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Abstract

In this paper, we propose an experimental study of an inexpensithesffhelf sort-last volume visualization
architecture based upon multiple GPUs and a single CPU. We show howciertfi make use of this architecture
to achieve high performance sort-last volume visualization of large detagée analyze the bottlenecks of this
architecture. We compare this architecture to a classical sort-last visatidiz system using a cluster of commodity
machines interconnected by a gigabit Ethernet network. Based orsasd@xperiments, we show that this solution
competes very well with a mid-sized PC cluster, while it significantly impioedermance compared to a single
standard PC.

1. Introduction show the influence of different parameters (such as the brick
) ] size or the rendering method) on the global rendering speed.
Thanks to the advent of dedicated graphics hardware, paral- This allows us to identify optimal parameters. Using a 1 GB
lel architectures have been widely used to solve high-scale, yaiaset (e.g. too large to be visualized without degradation
large dataset graphics problems. Lately, commodity clusters 5, 4 single GPU) we compare visualization performance on
are being used in the visualization field as well, and can he myIti-GPU system and the cluster. It shows that both re-
lead to interactive performance even with very large datasets. g it in similar performance, while the multi-GPU system is
These clusters make use of multiple machines, each hav- simpler, cheaper and easier to program. This study demon-

ing its own CPU and GPU interconnected by a network, grates that such a system is a promising solution for volume
usually gigabit Ethernet, Myrinet or Infiniband. However, \isyalization of large datasets.

because they require communication between multiple ma- ) ) )

chines, visualization clusters add complexity and cost both _ N the next section, we introduce related works. Section

on the hardware and on the software front. Furthermore, the 3 details the sort-last pipeline for cluster-based volume vi-

interconnection network is often a performance bottleneck Su@lization and points out the architectural differences of a

of such clusters, especially when high resolution pictures, Multi-GPU system. This pipeline is described in Sectlon

such as those required for immersive environments, are to Sections is dedicated to implementation and experimental

be produced. results, and compares the behaviour of our multi-GPU sys-

tem to that of a similar visualization cluster. Finally, conclu-

The purpose of this paper is to resolve the problem of sions and future works are given in Secti@&n

sort-last volume rendering for large datasets using a simple,

inexpensive, off-the-shelf architecture that takes advantage o reated works

of multiple graphics cards in a single machine instead of

a full cluster of PCs. To the extent of our knowledge, no

such off-the-shelf system has been explored in the sort-last ization remains one of the most efficient techniques for di-
context before, nor has a specific pipeline for such a hard- rect volume rendering, but the memory limitations of current

ware setup been proposed. We show that architectural dif- GPPS represent a serious hgrdle that.many mgthods attempt
qto circumvent, often by lowering the visual quality.

Large data visualization 3D texture-based volume visual-

ferences between the multi-GPU system and the cluster lea
to different system bottlenecks and therefore impact the re-  The first kind of technique uses simplification-based
sulting performance. We propose to adapt the sort-last vol- methods by decomposing the data into a number of equally-
ume rendering pipeline commonly used on clusters onto this sized parallelepiped bricks (this is commonly called brick-
multi-GPU architecture. Through a series of benchmarks, we ing). Each of these bricks is handled separately, and it is
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therefore possible to discard invisible bricks, or use mul-
tiresolution techniques. More generally, this provides a finer
data manipulation granularity in the whole volume render-
ing pipeline. In this context, Weilegt al. [WWH*00] and
Lamaret al. [LHJ99 use 3D textures at different levels of
detail to achieve large dataset visualization without using
too much texture memory. In both approaches the algorithm
decides which level to use for each brick depending on the

brick contents, its distance to the observer and other parame-

ters. Gutheet al[GS04 achieve large volume dataset visual-

ization by compressing the data offline using wavelets. The
data is then reconstructed on-the-fly at different detail lev-
els depending on the viewing conditions, and the rendering

makes use of advanced techniques such as occlusion cullingMulticard Humphreys et

and empty space skipping to gain further speed up. Lamar
et al. [LHJO3 propose a technique which allows efficient
error calculation in the context of level of detail volume ren-
dering. By decomposing the data into bricks and storing the
histogram of each brick, they are able to determine the visi-
bility of the brick as well as the approximation error by look-
ing at the histogram only, thereby make interactive transfer
function changes together with bricking possible. However,
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both result in unbalancing a previously balanced data distri-
bution. Therefore, Marcheskt al.[MMDO0G6] and Mulleret

