
 OpenMP
A Parallel Programming Model for

Shared Memory Architectures

Paul Graham

Edinburgh Parallel Computing Centre

The University of Edinburgh

March 1999

Version 1.1

Available from: http://www.epcc.ed.ac.uk/epcc-tec/documents/

Edinburgh Parallel Computing Centre 3

Table of Contents

1 Introduction . 1

2 Shared memory platforms . 2

3 Why OpenMP? . 4
3.1 Background and Support for OpenMP 5
3.2 A simple parallelisation example 5
3.3 Special features of OpenMP . 6

4 The OpenMP Specification . 10
4.1 Parallelisation directives . 10
4.2 Parallel region construct . 10
4.3 Data environment constructs 11
4.4 Work-sharing constructs . 15
4.5 Synchronisation constructs . 17
4.6 Conditional compilation . 19

5 Library Routines and Environment Variables 20
5.1 Execution Environment Routines. 20
5.2 Lock Routines . 21
5.3 Environment Variables. 22

6 Performance and Scalability . 24
6.1 The Game of Life . 24
6.2 Performance. 26

7 References . 31

8 Acknowledgements . 33

A MPI version of the Game of Life 35

B HPF version of the Game of Life 39

OpenMP

4 Technology Watch Report

Introduction

Edinburgh Parallel Computing Centre 5

1 Introduction

Parallel programming on shared memory machines has always been an important area in
high performance computing (HPC). However, the utilisation of such platforms has never
been straightforward for the programmer. The Message Passing Interface (MPI) commonly
used on massively parallel distributed memory architectures offers good scalability and port-
ability, but is non-trivial to implement with codes originally written for serial machines. It also
fails to take advantage of the architecture of shared memory platforms. The data parallel
extension to Fortran90, High Performance Fortran (HPF) offers easier implementation, but
lacks the efficiency and functionality of MPI. Over the years there have been several other
products from both hardware and software vendors which have offered scalability and per-
formance on a particular platform, but the issue of portability has always been raised when
using these products.

OpenMP is the proposed industry standard Application Program Interface (API) for shared
memory programming. It is based on a combination of compiler directives, library routines
and environment variables that can be used to specify shared memory parallelism in Fortran
and C/C++ programs. OpenMP is intended to provide a model for parallel programming that
is portable across shared memory architectures from different vendors. In relation to other
parallel programming techniques it lies between HPF and MPI in that it has the ease of use of
HPF, in the form of compiler directives, combined with the functionality of MPI.

This document provides a background and introduction to OpenMP and its implementation.
Section 2 looks at shared memory platforms. Section 3 describes what OpenMP offers along
with the vendors that are supporting its implementation. Sections 4 and 5 provide information
on how to program using OpenMP along with some examples.

OpenMP

6 Technology Watch Report

2 Shared memory platforms

The shared memory architecture consists of a number of processors which each have access to
a global memory store via some interconnect or bus. The key feature is the use of a single
address space across the whole memory system, so that all the processors have the same view
of memory. The processors communicate with one another by one processor writing data into
a location in memory and another processor reading the data. With this type of communica-
tions the time to access any piece of data is the same, as all of the communication goes through
the bus.

The advantage of this type of architecture is that it is easy to program as there are no explicit
communications between processors, with the communications being handled via the global
memory store. Access to this memory store can be controlled using techniques developed
from multi-tasking computers, e.g., semaphores.

However, the shared memory architecture does not scale well. The main problem occurs when
a number of processors attempt to access the global memory store at the same time, leading to
a bottleneck. One method of avoiding this is memory access conflict is by dividing the mem-
ory into multiple memory modules, each connected to the processors via a high performance
switching network. However, this approach tends to shift the bottleneck to the communica-
tions network.

As well as stand-alone machines, the shared memory architecture is also found as part of
some massively parallel processor (MPP) machines such as the SGI Power Challenge or the
Digital AlphaCluster. These machines use a hybrid architecture of multiple shared memory
nodes connected by a high performance communication system. In order to achieve high per-
formance on these systems, both shared memory and distributed memory programming tech-
niques are essential.

 Figure 1: Schematic of a shared memory architecture

Processing

Element

Processing

Element

Processing

Element

Processing

Element

Global Memory Store

Bus
Memory
Interface

Shared memory platforms

Edinburgh Parallel Computing Centre 7

Examples of shared memory machines include:

• SGI Origin2000: This is effectively a hybrid shared and distributed memory architecture.
The memory is physically distributed across nodes, with two processors located at each
node having equal access to their local memory. It is a shared memory platform in the
sense that all other nodes have similar access to this memory but are physically more dis-
tant, but it can still be programmed as a symmetric multi-processor (SMP) machine. Also
as the number of nodes accessing this memory increases a bottleneck situation will arise,
but this is a limitation one would expect. (http://www.cray.com/products/sys-
tems/origin2000)

• Sun HPC servers, such as the Enterprise 3000 or the Enterprise 10000 (Starfire). These are
true shared memory boxes, with the E3000 containing 1 to 6 processors and the E10000
between 4 and 64 processors (http://www.sun.com/servers).

• HP Exemplar series, such as the S-Class (4 to 16 processors) and the X-Class (up to 64
processors). These use a memory crossbar for data traffic to/from the I/O system and
processors. (http://www.hp.com/pressrel/sep96/30sep96a.htm)

• DEC Ultimate Workstation. Consists of only 2 processors but each processor is powerful
(533 MHz). (http://www.workstation.digital.com/products/uwseries/
uwproduct.html).

OpenMP

8 Technology Watch Report

3 Why OpenMP?

The main technique used to parallelise code in OpenMP are the compiler directives. The direc-
tives are added to the source code as an indicator to the compiler of the presence of a region to
be executed in parallel, along with some instruction on how that region is to be parallelised.
Advantages of this technique include relative ease of use and portability between serial and
multi-processor platforms, as for a serial compiler the directives are ignored as comments.
Amongst others, SGI, Cray and Sun have all generated their own set of compiler directives
independently. They are all similar in style and functionality but of course are not trivially
portable across platforms from different vendors.

The closest approximation to a standard shared memory programming model is from the
X3H5 group [1]. Although it has never become an ANSI standard it is widely used as the basis
for the compiler directives for shared memory programming. However, X3H5 has limitations
which make it suitable only for loop level parallelism which limits the scalability of any appli-
cations which use it (see [2] for more detail on X3H5 and other compiler directives and their
advantages/limitations).

The MPI standard is widely used and allows source code portability as well as efficient imple-
mentation across a range of architectures. However, the message passing technique requires
that data structures in the program are explicitly partitioned. This implies that the whole
application must be written with MPI in mind, thus increasing development time and making
the parallelisation of old serial codes more difficult. HPF of fers portability along with ease of
use and reasonable efficiency , but is limited in its functionality. The release of the HPF-2 [3]
standard should confront some of the functionality issues when a fully compliant compiler is
available, but OpenMP has a distinct and important advantage in that there is a C/C++ imple-
mentation of OpenMP.

Pthreads is a low-end shared memory programming model, but it is not targeted at the techni-
cal/HPC end-user. There is little Fortran support and under C it is difficult to use for scientific
applications as it is aimed more at task parallelism with minimum support for data parallel-
ism.

Thus there exists a demand for a solution which has the following properties:
� portable
� scalable
� efficient
� high level
� supports data parallelism
� relatively easy to implement (for both old codes and new developments)
� wide range of functionality

which is where OpenMP comes in. For a more detailed discussion of the advantages of
OpenMP see [4].

3.1 Background and Support for OpenMP
OpenMP was announced to the computing industry as a:

Why OpenMP?

Edinburgh Parallel Computing Centre 9

“portable, scalable model that gives shared-memory programmers a simple and flexible interface
for developing parallel applications for platforms ranging from the desktop to the supercomputer”

OpenMP Press Release, October 28, 1997

It was jointly defined by:
� Digital Equipment Corp. (http://www.digital.com/info/hpc/)
� IBM (http://www.ibm.com/)
� Intel Corporation (http://www.intel.com/)
� Kuck & Associates Inc. (http://www.kai.com/)
� Silicon Graphics Inc. (http://www.sgi.com/Technology/OpenMP/)

Various other hardware and software vendors are endorsing the OpenMP API, as well as key
application developers. For a full up to date list, as well as the press release and standard for
OpenMP, see http://www.openmp.org/. An important recent development is Sun Micro-
systems announcement in August 1998 of their endorsement of OpenMP and a new seat on
the OpenMP Architecture Board.

