
Message Passing Programming with MPI 1

Message Passing
Programming with MPI

Message Passing Programming with MPI 2

What is MPI?

Message Passing Programming with MPI 3

 MPI Forum

❑ First message-passing interface standard.

❑ Sixty people from forty different organisations.

❑ Users and vendors represented, from the US and Europe.

❑ Two-year process of proposals, meetings and review.

❑ Message Passing Interface document produced.

Message Passing Programming with MPI 4

 Goals and Scope of MPI

❑ MPI’s prime goals are:

To provide source-code portability.

To allow efficient implementation.

❑ It also offers:

A great deal of functionality.

Support for heterogeneous parallel architectures.

Message Passing Programming with MPI 5

 Header files

❑ C:
#include <mpi.h>

❑ Fortran:
include ‘mpif.h’

Message Passing Programming with MPI 6

 MPI Function Format

❑ C:

error = MPI_Xxxxx(parameter, ...);

MPI_Xxxxx(parameter, ...);

❑ Fortran:

CALL MPI_XXXXX(parameter, ..., IERROR)

Message Passing Programming with MPI 7

 Handles

❑ MPI controls its own internal data structures.

❑ MPI releases `handles’ to allow programmers to refer to
these.

❑ C handles are of defined typedefs.

❑ Fortran handles are INTEGERs.

Message Passing Programming with MPI 8

 Initialising MPI

❑ C:

int MPI_Init(int *argc, char ***argv)

❑ Fortran:

MPI_INIT(IERROR)
INTEGER IERROR

❑ Must be the first MPI procedure called.

Message Passing Programming with MPI 9

 MPI_COMM_WORLD

 Communicators

10

32 4

5
6

MPI_COMM_WORLD

Message Passing Programming with MPI 10

 Rank

❑ How do you identify different processes in a
communicator?

MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_COMM_RANK(COMM, RANK, IERROR)
INTEGER COMM, RANK, IERROR

❑ The rank is not the PE number.

Message Passing Programming with MPI 11

 Size

❑ How many processes are contained within a
communicator?

MPI_Comm_size(MPI_Comm comm, int *size)

MPI_COMM_SIZE(COMM, SIZE, IERROR)
INTEGER COMM, SIZE, IERROR

Message Passing Programming with MPI 12

 Exiting MPI

❑ C:

int MPI_Finalize()

❑ Fortran:

MPI_FINALIZE(IERROR)
INTEGER IERROR

❑ Must be the last MPI procedure called.

Message Passing Programming with MPI 13

 Exercise: Hello World

 The minimal MPI program

❑ Write a minimal MPI program which prints ``hello world’’.

❑ Compile it.

❑ Run it on a single processor.

❑ Run it on several processors in parallel.

❑ Modify your program so that only the process ranked 0 in
MPI_COMM_WORLD prints out.

❑ Modify your program so that the number of processes is
printed out.

Message Passing Programming with MPI 14

Messages

Message Passing Programming with MPI 15

 Messages

❑ A message contains a number of elements of some
particular datatype.

❑ MPI datatypes:

Basic types.

Derived types.

❑ Derived types can be built up from basic types.

❑ C types are different from Fortran types.

Message Passing Programming with MPI 16

 MPI Basic Datatypes - C

MPI Datatype C datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

Message Passing Programming with MPI 17

MPI Basic Datatypes - Fortran

MPI Datatype Fortran Datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

Message Passing Programming with MPI 18

Point-to-Point
Communication

Message Passing Programming with MPI 19

 Point-to-Point Communication

❑ Communication between two processes.

❑ Source process sends message to destination process.

❑ Communication takes place within a communicator.

❑ Destination process is identified by its rank in the
communicator.

0

4

2

3

5
1

communicator

source

dest

Message Passing Programming with MPI 20

 Communication modes

Sender mode Notes
Synchronous send Only completes when the receive has

completed.

Buffered send Always completes (unless an error
occurs), irrespective of receiver.

Standard send Either synchronous or buffered.