al. [MSEOS] use a hierarchical decomposition of the dataset
into a KD-tree which is mapped onto the cluster nodes. The
tree is then rebalanced in real time according to the node’s
respective load values. Even though parallel visualization
machines can easily handle large datasets, they often incur
significant additional complexity both on the hardware side,
since an interconnection network is required, and on the soft-
ware side, since code to implement the data communication
must be developed. Using multiple graphics accelerators in
a single machine would avoid these issues, at a lower cost.

al. [HHN*02] introduce
Chromium, which is a framework for cluster-based ren-
dering. This framework allows both sort-first and sort-last,
and can distribute an application over a cluster of machines
without requiring changes to it. Bhaniramkaal. [BREO]
introduce the SGI multipipe SDK. This SDK allows mul-
tiple card rendering to be used in common applications.
However, this API is designed for expensive high-end
SGI workstations and requires hardware composition for

some of these techniques incur data degradation, and in or-maximum efficiency. NVIDIA introduced SLInvib] and

der to handle large datasets without degrading the quality of
the pictures, one has to resort to parallel systems.

Parallel rendering Molnaret al.[MCEF94 classify paral-

lel rendering systems according to the placement of the sort-
ing phase in the parallel graphics pipeline, and derive three
categories: sort-first, sort-middle and sort-last. When sorting
is done prior to both primitive transforming and rasteriza-
tion, the approach is of the sort-first kind. When sorting is
done between those phases, it is of the sort-middle kind. Fi-
nally, if sorting is at the end of the pipeline, after rasterizing
the primitives, the approach is called sort-last. Among these
approaches, we will focus on sort-last, since it is the most
suited for large dataset visualization tasks.

For volume visualization, sort-last algorithms allow vi-
sualizing large datasets, as demonstrated by Wsfieal.
[WPLMO1]. Ma et al. [MPHK94] propose the binary swap
technique, which is a highly scalable compositing algorithm
for sort-last rendering. Stompeit al. [SML*03] present
a parallel image compositing algorithm minimizing the
amount of composited data and scheduling the composit-
ing tasks on the processors of a cluster. Strengeral.
[SMW*04] propose an efficient hierarchical sort-last vol-
ume rendering technique, and report interactive results on
a Myrinet interconnection network. Ro#t al. [RR0§ op-
timize the sort-last pipeline by splitting the screen into tiles
and taking advantage of occlusion and full transparency of
tiles in that context.

In order to achieve good performance and scalability with
sort-last volume visualization, one also has to load bal-

Quadro Plex fivia] which transparently distributes the
rendering workload to multiple cards in a sort-first fashion.
However, such setups are limited to sort-first configurations
and therefore do not scale well with the data size. Further-
more, it is limited to a number of specific NVIDIA cards
only. Penneet al. [PSQ implement a drop-in replacement
for the Direct3D library that parallelizes all the Direct3D
applications over multiple graphics cards and multiple
screens on a single system. This allows transparent render-
ing over multiple displays. Again, this technique is limited
to sort-first situations. Unlike the previously described
multicard-based methods, our technique implements a
sort-last visualization algorithm on a single machine. Using
sort-last as opposed to sort-first is known to allow better
scalability when increasing the input data size. Since it
does not replicate the data, sort-last is the most appropriate
algorithm for large dataset visualization on parallel systems.

3. Comparing sort-last pipelines: cluster vs. multi-GPU

In this section, we detail our new sort-last multi-GPU
pipeline. Figurel depicts the differences between sort-last
on a two-node cluster and sort-last on a single multi-GPU
machine with two GPUs. Each of the rendering nodes (in
a cluster) or GPUs (in a multi-GPU machine) is called a
client, and the node in charge of the compositing is called the
server. The blue stages are done by the CPU and the green
stages are done by the GPU, and the memory buffers are
shown in yellow. Since a single machine differs from a clus-
ter at an architectural viewpoint, one has to adapt the com-
monly used sort-last volume visualization methods to such

ance the volume data between the nodes. This is not easilyan architecture. The classical sort-last pipeline is shown on

achieved, since transfer function or viewpoint changes can

the left of the figure. This pipeline works as follows. The
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GPU 1 GPU 2

Cluster node 1 Cluster node 2

Readback The bricks that were previously determined to be
B ek visiblt_a are projected, and_their footprir_1t is read back. How-
ever, in the case of a multi-GPU machine, all reads are done
)Doub'e to the same system memory, which could result in band-
bufer width starvation. We have experimented a number of differ-
ent techniques to optimize this stage as detailed in the next
section.