Examples of compilers supporting OpenMP:
� Absoft Pro FortranMP 6.0 (http://www.absoft.com/pro.win.html)
� IBM XL Fortran (http://www.software.ibm.com/ad/fortran/xlfortran/)
� KAI KAP/Pro Toolset (http://www.kai.com/kpts/_index.html)

Most of the other major vendors are due to release their OpenMP compliant compilers
towards the latter end of 1998.

At the time this document was written EPCC had access to the KAI Guide f77 and C/C++
compiler for OpenMP on a Sun E3000. The functionality of the compiler in relation to the
standard is extensive, the main omission being support for the lock routines (section 5.2).
Code was also tested on an SGI Origin2000 at Manchester Computing Centre (http://
www.mcc.ac.uk/hpc/origin/) running the latest version of the MIPSpro Fortran compiler
which supports OpenMP (version 7.2.1).

3.2 A brief note on terminology
Throughout this document we shall be looking at both the Fortran (f77) and C/C++ imple-
mentations of OpenMP concurrently, as they are very similar. However, the main difference
between them in terms of syntax is that in the f77 implementation, a parallel region must be
closed with another directive, whereas in the C/C++ the extent of the region is explicitly
defined using curly brackets, for example:

f77: !$OMP PARALLEL

f77: call work(x,y)

f77: !$OMP END PARALLEL

C/C++: #pragma omp parallel

C/C++: {

C/C++: work(x,y);

C/C++: }

Therefore when an END directive is mentioned in the text it will be referring to the f77 imple-
mentation only. Also, when directives are being discussed the f77 version (e.g. DO) will be
given first, followed by the C/C++ version (e.g. for), i.e. DO/for.

OpenMP

10 Technology Watch Report

3.3 A simple parallelisation example
Before we delve into the details of the specification let us consider a simple example. Figur es 2
and 3 show the f77 and C/C++ versions respectively of a routine for finding the sum of an
array. More information on the concepts introduced here can be found in section 4.

The parallel region starts with the !$OMP PARALLEL/#pragma omp parallel directive
and ends at !$OMP END PARALLEL for the f77 version, at the end of the structured block for
the C version. This region is to be executed by multiple threads in parallel.

Now say this subroutine was executed on a shared memory machine with four threads availa-
ble to it. The parallelisation directive DO/for means that the following do loop is to be exe-
cuted in parallel, that is, the loop over i. The SHARED/shared clause on the directive means
that all the threads executing in parallel have access to the same storage area for the variables
a and n. The PRIVATE/private clause means that each thread has its own private copy of
the named variable, i. Thus for this case each of the four threads will perform calculations on
a quarter of the iteration space, for example thread 1 has the range of i between 1 and n/4,
thread 2 has n/4+1 to n/2 and so on. Now if the directive was left at that, at the end of the
parallel loop (!$OMP END DO) the variable sum would be undefined, as each thr ead would
have its own local total for its section of the iteration space rather than the global total which is
what we are looking for. This is where the REDUCTION clause comes in. It causes a local copy
of the shared variable sum to be created for each thread as if the PRIVATE(sum) clause had
been stated. Then at the end of the DO/for loop the original shared variable sum is updated
from the private copies using the operator specified, so in this case each local sum is added
together to create the global sum.

subroutine array_sum(a,n,sum)

implicit none

integer i, n

real a(n), sum

sum = 0.0

!$OMP PARALLEL

!$OMP DO SHARED(a,n) PRIVATE(i) REDUCTION(+:sum)

do i = 1, n

sum = sum + a(i)

enddo

!$OMP END DO

!$OMP END PARALLEL

return

end

 Figure 2: a simple example: f77 version

Why OpenMP?

Edinburgh Parallel Computing Centre 11

float array_sum(float a[], int n){

int i;

float sum = 0.0;

#pragma omp parallel

{

#pragma omp for shared(a,n) private(i) reduction(+:sum)

{

for (i=0; i<n; i++)

sum += a[i];

}

}

return(sum);

}

 Figure 3: a simple example: C version

Now this example is written using several lines of directives, however the defaults and short-
cuts of OpenMP mean that the following single line would have exactly the same effect:

f77: !$OMP PARALLEL DO REDUCTION (+:sum)

C/C++: #pragma omp parallel do reduction (+:sum)

This demonstrates the conciseness and ease of use of OpenMP for generating parallel versions
of serial code at the do loop level.

3.4 Special features of OpenMP
This section highlights some of the features included in OpenMP which were not present in
some of the previous shared memory programming models.

3.4.1 Orphaning

Orphan directives are directives encountered outside the lexical but within the dynamic
extent of the parallel region:

To demonstrate this figur es 3 and 4 show an alternative way of writing the code from the pre-
vious example (for brevity the routine array_init is not included here).

program main

real a(100),sum

Table 1: lexical and dynamic extents

lexical extent Statements lexically contained within a structured block

dynamic extent All statements in the lexical extent, plus any statement inside a function
that is executed as a result of the execution of statements within the lexi-
cal extent.

OpenMP

12 Technology Watch Report

!$OMP PARALLEL

call array_init(a,100)

call array_sum(a,100,sum)

!$OMP END PARALLEL

write(*,*) ‘Array sum =’,sum

end

subroutine array_sum(a,n,sum)

integer i, n

real a(n), sum

sum=0.0

!$OMP DO REDUCTION(+:sum)

do i = 1, n

sum = sum + a(i)

enddo

!$OMP END DO

return

end

 Figure 4: f77 example to illustrate orphaning

main(){

void array_init(f loat[], int);

f loat sum, array_sum(f loat[], int);

#pragma omp parallel

{

array_init(a, 100);

sum = array_sum(a, 100);

}

printf(“Array sum = %f\n”,sum);

}

f loat array_sum(f loat a[], int n){

int i;

f loat sum = 0.0;

Why OpenMP?

Edinburgh Parallel Computing Centre 13

#pragma omp for reduction (+:sum)

{

for (i=0; i<n; i++) sum += a[i];

}

return(sum);

}

 Figure 5: C example to illustrate orphaning

This may seem like a trivial difference to the previous example, but X3H5 has no equivalent.
Orphaning is powerful in the sense that it greatly simplifies the implementation of coarse
grain parallel algorithms. It gives one the ability to specify control or synchronization from
anywhere inside the parallel region, not just within the lexically contained portion. Under
X3H5 all the control and synchronization must be lexically visible within the parallel con-
struct. In this example that implies that the routine would have had to be written explicitly
into the main program, which is highly restrictive to the programmer for anything other than
trivial coarse grain parallelism. OpenMP provides the functionality of orphaning by specify-
ing binding rules for all directives and allowing them to be encountered dynamically within
the call chain of the parallel region.

3.4.2 Nested Parallelism

Under X3H5 nested parallelism is allowed, however under some other directive based paral-
lelisation techniques (such as SGI’s DOACROSS model) it is not. OpenMP allows nested paral-
lelism. If a PARALLEL/parallel directive is encountered dynamically within another
PARALLEL/parallel directive a new team (that is, a group of threads executing the same
section of code in parallel) is established. This team is composed of only the current thread
unless nested parallelism is enabled by using the OMP_SET_NESTED/omp_set_nested
subroutine/function or the OMP_NESTED environment variable, in which case the number of
threads in the team is implementation dependent. Figure 4 shows an example of its use.

program main

real x(100),y(100)

c Enable nested parallelism

call OMP_SET_NESTED(.true.)

c Start parallel region.

!$OMP PARALLEL

c Start parallel sections, one for x and one for y.

!$OMP SECTIONS

c Section A. Perform work on x. Start a new team to do this work.

!$OMP SECTION

!$OMP PARALLEL

!$OMP DO

do i = 1, 100

OpenMP

14 Technology Watch Report

call do_work_on_x(x,i,100)

enddo

!$OMP END PARALLEL

c Section B. Perform work on y. Start a new team to do this work.

