
HP UPC
Unified Parallel C (UPC)
Programmer’sGuide

April 2005

This manual contains information about developing HP UPC programs
on HP UX, Tru64 UNIX, and XC Linux systems. It describes language
features specific to the HP UPC product.

Revision/Update Information: Revised for Version 2.4 of HP UPC.

Software Version: HP UPC Version 2.4

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP and/or its subsidiaries required for
possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial Items are
licensed to the U.S. Government under vendors standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

This document was prepared using DECdocument, Version 3.3-1n.

Contents

1 Introduction

1.1 The UPC Language . 1–1
1.2 Product . 1–2
1.3 Language Overview . 1–2
1.3.1 Explicitly Parallel Execution Model . 1–2
1.3.2 Separate Private and Shared Address Spaces 1–3
1.3.3 C-style Pointers Into the Shared Address Space 1–4
1.3.4 Large Scale Synchronization and Resource Management 1–4

2 Language Features

2.1 Data Sharing Model . 2–1
2.2 Strict And Relaxed Data Access . 2–2
2.3 Special Constants . 2–5
2.3.1 THREADS . 2–5
2.3.2 MYTHREAD . 2–5
2.4 UPC_MAX_BLOCK_SIZE Defined Constant . 2–5
2.5 Type Qualifiers . 2–5
2.5.1 Shared . 2–5
2.5.1.1 Block Size . 2–6
2.5.2 Strict and Relaxed . 2–7
2.6 Pragma upc strict and pragma upc relaxed . 2–8
2.7 Pragma upc nested and pragma upc unnnested . 2–8
2.8 Operators . 2–9
2.8.1 upc_blocksizeof . 2–9
2.8.2 upc_localsizeof . 2–10
2.8.3 upc_elemsizeof . 2–10
2.9 Built-in Functions . 2–11
2.9.1 upc_threadof . 2–11
2.9.2 upc_phaseof . 2–11
2.9.3 upc_addrfield . 2–11
2.9.4 upc_affinitysize . 2–11
2.9.5 upc_reset_phase . 2–12
2.10 Shared Arrays . 2–12
2.10.1 THREADS Dimension . 2–12
2.10.2 Block Size . 2–13
2.10.2.1 Block Size and Typedefs . 2–13
2.10.2.2 Block Size and Array Dimensions . 2–14
2.10.3 Size of a Shared Array . 2–15
2.11 Pointers to Shared Data . 2–15
2.11.1 Terminology . 2–15
2.11.2 Implementation . 2–16
2.11.3 Restrictions . 2–16
2.11.4 Casting to Pointers to Private . 2–17

iii

2.12 Statements . 2–17
2.12.1 upc_forall Statement . 2–17
2.12.1.1 Semantics . 2–17
2.12.1.2 Syntax . 2–18
2.12.2 Barrier Statements . 2–18
2.12.3 Nested upc_forall Loops . 2–19
2.12.4 upc_fence Statement . 2–20

3 Library Functions

3.1 Locking Functions . 3–1
3.1.1 The upc_lock Function . 3–2
3.1.2 The upc_lock_attempt Function . 3–2
3.1.3 The upc_unlock Function . 3–2
3.1.4 The upc_all_lock_alloc Function . 3–2
3.1.5 The upc_global_lock_alloc Function . 3–3
3.1.6 The upc_lock_free Function . 3–3
3.1.7 Locking Algorithms . 3–3
3.2 Memory Transfer Functions . 3–4
3.2.1 The upc_memcpy Function . 3–4
3.2.2 The upc_memget Function . 3–4
3.2.3 The upc_memput Function . 3–4
3.2.4 The upc_memset Function . 3–4
3.3 Allocations . 3–4
3.3.1 The upc_alloc Function . 3–5
3.3.2 The upc_global_alloc Function . 3–6
3.3.3 The upc_all_alloc Function . 3–6
3.3.4 The upc_free Function . 3–6
3.3.5 The upc_global_exit Function . 3–6
3.4 Collective Functions . 3–7
3.4.1 Synchronization Options . 3–7
3.4.2 Relocalization Operations . 3–7
3.4.2.1 The upc_all_broadcast Function . 3–7
3.4.2.2 The upc_all_scatter Function . 3–7
3.4.2.3 The upc_all_gather Function . 3–8
3.4.2.4 The upc_all_gather_all Function . 3–8
3.4.2.5 The upc_all_exchange Function . 3–8
3.4.2.6 The upc_all_permute Function . 3–9
3.4.3 Computational Operations . 3–9
3.4.3.1 The upc_all_reduce and upc_all_prefix_reduce Functions 3–10

4 Compiling and Running UPC Programs

4.1 The upc command . 4–1
4.2 Macro Names . 4–2
4.3 Compiler Options . 4–4
4.3.1 UPC-Specific Options Supported on All Platforms 4–5
4.3.1.1 The -frelaxed Option . 4–5
4.3.1.2 The -fstrict Option . 4–5
4.3.1.3 The -fthreads num Option . 4–5

iv

4.3.2 UPC-Specific Options Supported Only on Tru64 UNIX 4–6
4.3.2.1 The -narrow Option . 4–6
4.3.2.2 The -assume [no]nested_upc_forall Option 4–6
4.3.2.3 The -[no]smp Option . 4–6
4.3.2.4 The -[no]smp_local Option . 4–6
4.3.2.5 The -wide Option . 4–6
4.3.3 General Options Supported on All Platforms . 4–6
4.3.4 General Options Supported Only on Tru64 UNIX 4–8
4.3.5 Optimization Options Supported on All Platforms 4–12
4.3.6 Optimizatization Options Supported Only on Tru64 UNIX 4–13
4.3.7 Preprocessor Options Supported on All Platforms 4–20
4.3.8 Preprocessor Options Supported Only on Tru64 UNIX 4–21
4.3.9 Language Mode Options . 4–21
4.3.10 Message Information and Control Options Supported on Tru64

UNIX . 4–21
4.4 Examples . 4–22
4.5 Diagnostics . 4–23
4.6 Use of the comp.config File . 4–23
4.7 Header Files . 4–24
4.8 Linking UPC Programs . 4–24
4.9 Debugging UPC Programs . 4–24
4.10 Running UPC Programs . 4–25
4.10.1 Running Programs in Single Thread Mode . 4–25
4.10.2 Running Programs in Multithread Mode . 4–25
4.10.3 Running Programs in Multithread Mode Using the UPC Run-Time

Environment . 4–26

5 The UPC Run-Time Environment

5.1 The UPC Job Control Daemon . 5–1
5.1.1 upcrund Options . 5–1
5.1.2 upcrund Environment Variables . 5–2
5.1.3 upcrund Files . 5–2
5.2 The upcrun Command . 5–2
5.2.1 upcrun Options . 5–3
5.2.2 upcrun Operands . 5–4
5.2.3 upcrun Warnings . 5–4
5.2.4 upcrun Exit Status . 5–4
5.2.5 upcrun Examples . 5–4
5.2.6 upcrun Environment Variables . 5–5

6 Programming Techniques

6.1 Sharing Data Across Multiple Threads . 6–1
6.1.1 Granularity . 6–1
6.1.2 Bit Fields . 6–1
6.2 Synchronizing Access To Shared Data . 6–2
6.3 Improving Performance Of Shared Data Access . 6–2
6.4 Using the upc_forall Statement . 6–3
6.4.1 Null Affinity Expressions . 6–3
6.4.2 Integer Affinity Expressions . 6–3
6.4.3 Shared Address Affinity Expressions . 6–4

v

7 Run-Time Library Configuration and Control

7.1 Quadrics Environment . 7–1
7.2 SMP Environment . 7–2
7.3 UPC RTS Memory Usage . 7–2
7.4 Environment Variables . 7–3
7.4.1 Performance Control Variables . 7–4
7.4.2 Diagnostic Library and Output Control Variables 7–4
7.4.3 Configuration Variables . 7–5
7.4.4 Display Variables . 7–5

A Recovering from Errors

A.1 Failures During Product Installation . A–1
A.2 Failures During Product Use . A–1
A.3 UPC RTS Run-Time Errors . A–1

Examples

2–1 Declarations Using strict and relaxed . 2–7
2–2 Uses of #pragma upc strict and #pragma upc relaxed 2–9
2–3 Uses of #pragma upc nested and #pragma upc unnested 2–9
2–4 Barrier Statements . 2–19
2–5 Value Matching for Barrier Statements . 2–19
3–1 Using Locks . 3–1
3–2 Examples of Dynamic Allocation of Shared Data 3–5

Tables

2–1 Equivalent Code Sequences Illustrating Use of Strict and Relaxed . . . 2–4
2–2 Resolving Ambiguity Between Block Size and Array Dimensions 2–7
2–3 Example of Distribution of Array Elements Across Threads 2–14
4–1 C Compiler Options Supported on All Platforms 4–5
7–1 Caching Control Variables . 7–4
7–2 Diagnostic Library and Output Control Variables 7–5
7–3 Configuration Variables . 7–5
7–4 Display Variables . 7–6

vi

1
Introduction

This manual contains information about the UPC parallel extension to the C
language, and about developing UPC programs on HP UX, Tru64 UNIX, and
XC Linux systems. It is intended as a supplement to the HP Tru64 UNIX
Programmer’s Guide. Some of the information in this manual has been taken
from the following sources:

• The Introduction to UPC and Language Specification CCS-TR-99-157, by
William W. Carlson, Jesse M. Draper, et al, May 13, 1999

• The Quadrics™ RMS User Manual

• The UPC Language Specification

The information in this manual pertains to the HP UPC implementation for HP
UX, Tru64 UNIX, and XC Linux systems, and is not intended to describe either
the theoretical UPC language design or the implementation of UPC by any other
company.

1.1 The UPC Language
The UPC language was designed as a unification of three earlier languages, all
modifications to the C language and all intended to support an explicit parallel
programming model. These three are:

AC Designed and developed by Bill Carlson and Jesse Draper of
the Center for Computing Sciences, originally for the CM-5
from Thinking Machines and later adapted to the Cray T3
series.

Split C Designed and developed by David Culler, Kathy Yelick et al. at
the University of California-Berkeley.

Parallel C Preprocessor Designed and developed by Eugene Brooks and Karen Warren
at Lawrence Livermore Laboratories.

The Unified Parallel C (UPC) language is not a superset of these three
predecessors. Rather, it is a distillation of the essential features needed to
support programming for a wide variety of parallel computer architectures in an
efficient manner.

The original UPC implementation was adapted from the AC compiler for the
Cray T3D and T3E machines. The HP UPC compiler and Run-Time System for
AlphaServer SC systems is the first independent implementation, and is based on
the HP C++ V6 series of compilers.

UPC is an extension to C99. It provides a simple shared memory model for
parallel programming, allowing data to be shared or distributed among a number
of communicating processors. Constructs are provided in the language to permit
simple declaration of shared data, distribute shared data across threads, and
synchronize access to shared data across threads.

Introduction 1–1

Introduction
1.2 Product

1.2 Product
HP UPC is a fully conforming implementation of the UPC language, with some
extensions, primarily for compatibility with the HP C and HP C++ products.
UPC is fully compliant with the ANSI C99 specification except for complete
implementation of the complex data type. Note also that the C run-time library
used by UPC might not provide complete implementation of the C99 run-
time components. UPC supports variable length arrays on the Tru64 UNIX
platform, but not on the HP-UX platform. HP UPC supports the UPC language
specification Version 1.2 developed by the UPC Consortium and released in May
2005.

The HP UPC product consists of the following components:

• The compiler driver program, upc, controlling the compilation and linking
process.

• The compiler, upc_cc, run by the driver.

• The UPC Run-Time library, libupc, providing the interface between the
compiler-generated code and the memory interconnect system. The library is
also referred to as the UPC Run-Time System, or UPCRTS.

• The prun command, provided with the AlphaServer SC software or the srun
command provided with the Simple Linux Utility for Resource Management
(SLURM) on XC Linux systems.

• Optional Run-Time Environment components (see Chapter 5).

1.3 Language Overview
UPC has three concepts that distinguish it from other programming languages
designed to support parallelism:

1. An explicitly parallel execution model

2. Separate private and shared address spaces

3. C-style pointers into the shared address space

1.3.1 Explicitly Parallel Execution Model
The execution model used by UPC is Single Program Multiple Data (SPMD),
and is explicitly parallel. That is, the executable UPC program is run, from the
beginning and in its entirety, on each CPU independently. Thus, the programmer
must constantly be aware that, unless he explicitly provides an alternative, the
same actions will be performed on every CPU involved. If an ordinary ANSI C
program is compiled and run as a UPC program, it will work normally, but it will
be replicated on as many CPUs as requested in the prun command. The language
features THREADS, MYTHREAD, pointer to shared, and upc_barrier are
provided to allow the programmer to perform a different computation on each
CPU, even though the same executable code is running on each.