Readback

-~ -
1 ‘ﬂ-gh
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Y4 .i communication
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Figure 1. The sort-last rendering pipeline on a cluster (left)
and on a multi-GPU machine (right). The green stages run A ’
on the GPU, while the blue stages run on the CPU. Memory phase has to take place. Although this might sound like an

buffers are shown in yellow. Notice that we tried compositing 2dvantage at first, one has to keep in mind that all the com-
on the CPU and on the GPU for the multi-GPU case. positing will be done on a single CPU and through a sin-
gle memory bus. Therefore, in order to spare memory band-

width, we have to reduce memory pressure as much as pos-
data is initially partitioned across the client nodes. For each sible. An alternative is to have the composition done on the
frame, each client first renders its own data and then reads GpuU.
baCk.the r_endered images o s_ystem memory. The next p.haseFinal display Once the image is ready, it is sent to the
consists in compositing the images together. In a typical . . . .
sort-last system, this is done using the direct send algorithm screen for final d|splay. This stgge presgnts no difference on

X o S . amulti-GPU machine or on a visualization cluster.

[Hsu93. To achieve composition, the screen is first parti-
tioned into as many areas as there are clients, and each client From the previous qualitative comparison, one can notice
is then in charge of compositing one of these areas. The rel- that there are major differences between the classical cluster-
evant pictures for each area are sent to the correspondingbased sort-last visualization pipeline and our multi-GPU sys-
client node during a communication phase as shown on the tem, which we will address in the next section.
left of Figure1. Once the client has received all the pictures
fpr its area, it composes them toge_ther t_o form a part of the 4 Multi-GPU sort-last pipeline
final picture. Finally, those composited pictures are gathered
on the server node for final display. The case of direct send Based on the previous comparative study, this section de-
where multiple nodes are in charge of the compositing al- scribes our modified multi-GPU sort-last pipeline and its im-
lows better scalability with an increasing number of nodes Plementation.
than the case where a single server node does the whole com-Rendering The rendering phase takes place first, in which
positing itself. each client process renders its own bricks. The rendering is
done using either a 3D texture-based slicing approach or a
GPU-based raycasting approach. In order to achieve good
scalability, we have to minimize the overhead of sending
the vertex data to the card. A solution to this problem is to
use bigger bricks. Since each brick has to be sliced sepa-
rately and therefore generates its own set of polygons, the
more bricks there are, the more polygons must be sent to
Rendering This stage is in charge of rendering the dataina the card. However, increasing the brick size also reduces
distributed fashion. In order to handle large scale datasets, the granularity at which invisible data is culled, and reduces
the data is split into bricks, and visible bricks are deter- culling efficiency. Therefore, additional improvements can
mined and rendered. Level of detail techniques have been be obtained without changing the brick size by making use
implemented and tested, but the benchmarks presented inof OpenGL extensions for efficient vertex submission. We
this paper do not include such techniques, which makes the have experimented three ways of sending the vertex data to
results more easily reproducible. Volume rendering itself is the OpenGL API and tested their respective performance:
achieved using a classical 3D texture-based approach thatimmediate mode, vertex arrays and vertex buffers objects.
slices the volume into multiple polygons or using raycast- The first technique generates a single OpenGL call for each
ing. However, when using a slice-based approach, only one vertex, whereas the two latter techniques generate calls in
CPU will compute and send the slices to all the GPUs in batches, thereby reducing the overhead. Since the CPU has
the multi-GPU case as opposed to a cluster where each CPUto send vertex data to all the cards at once, minimizing the
computes and sends its vertex data to only one GPU. There-overhead of such calls is of primary importance. For that rea-
fore, this stage can become a bottleneck and we have to op-son, we have also implemented a GPU-based raycaster that
timize it carefully as detailed in Section 4. avoids computing and sending slices altogether.