!$OMP SECTION

!$OMP PARALLEL

!$OMP DO

do i = 1, 100

call do_work_on_y(y,i,100)

enddo

!$OMP END PARALLEL

!$OMP END SECTIONS

c Do work involving both x and y

!$OMP DO

do i = 1, 100

x(i) = x(i)*y(i)

enddo

!$OMP END PARALLEL

end

 Figure 6: Example demonstrating nested parallelism

Say for this example that the implementation has eight threads available to it. At the start of
the parallel region, parallel sections are started, of which there are two, one for work on varia-
ble x and one for y. Thus two threads are utilised for the parallel sections. However, within
each section a new parallel region is started. As OMP_SET_NESTED has been set to be true ,
then these nested parallel regions perform their operations using an implementation depend-
ent number of threads. Finally the sections region is over and the last do loop involving both x
and y is executed using all eight threads.

N.B. One should be aware that the number of threads actually used within a nested parallel
region is implementation dependent. This is because the OMP_SET_NUM_THREADS library
routine used to determine the number of threads only has effect if called from a serial portion
of the code. In the case described above one might imagine that the sections will execute using
four threads each, but there is no guarantee that this is the case.

3.4.3 Atomic update

Neither X3H5 nor SGI’s DOACROSS model support atomic updating. The OpenMP ATOMIC/
atomic directive ensures serial access to the single assignment statement succeeding it, that
is, it prevents the possibility of a memory location be updated simultaneously by different
threads. In this sense it is similar to the CRITICAL/critical directive (section 4.5.2), but it
lacks the functionality as it applies only to the statement immediately following it which must

Why OpenMP?

Edinburgh Parallel Computing Centre 15

be of a certain allowed form (section 4.5.4 for more details). However, the lack of functionality
is made up for by the fact that it permits optimisation beyond that of the CRITICAL/criti-
cal directive and should be used over that whenever possible.

3.4.4 Parallel sections

As seen in section 3.4.2 OpenMP has a SECTIONS/sections directive which allows paral-
lelisation of non-iterative sections of code. This removes the limitations of only being able to
implement loop-level parallelism.

OpenMP

16 Technology Watch Report

4 The OpenMP Specification

Conceptually OpenMP is similar to X3H5 with additional functionality to support coarse
grain parallelism. However, as well as the parallelisation directives there are callable runtime
library routines and environment variables. This section deals with the use of the directives
for parallelising code, while section 5 defines the library r outines and environment variables.
The full standard can be found at http://www.openmp.org . These two sections are based
on material from the OpenMP Fortran Application Program Interface, with permission from the
OpenMP Architecture Review Board, copyright 1997-98 OpenMP Architecture Review
Board.

4.1 Parallelisation directives
The parallelisation directives added to the source code are based on the following form:

sentinel directive_name [clauses]

For f77, the sentinel can take the forms !OMP, COMP, or *$OMP, and usually must appear in
column one as a single word. As we have seen already this report uses the !$OMP sentinel.
Standard Fortran syntax applies to the directive line, that is, the initial directive lines must
have a space or zero in column six, and continuation directive lines must have a character
other than a space or a zero in column six.

For C/C++, the sentinel is replaced with #pragma omp followed by the directive names and
clauses. Also a new-line must be used at the end of the directive.

The directive_name and [clauses] are covered in the sections following.

4.2 Parallel region construct
The PARALLEL/parallel and END PARALLEL directives define a parallel region, a block of
code that is to be executed by multiple threads in parallel. This is the fundamental parallel
construct in OpenMP that starts parallel execution. The directives take the format:

f77:

!$OMP PARALLEL [clause[[,] clause] . . .]

block

!$OMP END PARALLEL

C/C++:

#pragma omp parallel [clause[clause] . . .] new-line

structured block

where clause can be one of the following (see section 4.3):

• PRIVATE / private

• SHARED / shared

• DEFAULT / default

• FIRSTPRIVATE / f irstprivate

• REDUCTION / reduction

The OpenMP Specification

Edinburgh Parallel Computing Centre 17

• IF / if (scalar_logical_expression)

• COPYIN / copyin

The block denotes a structured block of Fortran statements. It is illegal to branch into or out of
the block.

If the IF/if clause is present the enclosed region is executed in parallel only if the
scalar_logical_expression evaluates to .true./non-zero.

When a thread encounters a parallel region, it creates a team of threads, and it becomes the
master of the team. The master thread is a member of the team and it has a thread number of 0
within the team. The number of threads in the team is controlled by environment variables
and/or library calls (see section 5). The number of physical processors actually hosting the
threads at any given time is implementation dependent.

The END PARALLEL directive denotes the end of the parallel region. There is an implied bar-
rier at this point and only the master thread continues execution at the end of a parallel region.

4.3 Data environment constructs
4.3.1 PRIVATE

Syntax: f77: PRIVATE (list) C/C++: private (list)

The PRIVATE/private clause declares that the variables listed are treated as private to each
thread in a team; that is, a separate copy of the variable exists on each process. These copies
are no longer storage associated with the original variable, and as such are undefined on
entering the parallel construct. Conversely, the corresponding shared variable is undefined on
exiting the construct.

Example: A simple parallel loop

f77:

!$OMP PARALLEL DO PRIVATE(i) SHARED(xnew, xold, dx, n)

do i = 2, n

xnew(i) = (xold(i) - xold(i-1)) / dx

enddo

!$OMP END PARALLEL DO

C/C++:

#pragma omp parallel for private(i) shared(xnew, xold, dx, n)

{

for (i=1: i<n; i++) xnew[i] = (xold[i]-xold[i-1])/dx;

}

(It is not actually necessary to explicitly declare i , a and b, as the loop iteration variable is
PRIVATE by default and a and b are SHARED by default. Also the END PARALLEL DO direc-
tive is optional.)

4.3.2 FIRSTPRIVATE

Syntax: f77: FIRSTPRIVATE (list) C/C++: f irstprivate(list)

This clause is similar to the PRIVATE/private clause but has the additional functionality
that the private copies of the variables are initialised from the original variables existing
before the construct.

OpenMP

18 Technology Watch Report

Example: Not all the values of a are initialised in the loop before they are used, so using
FIRSTPRIVATE for a causes the initialization values produced by subroutine init_a to be
copied into a PRIVATE copy of a for use in the loops.

integer n

real a(100), c(n,n)

call init_a(a, n)

!$OMP PARALLEL DO SHARED(c, n) PRIVATE (i, j)

!$OMP& FIRSTPRIVATE(a)

do i = 1, n

do j = 1, i

a(j) = calc_a(i)

enddo

do j = 1, n

c(i,j) = a(i)**2 + 2.0*a(i)

enddo

enddo

!$OMP END PARALLEL DO

4.3.3 LASTPRIVATE

Syntax: f77: LASTPRIVATE (list) C/C++: lastprivate (list)

As for the PRIVATE clause, but causes the thread that executes the sequentially last iteration
of a do loop to update the version of the variable it had before the construct.

Example: This example causes the value of i at the end of the parallel region to be equal to n,
as it would have been for the sequential case.

#omp pragma parallel for lastprivate(i)

{

for (i=0; i<n; i++) a[i]=b[i]+c[i];

}

4.3.4 SHARED

Syntax: f77: SHARED (list) C/C++: shared (list)

This clause causes all the variables that appear in the list to be shared among all the threads in
the team, that is, each thread within the team have access to the same storage area for
SHARED/shared data.

4.3.5 DEFAULT

Syntax: f77: DEFAULT (PRIVATE | SHARED | NONE)

C/C++: default (shared | none)

The DEFAULT clause allows the user to determine the attributes for all the variables in a paral-
lel region. Variables in THREADPRIVATE common blocks are not affected by this clause.

� DEFAULT (PRIVATE) makes all the variables in the parallel region private to a thread

The OpenMP Specification

Edinburgh Parallel Computing Centre 19

as if each were listed in a PRIVATE clause. (Only on available in f77)
� DEFAULT (SHARED) makes all the variables in the parallel region shared among the

threads of the team, as if each variable were listed explicitly in a SHARED clause. This is
the default behaviour if there is no explicit DEFAULT clause.

� DEFAULT (NONE) declares that there is no implicit default as to whether variables are
private or shared, so the attributes of each variable in the parallel region must be explic-
itly declared.