The UPC explicitly parallel execution model is similar to that used by the
MPI and PVM styles of parallel programming, and for the same rationale.
That is, by allowing each instance to run independently, there is no need for
one thread of control to interfere with the other threads achieving their best
possible performance. The extent to which one thread affects the behavior of
other threads of control is entirely under the programmer’s control. This model
also allows for the greatest breadth of implementation designs. Both shared

1–2 Introduction

Introduction
1.3 Language Overview

memory and distributed memory architectures are supported by UPC in such
a way as to deliver their best possible performance, respectively. Hybrid, or
distributed shared memory systems can also be exploited to their best by the UPC
programming model. Note, however, that HP UPC does not support mixed MPI.

The UPC execution model is dramatically different from the model used by
the OpenMP extensions to the Fortran, C, and C++ languages, and the HPF
language. The OpenMP model is implicitly parallel. That is, the programmer
specifies the execution of a single master thread of control. At certain points in
the program, the programmer defines opportunities for parallel operation by slave
processors, whose recruitment, data availability, and synchronization is entirely
under the control of the master. This strong interdependence means that these
languages must provide a relatively rich set of parallelism primitives if adequate
performance is to be maintained with a wide variety of algorithms. Because of
its explicitly parallel model, UPC can express a wide variety of parallel concepts
with a few simple extensions to the base language.

1.3.2 Separate Private and Shared Address Spaces
Like many other programming languages, UPC provides two separate address
spaces: a private space, where the same address accessed on each thread operates
on distinct physical memory cells, and a shared space, where the same address
on each thread refers to the same memory cell. Typically, however, the concept
of truly shared memory is foreign to most other explicitly parallel parallel
programming paradigms, such as MPI. Likewise, truly private memory is foreign
to implicitly parallel models like OpenMP.

In UPC, a compromise is used. Each shared memory cell in a running UPC
program is actually associated with a particular thread of control. This
association is called affinity. Thus, while every thread can address every shared
memory cell, cells with affinity to a given thread can be accessed more quickly.
This concept is expressed in the UPC syntax by the ability of the programmer
to cast a pointer to a shared memory cell, with affinity to the current thread,
to a pointer to a private memory cell. This ability is important, because it
allows the programmer to access the local portion of shared memory with the
same performance as that thread’s access to its private memory. It is generally
expected that access to any shared memory cell is slower than access to a private
one. This performance difference can vary significantly among implementations,
and from one shared reference to another within a single implementation. This
happens because run-time optimizations, such as caching and prefetching, can
turn a remote shared access into a local one.

Reading and writing to shared memory locations is the primary way that one
thread affects the behavior of others in a running UPC program. Because all
threads have access to the same pool of shared memory, the programmer must
take care to insure that one thread doesn’t destroy the correct inputs or outputs
of the others.

The primary language feature that allows the UPC programmer to control this
interference is the use the relaxed and strict type qualifiers. On one hand, it
is absolutely necessary to serialize access to commonly used memory locations,
otherwise each thread can destroy the proper inputs or outputs of another. On
the other hand, when the programmer knows that the individual threads are
not touching one another’s inputs and outputs, he doesn’t want to incur the
performance impact of such serialization. How this choice is made for each
individual shared memory location is determined by the strict or relaxed type
qualifiers, used when the location (variable, array, etc.) is declared. Variables

Introduction 1–3

Introduction
1.3 Language Overview

declared strict incur serialization overhead associated with each reference;
variables declared relaxed do not.

Note

In UPC, the term threads means separate threads of execution, which
in HP UPC are UNIX processes running on various CPUs. They have
separate address spaces from each other (except for shared data, as
described earlier). They are not the same as threads in a pthread
application, nor are they kernel threads. UPC does not support mixed
pthreads.

1.3.3 C-style Pointers Into the Shared Address Space
The use of pointers is central to the C language. Other dialects of C that support
parallelism, such as the use of MPI in C programs, do not support pointers
to reference locations outside each thread’s local memory. This dramatically
degrades the ease of programming such dialects. The UPC language derives
most of its ease of programming from the ability to declare, define, and reference
data through pointers into shared memory space. With a single stroke, this
feature provides access to all the ordinary programming techniques used in
C. By providing such pointers, the UPC language allows ordinary C language
expressions to support parallelism in a straightforward way. To the extent that
UPC programming differs from ordinary C, it is primarily the need to properly
manage the type distinction between pointers to private and shared memory
locations.

Inside the compiler and the Run-Time System for UPC, pointers to shared space
are not implemented as ordinary addresses, but as composite structures, encoding
not only the address but also the affinity, and possibly the block offset, of the
destination value. Thus, arithmetic operations on such pointers, for example p++,
can incur considerable computational load. This is another reason for providing
the feature of casting a pointer to shared to a pointer-to-private space.

1.3.4 Large Scale Synchronization and Resource Management
All parallel programming techniques require mechanisms to bring all threads
to a single point in the computation, and to manage resources such as dynamic
memory. UPC provides these in a straightforward manner as statements like
upc_fence, upc_barrier, upc_forall and functions such as upc_all_alloc().
Mastering the concepts discussed in this introduction will provide most of the
tools needed to express parallel algorithms in a succinct and efficient manner in
the UPC language.

1–4 Introduction

2
Language Features

This chapter describes the following UPC lanugage features:

• Section 2.1, Data Sharing Model

• Section 2.2, Strict And Relaxed Data Access

• Section 2.3, Special Constants

• Section 2.4, UPC_MAX_BLOCK_SIZE Defined Constant

• Section 2.5, Type Qualifiers

• Section 2.6, Pragma upc strict and pragma upc relaxed

• Section 2.7, Pragma upc nested and pragma upc unnnested

• Section 2.8, Operators

• Section 2.9, Built-in Functions

• Section 2.10, Shared Arrays

• Section 2.12, Statements

HP UPC is in full compliance with Version 1.2 of UPC Language Specification,
which you can from the George Washington University UPC Documentation
page.

2.1 Data Sharing Model
A UPC program runs simultaneously on one or more threads per processor in
a multiprocessor system. Each instance of the program has a separate memory
space. Variables are not shared among the threads unless explicitly marked as
shared.

Shared data always have affinity to some thread. Having affinity to some thread
is sometimes referred to as being local to that thread. Arrays of shared data
are distributed among the threads essentially equally. Shared scalars have
affinity to thread 0. Dynamically allocated shared data can have affinity to
any thread. Array elements are allocated in round-robin fashion to the various
threads, beginning on thread 0. A block size indicates how many elements are
consecutively allocated to one thread before proceeding to the next thread when
allocating a shared array among the various threads.

References (fetches and stores) to private data proceed exactly as they do in an
ordinary C program. Shared data references are transformed by the compiler
into an appropriate series of function calls to fetch or store the data from the
thread to which it has affinity. Typically this will involve transferring data over
the Quadrics memory interconnect switch on AlphaServer SC and HP SMP
systems, although optimizations may be performed based on knowledge of the
exact memory configuration.

Language Features 2–1

Language Features
2.2 Strict And Relaxed Data Access

2.2 Strict And Relaxed Data Access
The keywords strict and relaxed specify a method to be used for access (fetches
or stores) to shared data. The selection of a method is referred to as specifying
the coherence. The coherence may be specified in the type of the variable being
accessed, or it may be specified in the code that is performing the access.

In all cases, from the viewpoint of a single thread, references to shared data
appear to execute in the order they were issued. For example:

shared int x, y;
x = 0;
...
x = 1;
y = x;

Unless x is overwritten by another thread, y receives the value 1, regardless of
whether the various references to x and y are strict or relaxed.

strict
Indicates that all modifications to shared data are visible on all threads in the
order they are performed. This behavior is implemented as follows:

• Strict stores:

Wait for any pending relaxed stores issued by the current thread to be
completed before the current strict store is begun, to avoid data being
overwritten.

Wait for the current store to be completed before proceeding.

• Strict fetches:

Wait for any pending stores issued by the current thread to be completed
before the current fetch is begun, so as to get the most recently written
value.

Note that all pending fetches or stores—strict or relaxed—issued by the current
thread are completed before a strict access is performed. Also note that compiler
code motion is restricted; that is, the compiler cannot move a fetch or store of
shared data past a strict reference, in either direction.

relaxed
Indicates that data are to be written and read without cross-thread
synchronization, and thus, typically, with higher performance. Results of a
sequence of relaxed operations (fetches and stores) may appear to another thread
to have been executed in any order. Programs must synchronize their use of
data using strict references, fences, and barriers at appropriate times. Fence
statements (Section 2.12.4), barrier statements (Section 2.12.2), and explicit
strict references via #pragma upc strict (Section 2.6) provide the necessary
synchronization by waiting for store completion or delaying fetches before
proceeding.

Note that if a single thread stores a series of values to a single location, the
last value stored is the one that is visible past a synchronization point, and all
threads agree on values after synchronization. For example:

2–2 Language Features

Language Features
2.2 Strict And Relaxed Data Access

shared int x;
x = 0;
...
x = 1;
barrier;

After the barrier, all threads see x with a value of 1, regardless of whether the
stores to x were strict or relaxed.

The coherence may be specified in the type (see Section 2.5.2), globally or locally
in the source code via a pragma (see Section 2.6), or via a command line option
(see Section 4.3), where the command line is equivalent to a global pragma
setting at the beginning of the source code. (The UPC header files upc_strict.h
and upc_relaxed.h set the pragma state to strict or relaxed, respectively.) If
neither the pragma nor the command line switch is seen, the default value for
the coherence is relaxed.

When determining the coherence to use for a particular shared data reference,
the order of precedence is as follows:

1. Does the type specify the coherence? If not,

2. Is there a local pragma setting for the coherence? If not,

3. Is there a global pragma setting? If not,

4. Use relaxed.

Note that specifying the coherence in a variable declaration is equivalent to
specifying it in the type. The coherence affects the type of the variable, not the
variable itself. The relaxed and strict keywords are, formally, type qualifiers in
the C language.

Table 2–1, derived from an example in Introduction to UPC and Language
Specification, illustrates different ways to use strict and relaxed. All four
sequences have identical meanings.

Language Features 2–3

Language Features
2.2 Strict And Relaxed Data Access

Table 2–1 Equivalent Code Sequences Illustrating Use of Strict and Relaxed

Strict Default Relaxed Default

Using Types

#include <upc_strict.h>
shared int flag;
relaxed shared int data1, data2;

send(int val1, val2) {
while (flag) /* loop */ ;
data1 = val1;
data2 = val2;
flag = 1;

}
int rcv() {
int tmp;
while (!flag) /* loop */ ;
tmp = data1 + data2;
flag = 0;
return tmp;

}

#include <upc_relaxed.h>
strict shared int flag;
shared int data1, data2;

send(int val1, val2) {
while (flag) /* loop */ ;
data1 = val1;
data2 = val2;
flag = 1;

}
int rcv() {
int tmp;
while (!flag) /* loop */ ;
tmp = data1 + data2;
flag = 0;
return tmp;

}

Using Pragma

#include <upc_strict.h>
shared int flag, data1, data2;

send(int val1, val2) {
while (flag) /* loop */ ;
{ /* scope for pragma */

#pragma upc relaxed
data1 = val1;
data2 = val2;

}
flag = 1;

}
int rcv() {
int tmp;
while (!flag) /* loop */ ;
{ /* scope for pragma */

#pragma upc relaxed
tmp = data1 + data2;

}
flag = 0;
return tmp;

}

#include <upc_relaxed.h>
shared int flag, data1, data2;

send(int val1, val2) {
{ /* scope for pragma */

#pragma upc strict
while (flag) /* loop */ ;

}
data1 = val1;
data2 = val2;
{ /* scope for pragma */

#pragma upc strict
flag = 1;

}
}
int rcv() {
int tmp;
{ /* scope for pragma */

#pragma upc strict
while (!flag) /* loop */ ;

}
tmp = data1 + data2;

#pragma upc strict
{ /* scope for pragma */
flag = 0;

}
return tmp;

}

2–4 Language Features

Language Features
2.3 Special Constants

2.3 Special Constants
The UPC language specifies two important constant integer values, THREADS
and MYTHREAD. These provide the programmer with the primary means to
specify different computational values on different threads, even though the same
program is being executed.

2.3.1 THREADS
THREADS is a named constant whose value indicates how many instances of the
program are being run. By default, it is a run-time constant, but it can be made
a compile-time constant (see Section 4.3). As a run-time constant, it is used as a
multiplier in one dimension of a shared array (see Section 2.10.1).

If THREADS is a compile-time value, it is treated exactly as a constant of the
specified value, and may be used in all places where an integer constant can be
used, including array dimensions. It may be used in preprocessing directives.