Compositing In the case of a visualization cluster, the com-
positing stage requires a communication phase to gather
pieces of partial images to the compositing nodes. However,
in the case of the multi-GPU machine, no communication

In the multi-GPU case, we can notice a number of dif-
ferences on the hardware which have implications on the
pipeline of the parallel rendering algorithm. Let us now
review the main stages of the sort-last volume rendering
pipeline as depicted on Figueand compare them in both
situations:
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first read all the intermediate pictures except the one from
the target GPU into system memory. These pictures are then
sorted, and sent to the target GPU. We compose the pictures
that are behind the target GPU'’s picture in a front-to-back
fashion using the UNDER operator, and then those that are
in front of the target GPU'’s picture in a back-to-front order
using the OVER operator. In that case, all but one of the in-
termediate pictures have to be read to system memory, and
those pictures must also be sent to the target GPU. As shown
) ) o ) on the right of Figurel, we use a double buffering scheme
Figure 2: Readback techniques: the 10 visible bricks are or communication between the clients and the server, and

shown in red wireframe, span based readback is depicted herefore we can overlap the final display and the rendering
in green, the screen-aligned bounding box is shown in blue computation.

and the same box aligned over a 32 pixel alignment is shown
in yellow. Each of these areas is a super-set of the previous Final display Once the final picture is produced, it is sent to
one. the screen for final display, similarly to a cluster-based sort-
last visualization system. However, instead of sending the
Readback Once the data has been rendered, the produced result to a server node, one of the GPUs is reused. We have
pictures have to be read back from video memory. We have measured that doing so has minimal impact on the volume
implemented three techniques in order to reduce the amount rendering performance of this GPU since the cost of display-
of data to be read back from video memory as shown on ing a 2D picture is low (we measured it to be approximately
Figure2. These techniques are: 3% of the GPU time for a 1024 768 screen).

e Projecting the visible bricks, and using the screen-aligned
bounding rectangle as a readback area as shown in blues | mp|ementation and results
on Figure2. ] ) ) )

e Projecting the visible bricks, and using the screen-aligned This section presents our implementation, shows bench-
bounding rectangle as a readback area, as depicted in yel-marks for each stage of our sort-last pipeline, both using
low on Figure2. Aligning the bounding rectangle width ~ our multi-GPU sort-last volume rendering approach and the
over powers of two will help the subsequent CPU-based classical cluster-based approach, and discusses these results.
compositing phase, since this aligns memory access to
each pixel. We have tested alignments of 2, 4, 8, 16 and
32.

The commonly accepted solution for parallel visualization
is to use a cluster of machines. We compared our architecture
o . ) ) o to a 9 node off-the-shelf visualization cluster running Linux
* Projecting the visible bricks, and turn their footprintinto ¢4nsjsting of 8 client nodes and one server node). Each clus-

single-line spans (in green on Figug This results in 4o noge is equipped with an Athlon X2 4200+ processor,

more readback operations, but in a smaller readback area. 2GB of memory and a GeForce 7800GT graphics card with
Since all GPUs read back their contents to a common mem- 256MB of memory. The interconnection network used is gi-
ory area, the memory bandwidth can easily become a limit- gabit Ethernet. This cluster runs a direct send sort-last vol-
ing factor. Therefore, we use a Unix System V shared mem- ume visualization algorithm where the readback, communi-
ory buffer to exchange image data between the clients and cation and compositing phases work on the footprint of the
the server, which results in a copy-less system between the data. An alternative would be to use binary swap, but exper-
clients, thereby reducing the strain on the memory band- iments showed that direct send was faster in our case. For
width (obviously copying still happens from GPU memory  scalability tests, we run this cluster either as-aB 4+-1 or
to system memory for readback, and from system memory 2+ 1 setup £ clients + 1 server). The multi-GPU machine
to GPU memory for final display). used for these tests is equipped with a motherboard that sup-
ports 4 PCI Express slots, all ak&peed. The processor is a
Pentium-D at 3.4 GHz and has 4GB of memory. Tests were
conducted both with the same graphics cards as the cluster
(GeForce 7800GT 256MB) in order to compare the architec-
tures, and with better cards (GeForce 7950GT 512MB). We
have implemented our multi-GPU sort-last volume visual-
ization algorithm under Linux. In order to access the differ-
ent GPUs independently, we configure the X server with ex-
actly one X screen per card, even though no physical screen
is actually connected to the card.