Variables can be exempted from the defined default clause by explicitly declaring them as
PRIVATE or SHARED etc., for example:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I), SHARED(X)

#pragma omp parallel for default (shared) firstprivate(i) \

private(x) private(r) lastprivate(i)

4.3.6 REDUCTION

Syntax: f77: REDUCTION ({ operator | intrinsic } : list)

C/C++: reduction (operator: list)

This clause performs a reduction on the variables that appear in list, with the operator operator
or the intrinsic intrinsic, where operator (f77) is one of:

+, *, -, .AND., .OR., .EQV., .NEQV.

and intrinsic is one of :

MAX, MIN, IAND, IOR, IEOR

and similarly for the comparable operators in C/C++.

A PRIVATE temporary variable is created for the reduction variable, and is replaced into the
original variable after the end of the construct. This variable is initialised depending on the
operator (see the standard for details). For example:

!$OMP PARALLEL

!$OMP DO SHARED (a, n) PRIVATE(i) REDUCTION(max : maxa)

do i = 1, n

maxa = max (maxa, a)

enddo

!$OMP END PARALLEL

So at the end of this loop the private values of maxa are combined to give a global value.

4.3.7 SCHEDULE

Syntax: f77: SCHEDULE(type [, chunk]) C/C++: schedule (type[, chunk])

The SCHEDULE clause specifies how iterations of a DO loop are divided among the threads of
the team. Table 1 shows the values type can take. This clause is mainly used for load balancing
between threads.

OpenMP

20 Technology Watch Report

In the absence of the SCHEDULE clause the default schedule is implementation dependent.

4.3.8 THREADPRIVATE

f77:

Syntax:

!$OMP THREADPRIVATE (/cb/[,/cb/] . . .)

where cb is the name of the common block to be made private to a thread

This directive makes named common blocks private to a thread but global within the thread.
It must appear in the declaration section of the routine after the declaration of the listed com-
mon blocks. Each thread gets its own copy of the common block, so data written to the com-
mon block by one thread is not directly visible to other threads. During serial portions and
MASTER sections of the program, accesses are to the master thread’s copy of the common
block.

On entry to the first parallel r egion, data in the THREADPRIVATE common blocks should be
assumed to be undefined unless a COPYIN clause (section 4.3.9) is specified on the PARALLEL
directive.

When a common block that is initialised using DATA statements appears in a THREADPRI-
VATE directive, each thread’s copy is initialised once prior to its first use. For subsequent par-
allel regions, the data in the THREADPRIVATE common blocks is guaranteed to persist only if
the dynamic threads mechanism has been disabled and if the number of threads is the same
for all parallel regions.

It is illegal for a THREADPRIVATE common block or its constituent variables to appear in any
clause other than a COPYIN clause. As a result they are not permitted in a PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, SHARED, or REDUCTION clause. They are not affected by the
DEFAULT clause. See the next section for an example of the use of THREADPRIVATE.

C/C++:

Syntax:

Table 2: Use of the SCHEDULE clause (lower-case for C/C++)

type Effect

STATIC Iterations are divided into pieces of a size specified bychunk wherechunk is a
scalar integer expression. The pieces are statically assigned to threads in the team
in a round-robin fashion in the order of the thread number.
When nochunk is specified, the iterations are divided among threads in contigu-
ous pieces, and one piece is assigned to each thread.

DYNAMIC As forSTATIC, except as each thread finishes a piece of iteration space, it dynam-
ically obtains the next set of iterations.

GUIDED For this option the size of each chunk is reduced in an exponentially decreasing
manner with each dispatched piece of the iteration space. The variablechunk
specifies the minimum number of iterations to dispatch each time, except when
there are less thanchunk iterations remaining, at which point the rest are dis-
patched.

RUNTIME WhenSCHEDULE(RUNTIME) is set scheduling is deferred until run time, when
the schedule type and chunk size can be chosen by setting theOMP_SCHEDULE
environment variable (section 5.3.1). If this variable is not set, the resulting sched-
ule is implementation-dependent. It is illegal to specify a chunk whenSCHED-
ULE(RUNTIME) is specified.

The OpenMP Specification

Edinburgh Parallel Computing Centre 21

#pragma omp threadprivate (list) new-line

This directive makes the file-scope or namespace-scope variables specified in list private to a
thread but file-scope visible within the thr ead. Outside of the parallel region references to
these variables update the master thread’s copy.

After the first parallel r egion executes, the data in the threadprivate objects is only guaranteed
to persist only if the dynamic threads mechanism has been disabled and the number of
threads remains unchanged for all parallel regions.

Each variable in a threadprivate directive must have a file-scope or namespace-scope dec-
laration that lexically precedes the directive. Also, the directive itself must appear at file-scope
or namespace-scope, must appear outside of any definition or declaration and must lexically
precede any references to any of the variables in its list.

A threadprivate variable must not appear in any clause other than the copyin, sched-
ule or the if clause. As a result, they are not permitted in private, firstprivate,
lastprivate, shared or reduction clauses. The default clause has no effect on them.

4.3.9 COPYIN

Syntax: f77: COPYIN (list) C/C++: copyin(list)

The COPYIN clause applies only to THREADPRIVATE common blocks/variables. A COPYIN
clause on a parallel region specifies that the data in the master thr ead of the team be copied to
the threadprivate copies of the variable for each thread at the beginning of the parallel region.
In f77, it is not necessary to specify a whole common block to be copied in as named variables
appearing in the THREADPRIVATE common block can be specified in list.

Example:

common /block/ scratch

common /coords/ x, y, z

!$OMP THREADPRIVATE (/block/, /coords/)

!$OMP PARALLEL DEFAULT(PRIVATE) COPYIN (/block/, z)

In this example the common blocks block and coords are specified as thr ead private, but
only the z variable in coords is specified to be copied in.

4.4 Work-sharing constructs
There is no work distribution in a parallel region until a work-sharing construct is encoun-
tered, as up to that point each active thread executes the entire region redundantly. The work-
sharing constructs divide the region among the members of the team of threads that encoun-
ter it, and must be enclosed dynamically within a parallel region in order for the directive to
execute in parallel.

The following restrictions apply to the work-sharing directives :
� Work-sharing constructs and BARRIER/barrier directives must be encountered by all

threads in a team or by none at all.
� Work-sharing constructs and BARRIER/barrier directives must be encountered in the

same order by all threads in a team.

4.4.1 DO/for

Syntax :

f77:

!$OMP DO [clauses]

OpenMP

22 Technology Watch Report

Fortran do loop

[!$OMP END DO [NOWAIT]]

C/C++:

#pragma omp for [clause[clause] . . .] new-line

C/C++ for loop

The clauses (f77) can be:

• PRIVATE (list)

• FIRSTPRIVATE (list)

• LASTPRIVATE (list)

• REDUCTION ({operator|intrinsic} : list)

• SCHEDULE (type[,chunk])

• ORDERED

Similarly for C/C++, with the addition of:
� nowait

There is an implicit barrier at the end of a for construct unless the nowait clause is specified.

The DO/for directives provide a mechanism for the distribution of loop iterations across the
available threads in a parallel region.

If the !$OMP END DO directive is excluded the !$OMP DO is assumed to end with the
enclosed do loop. There is an implicit barrier after the end of the parallel loop, that is the first
thread to complete its portion of work will wait until the other threads have finished befor e
continuing. If the option NOWAIT is specified, the thr eads will not synchronise at the end of the
parallel loop, that is, the first thr ead to finish will then start on the next piece of code.

See section 4.5.6 for a description on the use of the ORDERED directive.

Where the parallel region contains a single DO/for directive the following short-cut can be
used:

f77:

!$OMP PARALLEL DO [clauses]

do_loop

[!$OMP END PARALLEL DO]

C/C++:

#pragma omp parallel for [clauses] new-line

for loop

which is equivalent to explicitly specifying a PARALLEL/parallel directive immediately
followed by a DO/for directive.

In C/C++ there are several restrictions on the structure of the for loop, which essentially boil
down to the for loop looking like a fortran do loop, i.e. it must have a canonical shape. For a
more detailed description see the standard.

4.4.2 SECTIONS

Syntax:

f77:

The OpenMP Specification

Edinburgh Parallel Computing Centre 23

!$OMP SECTIONS [clauses]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS [NOWAIT]

C/C++:

#pragma omp sections [clause[clause] . . .] new-line

{

[#pragma omp section new-line]

structured-block

[#pragma omp section new-line

structured-block

. . .]