Ready send Always completes (unless an error
occurs), irrespective of whether the
receive has completed.

Receive Completes when a message has
arrived.

Message Passing Programming with MPI 21

 MPI Sender Modes

OPERATION MPI CALL

Standard send MPI_SEND

Synchronous send MPI_SSEND

Buffered send MPI_BSEND

Ready send MPI_RSEND

Receive MPI_RECV

Message Passing Programming with MPI 22

 Sending a message

❑ C:

int MPI_Ssend(void *buf, int count,
MPI_Datatype datatype,
int dest, int tag,
MPI_Comm comm)

❑ Fortran:

MPI_SSEND(BUF, COUNT, DATATYPE, DEST,
 TAG,COMM, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG
INTEGER COMM, IERROR

Message Passing Programming with MPI 23

 Receiving a message

❑ C:

int MPI_Recv(void *buf, int count,
MPI_Datatype datatype,
int source, int tag,
MPI_Comm comm, MPI_Status *status)

❑ Fortran:

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE,
TAG, COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,

 STATUS(MPI_STATUS_SIZE),IERROR

Message Passing Programming with MPI 24

 Synchronous Blocking Message-Passing

❑ Processes synchronise.

❑ Sender process specifies the synchronous mode.

❑ Blocking – both processes wait until the transaction has
completed.

Message Passing Programming with MPI 25

 For a communication to succeed:

❑ Sender must specify a valid destination rank.

❑ Receiver must specify a valid source rank.

❑ The communicator must be the same.

❑ Tags must match.

❑ Message types must match.

❑ Receiver’s buffer must be large enough.

Message Passing Programming with MPI 26

 Wildcarding

❑ Receiver can wildcard.

❑ To receive from any source – MPI_ANY_SOURCE

❑ To receive with any tag – MPI_ANY_TAG

❑ Actual source and tag are returned in the receiver’s
status parameter.

Message Passing Programming with MPI 27

 Communication Envelope

Destination Address

For the attention of :

Data
Item 1
Item 2
Item 3

Sender’s Address

Message Passing Programming with MPI 28

 Commmunication Envelope Information

❑ Envelope information is returned from MPI_RECV as
status

❑ Information includes:

Source: status.MPI_SOURCE or
status(MPI_SOURCE)

Tag: status.MPI_TAG or status(MPI_TAG)

Count: MPI_Get_count or MPI_GET_COUNT

Message Passing Programming with MPI 29

 Received Message Count

❑ C:

int MPI_Get_count(MPI_Status *status,
MPI_Datatype datatype,
int *count)

❑ Fortran:

MPI_GET_COUNT(STATUS, DATATYPE, COUNT,
IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE,
COUNT, IERROR

Message Passing Programming with MPI 30

 Message Order Preservation

❑ Messages do not overtake each other.

❑ This is true even for non-synchronous sends.

0

4

2

3

5
1

communicator

Message Passing Programming with MPI 31

 Exercise - Ping pong

❑ Write a program in which two processes repeatedly pass a
message back and forth.

❑ Insert timing calls to measure the time taken for one
message.

❑ Investigate how the time taken varies with the size of the
message.

Message Passing Programming with MPI 32

 Timers

❑ C:
double MPI_Wtime(void);

❑ Fortran:

DOUBLE PRECISION MPI_WTIME()

❑ Time is measured in seconds.

❑ Time to perform a task is measured by consulting the timer
before and after.

❑ Modify your program to measure its execution time and
print it out.

Message Passing Programming with MPI 33

Non-Blocking
Communications

Message Passing Programming with MPI 34

 Deadlock

0

4

2

3

5
1

communicator

Message Passing Programming with MPI 35

 Non-Blocking Communications

❑ Separate communication into three phases:

❑ Initiate non-blocking communication.

❑ Do some work (perhaps involving other communications?)

❑ Wait for non-blocking communication to complete.

