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About this manual 
 
 
This UPC manual is intended for all levels of users, from novices who wish to find out features of 

UPC that may fit their needs, all the way to experts who need a handy reference for the UPC 

language. It is important to note that this is not a replacement for the UPC Specifications 

document[ElG03a], upon which the UPC language is built.  This manual will introduce the basic 

concepts most commonly asked about by UPC users. For more intricate details of the language, it is 

best to refer to the UPC Specifications document. This manual is written under the assumption that 

the reader understands and is familiar with the C language, and has at least some basic knowledge of 

parallel programming models such as Message Passing or Shared Memory.  
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Web page 

 
The UPC distributions, tutorials, specifications, FAQ and further documentation are available at the 

UPC web page: 

http://upc.gwu.edu 

 

Support 

 
Please send questions and comments to 

gwu-upc@hermes.gwu.edu   

Mailing lists 

 
To join the UPC-users mailing list, visit the UPC web site at: 

http://upc.gwu.edu 
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1 Introduction to UPC 
 

his chapter provides a quick overview of Unified Parallel C (UPC). Discussions include a brief 

introduction to the roots of UPC, the UPC memory and programming models, compilers and 

run time environments. The language features of UPC will be examined in chapters 2 to 6.  

 
1.1 What is UPC? 
 

Unified Parallel C (UPC) is an explicit parallel extension of ANSI C and is based on the partitioned 

global address space programming model, also known as the distributed shared memory 

programming model. UPC keeps the powerful concepts and features of C and adds parallelism; 

global memory access with an understanding of what is remote and what is local; and the ability to 

read and write remote memory with simple statements.  UPC builds on the experience gained from 

its distributed shared memory C compiler predecessors such as Split-C[Cul93], AC[Car99], and 

PCP[Bro95]. The simplicity, usability and performance of UPC have attracted interest from high 

performance computing users and vendors.  This interest resulted in vendors developing and 

commercializing UPC compilers.  UPC is the effort of a consortium of government, industry and 

academia.  Through the work and interactions of this community, the UPC Specification V1.0 was 

produced in February 2001.  Subsequently, UPC Specification V1.1 was released in May 2003. 

Compilers for HP, SGI, Sun and Cray platforms have been released.  Open-source implementations 
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are also available from Michigan Technological University (MuPC) for the 32bit Intel Architecture, 

and from University of California Berkeley (BUPC) for various platforms including the 32bit and 

64bit Intel Architectures. An open-source implementation for the Cray T3E also exists.  There are 

many other implementations underway. 

1.2 UPC Programming Model 
 

UPC utilizes a distributed shared memory programming model. The distributed shared memory 

model is similar to the shared memory model with the addition of being able to make use of data 

locality. The distributed shared memory model divides its shared address space into partitions where 

each memory partition Mi has affinity to thread Thi, see figure 1.2-1. Here affinity indicates in which 

thread’s local shared memory space a shared object will reside.  

 

 

 

 

 

 

 

 

Some of the key features of UPC include the use of simple statements for remote memory access, 

efficient mapping from language to machine architecture, and minimization of thread 

communication overhead by exploiting data locality. UPC introduces new keywords for shared data 

and allows easy blocking of shared data and arrays across the executing threads.  

1.3 The UPC Memory model 
 

The UPC memory view is divided into private and shared spaces.  Each thread has its own private 

space, in addition to a portion of the shared space. Shared space is partitioned into a number of 

M 0 1 2 MOne partition 

Shared address space

M M2

x 

…

Figure 1.2-1 Shared Memory Model 

Th0 Th1 …Th2 Thn-1

n-1
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partitions each of which has affinity with a thread, in other words it resides on the thread’s logical 

memory space as seen in figure 1.3-1.  

 

 

 

 

 

 

 

 

 

 

A UPC shared pointer can reference all locations in the shared space; while a private pointer may 

reference only addresses in its private space or in its local portion of the shared space.  Static  and 

dynamic memory allocations are supported for both shared and private memory. 

1.4 Data Distribution and Coherency 
 

Data distribution in UPC is simple due to the use of the distributed shared memory programming 

model. This allows UPC to share data among the threads using simple declaration statements. To 

share an array of size N equally among the threads the user simply defines the array as a shared, 

and UPC will distribute the array elements in a round robin fashion. Details and semantics of data 

distribution can be found in chapter 3.  

Since shared memory is accessible by all the threads, it is important to take into consideration the 

sequence in which memory is accessed. To manage the access behaviors of the threads, UPC 

provides several synchronization options to the user. First the user may specify strict or relaxed 

memory consistency mode at the scope of the entire code, a section of a code, or to an individual 

shared variable. Secondly the user may use locks to prevent simultaneous access by more than one 

thread. Thirdly, the user may use barriers to ensure that all threads are synchronized before further 

Affinity to thread 0 

Shared address space 

Thread0 Thread1 ThreadTHREADS-1 

Private0 Private1 Private THREADS-1 

Figure 1.3-1 Thread Affinity 
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action is taken. More detailed discussions and semantics on data coherency and synchronization can 

be found chapter in Section 2.3 and in Chapter 5. 

1.5 Collective Operations 
 
Work on the collective operation specifications is currently under progress to define library routines 

which provide performance enhancing relocalization and data parallel computation operations. The 

end result is to have functionality often referred to as “collective operations” provided in a manner 

appropriate to UPC’s practical performance model. For more details please refer to the UPC 

Collective Operations working group’s latest specification document version 1.0 pre-release revision 

4[Eli03].  

 
1.6 Parallel I/O 
 

Effort is currently under way to build an application-programming interface (API) for parallel I/O 

in UPC, known as UPC-IO. The UPC-IO API is designed in a manner consistent with the spirit of 

the UPC language to provide application developers with a consistent and logical programming 

environment. This effort leverages the wealth of work that has already been performed by the 

parallel I/O community, particularly the parallel I/O API in MPI-2, commonly known as MPI-

IO[MPI2]. For more details please refer to the UPC Parallel I/O working group’s latest specification 

document version 1.0 pre-release revision 9[ElG03b]. 
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2 Programming in UPC 
 

his chapter focuses primarily on introducing  the subtle differences between UPC and C, 

encompassing syntax, keywords, and necessary headers. The following few chapters provide 

the concepts of parallel programming in UPC.  

 

2.1 My First UPC Program 
 

Example 2.1-1 shows a simple UPC program whose output shows the manner in which threads in 

UPC work. The program is executed by all threads simultaneously. The program prints a “Hello 

World” statement in addition to stating which thread is running the program and how many threads 

are active in this program. 

Example 2.1-1: 

1:   #include <upc_relaxed.h> 
2:   #include <stdio.h> 
3: 
4:   void main(){ 
5:    printf(“Hello World from THREAD %d (of %d THREADS)\n”, 
6:  MYTHREAD, THREADS); 
7:   } 
 

Line 1 of the program specifies the memory consistency mode which the program runs under. In 

this example the program runs using the relaxed mode as specified by the upc_relaxed.h header 

file. If the user does not specify a memory consistency mode the relaxed mode will be used by 

Chapter 
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default. Memory consistency modes will be further explained in section 2.3. For more about the 

header files please refer to appendix A. Lines 4 to 7 are similar to C, starting with main, and a simple 

C print statement. THREADS and MYTHREAD are special values that will be explained in 2.2.1 and 2.2.2 

respectively. 

2.2 Most Commonly Used Keywords and Functions 
 

To quickly understand and help make the transition from C to UPC, this section will examine some 

of the most commonly used keywords and functions. It is followed by a basic UPC program in 

section 2.5.  

2.2.1 THREADS 
 

The keyword THREADS signifies the number of threads that the current execution is utilizing. The 

value of THREADS can be defined either at compile time or at runtime. To define THREADS at 

compile time, the user simply sets its value along with the compiling options. To define THREADS at 

runtime, the user does not compile with a fixed number of threads, but instead specifies the number 

of threads in the run command. A common use for the keyword THREADS is to set up work sharing 

among the threads.  

2.2.2 MYTHREAD 
 

The keyword MYTHREAD is used to determine the thread number currently being executed. Example 

2.2-1 shows how to use MYTHREAD to specify that only thread 0 perform an extra task while all the 

threads print the simple “Hello World” statement: 

Example 2.2-1: 

1:   #include <upc_relaxed.h> 
2:   #include <stdio.h> 
3:   void main(){ 
4:    if (MYTHREAD==0){ 
5:     printf("Rcv’d: ‘Starting Execution’ from THREAD %d\n", 
6:   MYTHREAD ); 
7:    } 
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8:    
9:    printf("Hello World from THREAD %d (of %d THREADS)\n", 
10:    MYTHREAD, THREADS); 
11:    } 
 

This example is similar to example 2.1-1, with the exception of lines 4-7. The if condition in line 4 

specifies the thread number that should execute the statements that follow the condition. Thus only 

thread 0 will execute lines 5 and 6. The remaining lines, lines 9 to 10, are executed by every thread.  

2.2.3 upc_forall 
 

The upc_forall() is a work sharing construct that looks similar to a for loop with the exception 

of having a fourth parameter, which determines the thread that should run the current iteration of 

the loop.  

upc_forall ( expression; expression; expression; affinity) 
 

This fourth parameter, also known as the affinity field, accepts either an integer which is translated 

to (integer % THREADS); or an address which is used to determine the thread to which the address has 

its affinity. Iterations of a upc_forall must be independent of one another. Here is a quick 

example of upc_forall: 

1:   upc_forall(i=0; i<N; i++; i){ 
2:    printf("THREAD %d (of %d THREADS) performing iteration %d\n", 
3:    MYTHREAD, THREADS, i); 
4:   } 
 
The fourth parameter of the upc_forall call, or more specifically i % THREADS, controls which 

thread will be running the ith loop iteration. It is equivalent to saying: 

1:   for(i=0;i<N;i++) 
2:     if(MYTHREAD==i%THREADS) 
3:    printf("THREAD %d (of %d THREADS) performing iteration %d\n", 
4:     MYTHREAD, THREADS, i); 
 
If instead an address is provided for the affinity field, the thread with the affinity to the address will 

iterate through the current loop. Example 2.2-2 provides an example of how a user would specify an 

address instead of an integer for the fourth parameter of a upc_forall statement. 
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Example 2.2-2: 

1:  #include <upc_relaxed.h> 
2:  #include <stdio.h> 
3:  #define N 10 
4:  shared [2] int arr[10]; 
5:   
6:  int main(){ 
7:          int i=0; 
8:          upc_forall (i=0; i<N; i++; &arr[i]){ 
9:                  printf("THREAD %d (of %d THREADS) performing iteration 
%d\n", 
10:                  MYTHREAD, THREADS, i); 
11:          } 
12:   
13:          return 0; 
14:  } 
 
In line 3 the size of N is defined to be 10. In line 4 the manner in which the array arr is distributed 

across the threads is determined, namely in a round robin fashion with a chunk size of 2. In line 8 

the fourth parameter of the upc_forall statement is the address &arr[i]. At runtime this is 

replaced with the value of the thread which has affinity to arr[i]. This upc_forall statement is 

essentially equivalent to: 

Example 2.2-3: 

1:  for (i=0; i<N; i++){ 
2:   if (MYTHREAD== upc_threadof(&arr[i])){ 
3:    printf("THREAD %d (of %d THREADS) performing 
iteration %d\n", 
4:    MYTHREAD, THREADS, i); 
5:   } 
6:  } 
 

2.2.4 shared 
 

UPC’s distributed shared memory model provides the user with two memory spaces, the private and 

the shared. The private memory is accessed similar to the way one would in C. To use the shared 

memory space however, the user will need to use the shared qualifier. There are a few ways to use 

this shared qualifier:  

1:   int local_counter;   // private variable   
2:   shared int global_counter;  // shared variable   
3:   shared int array1[N];   // shared array   
4:   shared [N/THREADS] int array2[N]; // shared array   
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5:   shared [ ] int array3[N];  // shared array   
6:   shared int *ptr_a;   // private pointer to shared  
7:   shared int *shared ptr_c;  // shared pointer to shared 
 

In line 1 local_counter is defined we as normally do in C. Thus, it is a private variable. Every 

thread would have a private local copy of that variable. In contrast, in line 2 global_counter is 

declared as shared int. It resides in thread 0’s shared memory and every thread will have access to 

it. In general, the declaration: 

shared [block_size] type variable_name 

means that the variable is shared with a layout qualifier of “block_size”. Thus the shared object is 

distributed across the entire shared memory space in the span of block size per thread. If the block 

size is not provided, the default block size of 1 will be applied.  

In line 3, array1 of size N is defined using the shared qualifier and no layout is given. This translates 

to shared [1] int array1[N], and thus the array will be distributed across the shared memory in 

a round robin fashion with a block_size 1, as depicted in figure 2.2-1. 

 

 

 

 

 

In line 4, array2 of size N is defined using the shared qualifier with a block_size of N/THREADS. 

This translates to the distribution of array2 in chunks of (N/THREADS) to each thread in a round 

robin manner. Since the block_size is an integer, if N is not fully divisible by THREADS, the floor of 

the division will be taken as shown in Figure 2.2-2. 

 

 

array1[0] 
array1[3] 
array1[6] 
 

array1[1]
array1[4] 
array1[7] 
 

array1[2]
array1[5] 
array1[8] 
 

Thread0 Thread1 Thread2 

Figure 2.2-1 Using the default block_size, ie. 1, array array1[9] would be distributed as 
shown.  
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In line 5, array3 of size N is defined using the shared qualifier with a block_size of [ ]. In this case 

the entire array is placed into thread0, as shown in figure 2.2-3. 