}

where clauses can be any of the following for f77:
� PRIVATE
� FIRSTPRIVATE
� LASTPRIVATE
� REDUCTION

Similarly for C/C++ with the addition of nowait. There is an implicit barrier at the end of a
sections construct, unless a nowait is specified.

The SECTIONS/sections directives causes the sections of code within the construct to be
divided among threads in the team such that each section is executed once by a thread in the
team.

Each section is preceded by a SECTION/section directive (optional for the first section). For
f77, threads that complete execution of their sections wait at a barrier at the END SECTIONS
directive unless a NOWAIT is specified.

As for the DO/for directive there is a short-cut for specifying a parallel region that contains a
single SECTIONS/sections directive:

f77:

!$OMP PARALLEL SECTIONS [clauses]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END PARALLEL SECTIONS

OpenMP

24 Technology Watch Report

C/C++:

#pragma omp parallel sections [clauses] new-line

{

[#pragma omp section new-line]

structured-block

[#pragma omp section new-line]

structured-block

. . .]

}

which is equivalent to explicitly specifying a PARALLEL/parallel directive immediately
followed by a SECTIONS/sections directive.

4.4.3 SINGLE

Syntax:

f77:

!$OMP SINGLE [clauses]

block

!$OMP END SINGLE [NOWAIT]

C/C++:

#pragma omp single [clauses] new-line

structured-block

Where clauses can be any of the following:
� PRIVATE
� FIRSTPRIVATE

with the additional nowait for C/C++. There is an implicit barrier after the single construct
unless a nowait clause is specified.

This directive specifies that the enclosed code is to be executed by only one thr ead in the team
which is necessary for portions of code lying in the parallel region which must be executed
serially. In f77, threads not executing the SINGLE directive wait at the END SINGLE unless
NOWAIT is specified.

4.5 Synchronisation constructs
These constructs allow the user to manipulate the thread behaviour in a parallel region.

4.5.1 MASTER

Syntax:

f77:

!$OMP MASTER

block

!$OMP END MASTER

The OpenMP Specification

Edinburgh Parallel Computing Centre 25

C/C++:

#pragma omp master new-line

structured-block

The code enclosed by these directives is executed by the master thread of the team. The other
threads skip the enclosed code and continue execution (there is no implied barrier either on
entry or exit from the master section).

4.5.2 CRITICAL

Syntax:

f77:

!$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

C/C++:

#pragma omp critical [(name)] new-line

structured-block

The code enclosed by these directives is accessed by only one thread at a time. A thread waits
at the beginning of a critical section until no other thread in the team is executing a critical sec-
tion with the same name. The optional name identifies a particular critical section and if used
in f77 must be specified on both the CRITICAL and END CRITICAL directives.

4.5.3 BARRIER

Syntax:

f77:

!$OMP BARRIER

C/C++:

#pragma omp barrier new-line

This directive synchronises the threads in a team by causing them to wait until all of the other
threads have reached this point in the code.

4.5.4 ATOMIC

Syntax:

f77:

!$OMP ATOMIC

C/C++:

#pragma omp atomic new-line

This directive ensures that a specific memory location is to be updated atomically rather than
exposing it to the possibility of multiple, simultaneous writing threads. It applies only to the
statement following on immediately after the directive, which must have one of the following
forms:

f77:

OpenMP

26 Technology Watch Report

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

where
� x is a scalar variable of intrinsic type
� expr is a scalar expression that does not reference x
� intrinsic is one of MAX, MIN, IAND, IOR, or IEOR
� operator is one of +, * , - , / , .AND. , .OR. , .EQV. , or .NEQV.

C/C++:

x binop = expr

x++

++x

x--

--x

where
� x is an lvalue expression with scalar type.
� expr is an expression with scalar type, and it does not reference the object designated

by x.
� binop is not an overloaded operator and one of +, *, -, /, &, ^, |, <<, or >>.

In parallel, if an object is updated using this directive, then all references to that object must
use this directive to avoid race conditions.

4.5.5 FLUSH

Syntax:

f77:

!$OMP FLUSH [(list)]

C/C++:

#pragma omp f lush [(list)] new-line

This directive causes thread visible variables to be written back to memory and is provided for
users who wish to write their own synchronisation directly through shared memory. The
optional list may be used to specify variables that need to be flushed, otherwise all variables
are flushed to memory. The directive is implied for the following directives (unless the NOW-
AIT/nowait clause is present):

• BARRIER/barrier
� CRITICAL and END CRITICAL/entry to and exit from critical

• END DO/exit from for

• END PARALLEL/exit from parallel

• END SECTIONS/exit from sections

• END SINGLE/exit from single

The OpenMP Specification

Edinburgh Parallel Computing Centre 27

� ORDERED and END ORDERED/entry to and exit from ordered

4.5.6 ORDERED

Syntax:

f77:

!$OMP ORDERED

block

!$OMP END ORDERED

C/C++:

#pragma omp ordered new-line

structured-block

This directive must appear within a DO/for or PARALLEL DO/parallel for directive,
which in turn must have the ORDERED/ordered clause specified. Only one thr ead a time is
allowed into an ordered section. The threads executing the iterations of the DO/for section
are allowed to enter the ordered section in the same order as the iterations are executed in the
sequential version of the loop. This sequentialises and orders code within the ordered sections
while allowing code outside the section to run in parallel.

4.6 Conditional compilation
The OpenMP Fortran API permits Fortran statements to be compiled conditionally. The senti-
nel used is !$ and must be followed by a legal Fortran statement, for example:

!$ 10 IAM = OMP_GET_THREAD_NUM() + INDEX

During OpenMP compilation the sentinel is replaced by two spaces and the rest of the line is
treated as a normal Fortran statement. Also a C preprocessor macro can be used for condi-
tional compilation:

#IFDEF _OPENMP

10 IAM = OMP_GET_THREAD_NUM() + INDEX

#ENDIF

OpenMP-compliant compilers define this macr o during compilation, but essentially the two
forms are equivalent.

The _OPENMP macro name is defined by OpenMP-compliant implementations as the decimal
constant yyyymm, which will be the year and month of the approved specification. This macr o
must not be the subject of a #define or a #undef preprocessing directive.

OpenMP

28 Technology Watch Report

5 Library Routines and Environment
Variables

5.1 Execution Environment Routines
These routines can be used to control and query the parallel execution environment. For the
C/C++ routines the OpenMP header file must be included, i.e.:

#include <omp.h>

must appear before the use of the functions.

5.1.1 OMP_SET_NUM_THREADS

subroutine OMP_SET_NUM_THREADS (scalar_integer_expression)

void omp_set_num_threads(int num_threads);

The scalar_integer_expression is evaluated and its value is used to set the number of threads to
use for the next parallel region.num_threads must be positive. This function only has effect
when called from serial portions of the program. When dynamic adjustment of the number of
threads is enabled, this subroutine sets the maximum number of threads to use for the next
parallel region.

This call has precedence over the OMP_NUM_THREADS environment variable.

5.1.2 OMP_GET_NUM_THREADS

integer function OMP_GET_NUM_THREADS()

int omp_get_num_threads(void);

This function returns the number of threads currently in the team executing the parallel region
from which it is called, or 1 if called from a serial portion of the code. If the number of threads
has not been explicitly set by the user, the default is implementation dependent.

5.1.3 OMP_GET_MAX_THREADS

integer function OMP_GET_MAX_THREADS()

int omp_get_max_threads(void);

This returns the maximum value that can be returned by calls to OMP_GET_NUM_THREADS.

5.1.4 OMP_GET_THREAD_NUM

integer function OMP_GET_THREAD_NUM()

int omp_get_thread_num(void);

This function returns the thread number within the team that lies between 0 (the master
thread) and OMP_GET_NUM_THREADS()-1 inclusive.

Library Routines and Environment Variables

Edinburgh Parallel Computing Centre 29

5.1.5 OMP_GET_NUM_PROCS

integer function OMP_GET_NUM_PROCS()

int omp_get_num_procs(void);

This function returns the number of processors that are available to the program.