2.3.2 MYTHREAD
MYTHREAD is a named constant whose value indicates the thread number
of the current thread. It is a run-time constant with a different value for each
instance of the program. Its value ranges from 0 to (THREADS - 1).

2.4 UPC_MAX_BLOCK_SIZE Defined Constant
The macro UPC_MAX_BLOCK_SIZE is defined by the compiler as the largest value
that may be specified for a block size. It is an unsigned long type and is a
compile-time constant. See Section 4.3 for a description of the -narrow and
-wide options used to specify the size of the the pointer to shared structure.
The maximum block size is dependent on the size of the data structure used
for pointers-to-shared, which is 128 bits on HP-UX XC Linux and and either 64
(default) or 128 bits on Tru64 UNIX.

2.5 Type Qualifiers
The following sections describe type qualifiers.

2.5.1 Shared
Shared data are indicated by the shared type qualifier, optionally followed by a
block size in square brackets, and optionally accompanied by either the strict or
relaxed type qualifier. Any data declared without the use of shared are local to
each thread, and cannot be referenced or modified by a different thread.

Shared arrays (Section 2.10) are distributed across all threads. Shared scalars all
have affinity to thread 0.

Shared data may not be part of a structure or union. Only the entire structure or
union may be shared. Structures may, however, contain pointers to shared data.
Shared structures may contain pointers to local data, but those pointers are not
likely to be valid on all threads.

Shared data cannot have the auto storage class. They can use the static or
extern storage classes, or they can be dynamically allocated (see Section 3.3).
Shared data are not allowed to be statically initialized.

Language Features 2–5

Language Features
2.5 Type Qualifiers

2.5.1.1 Block Size
The block size specifier is most appropriate for arrays and pointers, but can be
used in scalar declarations. It indicates the number of underlying array elements
that are grouped together on a single thread.

Block size is specified in brackets immediately following the shared type
qualifier. The value specified must be a compile-time positive integer constant. If
no block size is specified, a block size of one is used. For example:
shared [3] int x[3*THREADS];
shared [5] double *p;
shared long y[2*THREADS]; // Uses default block size of 1
shared [3*2] int w[2][3*THREADS]; // Block size is 6

Empty brackets indicate indefinite block size; all the elements have affinity to the
same thread. Pointers and scalars may be specified with indefinite block size. If
an array is specified with indefinite block size, the dimensions may not include a
multiple of THREADS, and the entire array will have affinity to thread zero. For
example:
shared [] double *p;
shared [] long a[35];

A block size specified as "*" indicates that the compiler is to calculate the block
size as the number of elements per thread, resulting in all elements for a given
thread being contiguous. This form of block size specification is called pure
block allocation. If THREADS is specified at compile time, and the number of
elements in an array is not an even multiple of THREADS, the value is rounded
up to ensure all elements for a given thread are contiguous. Some examples:
shared [*] int A[3*THREADS][5][12];
/* Block size is 3*5*12 = 180 */

shared [*] int B[3][5][12];
/* If THREADS is 3, block size is 60 */
/* If THREADS is 7, block size is 26 */

If the shared type qualifier appears twice in a declaration, the block sizes
(Section 2.5.1.1) must match. For example:
shared shared [3] int x; // Mismatch: default block size 1 vs explicit block size 3
typedef shared [3] int S3INT;
shared [3] S3INT y; // Valid
shared S3INT z; // Mismatch: default block size 1 vs explicit block size 3

Block size specifiers have higher precedence than array dimensions. A type
specified as int shared [5] indicates a shared integer with a block size of 5,
rather than an array[5] of shared integers with the default block size of one.

Multiple bracketed expressions after the shared keyword are interpreted as an
attempt to declare multiple block sizes and are diagnosed as errors. In object
declarations, or function prototypes where the arguments indicate variable
names, the block size specification and an array dimension would be separated
by an identifier. In cases where they are not, such as in casts or in function
declarations without specifying argument variable names, the array dimensions
must be enclosed in parentheses. Table 2–2 illustrates this.

2–6 Language Features

Language Features
2.5 Type Qualifiers

Table 2–2 Resolving Ambiguity Between Block Size and Array Dimensions

Declaration Interpretation Comments

int shared [3] shared (blocksize 3)
integer

Bracketed expression is interpreted
as block size

int shared [3] [4] Rejected Only one block size allowed

int shared [3] ([4]) Array[4] of shared
(blocksize 3) integer

Parentheses avoid ambiguity

int shared [3] x[4] x is an array[4] of
shared (blocksize 3)
integers

The identifier avoids ambiguity

shared [3] int [4] Array[4] of shared
(blocksize 3) integer

Putting the qualifier before the
type rather than after it avoids
ambiguity

int * shared [3] Shared (blocksize 3)
pointer to local integer

Bracketed expression is interpreted
as block size; note that the pointer
is shared, not the pointed-to data

int * shared [3] [4] Rejected Only one block size allowed

int * shared [3] ([4]) Array[4] of shared
(blocksize 3) pointer to
local integer

Parentheses avoid ambiguity

int * shared [3] x[4] Array[4] of shared
(blocksize 3) pointer to
local integer

The identifier avoids ambiguity

See Section 2.10.2 for a discussion on how block size is used in shared array
element distribution.

The block size of shared data matters when determining type compatibility of
pointers to shared data. A pointer with a block size of one is compatible with a
pointer with any other block size, but otherwise an explicit cast is required. See
Section 2.11.

The shared void * type is a generic pointer to shared data. When an assignment
is made to or from a shared void * pointer, no cast is necessary.

2.5.2 Strict and Relaxed
The strict and relaxed type qualifiers indicate that all references to data of
the type being specified are to use the strict or relaxed coherence, respectively.
If neither is specified, the coherence used will be governed by global and local
settings in the code. Strict and relaxed may not be used together, and they may
only be specified for shared data.

Example 2–1 Declarations Using strict and relaxed

strict shared float *p; // Pointer to strict shared float
shared relaxed int x;

typedef strict shared int ssi;
ssi ssi_array[3*THREADS]; // Array of strict shared int

(continued on next page)

Language Features 2–7

Language Features
2.5 Type Qualifiers

Example 2–1 (Cont.) Declarations Using strict and relaxed

typedef shared int SA[5*THREADS];
strict SA SA_strict; // Array of strict shared int
relaxed SA SA_relaxed; // Array of relaxed shared int
SA SA_unspecified; // Array of shared int

See also Section 2.2 for further information on strict and relaxed data access.

2.6 Pragma upc strict and pragma upc relaxed
#pragma upc strict and #pragma upc relaxed specify a strict or relaxed
coherence, respectively, for variables without an explicit coherence. There are two
forms: global and local, distinguished by where the pragma appears in the source
code.

The global form changes the setting for the remainder of the compilation unit. It
appears at file scope, outside of any function definition.

The local form changes setting for the current block. It appears inside a block
or inside a function body, before any data declarations. If the pragma appears
anywhere else within a block, an error will be generated.

The global state of the pragma may be saved and restored. This can be useful
inside included files, where some section of code needs a particular setting that
may or may not be different. To save or restore the coherence state, specify
#pragma upc coherence followed by either save or restore. (These options are
not supported on the HP-UX platform).

#pragma upc coherence save
#pragma upc coherence restore

Example 2–2 illustrates how to use the pragma. Table 2–1 shows uses of the
pragma in conjunction with type declarations specifying coherence.

2.7 Pragma upc nested and pragma upc unnnested
HP UPC provides an additional pragma option for use with the upc_forall
statement. The statement has significantly different semantics depending on
whether it is dynamically nested within another upc_forall statement. If the
programmer can assert that a particular upc_forall statement is never nested,
or that all upc_forall statements are never nested, the compiler can be more
aggressive in optimizing the loop. To allow programmers to make such assertion,
HP UPC provides #pragma upc nested and #pragma upc unnested. If either
#pragma upc nested or #pragma upc unnested appears at file scope, it affects all
upc_forall statements in the remainder of the compilation unit. If the pragma
appears inside the body of a upc_forall statement, before any other statements
or any data declarations, it affects only that upc_forall statement. If the pragma
appears in any other location, an error is generated. If a upc_forall statement
is declared unnested, it makes a run-time assertion that no other upc_forall
statement is active upon entry to the unnested loop, and it generates code that
does not allow nesting. If a upc_forall statement is declared nested, it will allow
for either nested or unnested execution.

2–8 Language Features

Language Features
2.7 Pragma upc nested and pragma upc unnnested

Example 2–2 Uses of #pragma upc strict and #pragma upc relaxed

shared int x[3*THREADS], y;
int i;
#pragma upc strict // Sets global state
void f1(void) {
x[2] = y; // Strict references
for (i = 0; i < 3*THREADS; i++) {

#pragma upc relaxed // Sets state within for body
x[i] = i; // Relaxed reference
y++; // Relaxed reference

}
y--; // Strict reference
{

#pragma upc relaxed // Sets state within block
x[3] = 2; // Relaxed reference
y += x[7]; // Relaxed references

}
}

#pragma upc coherence save // Saves global state (strict)
#pragma upc relaxed // Sets global state to relaxed
void f2(void) {
x[3]++; // Relaxed reference
y--; // Relaxed reference

}
#pragma upc coherence restore // Restores global state (strict)
void f3(void) {
y++; // Strict reference

}

Example 2–3 Uses of #pragma upc nested and #pragma upc unnested

#pragma upc unnested // Sets global state
upc_forall(...) {...} // Asserted not to be nested
upc_forall(...) {
#pragma upc nested // This loop can be nested
...

}
upc_forall(...) {...} // Asserted not to be nested
#pragma upc nested // Sets global state
upc_forall(...) {...} // Can be nested
upc_forall(...) {
#pragma upc unnested // Asserted not to be nested
...

}
upc_forall(...) {...} // Can be nested

2.8 Operators
Several function syntax operators are provided for determining information about
shared types.

2.8.1 upc_blocksizeof
The upc_blocksizeof operatior returns the block size of a shared variable, type,
or expression, in a manner similar to sizeof.

If the type was declared with indefinite block size, the value 0 is returned. The
macro UPC_INDEFINITE_BLOCK_SIZE is defined to zero in upc.h for convenience.

If the type is not a shared type, a value exceeding the maximum
block size (specifically, UPC_MAX_BLOCK_SIZE+1) is returned. The macro
UPC_NON_SHARED_BLOCK_SIZE is defined in upc.h for convenience.

Language Features 2–9

Language Features
2.8 Operators

Given the following declarations:

shared [15] int x;
shared [] int *p;
shared [15] int * shared [3] sp;
shared [15] int a[15*THREADS];

The table below shows the result when upc_blocksizeof is applied to the operand.

Operand Result Comments

x 15

&x UPC_NON_SHARED_BLOCK_SIZE Pointer to shared type
is not shared

p UPC_NON_SHARED_BLOCK_SIZE Pointer is not itself
shared

*p UPC_INDEFINITE_BLOCK_SIZE

sp 3 This pointer is shared

*sp 15

a[2] 15

&a[2] UPC_NON_SHARED_BLOCK_SIZE Pointer to shared type
is not shared

a 15

2.8.2 upc_localsizeof
The upc_localsizeof operator returns the size of that portion of a shared
variable, type, or expression that has affinity to each thread, in a manner similar
to sizeof. The operation returns the size of the locally allocated portion of the
data. For shared arrays and shared array types, the returned value is the size
used for static allocation. For any other types of data, this operation is the same
as sizeof.

Shared array types that are not evenly blocked (see Section 2.10.3) may require
extra allocated space to account for elements needed on a subset of the threads.
Thus, the size of the array as returned by sizeof may not be the same as the
value returned by upc_localsizeof multiplied by THREADS.

2.8.3 upc_elemsizeof
The upc_elemsizeof operator returns the underlying element size of an array
type, in a manner similar to sizeof. It takes a single argument. If the type of
the argument is an array type, upc_elemsizeof returns the size of the most
significant sub-element of that array type that is not an array, disregarding
typedefs. If the type of the argument is not an array type, upc_elemsizeof
returns the size of the argument type.

For example, in all of the following cases upc_elemsizeof(A) would return the
size of an int:

int A;

typedef int T1[3];
T1 A;

typedef int T2[3][6];
T2 A[5];

2–10 Language Features

Language Features
2.8 Operators

In this example, however, upc_elemsizeof(A) would return the size of a T3:

typedef struct {
int inside[3];

} T3;
T3 A[5];

2.9 Built-in Functions
UPC provides several built-in functions for the purpose of detecting
characteristics of pointers to shared data. Note that, because these are built-in
functions rather than actual functions, they cannot have their addresses taken.