 

 

 

 

 

 

Lines 6-7 show examples of how users may use pointers with shared qualifiers. More details on data 

and pointer arithmetic in UPC can be found in chapter 3. 

2.2.5 upc_barrier 
 

The upc_barrier statement is commonly used to synchronize all threads before any of the threads 

continue. This is generally used when a data dependency occurs between the threads. To use 

upc_barrier simply place it at your desired synchronization point. Example 2.2-4 is an example 

showing how to use barriers: 

 

 

array2 [0] 
array2 [1] 
array2 [2] 
array2 [9] 
 

array2 [3]
array2 [4] 
array2 [5] 

 

array2 [6]
array2 [7] 
array2 [8] 

 

Thread0 Thread1 Thread2 

Figure 2.2-2 Using the block_size N/THREADS, where N=10, and THREADS=3, array 
array2[N] would be distributed as shown. 

array3 [0] 
array3 [1] 
array3 [2] 
array3 [3] 
array3 [4] 
array3 [5] 
array3 [6] 
array3 [7] 
array3 [8] 
array3 [9] 

Thread0 Thread1 Thread2 

Figure 2.2-3 Using an infinite block_size [], array3[N]would be completely reside in thread 0. 
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Example 2.2-4: 

1: #include <upc_relaxed.h> 
2: #include <stdio.h> 
3:  
4: shared int a=0; 
5:    int b; 
6: 
7: int computation(int temp){ 
8:         return temp+5; 
9: } 
10:  
11: int main(){ 
12:         int result=0, i=0; 
13:         do { 
14:                 if (MYTHREAD==0){ 
15:                         result = computation(a); 
16:                         a = result*THREADS; 
17:                 } 
18:                 upc_barrier; 
19:                 b=a; 
20:                 printf("THREAD %d: b = %d\n", MYTHREAD, b); 
21:                 i++; 
22:         }       while (i<4); 
23:         return 0; 
24: } 
 

The main function is defined in lines 12 to 23. Thread 0 computes the value of a in lines 14 to 17 of 

the do-while loop. A upc_barrier is placed in line 16 to ensure that all the threads wait until the 

value of a is set before carrying on.  In line 19 each thread assigns the value of the shared variable a 

(on thread 0) to its private variable b.  If a upc_barrier is not placed in line 18, there is no 

guarantee that all the threads are updating b using the latest value of a. Details about 

synchronization can be found in chapter 5. 

2.2.6 upc_lock/upc_unlock 
 

A common way to ensure that the shared element is not accessed by other threads while it is being 

updated by one thread is to use lock statements. This prevents other threads from reading or 

modifying the object until the lock has been released. UPC provides lock and unlock mechanisms 

via: 

upc_lock(upc_lock_t *ptr); 
upc_unlock(upc_lock_t *ptr); 
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Example 2.2-5 is an example that shows the usage of upc_lock/upc_unlock: 

Example 2.2-5: 

1:  #include <upc_relaxed.h> 
2:  #include <stdio.h> 
3:  #include <math.h> 
4:   
5:  #define N 1000 
6:   
7:  shared [] int arr[THREADS]; 
8:  upc_lock_t *lock; 
9:  int main (){ 
10:          int i=0; 
11:          int index; 
12: 
13:     srand(MYTHREAD); 
14:     if ((lock=upc_all_lock_alloc())==NULL)  
15:   upc_global_exit(1); 
16:          upc_forall( i=0; i<N; i++; i){ 
17:                  index = rand()%THREADS; 
18:                  upc_lock(lock); 
19:                  arr[index]+=1; 
20:                  upc_unlock(lock); 
21:          } 
22:          upc_barrier; 
23:          if( MYTHREAD==0 ) { 
24:                  for(i=0; i<THREADS; i++) 
25:                          printf("TH%2d: # of arr is %d\n",i,arr[i]); 
26:                  upc_lock_free(lock); 
27:          } 
28:           
29:          return 0; 
30:  } 
 

In line 7 an array arr of size THREADS is declared with [] layout qualifier signifying that the entire 

array will reside in thread 0. In line 8 lock is defined as a pointer to type upc_lock_t. The memory 

is allocated for lock in line 14 using upc_all_lock_alloc(). The call to srand in line 13 makes 

rand in line 17 give different results on different threads. There is contention for access to the arr 

array as all the threads try to update array entries as seen in line 19. Thus, the access to the shared 

array arr is controlled using upc_lock() in line 18 and released using upc_unlock() in line 20. 

The upc_barrier in line 22 is crucial to ensure that all the threads are done with their updating. In 

lines 23 to 25 thread 0 simply print out the results. And finally in line 26 upc_lock_free() is used 

to release the memory used by lock. 
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2.3 Memory Consistency 
 

When data is shared among several threads, memory consistency becomes an issue, and UPC 

provides several ways to ensure memory consistency. The first method is to enforce strict data 

consistency, where shared data is synchronized each time before access. This implies that if the 

shared data is currently being updated by another thread, the thread will wait for a synchronization 

point before accessing the data. Strict mode also prevents the compiler from rearranging the 

sequence of independent shared access operations for optimizations. This can result in significant 

overhead and should be avoided if possible. The second mode is the relaxed mode, where the 

threads are free to access the shared data any time. This mode is the default mode because it allows 

the compiler to freely optimize the code to achieve better performance. Here are the ways in which 

the memory consistency modes may be defined in UPC: 

In a global scope: 
#include <upc_strict.h> 
#include <upc_relaxed.h> 

 

When defined in a global scope any shared object that is not specifically defined as strict or relaxed 

will take on the mode specified by the global definition.  

In a sectional scope: 
#pragma upc strict 
#pragma upc relaxed 

 

The #pragma upc [strict|relaxed] allows the user to specify the mode of synchronization 

within a block of code. #pragma upc [strict|relaxed] will be the mode until the end of the 

block. This overrides the global scope. 

At the variable level 
strict shared [N/THREADS] array1[N] 
relaxed shared [] array2[10] 
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At the variable level, the defined mode will override any other default, global, or sectional mode 

specified. This is especially useful if there are various modes used in the code such as those defined 

by #pragma upc [strict|relaxed] and the need to enforce a mode on an object is critical.  

 

2.4 Compiling and Running UPC Programs 
 

To compile and run your UPC program, it is best to refer to the compiler manual of your specific 

machine. Appendix B gives some of the commands for some implementations. In general you 

would compile using a UPC compiler, which takes a number of options; one of them can be the 

number of threads. In general, to compile a UPC code most compilers adopt similar compile time 

parameters: 

<UPC compile command> <thread options> <optimizations> <code> –o <output> 
 

for example the compile command for HP UPC would look something like this: 

upc –fthreads 4 -02 helloworld.c –o helloworld 
 

Here upc is the compile command, -fthreads is the thread option, -02 specifies the optimization 

level desired, helloworld.c tells the compiler the program name ( most compilers support either 

.c or .upc extensions), and finally –o helloworld specifies the executable’s output name.  

Running a UPC program also varies from compiler to compiler. Some compilers require the use of a 

special keyword while others allow you to run the program as if it were a regular executable.  In 

general, to run a UPC executable most compilers adopt similar runtime parameters: 

 <upc runtime command> <thread option> <executable> 

for example the runtime command for HP UPC would look something like this: 

 prun –n 4 helloworld 
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Here prun is the UPC runtime command, -n 4 is the thread option specifying how many threads 

to run with, and helloworld specifies the executable’s name. Specifying the number of threads is 

not necessary if the number of threads has already been specified at compile time.  

The advantage of being able to dynamically assign the number of threads at run time is that the same 

executable will be able to run on any number of processes without requiring a recompile. However, 

specifying the number of threads at compile time allows better compiler optimizations and fewer 

restrictions on how the code could be written.  

2.5 Vector Addition Example 
 

Having covered the basic features and most commonly used UPC keywords and functions, it is time 

to take a look at a complete UPC program. Vector Addition is a basic example that has been chosen 

to highlight some of the basic concepts of UPC. As the name implies, vector addition performs 

addition of two vectors and places the result in a third vector: 

Example 2.5-1: 

1:   #include<upc_relaxed.h> 
2:   #define N 100 
3:   shared int v1[N], v2[N], v1plusv2[N]; 
4:   void main() 
5:   {    
6:      int i; 
7:      for(i=0;i<N;i++) 
8:         if(MYTHREAD==i%THREADS) 
9:            v1plusv2[i]=v1[i]+v2[i] ; 
10:    
11:   } 
 

The code is noticeably similar to a typical C code with the exception of a few UPC specific qualifiers 

and keywords.  In line 1 the inclusion of upc_relaxed.h signifies that this code will not follow the 

strict memory consistency model and will allow the compiler to optimize the order of shared 

accesses for the best performance.  Continuing on to line 3, the shared qualifier signifies that the 

variables will be shared among the threads, and since there is no block_size specified it will be 

distributed in a round robin manner across the threads until all data elements are exhausted. 
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Assuming 4 threads, vectors v1, v2, and v1plusv2 will be distributed among the different threads 

as seen in figure 2.5-1. 

 

 

 

 

 

 

 

In line 8, MYTHREAD determines which thread is going to execute the current iteration.  Each thread 

will calculate the modulo division given by i%THREADS which produces values that range from 0 to 

THREADS–1.  A thread executes the current iteration i only if the value of i%THREADS is equal to its 

thread number, MYTHREAD.  

UPC provides a simpler way to perform the same loop through the use of the upc_forall 

statement.  

Example 2.5-2: 

1:   #include<upc_relaxed.h> 
2:   #define N 100 
3:   shared int v1[N], v2[N], v1plusv2[N]; 
4:   void main() 
5:   {  
6:      int i; 
7:      upc_forall(i=0;i<N;i++;i) 
8:            v1plusv2[i]=v1[i]+v2[i] ; 
9:    
10:   } 
 

The upc_forall statement in line 7 is a simpler way to define work sharing among the threads. The 

difference between a normal C for loop and the upc_forall loop is the fourth field, called the 
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affinity field.  The affinity field determines which thread will execute the current iteration of the loop 

body in a upc_forall.  As a result the conditional statement that was used in example 2.5-1 is 

removed and for replaced by upc_forall. The previous two examples work well with such work 

distributions since all iterations are independent. 

In example 2.5-2, iteration i will be executed by thread i%THREADS.  Given the round robin default 

distribution of the elements of the arrays, all computations in this example will be local and require 

no remote memory accesses.  The affinity field of the upc_forall can also be a shared reference.  

If instead of i, the affinity field was a reference to the shared memory space, the loop body of the 

upc_forall statement is executed by the thread which hosts this shared address; see Example 2.2-

2. 
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3 Data and Pointers in UPC 
 

his chapter examines data and pointers in UPC. Data distribution, pointers and pointer 

arithmetic, as well as special pointer functions are covered.  

 
 
3.1 Shared and Private Data 
 

UPC differentiates between two different kinds of data, shared and private. When declaring a private 

object, UPC allocates memory for such an object in the private memory space of each thread.  Thus, 

multiple instances, one per thread, of such an object will exist.  On the other hand, shared objects 

are allocated in the shared memory space.   

Example 3.1-1 shows a UPC code for declaration of different identifiers.  Figure 3.1-1 shows the 

corresponding distribution, assuming 5 threads.  

Example 3.1-1: 

1:   shared int x[12]; 
2:   int y; 
3:   shared int z; 
 

In line 1 of example 3.1-1 x is a shared array that will be distributed across the shared memory space 

in a round robin fashion.  This will result in the distribution of the elements x[0], x[1],..x[4] 

across threads 0, 1,..,4, respectively.  Elements x[5], x[7],..,x[11] will wrap around, thus, spreading 
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across threads 0, 1,..,4, as shown in figure 3.1-1.  Since y is defined as a scalar private variable in line 

2, UPC will allocate memory for the variable y on all the available threads.  Finally, the variable z is 

declared as scalar shared variable and, therefore, UPC will allocate memory space for z only on one 

thread, thread 0.  

 

 

 

 

 

 

 

 

3.2 Blocking of Shared Arrays 
 
Because the default element-by-element round robin distribution of data may not fit the 

requirements of many applications, UPC allows block distribution of data across the shared memory 

space. UPC users can declare arbitrary blocking sizes to distribute shared arrays in a block per thread 

basis as follows: 

shared [block-size] array [number-of-elements]; 

When the [block-size] is omitted, the default block size of 1 is assumed.  

Example 3.2-1:  

shared[3] int x[12]; 

In example, 3.2-1, x is a shared array that will be distributed, according to the [3] layout qualifier, 

across the shared memory space in 3-element blocks per thread in a round robin fashion.  Assuming 

the number of threads is 3, then elements x[0], x[1], and x[2] will have affinity to thread 0; x[3], 

x[4], and, x[5] will have affinity to thread 1, and so on, as seen in figure 3.2-1. 
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The following example shows how UPC distributes two dimensional arrays with user specified 

block_size. 

shared [2] int A[4][2];        

Here, the important facts are the block_size and the fact that C stores two dimensional arrays in a 

row-major order.  Assuming 3 threads, this declaration will result into the data layout seen in figure 

3.2-2. 