Compositing We have experimented with two ways to
compose the intermediate pictures into a final image. The
first way is to use the CPU, in which case the composition
is achieved by blending the pictures in a back-to-front or-
der using the OVER operator as defined by Porter and Duff
[PD84. In that case, the intermediate picture from each GPU
is read to system memory, the CPU does all the compositing,
and the final picture is sent back to the GPU used for display
(called the target GPU). The second way is to use the GPU
for composition and take advantage of the fact that one of the
pictures is already residing on the target GPU. To do so, we  Let us assume we haveGPUs available. On startup, the
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g 20 continuity, there is a trade-off to make between the brick
* size and the memory overhead. These figures show that us-
° i s s —— ing GPU-based raycasting is not as efficient as using slice-
i ‘ based volume rendering. Indeed, for an optimal brick size,
""b% %b Uy %y % ‘9%%%% ’%’% ’*’% “’%,e& @%b% %@% the CPU-based slicing method produces a framerate in-
coeTTE R Y % e % crease over the GPU raycasting approach: about 10% for
Brick size the smaller dataset, and approximately 20% for the larger
Figure 3: Influence of the brick size using CPU-based slice dataset. One can notice that the optimal brick size depends
Computation (top) and GPU_based raycasting (bot’[om) on the dataset and the rendel’lng teChanue Used. On the

multi-GPU machine, the 1GB dataset seems to perform bet-

ter with 128x 128 128 bricks with both rendering ap-
server spawns processes (in the CPU compositing case) proaches. On the same machine the 128MB dataset has bet-
or n— 1 processes (in the GPU compositing case). Each of ter framerates with 6% 64 x 64 bricks for the slicing-based
these processes opens a connection to a different X screenapproach, and 3R 32 x 32 bricks for the slicing-based ap-
and creates an OpenGL pbuffer. All rendering is then done proach. On the cluster, the optimal brick size for the 128MB
through this pbuffer. Therefore, each client is able to ex- dataset remains 6464 x 32 for both rendering techniques,
plicitly access its own graphics card. The multi-GPU sort- whereas the optimal brick size for the 1GB dataset depends
last volume visualization implementation used is the same on the rendering approach: 6464 x 64 for CPU-based slic-
as that of the cluster, except that the communication stage ing and 128< 128 x 128 for raycasting. In order to reduce
is removed. It is therefore possible to directly compare the the per-vertex overhead of our system, we have tried dif-
performance of the two architectures. The benchmarks have ferent rendering techniques. Figudeshows three slicing-
been conducted with multiple datasets: one is the 128MB based approaches, namely vertex arrays combined with the
(5123 voxels) Christmas tree dataset and the other one is GL_EXT_multi_draw_arrays OpenGL extension, vertex ar-
a 1GB (1024 voxels) geological core dataset (respectively rays, and vertex buffer objects, and one raycasting-based ap-
seen on Figur®). The volume rendering implementation  proach, namely GPU-based raycasting which should avoid
uses bricking, brick-based empty space skipping and pre- the computation and sending of the vertices by the CPU
integration EKEO1], both for slice-based and raycasting- altogether. The figure demonstrates that vertex arrays com-
based rendering. Unless specified, a 182768 viewport is bined with the GL_EXT_multi_draw_arrays OpenGL exten-
used. All the datasets were sampled &t\oxel's width for sion result in the best performance, improving the framerates
rendering, both for slice-based rendering and for raycasting. by more than 10% over the baseline in the case of a Multi-

GPU machine with GeForce 7950GT cards. Although it re-
Rendering The first stage of the pipeline is the render- quires less work to be done on the CPU and less data to travel
ing stage. In order to find out the best parameters for this Overthe bus, the GPU-based raycasting approach is not glob-
stage, we compare results on ar4 nodes cluster with ally faster. This is due to the locality of texture access in the
the multi-GPU system using its 4 GPUs. FigiBeshows shader which is lower than with bare texturing. However, the
the influence of the choice of the brick size on the ren- pictures produced using GPU raycasting have slightly better
dering speed, using respectively a slicing-based rendering quality especially when using a small sampling step, thanks
approach (top) and a raycasting-based one (bottom). Sincet0 the intermediate computations being done in GPU regis-
bricks overlap by one voxel in order to achieve rendering ters at full 32-bit floating point accuracy inside each brick.