2.9.1 upc_threadof
The upc_threadof function takes one argument, a pointer to shared data, and
returns the MYTHREAD value for the thread to which that shared location has
affinity.

2.9.2 upc_phaseof
The upc_phaseof function takes one argument, a pointer to shared data,
and returns the offset within the block containing it. Note that the offset is
represented in terms of the base elements of the array. For example, if the
pointer is pointing into a block of five elements (numbered 0 through 4) at
element 3, upc_phaseof would return 3.

2.9.3 upc_addrfield
The upc_addrfield function takes one argument, a pointer to shared data, and
returns the address field from the pointer structure. This function is intended for
use in debugging only. It can help see the effects of shared pointer arithmetic.

The upc_addrfield function is not the equivalent of a cast to a pointer to private,
even if the shared pointer refers to data with affinity to the current thread. The
address field is an internal representation only.

2.9.4 upc_affinitysize
The upc_affinitysize function calculates the size of the local portion of the
data in a shared object with affinity to a given thread. a value of zero for nbytes
indicates indefinite block size, and the allocation is assumed to have affinity to
thread zero in its entirety, as would be the case with a static declaration.

Syntax is as follows:

size_t upc_affinitysize(size_t totalsize, size_t nbytes, size_t threadid);

The totalsize variable is the total size of the allocation in bytes; nbytes is the
number of bytes in a block; threadid is the thread whose affinitysize is to be
evaluated.

Examples:

shared [5] int A1[3][7][2*THREADS];
shared int *A2;
shared [] int *A3;
size_t A1size, A2size, A3size;

A2 = upc_all_alloc(25, 3*sizeof(int));
A3 = upc_alloc(17*sizeof(int));

Language Features 2–11

Language Features
2.9 Built-in Functions

A1size = upc_affinitysize(sizeof(A1), upc_blocksizeof(A1) * sizeof(int), threadid);
A2size = upc_affinitysize(25*3*sizeof(int), 3*sizeof(int), threadid);
A3size = upc_affinitysize(17*sizeof(int), 0, threadid);

In this example A3size will be zero if threadid is not zero.

2.9.5 upc_reset_phase
The upc_reset_phase() function returns a pointer that is a copy of its argument,
except that the phase of the returned pointer is guaranteed to be zero. Syntax is
as follows:

shared void *upc_reset_phase(shared void *p)

This function is useful when a function is receiving a generic argument using
the shared void * type, but needs to ensure that the pointer, when assigned to
another variable, has zero phase. For example:

void func(shared void *p) {
shared [8] char *cp;
cp = upc_reset_phase(p);

.

.

.

If p were assigned directly into cp, it would keep whatever phase it might have
had, leading to possibly incorrect results.

2.10 Shared Arrays
Shared arrays are arrays that are allocated in the shared address space. These
elements of a shared array are distributed in a block-cyclic manner across all
threads, with non-overlapping subsets of the elements having affinity to each
thread. The compiler converts each reference to an element of a shared array
into a remote reference to the appropriate element of the fragment of the array
with affinity to another thread, performing shared memory I/O where necessary.
Shared arrays are declared using the shared type qualifier.

C multidimensional arrays are implemented as "array of array of ... scalar."
For the purposes of interpreting the block size, a shared array is considered
a collection of elements of the underlying type, which is the first (that is, the
leftmost) type that is not an array. The elements of a multidimensioned shared
array can be thought of as a single-dimensioned array of elements of this
underlying type, arranged in the same address order as that of the original
multidimensioned array.

The elements of a shared array are distributed in a block-cyclic manner across all
threads. The first block of elements has affinity to thread 0, the next block has
affinity to thread 1, and so forth up to thread THREADS - 1, then the next block
again has affinity to thread 0. Within a block, it is guaranteed that consecutive
elements in the declared array are locally adjacent. It is also guaranteed that
consecutive blocks with affinity to the same thread are locally adjacent.

2.10.1 THREADS Dimension
When THREADS is a run-time value, exactly one dimension of a shared array
type (including typedefs) must be dimensioned to a multiple of THREADS. It
may be convenient to specify a separate dimension:

shared int A[3][THREADS];

2–12 Language Features

Language Features
2.10 Shared Arrays

or it may be preferable to indicate a multiplication:

shared int A[3*THREADS];

These two examples are not syntactically equivalent (the first array has two
dimensions, the second has one), but they do indicate the same number of
underlying array elements (that is, the same number of ints).

When THREADS is a compile-time value (that is, when -fthreads is specified
on the command line), no THREADS dimension is required when declaring a
shared array. (See also Section 2.3.1.) The allocation for the array will be padded
as necessary so that all threads allocate the same amount of memory. Any
additional space should not be considered accessible, however. See Section 2.10.3
for more information.

If an array is declared with indefinite block size (see Section 2.5.1.1), no
THREADS dimension is allowed, and the entire array has affinity to thread
zero. For example:

shared [] int A[30]; // 30-element shared array,
// all elements with affinity to thread 0

2.10.2 Block Size
Block size indicates the number of underlying array elements that are grouped
together on each thread. This section discusses various issues regarding proper
interpretation and use of block sizes.

2.10.2.1 Block Size and Typedefs
The block size always applies to the underlying scalar type (that is, the leftmost
non-array type), regardless of whether there are any typedefs involved. Consider:

typedef int arrayofints[12];
shared [5] int Array1[3*THREADS][12];
shared [5] arrayofints Array2[3*THREADS];
shared [5] struct { arrayofints x; } Array3[3*THREADS];

In the first two declarations, the block size of five applies to the int type. The
arrays Array1 and Array2 are grouped into blocks of five ints on each thread.
Note that, for any valid values of i and j, Array1[i][j] and Array2[i][j] will
have affinity to the same thread.

In the third declaration, Array3 is given a structure type. This structure type
is the leftmost non-array type, so Array3 is grouped into blocks of five of these
structures. In this case, all the elements of x[j] have affinity to the same thread
for a given Array3[i], and Array3[i].x[j] will in many cases not have affinity
to the same thread as Array1[i][j].

Note that you can use the upc_blocksizeof operation to make one type’s block
size match that of another type:
#include "a_header.h" // Defines types "Thing" and

// "SharedArrayOfThings"
shared [upc_blocksizeof(SharedArrayOfThings)] Thing *thingPointer;

The number of bytes in a block of a shared array may be calculated as:

upc_blocksizeof(A) * upc_elemsizeof(A)

Language Features 2–13

Language Features
2.10 Shared Arrays

2.10.2.2 Block Size and Array Dimensions
In some cases, it is convenient to make the block size a divisor of the product of
the dimensions to the right of the THREADS dimension:

shared [15] int ARR[2][7*THREADS][3][5];

In this example, the block size makes it convenient to think of the basic element
of ARR as an array[3][5] of int. The block size guarantees that the array[3][5]
will be at consecutive local addresses; a pointer to private can be created (see
Section 2.11.4) that will reference this array correctly when subscripted. For
example:

int (*p)[5]; // Declare a pointer to private

p = (int (*)[5])ARR[i][j];
p[a][b] = 0;

Out of these array[3][5] basic elements is made an array[2][7] on each thread.

Table 2–3 shows two examples of array elements distributed across threads.
One example has a smooth element distribution, while the other has an uneven
distribution.

Table 2–3 Example of Distribution of Array Elements Across Threads

Column Number

Row 0 1 2 3 4

shared [5] int A[3*THREADS][5]

0 0 0 0 0 0

1 1 1 1 1 1

2 2 2 2 2 2

3 0 0 0 0 0

4 1 1 1 1 1

5 2 2 2 2 2

6 0 0 0 0 0

7 1 1 1 1 1

8 2 2 2 2 2

shared [7] int A[3*THREADS][5]

0 0 0 0 0 0

1 0 0 1 1 1

2 1 1 1 1 2

3 2 2 2 2 2

4 2 0 0 0 0

5 0 0 0 1 1

6 1 1 1 1 1

7 2 2 2 2 2

8 2 2 0 0 0

The table shows the thread number to which each element has affinity. The value
of THREADS is 3 for this example, thus the outer dimension of the array is 9.

2–14 Language Features

Language Features
2.10 Shared Arrays

Note that, for the first declaration, all threads have 15 elements, while in the
second declaration thread 0 has 17 elements and the other threads have 14.

2.10.3 Size of a Shared Array
Because of the THREADS dimension, the size of a shared array is not a compile-
time constant unless THREADS is a compile-time constant. In contrast, the size
of a non-shared array is always a compile-time constant.

The sizeof operator will return the array total size, such that sizeof(array)
/ upc_elemsizeof(array) will always yield the total number of elements in the
array.

Because the array is distributed across all threads, the amount of space allocated
with affinity to any single thread doesn’t need to be the total array size. In
general, it is equivalent to the total array size divided by the number of threads.
This yields a local size, which can be divided by the underlying element size to
yield a local number of elements.

If the local number of elements is not an even multiple of the block size, then
the grouping of the elements into blocks will cause some threads to have more
elements than others. The local size as previously calculated would be too small
for some of the threads. To avoid this problem, the local number of elements,
for allocation purposes only, is rounded up to be a multiple of the block size. For
example:

shared [5] int A[3][7*THREADS][11];

In this array, the local number of elements is 231. The total number of elements
on a four-thread system would be 924. Grouped into blocks of five, there would
be four extra elements that would be local to thread 0, yielding a total of 234
elements on thread 0 and 230 on the other threads. Rounding up to 235 local
elements provides sufficient room for this case, while wasting one element on
thread 0 and five on the other threads.

The local size of a shared array may be determined using the upc_localsizeof
operator (Section 2.8.2).

2.11 Pointers to Shared Data
Pointers to shared data are presumed to point into arrays of shared data, which
share elements that are distributed across threads and grouped in blocks. Pointer
operations need to take this distribution and grouping into account. Thus, a
pointer to shared data must convey more information than simply the local
virtual address of the data. It must indicate to which thread the data have
affinity, and it must provide enough information to allow thread switching to
occur when the pointer is incremented past the end of a block. Because of these
distinctions, pointers to shared data are maintained internally as structures.

2.11.1 Terminology
Pointers to shared data are typically referred to as shared pointers, even though
the pointers themselves may or may not be shared.

Pointers themselves can be shared: a pointer to shared to shared data can be
referred to as a shared pointer to shared, and a pointer to shared to non-shared
data would be a shared pointer to private. Unless specified in this manner, the
pointer value is not shared, regardless of whether it is pointing to shared data.

Language Features 2–15

Language Features
2.11 Pointers to Shared Data

2.11.2 Implementation
The pointer to shared structure contains the following fields:

• thread, indicating the thread to which the pointed-to data have affinity;

• phase, indicating which element in the current block is pointed to;

• addr, a local virtual address for the data. Note that this virtual address may
not be the same as an equivalent pointer to private; see Section 2.11.4 for
details.

Values in these fields may be obtained by using the upc_threadof (Section 2.9.1),
upc_phaseof (Section 2.9.2), and upc_addrfield (Section 2.9.3) built-in
functions.

2.11.3 Restrictions
Pointers to shared data are not the same as pointers to private data and are
not guaranteed to be the same size. Binary operations (comparison, subtraction)
may not be performed between one pointer to shared and one pointer to private.
Pointers to shared may be compared to and subtracted from other pointers to
shared, but the results are meaningless if the pointers to shared point to different
arrays.

When a conversion is made from one pointer to shared type to another, the phase
of the resulting pointer to shared is set to zero, with one exception: if either the
source or the destination is a generic pointer to shared (shared void * type), the
phase is maintained across the conversion.

Pointers to shared with indefinite block size do not change phase as a result of
pointer arithmetic operations. Such pointers to shared will always have a phase
of zero.

Given an explicit or implicit conversion from one pointer-to-shared type to a
different pointer-to-shared type, the phase value of the result will be zero, unless
either the old or the new type is shared void *. This phase-saving characteristic
of the shared void * type allows the phase value to be passed along to a function.
For example:

void genfunc(shared void *p);

shared [8] int A[8*THREADS];

genfunc(&A[6]); /* Phase of argument is 6 */

void genfunc(shared void *p) {
i = upc_phaseof(p); /* i gets the value 6 */
...

}

When assigning a shared void * to a different type, take care to ensure that the
phase is appropriate to the destination pointer. For example:

shared [8] int A[8*THREADS];
shared [3] int *p;
shared void *svp;

svp = &A[6]; /* phase is 6 */
p = svp; /* phase of 6 is invalid for p */

Generic pointers to shared (shared void * type) may be compared to other
pointers to shared for equality or inequality, but they cannot be compared
otherwise.

2–16 Language Features

Language Features
2.11 Pointers to Shared Data

2.11.4 Casting to Pointers to Private
Pointers to shared may be cast to pointers to private only if the pointer to shared
refers to data with affinity to current thread. The result will be a valid local
pointer referring to the same data. This operation is useful if there is a large
block of data on the current thread that may be more efficiently manipulated
through pointers to private. The resulting pointer will correctly step through the
current array element block when incremented.