 

 

 

 

 

 

 

 

 

Here is another example showing the usage of block_size in shared arrays: 

Example 3.2-3: Matrix by Vector Multiply 

1:   #include<upc_relaxed.h> 
2:   #define N 100*THREADS 
3:   shared [N] double A[N][N]; 
4:   shared double b[N], x[N]; 
5:   void main() 
6:   { 
7:    int i,j; 
8:    /* reading the elements of matrix A and the 
9:    vector x and initializing the vector b to zeros 
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10:    */ 
11:    upc_forall(i=0;i<N;i++;i) 
12:     for(j=0;j<N;j++) 
13:      b[i]+=A[i][j]*x[j] ; 
14:   } 
 
In this example, line 3 distributes matrix A in the shared space one row per thread in a round robin 

fashion.  In line 4, the b and x vectors have a one element per thread distribution. See example 4.1-1 

for further discussion of this code.           

3.3 UPC Shared and Private Pointers 
 

To understand UPC pointers, it is important to understand both where the pointer points and where 

it resides.  There are four distinct possibilities: private pointers pointing to the private space, private 

pointers pointing to the shared space, shared pointers pointing to the shared space, and lastly shared 

pointers pointing to the private space.  These four cases are shown in figure 3.3.1. 

 

 

 

 

 

 

 

Declaring a UPC pointer is similar to the way a pointer in C is declared. Here is a look at the options 

provided in figure 3.3-1: 

Example 3.3-1: 

1:   int *p1;   // private to private 
2:   shared int *p2;  // private to shared  
3:   int *shared p3;  // shared to private (not advised) 
4:   shared int *shared p4; // shared to shared 
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Line 1 declares a pointer p1, which points to a private space and resides in the private space, a 

standard C pointer. In line 2 p2 is declared as a private pointer that points to the shared space, and 

thus each thread has an instance of p2. Such a pointer can be advantageous in speed and flexibility.  

In line 4, p4 is a shared pointer pointing to the shared space. There is only one instance of p4, 

residing on thread 0. Finally in line 3, p3 is defined as a shared pointer to the private space. This type 

of declaration will create an access violation for any thread that is not the owner of that private 

space and therefore it should be avoided.   

 
3.4 Shared and Private Pointer address format 
 

Unlike ordinary C pointers, a UPC pointer-to-shared has to keep track of a number of things. These 

are the thread number; the virtual address of the block, and the phase that indicates to which item in 

the block the pointer is pointing.   

An example implementation of a pointer-to-shared is shown in 3.4-1. Pointers to shared objects, in 

this case, have three fields: the thread number, the local address of the block, and the phase (which 

specifies position in the block). This is graphically sketched in figure 3.4-1 with the number of bits 

that represents each part of the pointer.   

 

 

 

 

 

3.5 Special UPC Pointer Functions and Operators 
 

There are a number of special functions that can access the values of the different fields inside 

pointer-to-shared address representations.  One is upc_threadof (shared void *ptr), which 

returns the number of the thread that has affinity to the shared object pointed to by ptr. Another is 

Virtual AddressThreadPhase Virtual AddressThreadPhase
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Figure 3.4-1 An example implementation of a UPC pointer format 
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upc_phaseof (shared void *ptr), which returns the position within the block of the pointer 

ptr.  The third is upc_addrfield(shared void *ptr) which returns the local address of the 

object which is pointed at by the pointer-to-shared ptr. 

There are also a number of associated operators with the UPC pointers.  The upc_localsizeof 

(type-name or expression) operator returns the size of the local portion of a shared object.  

The upc_blocksizeof (type-name or expression) operator returns the block_size associated 

with operand.  And upc_elemsizeof (type-name or expression) operator returns the size (in 

bytes) of the left-most type that is not an array.   

 

3.6 Casting of Shared to Private Pointers 
 

Pointers-to-shared may be cast to private pointers only if the shared data has affinity to the current 

thread. The result will be a valid private pointer referring to the same data. This operation is useful if 

there is a large block of shared data on the current thread that may be more efficiently manipulated 

through the private pointer. Note that a local pointer cannot be cast to a pointer-to-shared. 

Example 3.6-1: Casting of Shared Pointer to a Private Pointer 

1:   shared int x[THREADS]; 
2:   int *p; 
3:   p=(int *)&x[MYTHREAD]; 
 
In this example, each of the private pointers will point to the x element, which has affinity to its own 

thread, i.e. MYTHREAD. 

Example 3.6-2: The Role of Casting of Shared Pointers 

1:   shared [3] int *p; 
2:   shared [5] int *q; 
3:   p=q; 
 
The last assignment statement is acceptable; however, some implementations may require an explicit 

type cast. Despite being assigned to q, pointer p will obey pointer arithmetic for block_size of 3 and 

not 5. 
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3.7 UPC Pointer Arithmetic 
 

The block_size determines where a pointer-to-shared points to and has affinity to when incremented 

or decremented.   

Example 3.7-1: UPC Pointer Arithmetic   

Assuming we have 4 threads 

1:   #define N 16 
2:   shared int x[N]; 
3:   shared int *p=&x[5]; 
4:   p=p+3; 
 
In line 3 the pointer p initially points to data, x[5] , which has affinity with thread 1.  After 

incrementing p in line 4, p points to data x[8] , which has affinity with thread 0 as seen in figure 

3.7-1, where the dotted arrow denotes the position of p before incrementing. 

 

 

 

 

 

 

 

 

Example 3.7-2: How Shared Pointer Arithmetic Follows Blocking. 
1:   #define N 16 
2:   shared [3] int x[N]; 
3:   shared int *p=&x[4]; 
4:   p=p+7; 
 
In this case x has a block_size of 3, and the shared pointer p will be pointing to x[4], which is in 

thread 1. After incrementing, p will be pointing at x[12] on thread 0 as seen in figure 3.7-2. 
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3.8 UPC String Handling Functions 
 

UPC has library functions to copy data to and from shared memory, analogous to the C memcpy(). 

Three functions are provided, depending on whether source or destination is in shared or private 

memory. 

upc_memcpy( dst, src, n) copies shared to shared memory. 
upc_memput( dst, src, n) copies from private to shared memory. 
upc_memget( dst, src, n) copies from shared to private memory. 

 

The function upc_memcpy( dst, src, n) copies n bytes from a shared object (src) with affinity 

to one thread, to a shared object (dst) with affinity to the same or another thread. (Neither thread 

needs to be the calling thread.) It treats the dst and src pointers as if they had type: shared [ ] 

char [n]. The effect is equivalent to copying the entire contents of one shared array object with 

this type (src) to another (dst). 

The function upc_memput( dst, src, n) copies n bytes from a private object (src) on the 

calling thread, to a shared object (dst) with affinity to any single thread. It treats the dst pointer as 

if it had type: shared [ ] char [n]. The effect is equivalent to copying the entire contents of a 

private array object(src) declared as char[n] to a shared array object (dst) of the above shared 

type. 

The function upc_memget (dst, src, n) copies n bytes from a shared object (src) with affinity 

to any single thread, to a private object (dst) on the calling thread. It treats the src pointer as if it 
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had type: shared [ ] char [n]. The effect is equivalent to copying the object(dst) declared as 

char[n].  

In each example below we assume that THREADS is specified at compile time and that SIZE is a 

multiple of THREADS. 

Example 3.8-1: (Assuming that SIZE%THREADS == 0) 

1:  #include <upc_relaxed.h> 
2:  #define SIZE 16000 
3:   
4:  shared int data[SIZE]; 
5:  shared [] int th0_data[SIZE]; 
6: 
7:  int main() 
8:  { 
9:          int i, sum; 
10:          sum = 0; 
11:     if (MYTHREAD==0){ 
12:             for( i=0; i<THREADS; i++ ) 
13:                  upc_memcpy(&th0_data[i*(SIZE/THREADS)], &data[i], 
(SIZE/THREADS)*sizeof(int)); 
14:             for( i=0; i<SIZE; i++ ) 
15:                  sum += th0_data[i]; 
16:     } 
17:          return 0; 
18:  } 
 

In Example 3.8-1 lines 4 and 5 declare two shared arrays. The array data is distributed across all the 

threads using the default block_size of 1, while th0_data resides solely on thread 0 by declaring the 

infinite blocking factor. In lines 11 to 16, thread 0 copies the contents of the shared array data to its 

private shared array th0_data using multiple upc_memcpy calls, each upc_memcpy copying the 

part of data[] that has affinity with thread i. That is, data[i], data[i+THREADS], 

data[i+2*THREADS] and so forth. In lines 14 and 15 thread 0 calculates the global sum of the data 

array without any remote accesses. 

The second function upc_memput (dst, src, size) copies from private to shared memory 

space:  
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Example 3.8-2:  

1:  #include <upc_relaxed.h> 
2:  #define SIZE 16000 
3:   
4:  shared int data[SIZE]; 
5:   
6:  int main() 
7:  { 
8:          int i, sum; 
9:          int localbuf[SIZE/THREADS]; 
10:          sum = MYTHREAD; 
11:          for( i=0; i<SIZE/THREADS; i++ ) { 
12:                  localbuf[i] = sum; 
13:                  sum += i*THREADS; 
14:          } 
15:          upc_memput(&data[MYTHREAD],localbuf, (SIZE/THREADS)*sizeof( 
int)); 
16:          return 0; 
17:  } 
 

In Example 3.8-2 line 4 declares a shared array data of size SIZE, which is distributed across all the 

threads using the default block_size of 1. In lines 11 to 15, each thread initializes its local array 

localbuf and then copies the localbuf contents to shared array data using upc_memput.  

And finally the third function upc_memget (dst, src, size) copies from shared to private 

memory space: 

Example 3.8-3:  

1:  #include <upc_relaxed.h> 
2:  #define SIZE 10000 
3: 
4:  shared int data[SIZE]; 
5: 
6:  int main() 
7:  { 
8:          int i, sum; 
9:          int localbuf[SIZE]; 
10:          for( i=0; i<THREADS; i++ ) 
11:                  upc_memget(&localbuf[i*(SIZE/THREADS)], 
&data[MYTHREAD], (SIZE/THREADS)* sizeof(int)); 
12:          sum = 0; 
13:          for( i=0; i<SIZE; i++ ) 
14:                  sum += localbuf[i]; 
15:          return 0; 
16:  } 
 
Example 3.8-3 is similar to example 3.8-1 with the exception that the destination array resides in 

private space. 
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4 Work Distribution 
 

his chapter considers the methods in which work can be equally distributed among threads. 

4.1 Data Distribution for Work Sharing 
 
As explained in chapter 3, array data distribution among threads in UPC can be done in the 

declaration statements. Take for example: 

 
1:   #include <upc_relaxed.h> 
2:   #define IMG_SIZE 512 
3:   shared [(IMG_SIZE*IMG_SIZE)/THREADS] int image[IMG_SIZE][IMG_SIZE]; 
 
In line 3 the entire image is broken into THREADS blocks, i.e. one block per thread. If THREADS were 

8, the block_size would be 32768. 

 

 

 

 

 

 

Data distribution and work sharing in UPC are the core for exploiting data locality. Work sharing 

capabilities in UPC are provided by the upc_forall construct for distributing independent iterations 

across the threads. For a quick overview of upc_forall please refer to section 2.2.3. Here we revisit 
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the Matrix by Vector Multiply example from chapter 3 showing the usage of upc_forall to 

distribute the workload equally among all the threads: 

 
  
Example 4.1-1: Matrix by Vector Multiply 

1:   #include<upc_relaxed.h> 
2:   #define N 100*THREADS 
3:   shared [N] double A[N][N]; 
4:   shared double b[N], x[N]; 
5:   void main() 
6:   { 
7:    int i,j; 
8:    /* reading the elements of matrix A and the 
9:    vector x and initializing the vector b to zeros 
10:    */ 
11:    upc_forall(i=0;i<N;i++;i) 
12:     for(j=0;j<N;j++) 
13:      b[i]+=A[i][j]*x[j] ; 
14:   } 
 

Line 3 distributes the matrix A one row per thread in a round robin fashion. In line 4 the b and x 

vectors have the default block_size of 1, so they are distributed round-robin on element per thread. 

Thus row i of matrix A and element i of vectors b and x all have the same affinity, to thread 

(i%THREADS). The work is done by the upc_forall loop in line 11. This has the affinity parameter 

i, which distributes the iterations across the threads in round-robin order, with iteration i being 

executed by thread (i%THREADS). Because of the way shared data is distributed, the iterations are 

independent, and both A[i][j] and b[i] are local data in iteration i.  

An equivalent way to specify the work is to replace line 11 by:  

11:  upc_forall(i=0; i<N; i++; &A[i][0]) 
or  
11:  upc_forall(i=0; i<N; i++; A[i]) 
 

This uses the affinity of row i of the matrix A to determine the thread that does the iteration. In this 

case it is just thread (i%THREADS) as before. 
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5 Synchronization and Memory 
Consistency 

 

PC allows for several different synchronization mechanisms such as: barriers, locks, and 

memory consistency control.  UPC barriers can ensure that all threads reach a given point 

before any of them can proceed any further.  Locks are needed to coordinate access to critical 

sections of the code. Finally, memory consistency control gives the ability to control the access 

ordering to memory by the different threads such that performance can be maximized with no risk 

of data inconsistency.  