Message Passing Programming with MPI 36

 Non-Blocking Send

0

4

2

3

5
1

out

in

communicator

Message Passing Programming with MPI 37

 Non-Blocking Receive

0

4

2

3

5
1

out

in

communicator

Message Passing Programming with MPI 38

 Handles used for Non-blocking Comms

❑ datatype – same as for blocking (MPI_Datatype or
INTEGER).

❑ communicator – same as for blocking (MPI_Comm or
INTEGER).

❑ request – MPI_Request or INTEGER.

❑ A request handle is allocated when a communication is
initiated.

Message Passing Programming with MPI 39

 Non-blocking Synchronous Send

❑ C:

int MPI_Issend(void* buf, int count,
 MPI_Datatype datatype, int dest,
 int tag, MPI_Comm comm,
 MPI_Request *request)

int MPI_Wait(MPI_Request *request,
 MPI_Status *status)

❑ Fortran:

MPI_ISSEND(buf, count, datatype, dest,
 tag, comm, request, ierror)

MPI_WAIT(request, status, ierror)

Message Passing Programming with MPI 40

 Non-blocking Receive

❑ C:

int MPI_Irecv(void* buf, int count,
 MPI_Datatype datatype, int src,
 int tag, MPI_Comm comm,
 MPI_Request *request)

int MPI_Wait(MPI_Request *request,
 MPI_Status *status)

❑ Fortran:

MPI_IRECV(buf, count, datatype, src,
 tag,comm, request, ierror)

MPI_WAIT(request, status, ierror)

Message Passing Programming with MPI 41

 Blocking and Non-Blocking

❑ Send and receive can be blocking or non-blocking.

❑ A blocking send can be used with a non-blocking receive,
and vice-versa.

❑ Non-blocking sends can use any mode - synchronous,
buffered, standard, or ready.

❑ Synchronous mode affects completion, not initiation.

Message Passing Programming with MPI 42

 Communication Modes

NON-BLOCKING
OPERATION

MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV

Message Passing Programming with MPI 43

 Completion

❑ Waiting versus Testing.

❑ C:

int MPI_Wait(MPI_Request *request,
 MPI_Status *status)
int MPI_Test(MPI_Request *request,
 int *flag,
 MPI_Status *status)

❑ Fortran:

MPI_WAIT(handle, status, ierror)

MPI_TEST(handle, flag, status, ierror)

Message Passing Programming with MPI 44

 Multiple Communications

❑ Test or wait for completion of one message.

❑ Test or wait for completion of all messages.

❑ Test or wait for completion of as many messages as
possible.

Message Passing Programming with MPI 45

 Testing Multiple Non-Blocking Comms

in

in

in

process

Message Passing Programming with MPI 46

 Exercise

 Rotating information around a ring

❑ Arrange processes to communicate round a ring.

❑ Each process stores a copy of its rank in an integer
variable.

❑ Each process communicates this value to its right
neighbour, and receives a value from its left neighbour.

❑ Each process computes the sum of all the values
received.

❑ Repeat for the number of processes involved and print out
the sum stored at each process.

Mesage Passing Programming with MPI 47

Derived Datatypes

Mesage Passing Programming with MPI 48

 MPI Datatypes

❑ Basic types

❑ Derived types

vectors

structs

others

Mesage Passing Programming with MPI 49

 Derived Datatypes - Type

Maps

basic datatype 0 displacement of datatype 0

basic datatype 1 displacement of datatype 1

... ...

basic datatype n-1 displacement of datatype n-1

Mesage Passing Programming with MPI 50

 Contiguous Data

❑ The simplest derived datatype consists of a number of
contiguous items of the same datatype.