Note that:

• Pointers to private cannot be cast to pointers to shared.

• If a pointer to shared does not refer to the current thread, casting that pointer
to shared to a pointer to private will not produce an error, but the address
will not be valid.

See also Section 6.1.1 for some issues regarding pointers to small data types.

2.12 Statements
The following sections describe UPC statements.

2.12.1 upc_forall Statement
UPC provides the upc_forall statement as a way to distribute loop iterations
across the executing threads easily.

2.12.1.1 Semantics
In other parallel programming models, for example OpenMP, the goal of parallel
looping constructs is to partition the iteration space efficiently among the threads.
Each thread executes some subset of the entire iteration space. Different
partitionings are possible for such constructs, for example blocked, round robin,
guided self-scheduling, etc. However, many such looping constructs suffer major
performance degradations because the data referenced in the iterations can
predominantly reside on a different thread from the one executing the loop body
for that iteration.

In marked contrast, the UPC upc_forall construct takes exactly the opposite
approach. Instead of controlling which iterations are executing on which threads,
the UPC upc_forall statement, conceptually, executes all the specified iterations
on each thread. This obvious redundancy is balanced, however, by the ability of
the programmer to suppress execution of the loop body for those iterations whose
dominant data affinity is to a different thread.

Thus, although each thread samples the entire iteration space, as with an
ordinary for loop, the programmer has the opportunity to partition the space
of executed iterations on each thread in the most efficient manner possible. Since
the cost of referencing remote memory typically dwarfs the cost of local iteration
control expression evaluation, the UPC upc_forall statement actually provides
a better tradeoff for overall performance than the more typical parallel looping
constructs.

Furthermore, since the affinity expression in a UPC upc_forall construct can be
either an integer or a pointer to shared, the programmer can easily adjust the
partitioning of the executed iterations so as to globally minimize the number of
remote shared memory references across the entire iteration space of the loop
on all threads simultaneously. Such a capability is difficult, if possible at all, on
other parallel loop iteration control constructs and is a major contributor to the
efficiency of UPC over other parallel programming models.

Language Features 2–17

Language Features
2.12 Statements

Finally, the HP UPC compiler is capable, if the behavior of the expression can
be determined at compile time, of eliminating the wasted control calculations
entirely. This optimization is under the control of the -O compiler option. Thus,
HP UPC provides the best aspects of both models.

2.12.1.2 Syntax
The upc_forall statement adds a fourth control expression for the loop, an
affinity expression indicating whether the current thread should execute the loop
body. For example:
shared int A[3*THREADS], B[3*THREADS], C[3*THREADS];
upc_forall (i = 0; i < 3*THREADS; i++; &A[i])
A[i] = B[i] + C[i];

In this example, the affinity expression indicates that the body of the loop will
only run on the thread where each A[i] has affinity. Thus, in this case, each
iteration of the loop only references data with affinity to the running thread.
Note that this property is true regardless of the block size used to declare the
arrays.

A upc_forall loop may only be exited by completing the loop. Exiting the loop
via a goto statement, a return statement, or a break statement is not allowed.
There are cases the compiler cannot detect that could still cause the loop to exit
incorrectly, such as a longjmp from within a called function; they must be avoided
as well.

The upc_forall statement is considered a parallel statement, such that all
iterations of the loop executed by different threads are independent and may
be executed in any order. The compiler assumes that there are no loop-carried
dependencies among the iterations performed by different threads (that is, that
no iteration executed by one thread depends on a calculation performed in an
iteration executed by a different thread), and may arrange code accordingly. This
assumption is made regardless of the content of an affinity expression.

2.12.2 Barrier Statements
Barriers provide synchronization points among the executing threads. There
are two actions taken by each thread: notify the other threads that the barrier
has been reached; and wait for the other threads to reach the barrier before
proceeding.

UPC provides three statements that implement barriers. Each statement takes
an optional integer expression; this expression is a reference tag for the barrier
and must evaluate to the same value for all threads. The run-time system will
verify that all threads reach a barrier, and that all have specified the same value.

If no expression is present, the value will not be checked against those for other
threads, and the barrier statement will be considered an acceptable match for
any other barrier statement, with or without a value, executing on other threads.

The three statements are:

upc_notify
Notifies all other threads that the barrier has been reached. Before issuing the
notification, ensures that all writes of shared data have completed.

2–18 Language Features

Language Features
2.12 Statements

upc_wait
Waits for all other threads to reach the upc_notify statement. The programmer
is allowed to specify execution of statements not involving any references to
shared data between the execution of the upc_notify and upc_wait statements.

upc_barrier
Performs the combined functions of a upc_notify and a upc_wait. The
upc_barrier statement is used when there is no need to do any additional
local-only work between the notification and the wait.

There is an implicit upc_fence before a upc_notify and after a upc_wait.

Example 2–4 Barrier Statements

upc_barrier; // Notify+wait, default tag of 0
upc_notify 2; // Notify thread has reached point 2
... // Do some additional local-only work
upc_wait 2; // Waits for other threads to get here

Example 2–5 Value Matching for Barrier Statements

Thread 0 Thread 1

upc_barrier 1; barrier 1; // Values match
upc_barrier; barrier 2; // Null value matches value
upc_barrier 3; barrier 4; // Values do not match, error

There must always be a upc_wait following (at some point) a upc_notify with
the same tag value. There cannot be a upc_wait with a different tag value,
nor another upc_notify statement, following the upc_notify. Similarly, any
upc_wait statement must be preceded by a upc_notify with the same tag value;
two upc_wait statements, or a upc_barrier followed by a upc_wait statement,
are not allowed.

UPC does not provide a mechanism for forcing a subset of threads to synchronize
at a barrier. All threads must perform the synchronization.

2.12.3 Nested upc_forall Loops
To ensure coverage of all iterations of a nested series of loops, only one affinity
expression will be honored at a time. This rule affects nested upc_forall loops,
including those reached by function calls from within other upc_forall loops. If
such a loop is entered while another one is active, the affinity expression will not
be evaluated, and the body of the loop will be executed without further conditions.

If a upc_forall loop is physically inside another upc_forall loop, and both
have non-null affinity expressions, the affinity expression for the inner loop is
meaningless, since all iterations would be executed anyway due to the presence
of the outer loop. The compiler will detect this case and ignore the inner loop’s
affinity expression.

Language Features 2–19

Language Features
2.12 Statements

2.12.4 upc_fence Statement
The upc_fence statement ensures that all previously issued stores to shared
memory by this thread are completed before any new fetch or store operations
are performed. The upc_fence statement provides the same synchronization as a
reference to a strict variable, without requiring a specific strict variable reference.
The following sequences are equivalent:

relaxed shared int x; strict shared int y;

upc_fence;
t = x; t = y;

upc_fence;
x = 2; y = 2;
upc_fence;

Note that, in the preceding example, the upc_fence statements could be replaced
by upc_barrier statements if that section of code is executed on all threads.
However, the upc_fence statement is significantly faster than the upc_barrier
statement, because it does not require all the threads to wait for the other
threads to reach a communal synchronization point. Use a upc_fence statement
(or a strict reference) to enforce data access ordering when the ordering is what is
needed.

2–20 Language Features

3
Library Functions

This chapter describe UPC library functions.

3.1 Locking Functions
Locks are of type upc_lock_t, which is an opaque type. Locks are allocated
dynamically with upc_all_lock_alloc or upc_global_lock_alloc. Only pointers
to locks may be declared. Locks should be freed with a call to upc_lock_free
after they are no longer needed. Example 3–1 provides some sample code using
the locking functions. The use of locks does not imply any other synchronization.
Strict references and fences will still need to be used to ensure that data are
available when needed.

Example 3–1 Using Locks

#include "upc_strict.h"

shared unsigned long counter; /* Affinity to thread 0. */
upc_lock_t *lock1;

#include <time.h>

void main (int argc, char *argv[])
{
time_t t1, t2;
int i;
int default_count = 50000;
int count;
int tmp;
int max;
int print = 0;
unsigned long lcounter;

if (argc > 1) {
for (i = 1; i < argc; ++i) {
count = atoi(argv[i]);
}
} else {
count = default_count;
}
printf("%d: count=%d\n", MYTHREAD, count);

lock1 = upc_all_lock_alloc();
time(&t1);
upc_barrier 0;
if (MYTHREAD == 0) {
upc_lock(lock1);
counter = 0;
upc_unlock(lock1);
}
upc_barrier 9;

(continued on next page)

Library Functions 3–1

Library Functions
3.1 Locking Functions

Example 3–1 (Cont.) Using Locks

/* Have each thread increment counter count times.
* Use the lock to guard the updates.
*/
max = 0;
for (i = 0; i < count; ++i) {
upc_lock(lock1);
counter += 1;
upc_unlock(lock1);

}
upc_barrier 0;

time(&t2);

printf("%d: at end, counter = %ld, %d secs\n",
MYTHREAD, counter, t2-t1);

if (counter != (count * THREADS))
printf("ERROR: counter should be %d\n",
(count * THREADS));

}
}

3.1.1 The upc_lock Function
Synopsis

void upc_lock(upc_lock_t *)

Description
Obtains ownership of the specified lock. If ownership is not immediately
available, execution is suspended until the lock is obtained. No deadlock detection
is attempted; deadlock avoidance is the responsibility of the programmer.

3.1.2 The upc_lock_attempt Function
Synopsis

int upc_lock_attempt(upc_lock_t *)

Description
Attempts to get ownership of the specified lock. If ownership is not immediately
available, return 0 (FALSE), otherwise it returns (1) TRUE.

3.1.3 The upc_unlock Function
Synopsis

void upc_unlock(upc_lock_t *)

Description
Releases ownership of the specified lock.

3.1.4 The upc_all_lock_alloc Function
Synopsis

upc_lock_t *upc_all_lock_alloc(void)

3–2 Library Functions

Library Functions
3.1 Locking Functions

Description
Allocates a lock (which is shared data), and returns a pointer to it. Any lock
allocated with this function should be deallocated via upc_lock_free when no
longer needed.

This function is called simultaneously by all threads. A single lock is allocated,
and all threads receive a pointer to it. A barrier statement is implicitly executed
by calling this function.

Note

A upc_barrier is not required by the language and may be removed in a
future version.

3.1.5 The upc_global_lock_alloc Function
Synopsis

upc_lock_t *upc_global_lock_alloc(void)

Description
Allocates a lock (which is shared data), and returns a pointer to it. Any lock
allocated with this function should be deallocated via upc_lock_free when no
longer needed.

This function is called by a single thread. A single lock is allocated, and only the
calling thread receives a pointer to it, unless the returned lock pointer is stored
in a shared variable. If multiple threads call this function, multiple locks will be
allocated.

3.1.6 The upc_lock_free Function
This function is called by a single thread.

Synopsis

void upc_lock_free(upc_lock_t *)

Description
Frees the memory associated with a lock that was previously allocated via
upc_all_lock_alloc or upc_global_lock_alloc.

3.1.7 Locking Algorithms
Two locking algorithms are available:

• FAIR

• GREEDY (default)

You can select the algorithm using the UPCRTS_LOCK_TYPE environment variable
(see Chapter 7).

The FAIR setting uses a fair (no starvation) algorithm. GREEDY locking is faster
than FAIR locking but does not guarantee that a waiting thread will eventually
be granted a lock.

Library Functions 3–3

Library Functions
3.2 Memory Transfer Functions

3.2 Memory Transfer Functions
UPC provides several functions to facilitate copying to or from shared data.

Note

Note that, for all of these functions, it is assumed that all the shared data
being transferred have affinity to the same thread and are locally
contiguous.

3.2.1 The upc_memcpy Function
Synopsis

void upc_memcpy(shared void *dst, const shared void *src,
size_t num_bytes)

Description

Copies shared data to another shared location. Both src and dst point to locally
contiguous shared data areas of at least num_bytes bytes.

3.2.2 The upc_memget Function
Synopsis

void upc_memget(void *dst, const shared void *src, size_t num_bytes)

Description

Copies shared data to a non-shared location. dst points to a locally contiguous
shared data area of at least num_bytes bytes.

3.2.3 The upc_memput Function
Synopsis

void upc_memput(shared void *dst, const void *src, size_t num_bytes)

Description

Copies non-shared data to a shared location. src points to a locally contiguous
shared data area of at least num_bytes bytes.

3.2.4 The upc_memset Function
Synopsis

void upc_memset(shared void *dst, int cval, size_t num_bytes)

Description

Sets num_bytes bytes of shared data to the value cval. dst points to a locally
contiguous shared data area of at least num_bytes bytes.