5.1 Barrier Synchronization  
 

Barriers are useful to ensure that all the threads reach the same execution point before any of them 

proceeds any further. UPC provides two basic kinds of barriers,  blocking barriers and split-phase 

barriers (non-blocking). The blocking barrier is invoked by calling the function upc_barrier and 

the split-phase barrier is obtained by calling the function pair upc_notify and upc_wait. Figure 

5.1-1 graphically explains the concept of a barrier.  
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In case of blocking barriers, when thread i reaches point b, it will be blocked from further execution 

until thread j and all other threads reache the same point. In the case of non-blocking barriers a 

thread can continue local execution after notifying that it has reached point a.  At point a, thread i 

executes a notify and at b it performs a wait.  Thread i can perform any independent work between 

these two points while some of the other threads have not yet reached the barrier. When all other 

threads reach at least point a and execute a notify, thread i can proceed.  Example 5.1-1 shows the 

use of the non-blocking barrier.  The program is used to calculate (A+C)*B*B, where A, B, and C 

are all N*N matrices. This example assumes THREADS is defined at compiled time and N is a multiple 

of THREADS. 

Thread i Thread j

a

b

Figure 5.1-1 Synchronization Barriers 
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Example 5.1-1: Barrier Synchronization 

1:   shared [N]int A[N][N]; 
2:   shared [N]int C[N][N]; 
3:   shared [N]int B[N][N]; 
4:   shared [N]int ACsum[N][N]; 
5:   shared [N]int Bsqr[N][N]; 
6:   shared [N]int Result[N][N]; 
7:    
8:   void matrix_multiplication (shared[N] int result[N][N],  
         shared[N] int m1[N][N],  
         shared[N] int m2[N][N]){ 
9:      int i, j, l, sum;  
10:       upc_forall(i=0;i<N;i++; &m1[i][0]){  
11:           for(j=0;j<N;j++){ 
12:              sum=0; 
13:          for(l=0;l<N;l++) 
14:         sum+=m1[i][l]*m2[l][j]; 
15:     result [i][j]=sum; 
16:       } 
17:       } 
18:   } 
19:    
20:   matrix_multiplication(Bsqr,B,B); 
21:   upc_notify 1; 
22:   upc_forall(i=0;i<N;i++;&A[i][0]){ 
23:       for(j=0;j<N;j++) 
24:           ACsum[i][j]+=A[i][j]+C[i][j]; 
25:   } 
26:   upc_wait 1; 
27:   matrix_multiplication(Result, ACsum, Bsqr); 
 
In this example B*B is first calculated and stored in the matrix Bsqr and matrices A and C are added 

together and stored in matrix A. Finally matrix A and Bsqr are multiplied and stored in the final  

matrix Result.  However since the calculation of (B*B) and (A+C) are independent of each other 

there is no need to wait for (B*B) to finish computing before computing (A+C). This is where the 

use of a non-blocking barrier can provide more efficient performance. Let’s take a closer look at the 

example. In the first few lines, lines 1-6, the shared structures are defined. The arrays A, C, Bsqr, and 

Result are all defined as shared arrays with a block distribution of N, that is, one row per thread, rows 

distributed round-robin among the threads. In the matrix_multiplication function, the 

upc_forall loop distributes the work among the threads, as seen in line 10, on a per row basis. The 

ith iteration is executed by the thread that has that row, i.e. m[i][0]. So on line 14 the row 

B*B
A+C 

(A+C)*B*B 
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m1[i][l] is local, but the column m2[l][j] is not. In line 20 (B*B) is calculated using the 

matrix_multiplication function. It is followed by a upc_notify in line 21 for the current 

thread to tell the other threads that it has completed calculating its rows of (B*B). Since 

upc_notify is not a blocking barrier mechanism, the call returns immediately and lines 22-25 are 

executed. In lines 22-25 the task (A+C) is distributed among the threads on a per row basis using 

the upc_forall loop, where the thread having affinity to A[i][0] executes the current loop. Once 

thread i has calculated the row of (A+C), it waits until all the other threads have executed the 

upc_notify in line 21. This means that all rows of (B*B) have been calculated, and it is safe for 

thread I to proceed to calculate its rows of the final product (A+C)*(B*B). 

 

5.2 Synchronization Locks 
 

In UPC, shared data can be protected against multiple writers through the use of locks.  The two 

constructs void upc_lock(upc_lock_t *l) and void upc_unlock(upc_lock_t *l) allow 

locking and unlocking of shared data so that it can be accessed on a mutually exclusive basis.  The 

function int upc_lock_attempt(upc_lock_t *l) returns 1 on successful locking and 0 

otherwise. This may improve performance by avoiding busy waits when a lock is not available. 

Locks are created in two ways- collectively or non-collectively. The collective function is 

upc_lock_t * upc_all_lock_alloc(void) 

This function is called simultaneously by all threads. A single lock is allocated, in the unlocked state, 

and all threads receive a pointer to it. The non-collective function is 

upc_lock_t * upc_global_lock_alloc(void) 

This function is called by a single thread. A single lock is allocated, and only the calling thread 

receives a pointer to it, unless the returned thread lock pointer is stored in a shared variable. A 

subset of threads could use this lock to synchronize references to shared data. If multiple threads 

call this function, all threads which make the call get different allocations. (See chapter 6 for 

analogous functions upc_all_lock_alloc and upc_global_lock_alloc for allocating shared 
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memory.) The function upc_lock_free is called, by a single thread to free a lock allocated by either 

type of call. 

Consider for example the computation of π using numerical integration, as shown in figure 5.2-1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 5.2-1: Numerical Integration with Locks 
 
1:   //Numerical Integration 
2:   //Example - The Famous PI 
3:   #include<upc_relaxed.h> 
4:   #include<math.h> 
5:   #define N 1000000 
6:   #define f(x) (1.0/(1.0+x*x))  
7:   upc_lock_t *l; 
8:   shared float pi = 0.0; 
9:   void main(void) 
10:   { 
11:    float local_pi=0.0; 
12:    int i; 
13:    l=upc_all_lock_alloc(); 
14:    
15:    upc_forall(i=0;i<N;i++; i) 
16:     local_pi +=(float) f((.5+i)/(N)); 
17:    local_pi *= (float) (4.0 / N); 
18:    
19:    upc_lock(l); 
20:    pi += local_pi; 
21:    upc_unlock(l); 
22:    
23:    upc_barrier; // Ensure all is done 
24:    if(MYTHREAD==0) printf("PI=%f\n",pi); 
24:    if(MYTHREAD==0) upc_lock_free(l); 
25:   }  
 

In example 5.2-1 threads collectively call upc_all_lock_alloc() to create a memory for the lock 

l as shown in line 13. The task of calculating pi is divided among the threads using the upc_forall 
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loop in lines 15-16.  Each thread accumulates its portion of the summation in its own private 

local_pi. In lines 19-21 the local sums are added to get the global answer. To prevent overlapping 

updates to pi, all threads call upc_lock. As each thread acquires the lock it adds its local_pi to 

pi, then releases the lock. Then it executes upc_barrier to wait for the other threads to complete 

the updates to pi. Finally, in line 24, only one thread calls upc_lock_free. 

 

Example 5.2-2 is a generic example showing how the use of two different locks. Half the threads use 

lock l1 to update v1 and half use l2 to update v2.  

Example 5.2-2: More Locks 

1:   //create the locks 
2:   upc_lock_t *l1; 
3:   upc_lock_t *l2; 
4   shared float v1=1.0, v2=2.0; 
5:   l1=upc_all_lock_alloc(); 
6:   l2=upc_all_lock_alloc(); 
7: 
8:   if (MYTHREAD>THREADS/2) update_v1(); 
9:   else update_v2(); 
10:    
11:   void update_v1() 
12:   {  
13:    upc_lock(l1); 
14:    v1=expression1(v1); 
15:    upc_unlock(l1); 
16:   } 
17:    
18:   void update_v2() 
19:   {  
20:    upc_lock(l2); 
21:    v2=expression2(v2); 
22:    upc_unlock(l2); 
23:   } 
 

5.3 Ensuring Data Consistency 
 

UPC provides three different ways to define the memory consistency mode. This section will 

describe several methods to go about ensuring that data consistency is met.  

There are two consistency modes available to the user: strict  and relaxed. The main difference 

between the two modes is that in the strict mode, synchronization is key to shared data access. Say 
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thread 3 is accessing shared data, and thread 2 needs to access the same shared data. In the strict 

mode, thread 2 will wait for thread 3 to finish accessing the data, and then proceed. In the relaxed 

mode however, thread 2 will have no knowledge that thread 3 is currently accessing the data and 

would start overwriting data written by thread 3. This is because unlike the strict mode, no implicit 

synchronization steps were taken prior to accessing the data in the relaxed mode; it is left up to the 

user to determine when to perform synchronization. 

To define a memory consistency mode, the user can use any of the three scopes: define it at the 

program level, the block level, or the variable level. To define the consistency mode at the program 

level, the user simply uses one of two headers: upc_strict.h for defining a strict mode throughout 

the program: 

1:   #include <upc_strict.h> 
2:   void main(){ 
3:   } 
4:   ... 
 

Or upc_relaxed.h for defining a relaxed mode throughout the program: 
1:   #include <upc_relaxed.h> 
2:   void main(){ 
3:   } 
4:   ... 
 

The advantage of using the program level scope is the convenience of defining the consistency 

method at the beginning and not having to worry about it throughout the program. This however 

becomes overkill when defining the strict consistency mode. The difference in speed and 

performance between strict mode and relaxed mode is quite significant. In relaxed mode the 

compiler is able to optimize the memory accesses as it sees fit, since it assumes the ordering does 

not matter. However in strict mode, the compiler is told not to perform any optimizations, leaving 

the optimizations solely to the user. Synchronization prior to each access in the strict mode also 

presents significant overhead as compared to immediate access in the relaxed mode. 
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The second scope level is code block level scoping. This is used primarily to change the default 

mode, or override the mode defined at the program level for a particular section of the code. The 

user can do so by placing a pragma statement at the beginning of a compound-statement {…}. The 

mode and then reverts back to the original mode at the end of the block by using another.  

1:   #include <upc_relaxed.h> 
2:  shared int counter=0; 
3:   void main(){ 
4:  ... 
5:  { //perform this block in strict mode 
6:   #pragma upc strict 
7:    counter++; 
8:   printf(“Counter now shows %d\n”, counter); 
9:  } 
10:  //reverts back to relaxed mode 
11:  ... 
12:   } 
 

An advantage for using the section level scope is to reduce the overhead faced when defining a 

particular scope at the program level. Users will most likely use this scope to enforce a strict mode 

of memory consistency. The disadvantage is that it is necessary to plan ahead and design sections of 

the program which would require strict access and others that do not and carefully set pragmas. 

The third scope level is the object level. It is used primarily to override the default mode or program 

level mode for a shared variable. To do so the user simply prefixes the strict or relaxed keyword to 

the variable declaration.  

1:   #include <upc_relaxed.h> 
2:  strict shared int counter; 
3:   void main(){ 
4:   counter++; 
5:  printf(“Counter now shows %d\n”, counter); 
6:  } 
7:   } 
 

An advantage of defining the consistency mode at the variable level is that it allows the user to 

enforce synchronization for that variable only. Variables that have their mode explicitly set are not 

affected 
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Example 5.3-1 shows how memory consistency works in UPC. Here, flag_ready is an important 

flag that needs to be set only if the statement above it has completed. To ensure this, the strict 

keyword is used upon defining the flag_ready variable.  

 

Example 5.3-1 Memory Consistency Example 

1:   strict shared int flag_ready = 0; 
2:   shared int result0, result1; 
3:    
4:   switch(MYTHREAD) { 
5:    case 0 :  
6:     result0 = expression1; 
7:     flag_ready=1; //if not strict, it could be 
8:        //switched with the above statement or 
9:        //executed concurrently 
10:     break; 
11:    case 1 :  
12:     while(!flag_ready); //Same note 
13:     result1=expression2+result0; 
14:     break; 
15:   } 
 
Example 5.3-1 shows the subtle things to watch for when the ordering of statements is of key 

importance.  Here, flag_ready is a trigger for the other threads to perform their tasks. In case 0, 

result0 must be assigned expression1 before setting the ready flag. Since the threads are run in 

parallel, the sequence in which the threads are run cannot be guaranteed, thus the moment when the 

other threads pick up the value of result0, result1, or flag_ready is unknown. To ensure proper 

setting and reading of values, the strict mode is necessary. Without the strict mode, it is quite 

possible that the ordering between result0 and flag_ready assignments can be switched. Similarly 

in case 1, the result1 may be assigned before the expression while(!flag_ready) is executed. 

Declaring a variable as strict will enforce synchronization, and then only one thread can modify the 

variable at any given time. The other threads will have to wait their turn to read or modify the 

variable. In the relaxed mode however, the thread will have no knowledge of the accesses to the 

shared variable and thus will immediately access the variable, which may lead to memory 

inconsistency issues.  
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6 Dynamic Memory Allocation in UPC 
 

his chapter considers the methods in which shared memory is dynamically allocated by 

UPC. Since UPC is an extension to Standard C, the functions of Standard C can be used to 

allocate and free memory in private space. 

6.1 Dynamic Shared Memory Allocation 
 

Dynamic shared memory allocation in UPC can be collective or non-collective, global or local. 