5.1.6 OMP_IN_PARALLEL

logical function OMP_IN_PARALLEL()

int omp_in_parallel(void);

This function returns .TRUE./non-zero if it is called from the dynamic extent of a region
executing in parallel and .FALSE./0 otherwise. A parallel region that is serialised is not con-
sidered to be a region executing in parallel. However, this function will always return
.TRUE./non-zero within the dynamic extent of a region executing in parallel, regardless of
nested regions that are serialised.

5.1.7 OMP_SET_DYNAMIC

subroutine OMP_SET_DYNAMIC(scalar_logical_expression)

void omp_set_dynamic(int dynamic_threads);

This subroutine enables or disables dynamic adjustment of the number of threads available
for execution of parallel programs. If scalar_logical_expression/dynamic_threads evaluates to
.TRUE./non-zero, the number of threads that are used for executing subsequent parallel
regions can be adjusted automatically by the run-time environment to obtain the best use of
system resources. As a consequence, the number of threads specified by the user is the maxi-
mum thread count.The number of threads always remains fixed over the duration of each par-
allel region and is reported by the OMP_GET_NUM_THREADS() function. If
scalar_logical_expression/dynamic_threads evaluates to zero, dynamic adjustment is disabled.

A call to this subroutine has precedence over the OMP_DYNAMIC environment variable.

5.1.8 OMP_GET_DYNAMIC

logical function OMP_GET_DYNAMIC()

int omp_get_dynamic(void);

This function returns .TRUE./non-zero if dynamic thread adjustment is enabled,
.FALSE./0 otherwise.

5.1.9 OMP_SET_NESTED

subroutine OMP_SET_NESTED(scalar_logical_expression)

void omp_set_nested(int nested);

If scalar_logical_expression/nested evaluates to .FALSE./0 (the default), then nested parallel-
ism is disabled, and such regions are serialised and executed by the current thread. If set to
.TRUE./non-zero, nested parallelism is enabled, and parallel regions that are nested can
deploy additional threads to form the team, but recall that the number of threads in the teams
is implementation dependent.

This call has precedence over the OMP_NESTED environment variable.

OpenMP

30 Technology Watch Report

5.1.10 OMP_GET_NESTED

logical function OMP_GET_NESTED()

int omp_get_nested(void);

This function returns .TRUE./non-zero if nested parallelism is enabled and .FALSE./0 if
nested parallelism is disabled. If an implementation does not implement nested parallelism,
this function always returns 0.

5.2 Lock Routines
This section details the OpenMP general-purpose locking routines which are used to guaran-
tee that only one process accesses a variable at a time to avoid race conditions. For all these
routines the lock variable var should be of type integer and of a precision large enough to hold
an address. The C/C++ lock variable must have type omp_lock_t or omp_nest_lock_t.
All lock functions require an argument that has a pointer to omp_lock_t or
omp_nest_lock_t type. Also the omp.h file must be included.

5.2.1 OMP_INIT_LOCK

subroutine OMP_INIT_LOCK(var)

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

These functions initialise a lock associated with lock variable var or parameter lock for use in
subsequent calls. For a nestable lock, the initial nesting count is zero.

5.2.2 OMP_DESTROY_LOCK

subroutine OMP_DESTROY_LOCK(var)

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

This subroutine dissociates the given lock variable var or parameter lock from any locks.

5.2.3 OMP_SET_LOCK

subroutine OMP_SET_LOCK(var)

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

This subroutine forces the executing thread to wait until the specified lock is available. The
thread is granted ownership of the lock when it is available.

5.2.4 OMP_UNSET_LOCK

subroutine OMP_UNSET_LOCK(var)

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

This releases the executing thread from ownership of the lock. For a nested lock, the function
omp_unset_nest_lock decrements the nesting count, and releases the thread executing the
function from ownership of the lock if the resulting count is zero.

Library Routines and Environment Variables

Edinburgh Parallel Computing Centre 31

5.2.5 OMP_TEST_LOCK

logical function OMP_TEST_LOCK(var)

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

This function tries to set the lock associated with the lock variable, returning .TRUE./non-
zero if the lock was set successfully and .FALSE./0 otherwise. For a nestable lock, the
omp_test_nest_lock function returns the new nesting count if the lock is successfully set;
otherwise, it returns zero.

5.3 Environment Variables
These environment variables can be used to control the execution of parallel code. The names
must be uppercase, the values assigned to them are case insensitive.

5.3.1 OMP_SCHEDULE

Example:

setenv OMP_SCHEDULE “GUIDED,4”

This applies to DO and PARALLEL DO that have the schedule type RUNTIME. The schedule
type and chunk size for all such loops can be set at run time by setting this environment varia-
ble to any of the recognized schedule types and optional chunk size (see Table 1).

5.3.2 OMP_NUM_THREADS

Example:

setenv OMP_NUM_THREADS 16

This sets the number of threads to use during execution unless that number is explicitly
changed using the subroutine OMP_SET_NUM_THREADS (section 5.1.1). If dynamic adjustment
of the number of threads is enabled this variable is the maximum number of threads to use.

5.3.3 OMP_DYNAMIC

Example:

setenv OMP_DYNAMIC TRUE

This enables (TRUE) or disables (FALSE) the dynamic adjustment of the number of threads
available for execution of parallel regions.

5.3.4 OMP_NESTED

Example:

setenv OMP_NESTED TRUE

This enables (TRUE) or disables (FALSE) nested parallelism.

OpenMP

32 Technology Watch Report

6 Performance and Scalability

To examine the performance of OpenMP it was decided it to compare it with other shared
memory directives and against different parallelisation paradigms, namely MPI and HPF.

6.1 The Game of Life
The Game of Life is a simple grid-based problem which demonstrates complex behaviour. It is
a cellular automaton where the world is a 2D grid of cells which have two states: alive or
dead. At each iteration the new state of the cell is determined by the state of its neighbours at
the previous iteration as seen in Figure 7.

 Figure 7: The Game of Life cell and its neighbours

The rules for the evolution of the system are;
� if a cell has exactly two live neighbours it maintains state
� if it has exactly three live neighbours it is (or becomes) alive
� otherwise, it is dead (or dies)

The figur e below shows the serial code for the game of life, with OpenMP directives added for
parallel execution. As we are looking at performance all the I/O has been inhibited and the
output subroutine is not included here.

program game_of_life

 implicit none

 integer i,j,loop,num_alive,n, maxloop

 parameter (n=512, maxloop=10000)

 integer board(0:n+1,0:n+1),num_neigh(n,n)

 logical output

 parameter (output = .false.)

c Initialise board (a simple + pattern)

 num_alive=0

!$OMP PARALLEL DO REDUCTION(+:num_alive)

 do j = 1, n

Performance and Scalability

Edinburgh Parallel Computing Centre 33

 do i = 1, n

 if ((i.eq.n/2).or.(j.eq.n/2)) then

 board(i,j) = 1

 num_alive = num_alive+1

 else

 board(i,j) = 0

 endif

 enddo

 enddo

 if (output) write(6,1111) num_alive

c Output initial board

 if (output) call output_board(board,n,0)

c Perform maxloop updates of the board

 do loop = 1, maxloop

c Edges have periodic boundary conditions

!$OMP PARALLEL DO

 do i = 1, n

 board(i,0) = board(i,n)

 board(i,n+1) = board(i,1)

 board(0,i) = board(n,i)

 board(n+1,i) = board(1,i)

 enddo

c loop over board generating data for number of neighbours

!$OMP PARALLEL DO

do j = 1, n

 do i = 1, n

 num_neigh(i,j) = board(i,j+1) + board(i,j-1)

& + board(i+1,j) + board(i-1,j)

& + board(i+1,j+1) + board(i-1,j-1)

& + board(i+1,j-1) + board(i-1,j+1)

 enddo

 enddo

c Update board and calculate the number of cells alive

 num_alive = 0

!$OMP PARALLEL DO REDUCTION(+:num_alive)

 do j = 1, n

 do i = 1, n

 if ((num_neigh(i,j).lt.2).or.(num_neigh(i,j).gt.3))
then

board(i,j) = 0

OpenMP

34 Technology Watch Report

 else if (num_neigh(i,j).eq.3) then

 board(i,j) = 1

 endif

 if (board(i,j) .eq. 1) num_alive=num_alive+1

 enddo

 enddo

 if (output) write(6,1111) num_alive

c Output board

 if (output) call output_board(board, n, loop)

 enddo

 1111 format(‘Number alive = ‘,i4)

 end

 Figure 8: Code for Game of Life with OpenMP directives

6.2 Performance
As we can see from Figure 8 the game of life is quite straightforwardly parallelisable using
OpenMP. Below are the equivalent Sun directives and SGI parallel directives in comparison
with OpenMP.