3.3 Allocations
This section describes the functions for dynamically allocating and freeing shared
data. Such data may have affinity to any thread, or (in the case of arrays) may
be distributed across all threads.

3–4 Library Functions

Library Functions
3.3 Allocations

Example 3–2 Examples of Dynamic Allocation of Shared Data

shared [5] int *p1, *p2, *p3;
shared [5] int * shared p4, * shared p5;

/* Allocate 25 elements per thread, with each thread doing its
portion of the allocation. */

p1 = (shared [5] int *)upc_all_alloc(25*THREADS), sizeof(int));

/* Allocate 25 elements per thread, but just run the allocation
on thread 5. */

if (MYTHREAD == 5)
p2 = (shared [5] int *)upc_global_alloc(25*THREADS), sizeof(int));

/* Allocate 5 elements only on thread 3. */
if (MYTHREAD == 3)

p3 = (shared [5] int *)upc_alloc(5, sizeof(int));

/* Allocate 25 elements per thread, just run the allocation
on thread 4, but have the result be visible everywhere. */

if (MYTHREAD == 4)
p4 = (shared [5] int *)upc_global_alloc(25*THREADS), sizeof(int)):

/* Allocate 5 elements only on thread 2, but have the result
visible on all threads. */

if (MYTHREAD == 2)
p5 = (shared [5] int *)upc_alloc(5, sizeof(int));

Notes on Example 3–2:

• The variable p1 is local to each thread. The call to upc_all_alloc will return
the same value on each thread, a pointer to shared referring to element 0
of the allocated array. Each thread will access the same elements when the
pointer is subscripted.

• The variable p2 is also local to each thread; in this case, though, only thread
5 fills it in. On all other threads, p2 is uninitialized and therefore invalid.

• When p2 is subscripted (on thread 5), it will reference data that have affinity
to various threads, even though those other threads do not have a valid
pointer to that data.

• The variable p3 is only valid on thread 3, because it is only filled in on thread
3. The shared data pointed to by p3 have affinity to thread 3.

• The variable p4 is a shared pointer to shared. When thread 4 fills in the
value, all other threads can see and use it. The value of p4 is a pointer to
shared referring to element 0 of the allocated array; p4 itself is a shared
variable with affinity to thread 0.

• The variable p5 is a shared pointer to shared. Thread 2 will fill in the value of
p2 with a pointer to data that have affinity to thread 2, and all other threads
will be able to see the pointer value.

3.3.1 The upc_alloc Function
Synopsis

shared void *upc_alloc(size_t num_bytes)

Description

Allocates a shared region of num_bytes bytes, residing entirely on the current
thread, and returns a pointer to that array. The allocated array will be shared
data and thus will be visible to all threads.

Library Functions 3–5

Library Functions
3.3 Allocations

3.3.2 The upc_global_alloc Function
Synopsis

shared void *upc_global_alloc(size_t num_elems, size_t elem_size)

Description

Allocates a shared array of num_elems elements, each of size elem_size, spread
across all threads, and returns a pointer to that array. The array can be
referenced in the normal block cyclic fashion of shared arrays. A single thread
will call this function, but the resulting allocation will take place across all
threads.

The size of the memory pool for global allocation can be application dependent.
Refer to Section A.3 for information about adjusting pool size.

3.3.3 The upc_all_alloc Function
Synopsis

shared void *upc_all_alloc(size_t num_elems, size_t elem_size)

Description

Allocates a shared array of num_elems elements, each of size elem_size, spread
across all threads, and returns a pointer to that array. The array can be
referenced in the normal block cyclic fashion of shared arrays. All threads
must call this function. All threads must specify the same array size. A barrier
is implicitly executed by calling this function.

Note

A upc_barrier is not required by the language and may be removed in a
future version.

3.3.4 The upc_free Function
Synopsis

void upc_free(shared void *p)

Description

Frees shared memory that was allocated by any of the allocation functions:

upc_all_alloc
upc_global_alloc
upc_alloc

It is called by a single thread, which need not be the thread that allocated the
memory. It should be called with an argument of a pointer to the base of the
allocated memory. The entire allocated amount is freed.

3.3.5 The upc_global_exit Function
Synopsis

void upc_global_exit(int status)

Description

Causes all threads to exit immediately. It is called by a single thread. The status
argument is used as the exit status code.

3–6 Library Functions

Library Functions
3.4 Collective Functions

3.4 Collective Functions
Descriptions of the collective functions are derived largely from Section 7 of the
Version 1.2 UPC language specification.

Collective functions perform useful data manipulations in parallel. All of the
functions defined in this section must be called by all threads, and all of the
arguments must have the same value on all threads at the corresponding call.

All source modules that contain calls to collective functions must include the
header upc_collective.h.

3.4.1 Synchronization Options
upc_flag_t is an integral type defined in upc.h which is used to control the
data synchronization semantics of certain collective UPC library functions.
Values of function arguments having type upc_flag_t are formed by or-ing
together a constant of the form UPC_IN_XSYNC and a constant of the form
UPC_OUT_YSYNC, where X and Y may be NO, MY, or ALL.

Heuristically, the names of the flags indicate how much synchronization the
programmer wants the collective function to perform. NO indicates the function
should perform no data synchronization; the programmer has taken care of it.
ALL indicates that the function should synchronize all data; the programmer has
done none. MY indicates that the programmer has taken care of synchronization
of data for the current thread only, and the function should synchronize any
data with affinity to other threads. IN and OUT specify the synchronization
mechanism for input data and output data, respectively.

3.4.2 Relocalization Operations
The following are relocalization operations.

3.4.2.1 The upc_all_broadcast Function
Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_broadcast(shared void * restrict dst,

shared const void * restrict src, size_t nbytes, upc_flag_t flags);

Description
The upc_all_broadcast function copies an area of memory with affinity to a
single thread to an area of shared memory on each thread. The number of bytes
in each area is nbytes. The function treats the src pointer as if it pointed to a
shared memory area with the type:

shared [] char[nbytes]

and it treats the dst pointer as if it pointed to a shared memory area of type:

shared [nbytes] char[nbytes * THREADS]

3.4.2.2 The upc_all_scatter Function
Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_scatter(shared void * restrict dst,

shared const void * restrict src, size_t nbytes, upc_flag_t flags);

Library Functions 3–7

Library Functions
3.4 Collective Functions

Description
The upc_all_scatter function copies the ith block of an area of shared memory
with affinity to a single thread to a block of shared memory with affinity to the
ith thread. The number of bytes in each block is nbytes. The function treats the
src pointer as if it pointed to a shared memory area with the type:

shared [] char[nbytes * THREADS]

and it treats the dst pointer as if it pointed to a shared memory area of type:

shared [nbytes] char[nbytes * THREADS]

3.4.2.3 The upc_all_gather Function
Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_gather(shared void * restrict dst,

shared const void * restrict src, size_t nbytes, upc_flag_t flags);

Description
The upc_all_gather function copies a block of shared memory that has affinity
to the ith thread to the ith block of a shared memory area that has affinity to a
single thread. The number of bytes in each block is nbytes. The function treats
the src pointer as if it pointed to a shared memory area of nbytes bytes on each
thread and therefore had type:

shared [nbytes] char[nbytes * THREADS]

and it treats the dst pointer as if it pointed to a shared memory area of type:

shared [] char[nbytes * THREADS]

3.4.2.4 The upc_all_gather_all Function
Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_gather_all(shared void * restrict dst,

shared const void * restrict src, size_t nbytes, upc_flag_t flags);

Description
The upc_all_gather_all function copies a block of memory from the shared
memory area with affinity to the ith thread to the ith block of a shared memory
area on each thread. The number of bytes in each block is nbytes. The function
treats the src pointer as if it pointed to a shared memory area of nbytes bytes on
each thread and therefore had type:

shared [nbytes] char[nbytes * THREADS]

and it treats the dst pointer as if it pointed to a shared memory area of type:

shared [nbytes * THREADS] char[nbytes * THREADS * THREADS]

3.4.2.5 The upc_all_exchange Function
Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_exchange(shared void * restrict dst,

shared const void * restrict src, size_t nbytes, upc_flag_t flags);

3–8 Library Functions

Library Functions
3.4 Collective Functions

Description
The upc_all_exchange function copies the ith block of memory from each a
shared memory area that has affinity to thread j to the jth block of a shared
memory area that has affinity to thread i. The number of bytes in each block is
nbytes. The function treats the src pointer and the dst pointer as if each pointed
to a shared memory area of nbytes * THREADS bytes on each thread and therefore
had type:

shared [nbytes * THREADS] char[nbytes * THREADS * THREADS]

3.4.2.6 The upc_all_permute Function
Synopsis

#include <upc.h>
#include <upc_collective.h>
void upc_all_permute(shared void * restrict dst,

shared const void * restrict src, shared const int * restrict perm,
size_t nbytes, upc_flag_t flags);

Description
The upc_all_permute function copies a block of memory from a shared memory
area that has affinity to the ith thread to a block of a shared memory that
has affinity to thread perm[i]. The number of bytes in each block is nbytes.
perm[0..THREADS-1] must contain THREADS distinct values: 0, 1, ...,
THREADS-1. The function treats the src pointer and the dst pointer as if each
pointed to a shared memory area of nbytes bytes on each thread and therefore
had type:

shared [nbytes] char[nbytes * THREADS]

3.4.3 Computational Operations
This section describes the computational collective functions.

A variable of type upc_op_t can have the following values:

Variable Value

UPC_ ADD Addition.

UPC_MULT Multiplication.

UPC_AND Bitwise AND for integer and character variables. Results are
undefined for floating point numbers.

UPC_OR Bitwise OR for integer and character variables. Results are
undefined for floating point numbers.

UPC_XOR Bitwise XOR for integer and character variables. Results are
undefined for floating point numbers.

UPC_LOGAND Logical AND for all variable types.

UPC_LOGOR Logical OR for all variable types.

UPC_MIN For all data types, find the minimum value.

UPC_MAX For all data types, find the maximum value.

UPC_FUNC Use the specified commutative function func to operate on
the data in the src array at each step.

UPC_NONCOMM_FUNC Use the specified non-commutative function func to operate
on the data in the src array at each step.

The operations represented by a variable of type upc op t (including userprovided
operators) are assumed to be associative; a reduction or a prefix reduction whose

Library Functions 3–9

Library Functions
3.4 Collective Functions

result is dependent on the order of operator evaluation will have undefined
results. Furthermore, all of these operations (except those provided using UPC_
NONCOMM_FUNC) are assumed to be commutative; a reduction or a prefix
reduction (using operators other than UPC_NONCOMM_FUNC) whose result is
dependent on the order of the operands will have undefined results.

3.4.3.1 The upc_all_reduce and upc_all_prefix_reduce Functions
Synopsis

#include <upc.h>
#include <upc collective.h>
void upc_all_reduceT(shared void * restrict dst,

shared const void * restrict src, upc_op_t op, size_t nelems,
size_t blk_size, TYPE(*func)(TYPE, TYPE), upc_flag_t flags);

void upc_all_prefix_reduceT(shared void * restrict dst,
shared const void * restrict src, upc_op_t op, size_t nelems,
size_t blk_size, TYPE(*func)(TYPE, TYPE), upc_flag_t flags);

Description
These prototypes represent the 22 variations of the upc_all_reduceT and
upc_all_prefix_reduceT functions where T and TYPE have the following
correspondences:

T TYPE

C signed char

UC unsigned char

L signed long

UL unsigned long

S signed short

US unsigned short

I signed int

UI unsigned int

F float

D double

LD long double

On completion of the upc_all_reduce variants, the value of the TYPE shared
object referenced by dst is

src[0] op src[1] op ... op src[nelems-1]

On completion of the upc_all_prefix reduce variants, the value of the TYPE
shared object referenced by dst[i] is

src[0] op src[1] op ... op src[i]

for 0 <= i <= nelems-1.

3–10 Library Functions

4
Compiling and Running UPC Programs

This chapter describes the upc command, compiler options available to control
UPC-specific behavior, and techniques for compiling, debugging, and running
UPC programs.

4.1 The upc command
The upc command compiles UPC language source into machine-readable
instructions. The desired output is specified with an option on the command line,
and can be object files, translated C language source files, or symbolic assembly
language.

The compiler produces one object file for each file compiled. If the linker is called,
and only one source file is specified on the command line, the single object file is
deleted after the linking operation.

The upc command invokes the UPC compiler, and possibly other components of
the compilation system, depending on the specified command options and files.
When you start the compiler, it normally performs the following tasks:

• Preprocessing

• Compiling

• Linking

Command syntax is

upc [option] ... file ...)

Use the -c option to stop compiler operation before linking, resulting in one
or more output files with the .o suffix. Use the -E option to run only the
preprocessor.