There are four allocation functions:  

upc_all_alloc 
upc_global_alloc 
upc_alloc 
upc_local_alloc (deprecated in language specification V1.1) 

 

The first two are similar: 

shared void *upc_all_alloc (size_t nblocks, size_t nbytes) 
shared void *upc_global_alloc (size_t nblocks, size_t nbytes) 

 

Both functions are global: they allocate shared space across all threads, compatible with the 

declaration:  

 shared [nbytes] char[nblocks*nbytes] 
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upc_all_alloc is a collective function; that is, it must be called by all threads with the same 

arguments, and it returns the same pointer value on all threads. On the other hand, 

upc_global_alloc is not a collective function; it is called by one thread. If called by more than 

one thread, multiple regions are allocated, and each calling thread gets a pointer to its own 

allocation. Figures 6.1-1 and 6.1-2 make clear the similarities and differences between these two 

functions.  

 

 

 

 

 

 

 

 
 
 
 
 
 

The other two functions are local: they allocate shared memory that has affinity to the calling thread 

only. The function upc_local_alloc is in the original language specification, but is deprecated in 

specification V1.1, to be replaced by upc_alloc. Both functions have the same effect: upc_alloc 

allocates nbytes bytes, while upc_local_alloc allocates nblocks*nbytes bytes. The functions 

are similar to the declaration:  

shared [] char [nbytes] 

except that this allocates shared memory with affinity to thread 0 only.  
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Figure 6.1-1 Using upc_global_alloc 
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6.2 Freeing Memory 
 

The function 

void upc_free (shared void *ptr) 

frees the dynamically allocated shared storage pointed to by ptr. In the case of memory allocated by 

upc_all_alloc, any thread, may call upc_free to free the memory; but only one such call has any 

effect. Example 6.2-1 shows upc_free is used to free memory allocated by the upc_all_alloc 

function. 

Example 6.2-1 Shared Memory Dynamic Allocation 

1:   shared [10] int *table; 
2:   int main() 
3:  { 
4:     /* allocate a buffer of 10*THREADS, with block_size of 10   
 elements */ 
5:     table = (shared [10] int *)upc_all_alloc(THREADS, 10* sizeof(int)); 
6: 
7:     /* do some work here */ 
8:        (…) 
9: 
10:     /* free the table, any thread may free table */ 
11:       if (MYTHREAD==0) 
12:           upc_free( table ); 
13:    } 
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6.3 Memory Allocation Examples 
 

The following example 6.3-1 illustrates different shared memory dynamic allocations: 

Example 6.3-1 Different scenarios of Shared Memory Dynamic Allocations 

0:     /* shared variable declarations */ 
1:   shared [5] int *p1, *p2, *p3; 
2:   shared [5] int * shared p4, * shared p5; 
3:    
4:   /* Allocate 25 elements per thread, with each thread  
5:      doing its portion of the allocation. – COLLECTIVE CALL */ 
6:   p1 = (shared [5] int *)upc_all_alloc(5*THREADS, 5*sizeof(int)); 
7:    
8:   /* Allocate 25 elements per thread, but just run the  
9:      allocation on thread 5. – NON COLLECTIVE CALL */ 
10:   if (MYTHREAD == 5) 
11:     p2 = (shared [5] int *)upc_global_alloc(5*THREADS,    
              5*sizeof(int)); 
12:    
13:   /* Allocate 5 elements only on thread 3. NON COLLECTIVE CALL */ 
14:   if (MYTHREAD == 3) 
15:     p3 = (shared [5] int *)upc_alloc(sizeof(int)*5); 
16:    
17:   /* Allocate 25 elements per thread, just run the allocation 
18:    on thread 4, but have the result be visible everywhere.- NON-       
   COLLECTIVE CALL */ 
19:   if (MYTHREAD == 4) 
20:     p4 = (shared [5] int shared *)upc_global_alloc(5*THREADS,    
          5*sizeof(int)); 
21:    
22:   /* Allocate 5 elements only on thread 2, but have the  
23:      result visible on all threads. */ 
24:   if (MYTHREAD == 2) 
25:     p5 = (shared [5] int shared *)upc_alloc(sizeof(int)*5); 
26: 
27:    /* De-allocate p1, any thread may free p1*/ 
28:    if( MYTHREAD == 0 ) 
29:        upc_free( p1 ); 
30: 
31:    /* De-allocate p2, only thread 5 may free p2*/ 
32:    if( MYTHREAD == 5 ) 
33:     upc_free( p2 ); 
34: 
35:    /* De-allocate p3*/ 
36:    if( MYTHREAD == 3 ) 
37:     upc_free( p3 ); 
38: 
39:    /* De-allocate p4 & p5 */ 
40:    if( MYTHREAD == 0 ) { 
41:     upc_free( p4 ); 
42:     upc_free( p5 ); 
43:    } 
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7 Libraries in UPC 
 

his chapter provides a quick introduction to the libraries available in UPC, namely the UPC 

Collective Library and the UPC-IO Library. The UPC Collective Library provides the user 

with common parallel programming functions allowing for collective operations such as broadcast, 

scatter, gather, and etc. The UPC-IO Library allows users to take advantage of a Parallel IO file 

system by providing the APIs necessary to read and write to the parallel file system. 

7.1 UPC Collective Operations 
 

UPC Collective Operations provide users with functions that allow for a shared and private data 

manipulation across multiple threads in a collective manner. Functions that users have come to 

expect such as scatter, gather, sum, broadcast, and etc. are provided to the user via a library 

implementation. For specific details of the functions discussed in the section please refer to the UPC 

Collective Specifications document. 

7.1.1 What are UPC Collective Operations 
 

In parallel programming there are a set of operations that are commonly performed across multiple 

threads in lock-step, commonly referred to as collective operations. The functions normally 

provided are ways to send, gather, exchange, permute, sort, reduce, perform arithmetic operations, 
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and etc. on the data. UPC collective operations library strives to provide the users with the most 

common collective operations.  

7.1.2 Relocalization Operations 
 

Moving data too and from regions of memory spaces are perhaps one of the most commonly 

performed tasks in parallel programming. This section provides functions available to the user with 

an example on how a user would perform the task. This section provides a quick reference to a few 

of the functions available to the user in the Collective Library. Please refer to the Collective 

Operations Specifications document for exhaustive semantics and a full listing of functions.  

7 . 1 . 2 . 1  UPC_ALL_BROAD CAST 

The upc_all_broadcast function copies a block of memory with affinity to a single thread to a 

block of shared memory on each thread.  

T0   T0 
 
T1   T1 
 
T2   T2 
 
T3   T3 
 
 
Figure 7.1-1 upc_all_broadcast 
 
 
Syntax: 
void upc_all_broadcast (shared void *dst, shared const void *src, size_t 
nbytes, upc_flag_t sync_mode); 
 
Example 7.1-1: 
 
1: shared int A[THREADS]; 
2: shared int B[THREADS]; 
3: // Initialize A. 
4: upc_barrier; 
5: upc_all_broadcast( B, &A[1], sizeof(int), 
6: UPC_IN_NOSYNC | UPC_OUT_NOSYNC ); 
7: upc_barrier;  
 

7 . 1 . 2 . 2  UPC_ALL_SCATTER 

The upc_all_scatter function copies the ith block of an area of shared memory with affinity 

to a single thread to a block of shared memory with affinity to the ith thread. 
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Figure 7.1-2 upc_all_scatter 

 
Syntax: 
void upc_all_scatter (shared void *dst, shared const void *src, size_t 
nbytes, upc_flag_t sync_mode); 
 
Example 7.1-2: 
 
1: #define NUMELEMS 10 
2: #define SRC_THREAD 1 
3: shared int *A; 
4: shared [] int *myA, *srcA; 
5: shared [NUMELEMS] int B[NUMELEMS*THREADS]; 
6: // allocate and initialize an array distributed across all threads 
7: A = upc_all_alloc(THREADS, THREADS*NUMELEMS*sizeof(int)); 
8: myA = (shared [] int *) &A[MYTHREAD]; 
9: for (i=0; i<NUMELEMS*THREADS; i++) 
10: myA[i] = i + NUMELEMS*THREADS*MYTHREAD; // (for example) 
11: // scatter the SRC_THREAD’s row of the array 
12: srcA = (shared [] int *) &A[SRC_THREAD]; 
13: upc_barrier; 
14: upc_all_scatter( B, srcA, sizeof(int)*NUMELEMS, 
15: UPC_IN_NOSYNC | UPC_OUT_NOSYNC); 
16: upc_barrier; 
 

7 . 1 . 2 . 3  U P C _ A L L _ G A T H E R  

The upc_all_gather function copies a block of shared memory that has affinity to the ith thread 

to the ith block of a shared memory area that has affinity to a single thread. 
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Figure 7.1-3 upc_all_gather 
 
Syntax: 
void upc_all_gather (shared void *dst, shared const void *src, size_t nbytes, 
upc_flag_t sync_mode); 
 
Example 7.1-3:  
1: #define NELEMS 10 
2: shared [NELEMS] int A[NELEMS*THREADS]; 
3: shared [] int B[NELEMS*THREADS]; 
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4: // Initialize A. 
5: upc_all_gather( B, A, sizeof(int)*NELEMS, 
6: UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC ); 
 
 

7 . 1 . 2 . 4  U P C _ A L L _ G A T H E R _ A L L  

The upc_all_gather_all function copies a block of memory from one shared memory area 

with affinity to the ith thread to the ith block of a shared memory area on each thread. 
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Figure 7.1-4 upc_all_gather 
 
Syntax: 
void upc_all_gather_all (shared void *dst, shared const void *src, size_t 
nbytes, upc_flag_t sync_mode); 
 
Example 7.1-4:  
 
1: #define NELEMS 10 
2: shared [NELEMS] int A[NELEMS*THREADS]; 
3: shared [NELEMS*THREADS] int B[THREADS][NELEMS*THREADS]; 
4: // Initialize A. 
5: upc_barrier; 
6: upc_all_gather_all( B, A, sizeof(int)*NELEMS, 
7: UPC_IN_NOSYNC | UPC_OUT_NOSYNC ); 
8: upc_barrier; 
 
 

7 . 1 . 2 . 5  UPC_ALL_EXCHANGE 

The upc_all_exchange function copies the ith block of memory from a shared memory area 

that has affinity to thread j to the jth block of a shared memory area that has affinity to thread i. 
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Figure 7.1-5 upc_all_exchange 
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Syntax: 
void upc_all_exchange (shared void *dst, shared const void *src, size_t 
nbytes, upc_flag_t sync_mode); 
 
Example 7.1-5:  
 
1: #define NELEMS 10 
2: shared [NELEMS*THREADS] int A[THREADS][NELEMS*THREADS]; 
3: shared [NELEMS*THREADS] int B[THREADS][NELEMS*THREADS]; 
4: // Initialize A. 
5: upc_barrier; 
6: upc_all_exchange( B, A, NELEMS*sizeof(int), 
7: UPC_IN_NOSYNC | UPC_OUT_NOSYNC ); 
8: upc_barrier; 
 
 

7 . 1 . 2 . 6  UPC_ALL_PERMUTE 

The upc_all_permute function copies a block of memory from a shared memory area that has 

affinity to the ith thread to a block of a shared memory that has affinity to thread perm[i]. 
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Figure 7.1-6 upc_all_permute 

Syntax: 
void upc_all_permute (shared void *dst, shared const void *src, shared const 
int *perm, size_t nbytes, upc_flag_t sync_mode); 
 

Example 7.1-6: 

1: #define NELEMS 10 
2: shared [NELEMS] int A[NELEMS*THREADS], B[NELEMS*THREADS]; 
3: shared int P[THREADS]; 
4: // Initialize A and P. 
5: upc_barrier; 
6: upc_all_permute( B, A, P, sizeof(int)*NELEMS, 
7: UPC_IN_NOSYNC | UPC_OUT_NOSYNC ); 
8: upc_barrier; 

 
7.1.3 Computation Operations 
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In addition to relocation operations, UPC Collective Operations also include computation 

operations such as reduce, prefix and sort. This section outlines some of the computation operations 

available in the Collective Library. 

7 . 1 . 3 . 1  UPC_ALL_REDUCE 

The function upc_all_reduce performs a user specified operation, such as upc_add, on the all 

the elements treats and returns the value to a single thread. 

 
Syntax: 
void upc_all_reduceT(shared void *dst, shared const void *src, 
upc_op_t op, size_t nelems, size_t blk size, 
TYPE (*func)(TYPE, TYPE), upc_flag_t sync_mode); 
 
Example 7.1-7:  
1: #define BLK_SIZE 3 
2: #define NELEMS 10 
3: shared [BLK_SIZE] long A[NELEMS*THREADS]; 
4: shared long *B; 
5: long result; 
6: // Initialize A. The result below is defined only on thread 0. 
7: upc_barrier; 
8: upc_all_reduceL( B, A, UPC_ADD, NELEMS*THREADS, BLK_SIZE, 
9: NULL, UPC_IN_NOSYNC | UPC_OUT_NOSYNC ); 
10: upc_barrier; 
 
 

7 . 1 . 3 . 2  U P C _ A L L _ S O R T  

The function upc_all_sort takes a shared array A of nelems elements of size elem_size 

bytes each and sorts them in place in ascending order using the function func to compare 

elements. 