❑ C:

int MPI_Type_contiguous(int count,
MPI_Datatype oldtype, MPI_Datatype *newtype)

❑ Fortran:

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE,NEWTYPE,
IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

Mesage Passing Programming with MPI 51

 Vector Datatype Example

 A 3X2 block of a 5X5 Fortran array

❑ count = 2

❑ stride = 5

❑ blocklength = 3

oldtype

newtype

5 element stride
between blocks

3 elements
per block

2 blocks

Mesage Passing Programming with MPI 52

 Constructing a Vector Datatype

❑ C:

int MPI_Type_vector (int count,
int blocklength, int stride,
MPI_Datatype oldtype,
MPI_Datatype *newtype)

❑ Fortran:

MPI_TYPE_VECTOR (COUNT, BLOCKLENGTH,
STRIDE, OLDTYPE, NEWTYPE, IERROR)

Mesage Passing Programming with MPI 53

 Extent of a Datatatype

❑ C:

int MPI_Type_extent (MPI_Datatype datatype,
MPI_Aint *extent)

❑ Fortran:

MPI_TYPE_EXTENT(DATATYPE, EXTENT,
IERROR)

INTEGER DATATYPE, EXTENT, IERROR

Mesage Passing Programming with MPI 54

 Address of a Variable

❑ C:

int MPI_Address (void *location, MPI_Aint
 *address)

❑ Fortran:

MPI_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION (*)
INTEGER ADDRESS, IERROR

Mesage Passing Programming with MPI 55

 Struct Datatype Example

❑ count = 2

❑ array_of_blocklengths[0] = 1

❑ array_of_types[0] = MPI_INT

❑ array_of_blocklengths[1] = 3

❑ array_of_types[1] = MPI_DOUBLE

newtype

MPI_DOUBLE

MPI_INT

block 0 block 1

array_of_displacements[0] array_of_displacements[1]

Mesage Passing Programming with MPI 56

 Constructing a Struct Datatype

❑ C:

int MPI_Type_struct (int count,
int *array_of_blocklengths,
MPI_Aint *array_of_displacements,
MPI_Datatype *array_of_types,
MPI_Datatype *newtype)

❑ Fortran:

MPI_TYPE_STRUCT (COUNT,
ARRAY_OF_BLOCKLENGTHS,

 ARRAY_OF_DISPLACEMENTS,
 ARRAY_OF_TYPES, NEWTYPE, IERROR)

Mesage Passing Programming with MPI 57

 Committing a datatype

❑ Once a datatype has been constructed, it needs to be
committed before it is used.

❑ This is done using MPI_TYPE_COMMIT

❑ C:

int MPI_Type_commit (MPI_Datatype *datatype)

❑ Fortran:

MPI_TYPE_COMMIT (DATATYPE, IERROR)
INTEGER DATATYPE, IERROR

Mesage Passing Programming with MPI 58

 Exercise

 Derived Datatypes

❑ Modify the passing-around-a-ring exercise.

❑ Calculate two separate sums:

rank integer sum, as before

rank floating point sum

❑ Use a struct datatype for this.

Message Passing Programming with MPI 59

Virtual Topologies

Message Passing Programming with MPI 60

 Virtual Topologies

❑ Convenient process naming.

❑ Naming scheme to fit the communication pattern.

❑ Simplifies writing of code.

❑ Can allow MPI to optimise communications.

Message Passing Programming with MPI 61

 How to use a Virtual Topology

❑ Creating a topology produces a new communicator.

❑ MPI provides ``mapping functions’’.

❑ Mapping functions compute processor ranks, based on
the topology naming scheme.

Message Passing Programming with MPI 62

 Example

 A 2-dimensional Cylinder

0
(0,0)

1
(0,1)

2
(0,2)

3
(0,3)

4
(1,0)

5
(1,1)

6
(1,2)

7
(1,3)

8
(2,0)

9
(2,1)

10
(2,2) (2,3)

11

Message Passing Programming with MPI 63

 Topology types

❑ Cartesian topologies

each process is ‘‘connected’’ to its neighbours in a virtual grid.

boundaries can be cyclic, or not.

processes are identified by cartesian coordinates.