� OpenMP

!$OMP PARALLEL DO

!$OMP PARALLEL DO REDUCTION(+:num_alive)
� Sun

C$PAR DOALL

C$PAR DOALL REDUCTION(num_alive)
� SGI

C$DOACROSS PRIVATE(i,j)

C$DOACROSS PRIVATE(i,j), REDUCTION(num_alive)

Also the MPI and HPF versions of the code were written (full versions in Appendix A and
Appendix B).

6.2.1 Sun Enterprise 3000

The MPI, OpenMP, HPF and Sun versions were run on a Sun SparcStation E3000 with four
processors and 1 gigabyte of memory. The OpenMP version was compiled using the Guide
compiler from Kuck & Associates Inc. (http://www.kai.com). The HPF version was com-
piled using the Portland Group HPF compiler, pghpf (version 2.4) (http://
www.pgroup.com).

Performance and Scalability

Edinburgh Parallel Computing Centre 35

Table 3 and Table 4 show the timings (in seconds) for the game of life with gridsizes of

, and respectively.

As we are interested in the scaling properties of the various parallelisation techniques, Figure
9 and Figure 10 show the speedup obtained for the different paradigms. Speedup is defined in
this case to be :

(1)

where is the time for execution of the particular code on processors, rather than the
more usual :

(2)

where is the time for execution of the serial version of the code. This is so we can compare

the scalability of HPF with the other paradigms, as the times for the MPI, OpenMP and Sun
codes on one processor are very close to the time for the serial code whereas the HPF code is
approximately 2.5-3 times slower. One would perhaps expect this as the HPF code is
Fortran90 which is generally slower than Fortran77. Also, the method of parallelism is based
on the intrinsic data parallelism of HPF, using the cshift command rather than the DO
utlised in the other versions, but the results are included here anyway for the sake of com-
pleteness.

Examining figur es 7 and 8 one sees that all the paradigms perform well, in particular for the
larger problem size. However, perhaps one might not expect to see too much difference over a
small number of processors. It is still encouraging that the OpenMP version performs as well
as the other more established paradigms.

Table 3: Problem size = 250x250, Serial f77 version time = 79.6 seconds

NPES 1 2 3 4

Sun 80.0 41.6 29.1 21.9
OpenMP 79.6 41.9 29.1 21.4
MPI 93.2 49.9 35.6 29.9
HPF 205.0 103.1 76.6 64.0

Table 4: Problem size = 1000x1000, Serial f77 version time = 1812.6 seconds

NPES 1 2 3 4

Sun 1824 941.7 667.4 476.7
OpenMP 1812 943.6 669.2 490.7
MPI 1916 998.1 681.1 500.3
HPF 4900 2615 1748 1391

250 250× 500 500× 1000 1000×

Speedup T 1() T n()⁄=

T n() n

Speedup T1 T n()⁄=

Tn

OpenMP

36 Technology Watch Report

 Figure 9: Parallel performance on the Sun E3000 for the 250 x 250 game of life grid

 Figure 10: Parallel performance on the Sun E3000 for the 1000 x 1000 game of life grid

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4

Sp
ee

du
p

Number of Processors

Perfect ✧

✧

✧

✧

✧

SGI ✛

✛

✛

✛

✛

OpenMP ■

■

■

■

■

MPI ✕

✕

✕

✕

✕

HPF ▲

▲

▲

▲

▲

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4

Sp
ee

du
p

Number of Processors

Perfect ✧

✧

✧

✧

✧

SGI ✛

✛

✛

✛

✛

OpenMP ■

■

■

■

■

MPI ✕

✕

✕

✕

✕

HPF ▲

▲

▲

▲

▲

Performance and Scalability

Edinburgh Parallel Computing Centre 37

6.2.2 SGI Origin 2000

The MPI, OpenMP and SGI versions of the code were run on the SGI Origin2000 at the Man-
chester Computing Centre. The Origin 2000 is a distributed shared memory machine, that is
each node has its own memory which every other node has access to through the global
address space. Each node consists of two processors, and the nodes are inter-connected in
such a way as to create an augmented hypercube, a section of which is shown in Figure 11.

 Figure 11: Node interconnections on the Origin 2000

Figure 12 and Figure 13 show the speedup for the three different versions of the code for a

 and gridsize respectively. HPF was not available on the Origin2000
so the second definition of speedup (Equation 2 fr om Section 6.2.1) was used for generating
these graphs.

Comparing the two graphs one can see that for the smaller problem size the overhead of run-
ning using multiple threads was much more noticeable than for the larger problem size. For
the larger grid all three paradigms perform well as the number of processors are increased,
with near perfect speedup for the OpenMP and SGI directives, and super-linear speedup for
the MPI version (this may be due to inefficiencies for the serial version of the code caused by
poor cache management for the large data space).

1

2

0

3

4

5

6

7

512 512× 1024 1024×

OpenMP

38 Technology Watch Report

 Figure 12: Performance for a 512x512 Game of Life grid on the Origin2000

 Figure 13: Performance for a 1024x1024 Game of Life grid on the Origin2000

0

2

4

6

8

10

12

14

16

2 4 8 16

Sp
ee

du
p

Number of Processors

Perfect ✧

✧

✧

✧

✧

✧

SGI ✛

✛

✛

✛

✛

✛

OpenMP ■

■

■

■

■

■

MPI ✕

✕

✕

✕

✕

✕

0

2

4

6

8

10

12

14

16

2 4 8 16

Sp
ee

du
p

Number of Processors

Perfect ✧

✧

✧

✧

✧

✧

SGI ✛

✛

✛

✛

✛

✛

OpenMP ■

■

■

■

■

■

MPI ✕

✕

✕

✕

✕

✕

References

Edinburgh Parallel Computing Centre 39

7 References

1. X3H3 Committee. Parallel Extensions for Fortran. Technical Report X3H5/93-SD1-Revi-
sion M, Accredited Standards Committee X3, April 1994.

2. Klaas Jan Wieranga. Survey of Compiler Directives for Shared Memory Programming. EPCC
TEC-WATCH report, March 1997 (http://www.epcc.ed.ac.uk/epcc-tec/docu-
ments.html).

3. The HPF Forum. HPF-2 Information. (http://www.vcpc.univie.ac.at/informa-
tion/mirror/HPFF/versions/hpf2/)

4. The OpenMP Architecture Review Board. OpenMP: A Proposed Industry Standard API for
Shared Memory Programming. White Paper, October 1997 (http://www.openmp.org/
openmp/mp-documents/paper/paper.html)

8 Acknowledgements

Thanks to :
� Barbara Früh of the Johannes Gutenberg University of Mainz, Insitute for Atmospheric

Physics and Elspeth Minty of EPCC for the MPI version of the Game of Life.
� Bob Kuhn of Kuck & Associates, Inc.
� Gavin Pringle of EPCC for assistance with the HPF code.

OpenMP is a trademark of the OpenMP Architecture Review Board. Portions of this publica-
tion may have been derived from the OpenMP Language Application Program Interface Spec-
ification.