Syntax: 
void upc_all_sort (shared void *A, size_t elem_size, size_t nelems, 
size_t blk_size, int (*func)(shared void *, shared void *), 
upc_flag_t sync_mode); 
 
Example 7.1-9:  
1: #define NELEMS 10 
2: shared [NELEMS] int A[NELEMS*THREADS]; 
3: int lt_int( shared void *x, shared void *y ) 
4: { 
5: int x_val = *(shared int *)x, y_val = *(shared int *)y; 
6: return x_val > y_val ? -1 : x_val < y_val ? 1 : 0; 
7: } 
8: // Initialize A. 
9: upc_barrier; 
10: upc_all_sort( A, sizeof(int), NELEMS*THREADS, NELEMS, 
11: lt_int, UPC_IN_NOSYNC | UPC_OUT_NOSYNC ); 
12: upc_barrier; 
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7.2 UPC Parallel IO 
 

UPC Parallel IO is an effort put forth by the I/O working group to provide users with a capability 

to utilize the underlying parallel I/O file system. The capability is provided to the user via a library 

implementation that provides APIs which abstract out the I/O calls to the underlying architecture.  

7.2.1 What is UPC Parallel IO  
 

UPC Parallel I/O is a library which abstracts out the users’ I/O requests to the parallel I/O file 

system. Using a model based on the ROMIO implementation set forth by the MPI consortium, 

UPC programmers are able to perform reads, writes, and other file operations in a parallel fashion 

without having to worry about the underlying file system. UPC-IO provides the user with ISO-C 

like file access and manipulation functions. There are two main access types provided to the user. 

The first utilizes file pointers, and can be either synchronous or asynchronous operations on local 

buffers or common buffers. The second access type is a list type, where the user specifies explicit 

offsets, which can also be operated on either local or common buffers. The function naming 

convention in the UPC-IO Library reflects the category of access requested and type of memory 

being operated on. For example performing an asynchronous read operation on a local buffer is 

named upc_all_fread_local_async. Here upc_all refers to the collective nature of the operation, 

fread is the ISO-C function, local refers to private buffer being operated on, and async specifies 

that the operation shall return immediately allowing other non I/O operations to be performed 

while the file operation is in flight.  

The following sections provide a quick reference to the subset of the functions available in the UPC-

IO Library implementation, showing commonly used functions such as file operators, reading, and 
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writing to and from a file. Please refer to the UPC-IO Specifications document for exhaustive 

semantics and a full listing of functions.  

7.2.2 UPC File Operations 
 

7 . 2 . 2 . 1  U P C _ A L L_F O P E N  

The function upc_all_fopen opens the file identified by the filename fname for input/output 

operations. 

Syntax: 

upc_file_t *upc_all_fopen(const char *fname, 
int flags, 
size_t numhints, 
upc_hint_t const *hints) 
 

Example 7.2-1: 

1: upc_file_t *fd; 
2: upc_hint_t *hints; 
3:  
4: hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
5: fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_WRONLY|UPC_CREATE, 
0, hints); 
6: if(fd==NULL) 
7: { 
8: printf("TH%2d: File open Error\n",MYTHREAD); 
9:  upc_global_exit(-1); 
10: } 
 
 

7 . 2 . 2 . 2  U P C _ A L L _ F C L O S E 

The function upc_all_fclose executes an implicit upc_all_fsync on fd and then closes the file 

associated with fd. 

 
Syntax: 

int upc_all_fclose(upc_file_t *fd); 

Example 7.2-2: 

1: #include <upc_io.h> 
2: #include <stdio.h> 
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3:  
4: int main() 
5: { 
6:  upc_file_t *fd; 
7:  upc_hint_t *hints; 
8:  
9:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
10: 
11:  fd=upc_all_fopen("upcio.test", 
UPC_INDIVIDUAL_FP|UPC_WRONLY|UPC_CREATE, 0, hints); 
12:  if(upc_all_fclose(fd)!=0) 
13:  { 
14:                 printf("TH%2d: File close Error\n",MYTHREAD); 
15:                 upc_global_exit(-1); 
16:  } 
17:  
18:  free((void *)hints); 
19:  return 0; 
20: } 
 
 

7 . 2 . 2 . 3  U P C _ A L L _ F S Y N C  

The function upc_all_fsync ensures that any data that has been written to the file associated with 

fd but not yet transferred to the storage device is transferred to the storage device. It also ensures 

that subsequent file reads from any thread will see any previously written values (that have not yet 

been overwritten). 

 

Syntax: 

int upc_all_fsync(upc_file_t *fd) 
 

Example 7.2-3: 

1: #include <upc_io.h> 
2: #include <stdio.h> 
3:  
4: int main() 
5: { 
6:  upc_file_t *fd; 
7:  upc_hint_t *hints; 
8:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
9:  
10:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_WRONLY, 0, 
hints); 
11:  upc_all_fsync(fd); 
12:  ..... 
13:  
14:  return 0; 
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15: } 
 

7 . 2 . 2 . 4  U P C _ A L L _ F S E E K  

The function upc_all_fseek sets the current position of the file pointer associated with fd. 

 

Syntax: 

upc_off_t upc_all_fseek(upc_file_t *fd, 
upc_off_t offset, 
int origin) 
 

Example 7.2-4: 

1: upc_all_fseek(fd, 5+(MYTHREAD+1)*5, UPC_SEEK_SET); 
2: size = upc_all_fread_local(fd, (void *)buffer, size, nmemb, sync); 
3: if( size == -1 ) 
4:       printf("upcio test: fread_local error on TH%2d\n",MYTHREAD); 

 
7.2.3 Reading Data 
 

7 . 2 . 3 . 1  U P C _ A L L _ F R E A D _ L O C A L  

The function upc_all_fread_local reads data from a file into a local buffer on each thread. 

Syntax: 

ssize_t upc_all_fread_local(upc_file_t *fd, 
void *buffer, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 

Example 7.2-5 

1: #include <upc_io.h> 
2:  
3: int main() 
4: { 
5:  upc_file_t *fd; 
6:  upc_hint_t *hints; 
7:  
8:  char *buffer; 
9:  size_t size, nmemb; 
10:  nmemb = 1; 
11:  size = 10*(MYTHREAD+1); 
12:  buffer = (char *)malloc(sizeof(char)*size*nmemb); 
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13:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
14:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_RDONLY, 0, 
hints); 
15:  
16:  size = upc_all_fread_local(fd, (void *)buffer, size, nmemb, 
sync); 
17:  ........ 
 

7 . 2 . 3 . 2  UPC_ALL_FREAD_SHARE D 

The function upc_all_fread_shared reads data from a file into a shared buffer in memory. 

Syntax: 

ssize_t upc_all_fread_shared(upc_file_t *fd, 
shared void *buffer, 
size_t blocksize, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 

Example 7.2-6 

1: #include <upc_io.h> 
2:  
3: int main() 
4: { 
5:  upc_file_t *fd; 
6:  upc_hint_t *hints; 
7:  
8:  shared [] char *buffer; 
9:  size_t size, nmemb, blocksize; 
10:  nmemb = 1; 
11:  blocksize = 0; 
12:  size = 30; 
13:  buffer = (shared [] char 
*)upc_all_alloc(1,sizeof(char)*size*nmemb); 
14:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
 
15:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_RDONLY, 0, 
hints); 
16:  
17:  size = upc_all_fread_shared(fd, (shared void *)buffer, blocksize, 
size, nmemb, sync); 
18:  ........ 

 
7.2.4 Writing Data 
 

7 . 2 . 4 . 1  U P C _ A L L _ F W R I T E _ L O C A L  

The function upc_all_fwrite_local writes data from a local buffer on each thread into a file. 
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Syntax: 

ssize_t upc_all_fwrite_local(upc_file_t *fd, 
void *buffer, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 

Example 7.2-7 

1: #include <upc_io.h> 
2: #include <stdio.h> 
3:  
4: int main() 
5: { 
6:  upc_file_t *fd; 
7:  upc_hint_t *hints; 
8:  char *buffer; 
9:  size_t size, nmemb; 
10:  nmemb = 1; 
11:  size = 10*(MYTHREAD+1); 
12:  buffer = (char *)malloc(sizeof(char)*size*nmemb); 
13:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
14:  buffer = (char *)malloc(sizeof(char)*size*nmemb); 

15:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_WRONLY, 0, 
hints); 
16:  ............ 
17:  upc_all_fseek(fd, MYTHREAD*10, UPC_SEEK_SET); 
18:  size = upc_all_fwrite_local(fd, (void *)buffer, size, nmemb, 
sync); 
19:  ............ 
 

7 . 2 . 4 . 2  U P C _ A L L _ F W R I T E _ S H A R E D  

The function upc_all_fwrite_shared writes data from a shared buffer in memory to a file. 

Syntax: 

ssize_t upc_all_fwrite_shared(upc_file_t *fd, 
shared void *buffer, 
size_t blocksize, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 

Example 7.2-8 

1: #include <upc_io.h> 
2: #include <stdio.h> 
3:  



 

 59 

4: int main() 
5: { 
6:  upc_file_t *fd; 
7:  upc_hint_t *hints; 
8:  shared [] char *buffer; 
9:  size_t size, nmemb; 
10:  size = 10; 
11:  buffer = (shared [] char *)upc_local_alloc(1,sizeof(char)*size); 
12:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
13:  buffer = (char *)malloc(sizeof(char)*size*nmemb); 
14:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_WRONLY, 0, 
hints); 
15: 
16:  ............ 
17: 
18:  upc_all_fseek(fd, MYTHREAD*10, UPC_SEEK_SET); 
19:  size = upc_all_fwrite_shared(fd, (shared void *)buffer, 
blocksize, size, nmemb, sync) 
20:  ............. 

 
7.2.5 List I/O 

 

7 . 2 . 5 . 1  UPC_ALL_FREAD_LIST_LOCAL 

The function upc_all_fread_list_local reads data from a file into local buffers in memory. 

The file handle must be open for reading. 

Syntax: 
ssize_t upc_all_fread_list_local(upc_file_t *fd, 
size_t memvec_entries, 
upc_local_memvec_t const *memvec, 
size_t filevec_entries, 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
 

Example 7.2-9: 
1: #include <upc_io.h> 
2: #include <stdio.h> 
3:  
4: int main() 
5: { 
6:  upc_file_t *fd; 
7:  upc_hint_t *hints; 
8:  char *buffer; 
9:  int size, i; 
10:  upc_local_memvec_t memvec[2]; 
11:  upc_filevec_t filevec[2]; 
12:  upc_flag_t sync; 
13:  
14:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
15:  size = 10; 
16:  buffer = (char *)malloc(sizeof(char)*(size+1)); 
17:  buffer[size] = '\0'; 



 

 60 

18:  
19:  memvec[0].baseaddr = &buffer[5]; 
20:  memvec[0].len = 4; 
21:  memvec[1].baseaddr = &buffer[1]; 
22:  memvec[1].len = 3; 
23:  filevec[0].offset = 4*MYTHREAD; 
24:  filevec[0].len = 3; 
25:       filevec[1].offset = 8+4*MYTHREAD; 
26:       filevec[1].len = 4; 
27:  
28:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_RDONLY, 0, 
hints); 
29:  size = upc_all_fread_list_local(fd, 2, (upc_local_memvec_t const 
*)&memvec, 2, (upc_filevec_t const *)&filevec, sync); 
30: 
31:  if(upc_all_fclose(fd)!=0) 
32:  { 
33:                 printf("TH%2d: File close Error\n",MYTHREAD); 
34:                 upc_global_exit(-1); 
35:  } 
36:  
37:  free((void *)buffer); 
38:  free((void *)hints); 
39:  return 0; 
40: } 
 

7 . 2 . 5 . 2  UPC_ALL_FREAD_LIST_SHARED 

The function upc_all_fread_list_shared reads data from a file into various locations of a 

shared buffer in memory. The file handle must be open for reading. 

 

Syntax: 
ssize_t upc_all_fread_list_shared(upc_file_t *fd, 
size_t memvec_entries, 
upc_shared_memvec_t const *memvec, 
size_t filevec_entries, 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
 

7 . 2 . 5 . 3  U P C _ A L L _ F W R I T E _ L I S T _ L O C A L  

The function upc_all fwrite_list local writes data from local buffers in memory to a file. The 
file handle must be open for writing. 
 

Syntax: 

 
ssize_t upc_all_fwrite_list_local(upc_file_t *fd, 
size_t memvec_entries, 
upc_local_memvec_t const *memvec, 
size_t filevec_entries, 
42 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
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7 . 2 . 5 . 4  UPC_ALL_FWRITE_LIST_SHARED 

The function upc_all_fwrite_list_shared writes data from various locations of a shared buffer 

in memory to a file. The file handle must be open for writing. 

 

Syntax: 

 
ssize_t upc_all_fwrite_list_shared(upc_file_t *fd, 
size_t memvec_entries, 
upc_shared_memvec_t const *memvec, 
size_t filevec_entries, 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
 

 

7.2.6 Asynchronous I/O 
 

7 . 2 . 6 . 1  UPC_ALL_FREAD_LOCAL_ASYNC 

The function upc_all_fread_local_async initiates an asynchronous read from a file into a 

local buffer on each thread. 