❑ Graph topologies

general graphs

not covered here

Message Passing Programming with MPI 64

 Creating a Cartesian Virtual Topology

❑ C:

int MPI_Cart_create(MPI_Comm comm_old,
int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

❑ Fortran:

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS,
PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART,
 IERROR

LOGICAL PERIODS(*), REORDER

Message Passing Programming with MPI 65

 Balanced Processor Distribution

❑ C:

int MPI_Dims_create(int nnodes, int ndims,
 int *dims)

❑ Fortran:

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

INTEGER NNODES, NDIMS, DIMS(*), IERROR

Message Passing Programming with MPI 66

 Example

❑ Call tries to set dimensions as close to each other as
possible.

❑ Non zero values in dims sets the number of processors
required in that direction.

WARNING:- make sure dims is set to 0 before the call!

dims
before the call

function call
dims

on return

(0, 0) MPI_DIMS_CREATE(6, 2, dims) (3, 2)

(0, 0) MPI_DIMS_CREATE(7, 2, dims) (7, 1)

(0, 3, 0) MPI_DIMS_CREATE(6, 3, dims) (2, 3, 1)

(0, 3, 0) MPI_DIMS_CREATE(7, 3, dims) erroneous call

Message Passing Programming with MPI 67

 Cartesian Mapping Functions

 Mapping process grid coordinates to ranks

❑ C:

int MPI_Cart_rank(MPI_Comm comm,
int *coords, int *rank)

❑ Fortran:

MPI_CART_RANK (COMM, COORDS, RANK, IERROR)

INTEGER COMM, COORDS(*), RANK, IERROR

Message Passing Programming with MPI 68

 Cartesian Mapping Functions

 Mapping ranks to process grid coordinates

❑ C:

int MPI_Cart_coords(MPI_Comm comm, int rank,
int maxdims, int *coords)

❑ Fortran:

MPI_CART_COORDS(COMM, RANK, MAXDIMS,
COORDS, IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*),
 IERROR

Message Passing Programming with MPI 69

 Cartesian Mapping Functions

 Computing ranks of neighbouring processes

❑ C:

int MPI_Cart_shift(MPI_Comm comm,
int direction, int disp,
int *rank_source, int *rank_dest)

❑ Fortran:

MPI_CART_SHIFT(COMM, DIRECTION, DISP,
RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP,RANK_SOURCE,
RANK_DEST, IERROR

Message Passing Programming with MPI 70

 Cartesian Partitioning

❑ Cut a grid up into `slices’.

❑ A new communicator is produced for each slice.

❑ Each slice can then perform its own collective
communications.

❑ MPI_Cart_sub and MPI_CART_SUB generate new
communicators for the slices.

Message Passing Programming with MPI 71

 Partitioning with MPI_CART_SUB

❑ C:

int MPI_Cart_sub (MPI_Comm comm,
int *remain_dims, MPI_Comm *newcomm)

❑ Fortran:

MPI_CART_SUB (COMM, REMAIN_DIMS, NEWCOMM,
IERROR)

INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

Message Passing Programming with MPI 72

 Exercise

❑ Rewrite the exercise passing numbers round the ring
using a one-dimensional ring topology.

❑ Rewrite the exercise in two dimensions, as a torus. Each
row of the torus should compute its own separate result.

Message Passing Programming with MPI 73

Collective Communications

Message Passing Programming with MPI 74

 Collective Communication

❑ Communications involving a group of processes.

❑ Called by all processes in a communicator.

❑ Examples:

Barrier synchronisation.

Broadcast, scatter, gather.

Global sum, global maximum, etc.

Message Passing Programming with MPI 75

 Characteristics of Collective Comms

❑ Collective action over a communicator.

❑ All processes must communicate.

❑ Synchronisation may or may not occur.

❑ All collective operations are blocking.

❑ No tags.

❑ Receive buffers must be exactly the right size.