submitted taEurographics Symposium on Parallel Graphics and Visuditire(200§



6 S. Marchesin & C. Mongenet & J-M. Dischler / Multi-GPU Sordt Volume Visualization

50—
45 MUliGPU. GeForce 79500, dataset 128MB,

40

Cluster, GeForce 7800GT, dataset. 1GB

35 Cluster, GeForce 7800GT, dataset 128MB,

MultiGPU, GeForce 7800GT, dataset 1GB ™
MultiGPU, GeForce 7800GT, dataset 128MB

30
2

20

Frames per second

15

10 ke

Readback method

Figure5: Readback optimization techniques.
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composition (top) and GPU composition (bottom).

Readback The second stage of a sort-last rendering system
is the readback of intermediate pictures from the cards to
system memory. Figurb shows the influence of the read-
back optimization techniques we tried. In particular, this fig-
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Figure 7: Multi-GPU vs. cluster scalability with the number
of GPUs.

using CPU-based (top) and GPU-based composition (bot-
tom) with two different datasets using the optimal brick size
as previously found. These figures show that GPU-based
compositing is more interesting when the number of com-
posited pixels per second is high (that is using the smaller
dataset), while CPU-based compositing prevails for a lower
number of pixels (that is when using the bigger dataset). We
have measured that GPU-based compositing (including the
readback from screen and display of the final picture oper-
ations) can compose up to 146 millions of pixels per sec-
ond, while CPU-based compositing using SSE assembly can
only achieve 105 millions of pixels per second. Notice that
our multi-GPU system scales well with the screen resolu-
tion. In particular, it achieves 28 frames per second when
viewing a 128MB dataset on a single multi-GPU machine
with a 1600x 1200 viewport and GeForce 7800GT cards. In
contrast, a cluster with the same graphics hardware achieves
approximately only 10 frames per second with the same res-
olution and dataset.

Scalability Figure 7 compares the global performance of
our multi-GPU approach with that of a similar visualiza-
tion cluster, with both datasets and a 102468 resolution.
CPU-based composition is used for these tests. These re-
sults show good scalability for both the 128MB and the 1GB
datasets: using 4 GPUs, we are able to achieve a speedup
factor of 35 with the 128MB dataset, and a speedup factor
of 8 with the 1GB dataset, thanks to the increase of avail-
able texture memory. These tests also show that our sys-

ure outlines that using pixel spans as the readback primitive tem is consistently faster than a similarly equipped clus-

does not result in performance increase, but instead degradester for the smaller 128MB dataset, and is a little slower or

the framerate, both on a cluster and on the multi-GPU ma- reaches similar performance levels for the 1GB dataset. The
chine. Indeed, numerous small readbacks result in a smaller fact that our multi-GPU setup performs almost as well as

global readback bandwidth, and therefore cause a slowdown. a similarly-equipped 4- 1 node visualization cluster with

On the other hand, projecting the data bounding box and
aligning the boundary of this box over a multiple of 16 pixels

results in the best performance in all cases.

Compositing The next stage of the pipeline is the composi-
tion stage. Figur® shows the global rendering speed when

the 1GB dataset is very promising as its cost is significantly
lower, since it is based on a single machine and does not
require an efficient and therefore expensive interconnection
network. If one considers a8 voxels width sampling dis-
tance, an approximation of the number of vertices to be han-
dled per second can be obtained by muliplying the optimal
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brick size’s width with the number of bricks and the num- 200 F p————
ber of frames per second. For the 182#ataset rendered at = inaldiplyine ™
12 frames per second and F2Bricks (which was shown WO = Fenderng ime
experimentally to have no discarded bricks), this gives us