 
Sytntax: 
 
void upc_all_fread_local_async(upc_file_t *fd, 
void *buffer, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 
Example 7.2-10: 
 
1: #include <upc_io.h> 
2: #include <stdio.h> 
3:  
4: int main() 
5: { 
6:  upc_file_t *fd; 
7:  upc_hint_t *hints; 
8:  ssize_t ret; 
9:  size_t size, nmemb; 
10:  char *buffer; 
11:  int i; 
12:  int flag; 
13:  void *dummy; 
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14:  upc_flag_t sync_mode; 
15:  
16:  hints=(upc_hint_t *)malloc(sizeof(upc_hint_t)); 
17:  nmemb = 1; 
18:  size = 10; 
19:  buffer = (char *)malloc(sizeof(char)*size*nmemb); 
20:  
21:  upc_barrier; 
22:  fd=upc_all_fopen("upcio.test", UPC_INDIVIDUAL_FP|UPC_RDWR | 
UPC_CREATE, 0, hints); 
23:  
24:  upc_all_fseek(fd, 10*MYTHREAD, UPC_SEEK_SET); 
25:  /* Initialize the buffer, then write */ 
26:  for(i=0; i<size; i++) 
27:   buffer[i]= MYTHREAD + 48; 
28:   
29:  upc_all_fwrite_local_async(fd, (void *)buffer, size, nmemb, 
sync_mode); 
30:  upc_all_fseek(fd, 10*MYTHREAD, UPC_SEEK_SET); 
31:  ret = upc_all_ftest_async(fd, &flag); 
32:  .........  
33:  ret = upc_all_fwait_async(fd); 
34:  upc_all_fread_local_async(fd, (void *)buffer, size, nmemb, 
sync_mode); 
35:  if(upc_all_fclose(fd)!=0) 
36:  { 
37:                 printf("TH%2d: File close Error\n",MYTHREAD); 
38:                 upc_global_exit(-1); 
39:  } 
40:  
41:  free((void *)buffer); 
42:  free((void *)hints); 
43:  return 0; 
44: } 
 

7 . 2 . 6 . 2  UPC_ALL_FREAD_SHARE D_ASYN C 

The function upc_all_fread_shared_async initiates an asynchronous read from a file into a 

shared buffer. 

 
Syntax: 
 
void upc_all_fread_shared_async(upc_file_t *fd, 
shared void *buffer, 
size_t blocksize, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 
 

7 . 2 . 6 . 3  UPC_ALL_FWRITE_LOCAL_ASYNC 

The function upc_all_fwrite_local_async initiates an asynchronous write from a local buffer 

on each thread to a file. 
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Syntax: 
 
void upc_all_fwrite_local_async(upc_file_t *fd, 
void *buffer, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 

7 . 2 . 6 . 4  U P C _ A L L _ F W R I T E _ S H A R E D _ A S Y N C  

The function upc_all_fwrite_shared_async initiates an asynchronous write from a shared 

buffer to a file. 

 
Syntax: 
 
void upc_all_fwrite_shared_async(upc_file_t *fd, 
shared void *buffer, 
size_t blocksize, 
size_t size, 
size_t nmemb, 
upc_flag_t sync_mode) 
 
 

7 . 2 . 6 . 5  UPC_ALL_FREAD_LIST_LOCAL_ASYNC 

The function upc_all_fread_list_local_async initiates an asynchronous read of data from a 

file into local buffers in memory. 

 
Syntax: 
 
void upc_all_fread_list_local_async(upc_file_t *fd, 
size_t memvec_entries, 
upc_local_memvec_t const *memvec, 
size_t filevec_entries, 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
 
 

7 . 2 . 6 . 6  UPC_ALL_FREAD_LIST_SHARED_ ASYNC 

The function upc_all_fread_list_shared_async initiates an asynchronous read of data from a 

file into various locations of a shared buffer in memory. 

 
Syntax: 
 
void upc_all_fread_list_shared_async(upc_file_t *fd, 
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size_t memvec_entries, 
upc_shared_memvec_t const *memvec, 
size_t filevec_entries, 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
 
 

7 . 2 . 6 . 7  U P C _ A L L _ F W R I T E _ L I S T _ L O C A L _ A S Y N C  

The function upc_all_fwrite_list_local_async initiates an asynchronous write of data from 

local buffers in memory to a file. 

 
Syntax: 
 
void upc_all_fread_list_shared_async(upc_file_t *fd, 
size_t memvec_entries, 
upc_shared_memvec_t const *memvec, 
size_t filevec_entries, 
upc_filevec_t const *filevec, 
upc_flag_t sync_mode) 
 
 

7 . 2 . 6 . 8  UPC_ALL_FWAIT_ASYNC 

The function upc_all_fwrite_list_shared_async initiates an asynchronous write of data from 

various locations of a shared buffer in memory to a file. 

 
Syntax: 
 
ssize_t upc_all_fwait_async(upc_file_t *fd) 
 
 

7 . 2 . 6 . 9  UPC_ALL_FTEST_ASYNC 

The upc_all_ftest_async function tests whether the outstanding asynchronous I/O operation 

associated with fd has completed. 

 
Syntax: 
 
ssize_t upc_all_ftest_async(upc_file_t *fd, 
int *flag) 
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8 UPC Optimization 
 

here are several ways to enhance the performance of UPC through either compiler and 

runtime optimizations and/or hand–tuning.  These are discussed in this chapter along with 

specific examples. 

 
8.1 How to Exploit the Opportunities for Performance 

Enhancement 
 

Performance optimizations are typically possible through: 

• Compiler optimizations  

• Run-time system 

• Hand tuning 

 

8.2 Compiler and Runtime Optimizations 
 
An advanced programmer should become familiar with the UPC specific compiler optimization 

options.  The user should also be aware of whether the vendor has a run time system that can help 

optimize your code and how to set respective environment variables. When everything else fails, the 

following hand tuning techniques can be used. 
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8.3 List of Hand Tunings for UPC Code Optimization 
 

The performance of UPC code can be improved using the following hand tuning methods: 

1. Use local pointers instead of shared pointers when dealing with local shared data, through casting 

and assignments 

2. Use block copy instead of copying elements one by one with a loop 

3. Overlap remote accesses with local processing using split-phase barriers 

8.3.1 Using local pointers instead of shared pointers 
 

UPC compilers may generate code which takes longer to access local shared data than private data. 

Thus, for better performance all UPC local shared accesses must be turned into UPC private 

accesses. This step is called privatization. 

Example 8.3-1 illustrates how to privatize local shared accesses in a UPC code, or in other words, 

how to convert UPC local shared accesses to UPC private accesses to obtain an effective memory 

bandwidth. 

 

Example 8.3-1 Privatization example 

1:   int *pa, *pc; 
2:   upc_forall(i=0;i<N;i++;&A[i][0]) { 
3:    *pa = (int*) &A[i][0]; 
4:    *pc = (int*) &C[i][0]; 
5:    for(j=0;j<P;j++) 
6:     pa[j]+=pc[j]; 
7:   } 
 
Pointer arithmetic is typically faster using private pointers than shared pointers. In some cases, 

pointer de-referencing can be an order of magnitude faster. 

 
8.3.2 Aggregation of Accesses Using Block Copy 
 
When UPC shared remote accesses are needed, aggregating such accesses and fetching them as a 

block is better than multiple reads/writes since latency and other overheads only appear once. 
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Example 8.3-2 shows how to use a block copy instead of a standard single element copy. The block 

copy is done using a string function, very similar to the ones found in the C language. 

Example 8.3-2 Block copy by string function copy example 

Instead of 

1:   shared [] int a[1000], b[1000]; 
2:   // Copy element by element 
3:   for (j=0; j<1000; j++) 
4:     b[j]=a[j]; 
 
1:   // Copy the whole array at once using string functions 
2:   upc_memcpy(b, a , sizeof(a));  
 
 

8.3.3 Overlapping Remote Accesses with Local 
Processing 

 

In order to hide the time spent in remote shared accesses, it is possible to overlap communication 

with computations. This is can be done using split-phase barriers instead of blocking barriers. In this 

case local processing can be done while waiting for data or synchronization.  

The example 8.3-3 shows a brief implementation of computation and communication overlapping. 

Ghost zones are prefetched and while waiting for this prefetching, the computation can be done on 

all the local shared data except for the ghost zones. After completion of such processing, upc_wait() 

waits for all threads to complete the communication step, and thereafter the ghost zone can be 

processed. 

Example 8.3-3 Overlapping and split-phase barriers 
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1:   upc_memcpy(ghost_copy, ghost_zone, size); 
2:   upc_notify; 
3:   // work on everything but the ghost_zones 
4:   upc_wait; 
5:   // work with the ghost_zones  
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9 UPC Programming Examples 
 

this chapter provides two detailed examples, Sobel Edge and the N Queens. These examples 

were chosen to highlight some of the features of UPC. 

 
 
9.1 Sobel Edge Detection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Edge detection, figure 9.1-1, has many applications in computer vision, including image registration 

and image compression.  One popular way of performing edge detection is using the Sobel 

operators.  The process involves the use of two masks, see figure 9.1-3, for detecting horizontal and 

vertical edges through convolution with the underlying image. 

In parallelizing this application, the image is partitioned into equal contiguous slices of rows, as seen 

in figure 9.1-2, which are distributed across the threads, as blocks of a shared array. With such 
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Original Image Edge-detected Image
Figure 9.1-1: Edge Detection
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contiguous horizontal distribution, remote accesses into the next thread only will be needed when 

the mask is shifted over the last row of a thread data to access the elements of the next row.   

 

  
 
 
 
 
 
 
 
 
 
 
 
 
Sobel Edge images are essentially images that are processed through a convolution applying the 

horizontal edge and vertical edge detection masks. Each pixel is evaluated using a template, 

consisting of eight of its neighboring pixels, which is applied using the two masks. The results from 

the masks are added together to determine the edge value for that pixel, as shown in figure 9.1-3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.1-2: Image distribution across 4 threads 

Figure 9.1-3: Sobel Edge Illustrated 
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To see how the Sobel Edge is applied,  example 9.1-1 shows a serial C code that applies the Sobel 

Edge on an image stored in the orig[N][N] array and stores the result into the edge[N][N] array.  

Example 9.1-2: Sobel Edge Detection Written in C 
 
1:   #define BYTE unsigned char 
2:   BYTE orig[N][N],edge[N][N]; 
3:   int Sobel(){ 
4:       int i,j,d1,d2; 
5:           double magnitude; 
6:           for (i=1; i<N-1; i++){ 
7:          for (j=1; j<N-1; j++){ 
8:         d1 = (int) orig[i-1][j+1] - orig[i-1][j-1]; 
9:         d1 += ((int) orig[i][j+1] - orig[i][j-1]) << 1; 
10:         d1 += (int) orig[i+1][j+1] - orig[i+1][j-1]; 
11:         d2 = (int) orig[i-1][j-1] - orig[i+1][j-1]; 
12:         d2 += ((int) orig[i-1][j] - orig[i+1][j]) << 1; 
13:         d2 += (int) orig[i-1][j+1] - orig[i+1][j+1]; 
14:         magnitude = sqrt(d1*d1+d2*d2); 
15:         edge[i][j]= magnitude>255? 255:(BYTE)magnitude; 
16:     } 
17:     } 
18:       return 0; 
19:   } 
 
In a serial C lines 7 to 17 apply the edge detection algorithm to each square of 9 pixels. Lines 8 to 10 

apply the west mask, while lines 11 to 13 apply the north mask. In lines 14 to 15, the magnitude is 

then calculated and stored as the edge. This is repeated for every pixel of the image (except those 

around the corner). 

 
To distribute the work into parallel tasks using UPC, the image first is subdivided into a number of 

blocks, and the work is distributed among the threads using upc_forall. The threads then compute 

the convolution of each pixel in parallel providing the edge image.    

Example 9.1-2 is shows how Sobel Edge Detection could be written in UPC . 
 
Example 9.1-2: 
 
1:   #define BYTE unsigned char 
2:   shared [N*N/THREADS] BYTE orig[N][N],edge[N][N]; 
3:   int Sobel(){ 
4:       int i,j,d1,d2; 
5:       double magnitude; 
6:       upc_forall (i=1; i<N-1; i++; &edge[i][0]){ 
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7:           for (j=1; j<N-1; j++){ 
8:          d1 = (int) orig[i-1][j+1] - orig[i-1][j-1]; 
9:     d1 += ((int) orig[i][j+1] - orig[i][j-1]) << 1; 
10:     d1 += (int) orig[i+1][j+1] - orig[i+1][j-1]; 
11:     d2 = (int) orig[i-1][j-1] - orig[i+1][j-1]; 
12:     d2 += ((int) orig[i-1][j] - orig[i+1][j]) << 1; 
13:     d2 += (int) orig[i-1][j+1] - orig[i+1][j+1]; 
14:     magnitude = sqrt(d1*d1+d2*d2); 
15:     edge[i][j] = magnitude>255? 255 : (BYTE)magnitude; 
16:      } 
17:       } 
18:       return 0; 
19:   } 
 
Only a few minor changes to the sequential C code were needed to turn it into UPC. In line 2 the 

arrays orig and edge are declared as shared. The image is distributed equally among the threads 

using a block size of N*N/THREADS (assuming N is a multiple of THREADS). Thus each thread gets a 

chunk of N/THREADS rows. In line 6 the C for loop is changed to a upc_forall loop to distribute 

the workload. For each iteration the thread with affinity to the ith row, edge[i], will execute the 

code.  Only the first row and the last row of pixels generated in each block need remote memory 

reading. 

9.2 N-Queens 
 

In the N Queens problem we seek to find all solutions to the problem of placing N queens on an 

NxN chessboard such that no queen can kill another.  This means that no two queens may be 

placed on the same row, column, or diagonal.  The algorithm uses depth-first searching and 

backtracking.  