Message Passing Programming with MPI 76

 Barrier Synchronisation

❑ C:

 int MPI_Barrier (MPI_Comm comm)

❑ Fortran:

 MPI_BARRIER (COMM, IERROR)
 INTEGER COMM, IERROR

Message Passing Programming with MPI 77

 Broadcast

❑ C:

int MPI_Bcast (void *buffer, int count,
MPI_Datatype datatype, int root,
MPI_Comm comm)

❑ Fortran:

MPI_BCAST (BUFFER, COUNT, DATATYPE, ROOT,
COMM, IERROR)

<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

Message Passing Programming with MPI 78

 Scatter

A B C D E

A B C D E

A B C D E

Message Passing Programming with MPI 79

 Scatter

❑ C:
int MPI_Scatter(void *sendbuf,

int sendcount, MPI_Datatype sendtype,
void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root,
MPI_Comm comm)

❑ Fortran:
MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE,

 RECVBUF, RECVCOUNT, RECVTYPE,
 ROOT, COMM, IERROR)

<type> SENDBUF, RECVBUF
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT
INTEGER RECVTYPE, ROOT, COMM, IERROR

Message Passing Programming with MPI 80

 Gather

A B C D E

A B C D E

A B C D E

Message Passing Programming with MPI 81

 Gather

❑ C:
int MPI_Gather(void *sendbuf, int sendcount,

MPI_Datatype sendtype, void *recvbuf,
 int recvcount, MPI_Datatype recvtype,
 int root, MPI_Comm comm)

❑ Fortran:

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE,
 RECVBUF, RECVCOUNT, RECVTYPE,
 ROOT, COMM, IERROR)

<type> SENDBUF, RECVBUF
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT

 INTEGER RECVTYPE, ROOT, COMM, IERROR

Message Passing Programming with MPI 82

 Global Reduction Operations

❑ Used to compute a result involving data distributed over a
group of processes.

❑ Examples:

global sum or product

global maximum or minimum

global user-defined operation

Message Passing Programming with MPI 83

 Predefined Reduction Operations

MPI Name Function

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

MPI_MAXLOC Maximum and location

MPI_MINLOC Minimum and location

Message Passing Programming with MPI 84

 MPI_REDUCE

❑ C:

int MPI_Reduce(void *sendbuf,
 void *recvbuf, int count,
 MPI_Datatype datatype, MPI_Op op,
 int root, MPI_Comm comm)

❑ Fortran:

MPI_REDUCE(SENDBUF, RECVBUF, COUNT,
 DATATYPE, OP, ROOT, COMM, IERROR)

<type> SENDBUF, RECVBUF
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT

 INTEGER RECVTYPE, ROOT, COMM, IERROR

Message Passing Programming with MPI 85

 MPI_REDUCE

1

2

3

4

RANK

ROOT

A B C D

MPI_REDUCE

0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

AoEoIoMoQ

Message Passing Programming with MPI 86

 Example of Global Reduction

 Integer global sum

❑ C:

MPI_Reduce(&x, &result, 1, MPI_INT, MPI_SUM,
0, MPI_COMM_WORLD)

❑ Fortran:

CALL MPI_REDUCE(x, result, 1, MPI_INTEGER,
MPI_SUM, 0, MPI_COMM_WORLD, IERROR)

❑ Sum of all the x values is placed in result.

❑ The result is only placed there on processor 0.

Message Passing Programming with MPI 87

 User-Defined Reduction Operators

❑ Reducing using an arbitrary operator, ■

❑ C - function of type MPI_User_function :

void my_op (void *invec,
void *inoutvec,int *len,
MPI_Datatype *datatype)

❑ Fortran - external subprogram of type

SUBROUTINE MY_OP(INVEC(*),INOUTVEC(*),
LEN, DATATYPE)

<type> INVEC(LEN), INOUTVEC(LEN)
INTEGER LEN, DATATYPE

Message Passing Programming with MPI 88

 Reduction Operator Functions

❑ Operator function for ■ must act as:

for (i = 1 to len)
inoutvec(i) = inoutvec(i) ■ invec(i)

❑ Operator ■ need not commute but must be associative.