The detection of an error in one source file does not affect compilation of other
source files specified on the same command line.

The compiler recognizes the following file name suffixes as having special
significance:

.a Linker library

.c UPC source code, to be compiled with the HP UPC compiler

.i C source code already processed by the preprocessor

.lis Source code listing from the -source_listing option. On HP-UX, -source_
listing is transformed to -K, and a .int.c file is created.

.o Linker object module

.sl Shared object (shared library) on HP-UX

.so Shared object (shared library) on Tru64 UNIX

.upc UPC source code, to be compiled with the HP UPC compiler

Compiling and Running UPC Programs 4–1

Compiling and Running UPC Programs
4.1 The upc command

The UPC compiler recognizes the command options described in the Options
section. Some of the options affect the behavior of the preprocessor. The
preprocessor is invoked through the upc command for UPC files, and is not
invoked with a separate command. Any options not recognized by the UPC
compiler are assumed to be linker options, and are passed through to the linker.

To facilitate setting default compiler flags, you can create an optional
configuration file named comp.config.

• The comp.config file allows system administrators to establish a set of
compilation flags that are applied to compilations on a system-wide
basis. The compiler flags in comp.config must be specified on a single
line. The comp.config file is located in the compiler target directory,
/usr/lib/cmplrs/upc on Tru64 UNIX and /opt/upc/bin on HP-UX and XC
Linux. You can use the -comp.config option to specify a different directory.

• The comp.config file can contain two distinct sets of compilation flags
separated by a single vertical bar (|). The flags before the vertical bar are
known as prologue flags and the flags after the bar are known as epilogue
flags. The comp.config file can begin or end with a vertical bar, or have
no vertical bar at all. If no vertical bar is present, the flags are treated as
prologue flags by default. Any vertical bar found after the first vertical bar is
treated as whitespace.

Compiler flags are processed in the following order during a compilation:

1. comp.config prologue flags

2. command line flags

3. comp.config epilogue flags

If -v is specified on the command line, the contents of comp.config, if present, is
displayed.

If the environment variable TMPDIR is set, the value is used as the directory to
hold any temporary files rather than the default /tmp directory.

You can use the the DEC_CC environment variable to establish a set of
compilation options that are applied to subsequent compilation on a per-user
basis. See Section 4.6 for details.

On Tru64 UNIX, if the environment variable RLS_ID_OBJECT is set and a link
occurs, the value is used as the name of an object to link. The RLS_ID_OBJECT
variable is always the last object specified to the linker.

4.2 Macro Names
The preprocessor recognizes the following standard macro names, which cannot
be redefined or undefined. You can the upc -v option to display all predefined
macros for a given compilation.

_ _LINE_ _ The current line number (a decimal integer).

_ _FILE_ _ The current file name (a character string).

_ _DATE_ _ The source file’s compilation date (a character string literal of the form
"Mmm dd yyyy", where the month names are the same as those generated
by the asctime function, and the first character of "dd" is a space character
if the value is less than 10.)

_ _TIME_ _ The source file’s compilation time (a character string literal of the form
"hh:mm:ss"), as in the time generated by the asctime function.

4–2 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.2 Macro Names

In addition, macro names that begin with two leading underscore characters
(_ _) or a single underscore character followed by a capital letter (for example,
_WCHAR_T) are reserved for the implementation.

Name Function

_ _alpha1 System has an Alpha processor

_ _alpha_ _1 System has an Alpha processor

_ _ALPHA1 System has an Alpha processor

_ _arch64_ _1 System with 64-bit architecture

_ _compaq_ _1 Compiler is provided by Compaq Computer
Corp.

_ _COMPAQ_UPC_VER1 Indicates the version of HP UPC being used;
a value of 20020001 means V2.2-001

_ _DECC1 Compiler is compatible with Compaq C

_ _digital_ _1 System identification name on Tru64 UNIX

_ _EDG_ _ Compiler is built with EDG front end
technology

_ _EDG_VERSION_ _ Version number of EDG front end technology

_ _hp_ _ Compiler is provided by Hewlett-Packard
Company

_hppa2 Defined for compatibility with HP-UX
system header files

_hpux2 Defined for compatibility with HP-UX
system header files

_ _HP_UPC_VER Indicates the version of HP UPC being used;
a value of 20020001 means V2.2-001

_HPUX_SOURCE2 Defined for compatibility with HP-UX
system header files

_ _IEEE_FLOAT1 The compiler supports IEEE floating point

_ _LANGUAGE_C_ _1 Compiler translates C language constructs
and keywords

_ _LANGUAGE_UPC_ _ Compiler translates UPC language
constructs and keywords

_LONGLONG1 Compiler supports "long long" type
declarations

_LP642 Defined for compatibility with HP-UX
system header files

_ _LP642 Defined for compatibility with HP-UX
system header files

_ _LP64_ _2 Defined for compatibility with HP-UX
system header files

_ _osf_ _ System is a Tru64 UNIX system

_HPUX_SOURCE2 Defined for compatibility with HP-UX
system header files

_ _PRAGMA_ENVIRONMENT1 The compiler supports pragma environment

_ _SIGNED_CHARS_ _2 Ensures that signed chars are the default

1Tru64 UNIX only
2HP-UX only

Compiling and Running UPC Programs 4–3

Compiling and Running UPC Programs
4.2 Macro Names

Name Function

_ _STDC_ _ Compiler supports ANSI C language
constructs

_ _STDC_HOSTED_ _ C99 predefined macro. If set, indicates a
hosted implementation.

_ _STDC_VERSION_ _ Version number of ANSI C support, in string
form

_ _SYSTYPE_BSD_ _ Compiler supports BSD type system headers

_ _unix, _ _unix_ _ System is a UNIX system

_ _UPC_ _ Defined to 1 to indicate that the program is
being compiled as a UPC program

_ _UPC_DYNAMIC_THREADS_ _ Defined to 1 when the program is being
compiled in the dynamic THREADS
environment, and is undefined otherwise

UPC_MAX_BLOCK_SIZE Largest value that may be specified for a
block size

_ _UPC_STATIC_THREADS_ _ Defined to 1 when the program is
being compiled in the static THREADS
environment, and is undefined otherwise

_ _UPC_VERSION_ _ Indicates the language specification version
supported by the product. The version is
given by date of acceptance. For version
1.1.1, approved in October 2003, the value of
__UPC_VERSION__ is 200310L.

UPCRTS_WIDE_SHARED_POINTER2 128-bit representation of shared pointer

_WCHAR_T wchar_t is a keyword

_ _X_FLOAT1 System has default long double size of 128
bits

1Tru64 UNIX only
2HP-UX only

These names are useful in preprocessor #ifdef and #if defined directives to
isolate code intended for one of the particular cases. The names can be used
anywhere you use other defined names, including within macros.

4.3 Compiler Options
Table 4–1 lists the C compiler options that are supported by HP UPC on all
platforms. platforms. For detailed information about these options, see the C
documentation or the reference page for C (cc(1)).

4–4 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

Table 4–1 C Compiler Options Supported on All Platforms

Group Options

Output file control -c, -o, -S, -K

Preprocessor control -C, -D, -I, -E, -M, -P, -U

Language dialect accepted -std

Suppress linking -c

Debug symbol table
generation

-g

Control of error messages -w, -w0

Driver behavior -v

Compiler optimization -O, -assume

Integer control -signed, -unsigned

Command option descriptions are grouped as follows:

• UPC-Specific Options

• General Options

• Language Mode Options

• Message Information and Control Options

• Optimization Options

• Preprocessor Options

4.3.1 UPC-Specific Options Supported on All Platforms
The following options are supported on all platforms.

4.3.1.1 The -frelaxed Option
The -frelaxed option specifies that the compiler is allowed to overlap
communication operations (fetches and stores) of shared quantities. When using
the -frelaxed option), the programmer must explicitly insure the consistency of
shared data using barrier class statements. See -fstrict for more information
on this topic. In the absence of an -frelaxed or -fstrict option, the "strict" or
"relaxed" type qualifiers and #pragma upc determine the memory consistency for
shared quantities.

4.3.1.2 The -fstrict Option
The -fstrict option specifies that each inter-processor communication (fetch or
store) using shared quantities will be completed prior to beginning any later such
communication. See -frelaxed for more information on this topic. In the absence
of an -fstrict or -frelaxed option, the "strict" or "relaxed" type qualifiers and
#pragma upc determine the memory consistency model for shared quantities.

4.3.1.3 The -fthreads num Option
num is an integer constant. The -fthreads option specifies that the UPC compiler
should compile the source programs with the assumption that the UPC language
symbol THREADS will always have the value of num for all executions of the
program. Specifying this option defines the macro _ _UPC_STATIC_THREADS_ _.

Compiling and Running UPC Programs 4–5

Compiling and Running UPC Programs
4.3 Compiler Options

4.3.2 UPC-Specific Options Supported Only on Tru64 UNIX
The following options are supported only on Tru64 UNIX systems.

4.3.2.1 The -narrow Option
Specifes a pointer to shared structure size of 64 bits (the default size). Use the
-wide option to specify a size of 128 bits. All modules must be compiled using the
same size.

4.3.2.2 The -assume [no]nested_upc_forall Option
This option specifies that all upc_forall statements are to be presumed possibly
nested or never nested, respectively. -assume nested_upc_forall is equivalent
to placing a #pragma upc nested at the beginning of the compilation unit, and
is the default setting. -assume nonested_upc_forall is equivalent to putting a
#pragma upc unnested at the beginning of the compilation unit.

4.3.2.3 The -[no]smp Option
Informs the compiler that the program will be run in a fully shared memory
environment, allowing the compiler to make further optimizations in shared data
access. This option also implies -smp_local.

4.3.2.4 The -[no]smp_local Option
Enables an optimized use of shared memory when the program is run on a cluster
of symmetric multiprocessor (SMP) systems. When this option is specified, shared
data on different threads running on the same SMP node are accessed via local
memory, without going through the context of the other thread.

Specify -nosmp_local to disable the optimization.

4.3.2.5 The -wide Option
HP UPC uses a structure to contain pointer to shared information. The
size of the pointer to shared structure is normally 64 bits. Alternatively,
you can select a 128-bit pointer to shared structure by specifying the -wide
option. Use the -narrow option to reset the size to 64 bits. All modules
must be compiled using the same size. Specifying -wide defines the macro
_UPCRTS_WIDE_SHARED_POINTER.

Note that wide shared pointers are the default on HP-UX and XC Linux systems.

The phase field of the pointer to shared structure places limits on the allowable
block size for shared data. The values for block sizes for shared data must not be
too large to fit into this field, which for the narrow pointer to shared structure is
10 bits, thereby permitting block sizes of up to 1024 array elements. For the wide
pointer to shared structcture, the field is 32 bits, allowing block sizes of more
than four billion elements.

A disadvantage of the wide pointer to shared structure is the overhead involved in
passing pointers to shared to functions, or receiving pointers to shared returned
from functions. In addition, you must be careful to ensure that modifications to
shared pointers to shared are done atomically.

4.3.3 General Options Supported on All Platforms
The upc command supports the following general options on all platforms.

4–6 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

-Bstring
Specifies a suffix to add to the normal names of any components specified with
the -t option. If string is omitted, the usual component names are used.

-c
Suppress the linking phase of the compilation and force production of one or more
object file(s) with the .o suffix. If the file name argument already has the .o suffix,
do nothing at all.

-comp.config directory
Specifies a directory for the comp.config file. Normally, the file is stored in the
compiler target directory. This option is interpreted only if specified on the
command line.

-g
Produce symbol table information for full symbolic debugging, but do not perform
optimizations that limit full symbolic debugging. Same as -g2. Using the -g2
option resets the optimization level to -O0.

-h dir
Use the specified directory instead of the directory where the name specified by
the -t flag is normally found.

-K
On HP-UX systems, controls preservation of the .int.c file.

-o file
Name the final output file, rather than use the default a.out. The given name is
used regardless of the type of file (executable, object, or other type).

-S
Compile the specified source programs and produce symbolic assembly language
in corresponding files with a .s suffix. Do not assemble these files. If the file
name argument already has a .s suffix, do nothing at all.

-source_listing
Produce a source code listing file of the same name as the source file, but with
the suffix .lis. On HP-UX, this option is transformed to -K, thus preserving the
intermediate C source in the filename.int.c file.

-unsigned
Cause all char declarations to have the same machine representation and value
set as unsigned char declarations. The -unsigned option overrides -signed if
both are specified on the command line.

-v
Print the names of compiler phases as they execute, along with their arguments
and input and output files. On Tru64 UNIX, this option also prints resource
usage in the following format: user time, system time, total elapsed time,
percentage use of CPU cycles.

-V
Enable printing of the compiler version.