OpenMP

40 Technology Watch Report

MPI version of the Game of Life

Edinburgh Parallel Computing Centre 41

A MPI version of the Game of Life

 program game
 implicit none

 include 'mpif.h'
c------------------------------------
c variables for the iteration
 integer iter,maxiter
 parameter (maxiter=100)

c------------------------------------
c variables for the basic information
 integer errcode,rank,size

c--
c variables for dim create and cart. topology
 integer ndims, TWODIM_COMM
 parameter (ndims=2)
 integer dims(2)
 logical periods(2),reorder
 integer nx,ny, xglob,yglob

c-----------------------
c variables for derived datatype and file access
 integer numberblocks,blocklength,stride,SUBDOM,ROW,COLUMN
 integer sizes(2), subsizes(2), starts(2), MEMTYPE
 integer fh, fstat(MPI_STATUS_SIZE)

c-----------------------
c variables of the field
 integer i,j,xsize,ysize,maxgrey
 parameter (xsize=8000,ysize=8000,maxgrey=1)
 integer cell(0:xsize+1,0:ysize+1) ! enlarged array for the halo
 integer numneigh(xsize,ysize)

c--
c variables to determine the pos. of the proc.
 integer coords(ndims)

c------------------------
c variables for the shift
 integer direction,disp,left_neighb,right_neighb,above_neighb,
 & below_neighb

c-----------------------------------
c variables for the send and receive
 integer count,tag,dx,dy
 integer request(4)
 integer status(MPI_STATUS_SIZE, 4)
 character picfile*10

 integer num_alive, total_alive
 logical output
 parameter (output=.false.)

c---

OpenMP

42 Technology Watch Report

c basic information
 call MPI_INIT (errcode)

 call MPI_COMM_RANK (MPI_COMM_WORLD,rank,errcode)
 call MPI_COMM_SIZE (MPI_COMM_WORLD,size,errcode)

c---
c create dimensions
 dims(1) = 0
 dims(2) = 0
 call MPI_DIMS_CREATE(size,ndims,dims,errcode)
 nx = dims(1)
 ny = dims(2)
 dx = xsize/nx
 dy = ysize/ny

c---
c create 2-dimensional, periodic, cartesian grid
 do i=1,ndims
 periods(i) = .TRUE. ! cyclic boundaries
 enddo
 reorder = .TRUE. ! not yet distributed

 call MPI_CART_CREATE(MPI_COMM_WORLD,ndims,dims,periods,reorder,
 & TWODIM_COMM,errcode)

c---
c determination of the cartisian coordinates of the processor (x,y)

 call MPI_CART_COORDS(TWODIM_COMM,rank,ndims,coords,errcode)

c---
c initialisation

 xglob = coords(1)*dx
 yglob = coords(2)*dy

 do j=0,dy+1
 do i=0,dx+1
 if (xglob+i.eq.xsize/2 .or.
 & yglob+j.eq.ysize/2) then
 cell(i,j) = maxgrey ! white
 else
 cell(i,j) = 0 ! black
 endif
 enddo
 enddo

c---
c create derived datatype
c file layout
 sizes(1) = xsize
 sizes(2) = ysize
 subsizes(1) = dx
 subsizes(2) = dy
 starts(1) = coords(1) * dx
 starts(2) = coords(2) * dy
 call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts,
 & MPI_ORDER_FORTRAN, MPI_INTEGER, SUBDOM, errcode)
 call MPI_TYPE_COMMIT(SUBDOM,errcode)

c memory layout
 sizes(1) = dx+2

MPI version of the Game of Life

Edinburgh Parallel Computing Centre 43

 sizes(2) = dy+2
 starts(1) = 1
 starts(2) = 1
 call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts,
 & MPI_ORDER_FORTRAN, MPI_INTEGER, MEMTYPE, errcode)
 call MPI_TYPE_COMMIT(MEMTYPE,errcode)

c row
 numberblocks = dy+2
 blocklength = 1
 stride = xsize+2

call MPI_TYPE_VECTOR(numberblocks, blocklength, stride,
& MPI_INTEGER, ROW, errcode)

 call MPI_TYPE_COMMIT(ROW,errcode)

c column
 numberblocks = 1
 blocklength = dx+2
 stride = xsize+2

call MPI_TYPE_VECTOR(numberblocks, blocklength, stride,
& MPI_INTEGER, COLUMN, errcode)

 call MPI_TYPE_COMMIT(COLUMN,errcode)

c---
c find the nearest neighbour in the x-direction
 direction = 1 ! x-direction
 disp = 1 ! direct neighbour
 call MPI_CART_SHIFT(TWODIM_COMM,direction,disp,
 & left_neighb,right_neighb,errcode)

c---
c find the nearest neighbour in the y-direction
 direction = 0 ! y-direction
 disp = 1 ! direct neighbour
 call MPI_CART_SHIFT(TWODIM_COMM,direction,disp,
 & above_neighb,below_neighb,errcode)

 count = 1
 tag = 1

c---
 do iter=0,maxiter

c---
c swap boundaries with the processor above and below

 call MPI_ISSEND(cell(dx,0),count,ROW,below_neighb,tag,
 & TWODIM_COMM,request(1),errcode)
 call MPI_ISSEND(cell(1,0),count,ROW,above_neighb,tag,
 & TWODIM_COMM,request(2),errcode)

 call MPI_IRECV(cell(0,0),count,ROW,above_neighb,tag,
 & TWODIM_COMM,request(3),errcode)
 call MPI_IRECV(cell(dx+1,0),count,ROW,below_neighb,tag,
 & TWODIM_COMM,request(4),errcode)

 call MPI_WAITALL(4,request,status,errcode)

c---
c swap boundaries with the processor left and right

 call MPI_ISSEND(cell(0,1),count,COLUMN,left_neighb,tag,
 & TWODIM_COMM,request(1),errcode)

OpenMP

44 Technology Watch Report

 call MPI_ISSEND(cell(0,dy),count,COLUMN,right_neighb,tag,
 & TWODIM_COMM,request(2),errcode)

 call MPI_IRECV(cell(0,dy+1),count,COLUMN,right_neighb,tag,
 & TWODIM_COMM,request(3),errcode)
 call MPI_IRECV(cell(0,0),count,COLUMN,left_neighb,tag,
 & TWODIM_COMM,request(4),errcode)

 call MPI_WAITALL(4,request,status,errcode)

c---
c loop over local cells, counting neighbours

 do j=1,dy
 do i=1,dx
 numneigh(i,j)= (cell(i-1,j+1)+cell(i,j+1)+
 & cell(i+1,j+1)+cell(i-1,j)+cell(i+1,j)+
 & cell(i-1,j-1)+cell(i,j-1)+cell(i+1,j-1))
 & /maxgrey
 enddo
 enddo
c---
c loop over local cells, updating life board

 do j=1,dy
 do i=1,dx
 if ((numneigh(i,j).lt.2).or.(numneigh(i,j).gt.3)) then
 cell(i,j) = 0 ! black
 else if (numneigh(i,j) .eq. 3) then
 cell(i,j) = maxgrey ! white
 endif
 if (cell(i,j) .eq. 1) num_alive=num_alive+1
 enddo
 enddo

c---
cpg Perform a reduction operation on num_alive
 call MPI_REDUCE(num_alive, total_alive, 1, MPI_INTEGER,
 & MPI_SUM, 0, TWODIM_COMM)

c---
c output
 IF (output .ne. .FALSE.) THEN
 write(picfile, fmt='(''life'', i2.2, ''.out'')') iter
 call MPI_FILE_OPEN (MPI_COMM_WORLD, picfile, MPI_MODE_CREATE+
 & MPI_MODE_RDWR, MPI_INFO_NULL, fh, errcode)
 call MPI_FILE_SET_VIEW (fh, 0, MPI_INTEGER, SUBDOM,
 & "native", MPI_INFO_NULL, errcode)
 call MPI_FILE_WRITE_ALL (fh, cell, 1, MEMTYPE, fstat, errcode)
 call MPI_FILE_CLOSE (fh, errcode)
 END IF

 enddo ! iteration loop
c---
 call MPI_FINALIZE(errcode)
 end

HPF version of the Game of Life

Edinburgh Parallel Computing Centre 45

B HPF version of the Game of Life

 program game_of_life
 implicit none
 integer, parameter :: n=250, maxloop=10000
 integer loop, num_alive
 integer, dimension(n,n) :: board,neigh

! Distribute data for HPF compiler
!HPF$ distribute(*,block)::board,neigh

! Initialise board
 board=0
 board(:,n/2)=1
 board(n/2,:)=1
 num_alive=sum(board)

! Perform maxloop updates of the board
 do loop=1, maxloop

! Calculate number of neighbours
 neigh=board+cshift(board,shift=-1,dim=1) &
 +cshift(board,shift=+1,dim=1)
 neigh=neigh+cshift(neigh,shift=-1,dim=2) &
 +cshift(neigh,shift=+1,dim=2)
 neigh=neigh-board

! Update board and calculate number alive
 where(neigh==3)board=1
 where(neigh<2.or.neigh>3)board=0
 num_alive=sum(board)

 end do
 end program