Message Passing Programming with MPI 89

 Registering User-Defined Operator

❑ Operator handles have type MPI_Op or INTEGER

❑ C:

int MPI_Op_create(MPI_User_function
*my_op, int commute, MPI_Op *op)

❑ Fortran:

MPI_OP_CREATE (MY_OP, COMMUTE, MPI_OP, IERROR)
EXTERNAL FUNC
LOGICAL COMMUTE
INTEGER OP, IERROR

Message Passing Programming with MPI 90

 Variants of MPI_REDUCE

❑ MPI_ALLREDUCE – no root process

❑ MPI_REDUCE_SCATTER – result is scattered

❑ MPI_SCAN – ‘‘parallel prefix’’

Message Passing Programming with MPI 91

 MPI_ALLREDUCE

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_ALLREDUCE

AoEoIoMoQ

Message Passing Programming with MPI 92

 MPI_ALLREDUCE

 Integer global sum

❑ C:

int MPI_Allreduce(void* sendbuf,
 void* recvbuf, int count,
 MPI_Datatype datatype,
 MPI_Op op, MPI_Comm comm)

❑ Fortran:

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT,
 DATATYPE, OP, COMM, IERROR)

Message Passing Programming with MPI 93

 MPI_SCAN

1

2

3

4

RANK

A B C D
0

Q R S T

F G HE F

K LI NJ

PM N NO

A B C D

Q R S T

F G HE F

K LI NJ

PM N NO

MPI_SCAN

AoEoIoMoQ

A

AoE

AoEoI

AoEoIoM

Message Passing Programming with MPI 94

 MPI_SCAN

 Integer partial sum

❑ C:

int MPI_Scan(void* sendbuf, void* recvbuf,
 int count, MPI_Datatype datatype,
 MPI_Op op, MPI_Comm comm)

❑ Fortran:

MPI_SCAN(SENDBUF, RECVBUF, COUNT,
 DATATYPE, OP, COMM, IERROR)

Message Passing Programming with MPI 95

 Exercise

❑ Rewrite the pass-around-the-ring program to use MPI
global reduction to perform its global sums.

❑ Then rewrite it so that each process computes a partial
sum.

❑ Then rewrite this so that each process prints out its partial
result, in the correct order (process 0, then process 1,
etc.).

Message Passing Programming with MPI 96

Casestudy
Towards Life

Message Passing Programming with MPI 97

 The Story so Far....

❑ This course has:

Introduced the basic concepts/primitives in MPI.

Allowed you to examine the standard in a comprehensive manner.

Not all the standard has been covered but you should now be in a
good position to do so yourself.

❑ However the examples have been rather simple. This
case study will:

Allow you to use all the techniques that you have learnt in one
application.

Teach you some basic aspects of domain decomposition: how you go
about parallelising a code.

... other courses in EPCC do this in more detail ...

Message Passing Programming with MPI 98

 Overview

❑ Three part case study that puts into practice all that you
learnt in this course to build a real application

each part is self contained (having completed the previous part)

later parts build on from earlier parts

extra exercises extend material and are independent

❑ If all parts completed you should end up with a fully
working version of the Game of Life

❑ Detailed description on how to do the casestudy in notes

start from scratch – some pseudo code provided

Message Passing Programming with MPI 99

 Part 1: Master–slave Model

❑ Create a master–slave model

master outputs data to file (also does work!)

perform a domain decomposition of large 2d array

create a chess board pattern – processors colour local domains

output pgm files – graphical result

❑ Can view the result using xv

YSIZE

X
S

I
Z

E

Message Passing Programming with MPI 100

 Details

❑ Basically what you want to do for this part is:-

Create a cartesian virtual topology

Decompose a global array across processors

Processor colours in its segment according to its position

Create derived data type(s) to receive local arrays at the master
processor – these arrays must be inserted at the correct location.

May need to create derived data types at the slave processors to send
data to the master processor.

Message Passing Programming with MPI 101

 Details cont.