As the problem size increases so does the number of iterations that will be required to search all 

possible ways that the N queens can co-exist on the same board.  

The parallel solution to this problem is very straightforward, because in this tree search algorithm,    

branches of the tree are totally independent. In order to reduce the granularity of the jobs and 

increase their number, for increased scalability, a job is described as searching along one of the 

subtrees that correspond to a given row-column position combination in the first L rows.  All 

threads proceed to perform the sequential search along their own subtrees.   Figure 9.2-1 gives an 
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example of work distribution where each job is based on the position combination of the first two 

rows.  The remote accesses associated with this algorithm are minimal and the parallel algorithm is 

therefore embarrassingly parallel. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Processor 1 Processor 2 Processor 1 Processor 2Processor 1 Processor 2 Processor 1 Processor 2

Figure 9.2-2 Nqueens Problem using UPC
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Figure 9.2-1 Job Distribution Tree 
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The tree search is broken into subtrees, where each branch represents an independent thread 

performing the sequential search, Figure 9.2-2.  

Example 9.2-1 shows how Nqueens could be written in UPC. 

Example 9.2-1: Nqueens in UPC 
 
1:   //Main program - variables 
2:    
3:   shared int number_solns[THREADS]; 
4:   // parameters 
5:   shared int n;   // Problem size 
6:   shared int l;   // Distribution 
7:   shared int method;   // Round-robin / chunking 
... 
8:   //Main program - initialization 
9:    
10:    if (MYTHREAD==0) { 
11:    n=atoi(argv[1]); 
12:    if ((n<=0) || (n>16)) {   
13:    fprintf(stderr,"0<n<17\n"); 
14:    upc_global_exit(0); 
15:    } 
16:    l=atoi(argv[2]); 
17:    if ((l<0) || (l>=n)) { 
18:    fprintf(stderr,"0<=l<n\n"); 
19:    upc_global_exit(0); 
20:    }  
21:   } 
...    
22:   //Main program - execution 
23:    
24:   upc_barrier; // make sure thread 0 has set the parameters 
25:   number_solns[MYTHREAD] = sched(n,l,method); 
26:   upc_barrier; // Complete all solutions before reduction 
27:   nsols=0; 
28:   if (MYTHREAD==0) { 
29:    for(i=0;i<THREADS;i++) 
30:     nsols+=number_solns[i]; 
31:   }  
...    
32:   //Code for job distribution 
33:   int sched(int n, int l, int method) { 
34:    // Distribution in a round-robin fashion: 
35:  if (method==roundrobin) 
36:    upc_forall(j=0;j<njobs;j++; j) {  
37:     call sequential algorithm 
38:    } 
39:  if (method==chunk) 
40:    // or Distribution in a chunking fashion: 
41:    upc_forall(j=0;j<njobs;j++; (j*THREADS)/njobs ) { 
42:     call sequential algorithm 
43:    } 
44:   } 
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The line numbers are numbered sequentially for ease of viewing, however please be aware that the 

“...” signifies code in between that was not included for the sake of brevity. At line 3, an array of size 

THREADS is created to store the number of solutions each thread discovers. This is declared as 

shared int number_solns[THREADS] with a default distribution of [1], i.e. each thread has 

affinity to its solution count index of the array. All the threads wait for the initialization to complete 

by using a barrier in line 24. The solutions are then calculated using the inline function sched, 

shown in lines 33-44. Sched sets the job distribution strategy as chunks or as simple round robin. 

Another barrier is placed in line 26 to ensure that all the threads are done finding all possible 

solutions. In lines 28 to 31 thread 0 aggregates the number of solutions. 
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Appendix A: Programmer’s Reference 
Guide 
 

Reserved Words in UPC 
 

In addition to the reserved words and functions that C utilizes, here is a list of keywords and 

functions that a UPC compiler will recognize: 

Keywords: 
MYTHREAD 
relaxed 
shared 

strict 
THREADS 
UPC_MAX_BLOCK_SIZE 

 

Functions: 
upc_addr_field 
upc_all_lock_alloc 
upc_global_lock_alloc 
upc_all_alloc 
upc_alloc 
upc_barrier 
upc_blocksizeof 
upc_elemsizeof 
upc_fence 
upc_forall 
upc_free 
upc_global_alloc 
upc_global_exit 
upc_localsizeof 

upc_lock_attempt 
upc_lock_free 
upc_lock_t 
upc_memcpy 
upc_memget 
upc_memput 
upc_memset  
upc_notify 
upc_phaseof 
upc_threadof 
upc_resetphase 
upc_unlock 
upc_wait 

 

The usage of these keywords and functions is examined throughout this document. The semantics, 

synopsis, and detailed description of these keywords and functions can be found in the UPC 

Specifications document [ElG03].   

Appendix 

A 
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Libraries and Headers 
 

UPC is built as an extension to the C language rather than a whole new language. This allows UPC 

to leverage the capabilities of C, and augment parallel capabilities.  

There are three standard headers in UPC. They are: 

<upc_strict.h> 
<upc_relaxed.h> 
<upc.h> 

 
Specifying upc_strict.h notifies the compiler that “strict” mode will be used shared data accesses 

will be synchronized across all threads. This means that if any concurrent write accesses to the 

shared data are being performed, the strict mode will enforce a sequential resolution of writes. This 

is in contrast to upc_relaxed.h where no synchronization is enforced and each thread is free to 

access the shared data at will. It is important to note however that unless concurrent access to 

shared data is being performed, upc_relaxed and upc_strict will behave similar to each other.  

The header upc.h defines common definitions, parameters, and utilities used provided by UPC. 

Both upc_strict.h and upc_relaxed.h include upc.h. However if only upc.h is included the 

synchronization mode will default to relaxed. 

 
 
UPC Keywords 
 
THREADS: Total number of threads 
MYTHREAD: Identification number of the current thread (between 0 and THREADS-1) 
UPC_MAX_BLOCK_SIZE: Maximum block size allowed by the compilation environment 
 

Shared variable declaration 
 
Shared objects 

Shared variables are declared using the type qualifier “shared”.  Shared objects have to be declared 
statically (that is, either as global variables or with the keyword static). 
 
Example of shared object declaration: 
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shared int i; 
shared int b[100*THREADS]; 

 
The following will not compile if you do not specify the number of threads: 
 

shared int a[100]; 
 
All the elements of a in thread 0: 
 

shared [] int a[100]; 
 
Assume THREADS is specified and N is a multiple of THREADS. To distribute elements round robin: 
 

shared a[N][N] 
shared [1] a[N][N] 

 
To distribute rows of matrix round-robin: 
 

shared [N] a[N][N] 
 
To distribute one block of N/THREADS rows per thread: 
 

shared[N*N/THREADS] a[N][N] 

 
Shared pointers 
Pointer to shared: 
 

shared int* p; 
 
Shared pointer to shared data: 
 

shared int* shared sp; 
 
 
 
Work sharing 
Distributes the iterations in a round-robin fashion with wrapping from the last thread to the first 
thread: 
 

upc_forall (i=0; i<N; i++; i) 
 
Distribute the iterations by consecutive chunks: 
 

upc_forall (i=0; i<N; i++; i*THREADS/N) 
 
The iteration distribution follows the distribution layout of a: 
 

upc_forall (i=0; i<N; i++; &a[i]) 
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Synchronization 
 
Memory consistency 
 
Defines strict or relaxed consistency model for the whole program. 
 

#include “upc_strict.h”  
or 
include “upc_relaxed.h” 

 
Sets strict memory consistency for the rest of the file: 
 

#pragma upc strict 
 
Sets relaxed memory consistency for the rest of the file: 
 

#pragma upc relaxed 
 
All accesses to i will be done with the relaxed consistency model: 
 

shared relaxed int i; 
or  
relaxed shared int i; 

 
All accesses to i will be done with the strict consistency model: 
 

strict shared int i; 
 
Synchronize locally the shared memory accesses; it is equivalent to a null strict reference. 
 
 

upc_fence; 
 
Barriers 
 
Synchronize the program globally: 
 

upc_barrier [value]; 
 
Where value is an integer. 
 
Non-blocking split phase barrier: 
 

upc_notify [value]; 
 
// Non-synchronized statements 
relative to this on-going barrier 
... 
 
upc_wait [value]; 
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UPC operators 
 
upc_threadof(p)  : thread having affinity to the location pointed by p 
upc_phaseof(p)  : phase associated with the location pointed by p 
upc_addrfield(p)  : address field associated with the location pointed by p 
upc_resetphase(p)  : reset phase associated with the location pointed by p 
 
 
Dynamic memory allocation 
 
Three different memory allocation methods are provided by UPC: 
 
upc_alloc (n): allocates n bytes of shared data in the calling thread only. It is called by one thread 
only. 
 
upc_global_alloc (n, b): globally allocates nxb bytes of shared data distributed across the 
threads with a block size of b bytes. It is called by one thread only. 
 
upc_all_alloc (n, b): collectively allocates nxb bytes of shared data distributed across the 
threads with a block size of b bytes. It needs to be called by all the threads. 
 
upc_free (p) :Frees shared memory pointed to by p. 
 

String functions in UPC 
 
Equivalent of memcpy : 
 
upc_memcpy (dst, src, size)  : copy from shared to shared 
upc_memput (dst, src, size)  : copy from private to shared 
upc_memget (dst, src, size)  : copy from shared to private 
 

Equivalent of memset: 
 
upc_memset(dst, char, size)  : initialize shared memory with a character 
 
Locks 
 
upc_lock_t *l   : UPC lock type 
upc_all_lock_alloc()  : collectively returns pointer to dynamic lock 
upc_lock(l)    : blocking call, which waits for lock to become available  
upc_lock_attempt(l)  : grabs lock if available, returns lock status 
upc_unlock(l)   : releases lock 
upc_lock_free(l)   : releases memory allocated for lock 
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General utilities 
 
Terminate the UPC program with exit status: 
 
upc_global_exit(status); 
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Appendix B: Running UPC on 
implementations 
 
Available Compilers 
 

Hardware Platform Compiler Version 
Cray T3D/E, Cray X1 UPC Compiler version 3.1.9 
HP Alpha Server SC Family UPC Compiler version 2.0, 2.1 
SGI Origin Family GCC-UPC version 3.2 
IA32 Clusters Michigan Tech MuPC 1.0 beta 
IA32 and IA64 Clusters UC Berkeley BUPC 1.0 beta 
SUN Enterprise Server SUN UPC Compiler “Beta” 

 

 

Table B-1 outlines a number of open source and vendor compilers that can be obtained and be used 

now, some with special arrangements.  Ongoing and future implementations for IBM and Beowulf 

Cluster platforms are also underway. 

Compiling and Running on Cray T3E 
 

To compile with a fixed number (4) of threads: 

upc –O2 –fthreads-4 –o vect_add vect_add.c 

To run the program: 

./vect_add 

 
Compiling and Running on HP/Compaq 
 

Appendix 

B 

Table B-1 Hardware Platform and Compiler Information 
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To compile with a fixed number of threads and run: 

upc –O2 –fthreads 4 –o vect_add vect_add.c  

prun ./vect_add 

To compile without specifying the number of threads and run: 

upc –O2 –o vect_add vect_add.c 

prun –n 4 ./vect_add 

 

Compiling and Running on SGI 
 

To compile with a fixed number of threads and run: 

upc -x upc -fupc-threads-4 –O2 -o vect_add vect_add.c 

./vect_add  

To compile without specifying  the number of threads and run: 

upc –x upc –O2 -o vect_add vect_add.c 

./vect_add -fupc-threads-4 

 

Compiling and Running on Berkeley UPC 
 

To compile and run: 

upcc vect_add.c –o vect_add  

upcrun –n 4 ./vect_add 
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Appendix C: Performance Tuning  
 
Due to the number of compilers available to us and the number of unique customizations and/or 

tunings available to each compiler, it would be not feasible to mention them all in this document. 

However, as a sample case, this document will discuss some of the customizations and tunings 

possible for the HP UPC Compiler. 

Runtime optimizations on HP (1) 
 
Caching: The runtime system can cache the shared data to eliminate some remote fetches. 

List of the related environment variables and (their default values): 

 

–UPCRTS_USE_CACHE (false) 

–UPCRTS_CACHE_SETS (128) 

–UPCRTS_CACHE_BLOCK_SIZE (64) 

–UPCRTS_CACHE_ASSOCIATIVITY (4) 

–UPCRTS_DISP_CACHE_STATISTICS (False) 

Runtime optimizations on HP (2) 
 
Pre-fetching: The runtime system can pre-fetch the shared data to eliminate some remote fetches. 

List of the related environment variables and (their default values): 

 

–UPCRTS_USE_PREFETCH (False) 

–UPCRTS_PREFETCH_DISTANCE (3) 

Appendix 
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–UPCRTS_PREFETCH_TRAINING (20) 

–UPCRTS_DISP_PREFETCH_STATISTICS (False) 

 

How to set an environment variable 
 
With sh-like shell: 

export UPCRTS_USE_CACHE=value 

With csh shell: 

setenv UPCRTS_USE_CACHE value 

 
SMP local optimization 
 
Allows threads to access the shared memory of any other thread in the same node as private. 

Compilation option  (-smp_local). The advantage of using SMP local is that it eliminates 

communication overhead when accessing shared memory of other threads in the same SMP node.  
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