regarding

matrix inversion.

4.2 Matrices Ui are unit lower triangular ∀i ∈ [1..m]

The left Hermite Normal Form K of a square matrix H = K · U is lower
triangular. A matrix Ui,∀i ∈ [2..m] is obtained from the Hermite Normal
Form of a lower triangular integral matrix with positive diagonal elements
(H), which produces another lower triangular integral matrix with positive
diagonal elements (K). Hence, stability of the set of lower triangular ma-
trices with positive diagonal elements by matrix product and inversion tells
that Ui is a lower triangular matrix. More precisely, we have U = K ·H−1,
(H is invertible). Since the set of lower triangular matrices with positive
diagonal elements is stable by matrix inversion, H−1 is in this set. Then,
stability of the set of lower triangular matrices with positive diagonal ele-
ments by product gives us: U is in this set. Moreover, U is unimodular then
its diagonal elements are equal to 1.

Actually, as the coefficients of K are always lesser than the corresponding
coefficients of H, Hk,j can be expressed as a positive linear combination of
elements of Kk,·. These positive coefficients form the k-th row-vectors of the
corresponding matrix Uk. Hence, Uk is a unit lower triangular matrix with
nonnegative elements. Unfortunately, the set of unit triangular matrices
with nonnegative elements is not stable regarding inversion, so considering
matrix Uk as an element of this set may not help a lot.

5 Extensions

5.1 Extension to non-square matrices

There always exist a left Hermite Normal Form for any full row rank rectan-
gular matrix M : M = [H 0].U , where H is a square lower triangular integral
matrix (and U is integral unimodular). The proposed decomposition process
can be applied to H, to obtain the decomposition M . The null columns of
[H 0] can be ignored, as they only produce additional null columns.

Moreover, there always exists a right Hermite Normal Form for any full

column rank rectangular matrix M : M = U ·
[
H
0

]
, where H is a square upper

triangular integral matrix. Symetrically, a similar decomposition process can
be applied to H to obtain a decomposition, if we operate on rows instead of
columns. The corresponding decompositions will be :
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• linear compression over rows instead of columns: H = N.K

• the right HNF instead of the left HNF: K = U.H ′ where H ′ and U are
integral upper triangular and U is a unit upper triangular matrix.

The overall form of the decomposition is then:

M = U0 ·Nm · Um ·Nm−1 . . . U2 ·N1

with m ≤ n.

5.2 A particular form of the decomposition

We can force the decomposition to process one dimension of the matrix M
after each other, giving a decomposition with m = n. The only difference
with the formerly presented decomposition is the possible introduction of
matrices Ui and Ni equal to the identity matrix. Each matrix Uk,∀k ∈ [1..n]
of the decomposition is equal to the identity matrix except for the kth row,
which has nonnegative elements at the left of the diagonal. Each matrix
Nk,∀k ∈ [1..n] is equal to the identity matrix except for the kth diagonal
element which is greater than 1. Then, Nk is characterized by its element
αk = Nk,k. Actually, we can describe a matrix M by :

• its matrix U0

• the ordered set of vectors vk = Ukk,. ,∀k ∈ [0..n]

• the n-vector of positive integers αk,∀k ∈ [1..n]. Note that, as a result
of the general form of Ui,∀i ∈ [1..n], the kth row of the matrix U =∏n
k=1 Uk is equal to the kth row of Uk.

It might be interesting to consider the whole set of matrices with the same
U (and maybe U0) but with a distinct αk as a family of matrices. Also, it
might be interesting to study the unimodular matrix U · U0, common to all
the matrices of such a family. This might be a part of my future works.

6 Implementation

The decomposition presented in this article has been implemented in C for
full row rank matrices using polylib [Wil93]. The function takes a full row
rank matrix as its input, and returns the list of matrices of the decomposi-
tion. The user can choose which kind of decomposition is returned, allowing
or not multidimensional compression. It is currently available at the address
http://icps.u-strasbg.fr/ meister/decomp.c.tgz .
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