128x 8% x 12 = 786432 polygons per second. Considering

a cluster or a multi-GPU setup with GPUs, the CPU of

a given cluster node (in charge of computing the slicing) is

dedicated to a single card, and therefore compugesat

Cluster

Time in milliseconds

. . % G Gy Gy Sy, %, %oy,
that an amount of slices. In the case of our multi-GPU ma- e % ot G ’foo:foofz,j’ez,}e,}e,é"@e,é%e,}v,é%q,é
chine, the CPU is shared between the cards and has to com- &, T, 20 0 T 0 g T

pute all the slices. Also, one has to keep in mind that the CPU
from the multi-GPU machine is slower (3.4 GHz Pentium-
D dual core) than the one in a single cluster node (Athlon Figure 8: Breakup of the times of the pipeline stages.
X2 4200+ dual core). Furthermore, if one considers that a
plane slicing a cube has 4 vertices on average, and that each
vertex is 36 bytes (each vertex carries 3 3-component float- to a cluster, this architecture does not require the use of mul-
ing point attributes), that is 108MB per second of data to be tiple machines or an interconnection network. It is there-
sent to the cards. While the PCI Express bus for the cluster fore much simpler, cheaper and easier to realize. The perfor-
nodes operates at ¥6speed, the the bus in the multi-GPU  mance that we achieved by adapting the rendering pipeline
machines operates ak8because of technical limitations of ~ to this new setup demonstrates that our parallel solution
the motherboard used. In the case of the 128MB dataset, ourrepresents a highly competitive alternative to graphics clus-
multi-GPU system outperforms the cluster because the clus- ters for large volume visualization tasks. Indeed, our system
ter becomes communication-limited by the bandwidth of the achieves interactive rendering of 1GB datasets at very large
Ethernet network, while the multi-GPU machine does notre- resolutions on a single machine, which is not possible on a
quire this time-costly communication phase. When switch- single GPU, unless the data is degraded.
ing to the GeForce 7950GT cards, the multi-GPU setup sees
higher performance. This shows that our system remains
scalable with improvements on the graphics hardware side.
This is promising, as future improvements in graphics hard-
ware will thus warrant related improvements in the perfor-
mance of our sort-last volume visualization system. One last
thing we noticed during our tests is that our system does not  To our knowledge this work represents the first study of a
introduce any additional latency because of the communica- multi-GPU setup used in a sort last volume rendering con-
tion phase, and no jittering was observed, both of which are text. It therefore opens the way for further research. The tight
commonly seen on clusters when low-cost interconnection coupling of such an architecture should allow us to make in-
networks such as Ethernet are used. tensive use of information exchange between the GPUs to
improve performance, which is only hardly possible on clus-
Time breakup Finally, Figure8 shows how the workload  ters because of the network latency and limited interconnec-
is distributed among the different pipeline stages and among tion bandwidth available. In the future, we would also like
the nodes on both architectures. Using the 1GB dataset, ato experiment with more graphics cards to see how scalable
CPU-based compositing and slicing approach and the opti- this solution is. However, as of today, no motherboard able
mal brick size as computed previously, we have measured to host more than 4 PCI Express graphics cards is available.
the time taken by each pipeline stage when rendering to It is therefore not possible right now to further test scalabil-
a 1024x 768 frame. On the multi-GPU machine, the ren- ity on a single machine. Instead, two different ways could
dering time prevails over the other stages. This is also the be investigated. First, multi-core machines could help dis-
case on the cluster where it overlaps with the communication tribute the compositing load among more CPUs, or allow
and compositing stages. This figure shows that the readbackcomputing real time brick occlusion. Second, we would like
times differ significantly between both platforms. This sug- to experiment with hybrid systems, i.e. clusters of multi-
gests that the use of a PCI Expressi@us on the multi-GPU GPU machines. In particular, we would like to derive hybrid
machine partly accounts for the performance difference be- hierarchical compositing schemes (across multiple cards in a
tween these platforms. single machine, and across numerous multi-GPU machines
over a network) that are suited to such a cluster. In fact, from
a conceptual viewpoint this adds a new level of parallelism
between the internal parallelism of the graphics card and the
In this paper, we have introduced an architecture for sort-last parallelism of the cluster. Such hybrid approaches could also
volume rendering based on a multi-GPU setup. As opposed make use of the high data locality within a single machine to

Our experiments show that the optimal brick size seems
to depend on the dataset characteristics (both its size and
nature) and the rendering method used. We would like to
investigate with more datasets what parameters determine
this optimal brick size, and how to automatically find it.

6. Conclusions and futureworks
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increase the performance. Achieving good locality on such

a system will also require smart data distribution, which we
plan to investigate further.
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