All processors write their data back to the master processor

Master processor writes data to file in pgm (portable graymap)
format

❑ view the results using xv to make sure it works

Try different numbers of processors to make sure the program works
properly.

processor 0

processor 1

processor 2

processor 3

processor 0

Message Passing Programming with MPI 102

 Part 2: Boundary Swaps

❑ Part 1 achieves the beginning of a decomposition.

❑ Lots of applications require data located on the other
processor, e.g. finite differences.

❑ Instead of communicating each element of data as is
needed all elements necessary are copied across. This is
called a halo region.

❑ Internal points can thus be calculated without further
communications. Here we will practice boundary swaps.

Processor 0 Processor 1

Message Passing Programming with MPI 103

 Outline Sketch

❑ Create a halo region.

❑ Perform halo swaps across processor domains.

Processor 0

Processor 3Processor 2

Processor 1

Message Passing Programming with MPI 104

 Boundary Swaps

❑ To achieve this – Cheat.

Update internal regions of processor domains only.

Create derived data types to do the boundary swaps.

Halo region should be exterior to data storage – artificial.

Here we want to see the result of the boundary swaps hence the halo
is contained inside the data region.

This will have to be undone for the final part of this case study.

❑ You will be able to visualise whether the boundary swaps
are being done correctly.

Internal Region

Boundary

Message Passing Programming with MPI 105

 The Result

❑ Can see the result of performing the boundary swaps

Can make sure that the boundary swap are correct

❑ The underlying mechanism used here can be used in any
future codes you might write....

Message Passing Programming with MPI 106

 Part 3: The game of Life

❑ Have all routines necessary to construct Game of Life.

❑ Simple Cellular Automata in a 2d space. State of cells at
the next time step determined from a simple set of rules:

dead if cell has less than two live neighbours – lonely

maintain state if cell has exactly two live neighbours – content

cell is born if the cell has exactly three live neighbours – ... ❤

die if the cell has more than three live neighbours – overcrowding

Message Passing Programming with MPI 107

 Procedure

❑ Rewrite the code from part 2 so that the halo lies
outside the processor’s subdomain

Will need to write derived data types to transfer the internal regions,
excluding the halo, of the processors to the master processor

❑ Must devise a mapping from local processor coordinates
to global coordinates

Allows global initial conditions to be output.

Global Data

(urx,ury)

(llx,lly)

Local Data

(dx,dy)

(1,1)

Halo Region

Message Passing Programming with MPI 108

 Results

❑ Output the state of the frame in pgm format at every
iteration.

❑ Can animate the result using xv:

xv -expand 10 -wait 0.5 -wloop -raw *.pgm

Steps 0, 5 and 10 in the evolution of a 128x128 simulation.

❑ Good Luck.....!!

Message Passing Programming with MPI 109

MPI on lomond

Message Passing Programming with MPI 110

 Compiling MPI Programs on lomond

❑ Fortran programmers use the Fortran 90 compiler

❑ Must include MPI library:

tmcc -o hello hello.c -lmpi

tmf90 -o hello hello.f -lmpi

Message Passing Programming with MPI 111

 Running MPI Programs on lomond

❑ To interactively run the executable hello on two
processors in the fe-int queue:

lomond$ bsub -I -q fe-int -n 2 pam ./hello

❑ To run the executable hello on four processors in the
8-course queue:

lomond$ bsub -q 8-course -c 00:10 -n 4 pam ./hello

Use -o logfile to store the output in logfile

❑ The pam MPI job starter software is mandatory for all
queues.

❑ The -c switch is mandatory in all queues except fe-int

Message Passing Programming with MPI 112

Issues for Fortran Programmers

❑ You should use the Fortran 90 compiler - this is the
preferred option, but:

❑ Use Fortran 90 features with care - MPI is a FORTRAN 77
library.

❑ In particular:

Do not pass array sections - whole arrays only

Do not use user defined data types

❑ You may however use Fortran 90 free-format layout for
source files.

Message Passing Programming with MPI 113

 Compiling MPI Programs on lomond

❑ Example MPI makefiles are shown in Appendix A of the
course notes.

❑ Similar to other makefiles.