Compiling and Running UPC Programs 4–7

Compiling and Running UPC Programs
4.3 Compiler Options

-w
Suppress warning and informational level compiler messages, but not back-end
messages. Same as -w2.

-w0
Display all levels of compiler messages.

-w1
Suppress information-level compiler messages. This is the default.

-w2
Suppress warning- and informational-level compiler messages, but not back-end
messages. Same as -w.

-Wc[c...],arg1[,arg2...]
Passes the argument, or arguments (arg1), to the compiler pass, or passes (c[c...]).
Each c character can be one of the following: [abflLnqQryz] (see the -t option
for an explanation). The c variable selects the compiler pass in the same way as
the -t option.

-writable_strings
Make string literals writable.

4.3.4 General Options Supported Only on Tru64 UNIX
The upc command supports the following options only on Tru64 UNIX systems.

-call_shared
Produce a dynamic executable file that uses shareable objects during run-time.
This is the default. The loader uses shareable objects to resolve undefined
symbols. The run-time loader is invoked to bring in all required shareable objects
and to resolve any symbols that remained undefined during static link time.

-[no]compress
-compress causes the output object file file to be produced in compressed
object file format, resulting in a substantially smaller object file. To produce
uncompressed files, specify -nocompress. The default is -compress.

-denorm
Force denormalized constant numbers to zero when IEEE support is enabled.

-error_limit n, -noerror_limit
Specify the number of errors allowed before compilation stops for a single source
file. The default value is 30.

-fast
The -fast option defines the following compiler options and symbols to improve
run-time performance. You can adjust the optimizations by specifying the
negation of any given option after the -fast option.

-ansi_alias, -assume trusted_short_alignment,
[no]nomath_errno, -D_INTRINSICS, -D_INLINE_INTRINSICS,
-fp_reorder, -intrinsics, -O3, -readonly_strings,
-gen_feedback

The -D_INTRINSICS and -D_INLINE_INTRINSICS options are available only on
Tru64 UNIX.

4–8 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

The -fast option can produce different results for floating-point arithmetic and
math functions, although most although most programs are not sensitive to
these differences. The -fast option is passed as is to the HP-UX C compiler for
interpretation.

-fprm option
Specify rounding mode. The following options are supported:

c Round toward 0 (chop).

d Set rounding mode for IEEE floating-point instructions dynamically, as determined
from the contents of the floating-point control register. The dynamic rounding mode
can be changed or read at execution time by a call to write_rnd(3) or read_rnd(3). If
you specify this option, the IEEE floating-point rounding mode defaults to round to
nearest.

m Round toward minus infinity.

n Set normal rounding mode (unbiased round to nearest). This is the default.

This option also defines the macro _ _FLT_ROUNDS

-fptm option
Specify trapping mode. Only one option can be used on a command line. The
following options are supported:

n Generate instructions that do not trigger floating-point underflow or inexact
trapping modes. Any floating point overflow, divide-by-zero, or invalid operation
will unconditionally generate a trap. This is the default.

u Generate intstructions that trap floating-point underflow, overflow, divide-by-zero,
and invalid operations.

-g0
Do not produce symbol table information for symbolic debugging. This is the
default.

-g1
Produce symbol table information for accurate, but limited, symbolic debugging of
partially optimized code.

-g2
Produce symbol table information for full symbolic debugging, but do not perform
optimizations that limit full symbolic debugging. Same as -g. This resets the
optimization level to -O0.

-g3
Produce symbol table information for full symbolic debugging of fully optimized
code. This option can affect debugger accuracy.

-G num
Specify the maximum size, in bytes, of a data item that is to be accessed from the
global pointer. The num argument is interpreted as a decimal number. If num is
zero, data is not accessed from the global pointer. The default value for num is 8
bytes.

-Hc
Halts compiling after the pass specified by the character c, producing an
intermediate file for the next pass. The c character can be one of the following:
[fablyzx] (see the -t option for an explanation). The -Hc option selects the
compiler pass in the same way as the -t option. If this option is used, the

Compiling and Running UPC Programs 4–9

Compiling and Running UPC Programs
4.3 Compiler Options

symbol table file produced and used by the passes is given the name of the last
component of the source file with the suffix changed to .T, and the file is always
retained after the compilation is halted.

-ieee
Support all portable features of the IEEE Standard for Binary Floating-Point
Arithmetic (ANSI/IEEE Standard 754- 1985), including the treatment of
denormalized numbers, NaNs, infinities, and the handling of error cases. This
flag also sets the _IEEE_FP macro.

-machine_code
List the generated machine code in the listing file. To produce the listing file,
you must also specify the -source_listing option. The default is not to list the
generated machine code.

-p
Perform profiling by periodically sampling the value of the program counter.
This option affects only linking. When linking is done, this option replaces the
standard run-time startup routine with the profiling run-time startup routine
(mcrt0.o) and searches the level 1 profiling library (libprof1.a). When profiling
is completed, the startup routine calls the monstartup routine and produces a
mon.out file that contains execution-profiling data for use with the postprocessor
prof. Same as -p1.

-p0
Do not perform profiling. This is the default.

-p1
Perform profiling by periodically sampling the value of the program counter.
This option affects only linking. When linking is done, this option replaces the
standard run-time startup routine with the profiling run-time startup routine
(mcrt0.o) and searches the level 1 profiling library (libprof1.a). When profiling
is completed, the startup rou- tine calls the monstartup routine and produces a
mon.out file that contains execution-profiling data for use with the postprocessor
prof. Same as -p.

-[no]pg
Perform call graph profiling using the gprof tool. Specify -nopg to disable
selectively profiling for individual modules when using the -pg graph profiling
option.

For more information on profiling UPC code, see the Tru64 UNIX Programmer’s
Guide and the gprof(1) reference page.

-preempt_symbol
Provide full symbol preemption. Full symbol preemption allows the replacement
of the definition of an individual external symbol (function or data) in a shared
library. This "replacement" occurs at runtime when the dynamic loader uses a
definition of the symbol from the main object or some other shared library in
preference to the definition in the original shared library. This behavior may be
important when a particular symbol is defined in both the main object and in a
shared library (or in multiple shared libraries).

-readonly_strings
Make all string literals readable only. This is the default. See also writable_
strings.

4–10 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

-rpath string, -norpath
Set the rpath to the specified string. This option is meaningful for shared linkage
only.

-shared
Produce a shared object. This includes creating all of the tables for run-time
linking, and resolving references to other specified shared objects. The object
created can be used by the linker to make dynamic executables.

-show keyword[,keyword,...]
Specify one or more items to be included in the listing file. When specifying
multiple keywords, separate them by commas (with no intervening blanks). To
use any of the -show keywords, you must also specify the -source_listing option.
The -show keywords are as follows:

all Enable all options
[no]header Specify whether to produce header lines at top of each

page of listing
[no]include Specify whether to place contents of #include files in the

program listing
none Negate all options
[no]source Specify whether to place source program statements in

the program listing

The default is -show header,source.

-signed
Cause all char declarations to have the same machine representation and value
set as signed char declarations. This is the default. This option is ignored if
specified on the same command line as -unsigned.

-r
Retain relocation entries in the output file. Relocation entries must be saved if
the output file is to become an input file in a subsequent linker run. This option
prevents final definitions from being given to common symbols; it also suppresses
the diagnosis of undefined symbols.

-tc[c...]
The -t, -h, and -B options are used together to specify a location and/or name
for one or more compiler passes, tools, libraries, or include files, other than their
normal locations or names.

The -t option specifies to which compiler passes (or components) the -h and -B
options that follow apply. On Tru64 UNIX, the c characters can be one or more of
the following:

Character Name of pass, tool, or component

a as0

b as1

k C compiling

l ld

q HP-UX C compiler

Q UPC preprocessor

Compiling and Running UPC Programs 4–11

Compiling and Running UPC Programs
4.3 Compiler Options

Character Name of pass, tool, or component

y ftoc

z cord

r [m]crt0.o

n libprof1.a

L om

M _main.o

s stdlib

On HP-UX, only the passes specifed by q, Q, and l are supported.

To relocate the comp.config file, use the -comp.config option.

The -t and -h options are not processed until the next -B option is processed. If
more than one -t option or more than one -h option appear on the command line
before the next -B option, only the last of the previous -t and -h option arguments
are used.

If you specify the -p option, it must precede the -tr -h -B options because the
processing of the latter depends on a value which is modified by the -p option.

-trapuv
Forces all uninitialized stack variables to be initialized with 0xfff58005fff58005.
When this value is used as a floating-point variable, it is treated as a floating-
point NaN and causes a floating-point trap. When it is used as a pointer, an
address or segmentation violation usually occurs.

For programs compiled without the -trapuv option, the debugger stops only on
executable statements in which the value of a specified variable changes. With
the -trapuv option, the debugger stops on these statements and also stops on all
local variable declarations. (The debugger treats the local variable declarations
as assignment statements because the variables are initialized by the compiler.)

-verbose
Include identifiers with diagnostic messages. These identifiers can be used with
#pragma message directives, or as arguments to -msg_disable options.

-volatile
Compile all variables as volatile.

4.3.5 Optimization Options Supported on All Platforms
The upc command supports the following optimization options on all platforms.

-assume option
Allow the compiler to make assumptions regarding certain alignments or code
transformations. On Tru64 UNIX, the following options are supported. On
HP-UX and XC Linux, only the nested_upc_forall and nonested_upc_forall
options are supported.

[no]nested_upc_forall
Specifies that all upc_forall statements are to be presumed possibly nested or
never nested, respectively. -assume nested_upc_forall is equivalent to placing
a #pragma upc nested at the beginning of the compilation unit, and is the default
setting. -assume nonested_upc_forall is equivalent to putting a #pragma upc
unnested at the beginning of the compilation unit.

4–12 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

4.3.6 Optimizatization Options Supported Only on Tru64 UNIX
The upc command supports the following options only on Tru64 UNIX systems.

-[no]ansi_alias
Directs the compiler to assume the ANSI C aliasing rules. By so doing, the
compiler has the freedom to generate better optimized code.

If a program does not access the same data through pointers of a different type
(and for this purpose, signed and qualified versions of an otherwise same type are
considered to be the same type), then assuming ANSI C aliasing rules allows the
compiler to generate better optimized code.

If a program does access the same data through pointers of a different type (for
example, by a "pointer to int" and a "pointer to float"), you must not allow the
compiler to assume ANSI C aliasing rules, because these rules can result in the
generation of incorrect code.

The default is ansi_alias.

-arch option
Specifies the version of the Alpha architecture for which to generate instructions.
All Alpha processors implement a core set of instructions and, in some cases,
the following extensions: BWX (byte- and word-manipulation instructions), MVI
(multimedia instructions), FIX (square root and floating-point convert extension),
and CIX (count extension). (The Alpha Architecture Reference Manual describes
the extensions in detail.)

The option specified by the -arch flag determines which instructions the compiler
can generate:

generic Generate instructions that are appropriate for all Alpha processors.

host Generate instructions for the processor on which the compiler is running
(for example, EV56 instructions on an EV56 processor, and EV4 instructions
on an EV4 processor).

ev4,ev5 Generate instructions for the EV4 processor (21064, 20164A, 21066, and
21068 chips) and EV5 processor (some 21164 chips), respectively. (Note that
the EV5 and EV56 processors both have the same chip number - 21164.)

Applications compiled with this option do not incur incur any emulation
overhead on any Alpha processor.

ev56 Generate instructions for EV56 processors (some 21164 chips). This option
is the default.

This option permits the compiler to generate any EV4 instruction, plus any
instructions contained in the BWX extension.

Applications compiled with this option can incur emulation overhead on EV4
and EV5 processors.

ev6 Generate instuctions for EV6 processors (21264 chips).

This option permits the compiler to generate any EV56 instruction, plus any
instructions contained in the MVI and FIX extensions.

Applications compiled with this option can incur emulation overhead on
EV4, EV5, and EV56 processors.

Compiling and Running UPC Programs 4–13

Compiling and Running UPC Programs
4.3 Compiler Options

ev67 Generate instuctions for EV67 processors (21264a chips).

This option permits the compiler to generate any EV6 instruction, plus any
instructions contained in the CIX extension.

Applications compiled with this option can incur emulation overhead on
EV4, EV5, EV56, and EV6 processors.

pca56 Generate instructions for PCA56 processors (21164PC chips).

This option permits the compiler to generate any EV4 instruction, plus any
instructions contained in the BWX or MAX extensions.

Applications compiled with this option can incur emulation overhead on
EV4, EV5, and EV56 processors.

A program compiled with any of the options runs on any Alpha processor.
Beginning with Version 4.0 of the operating system and continuing with
subsequent versions, the operating system kernel includes an instruction
emulator. This capability allows any Alpha chip to execute and produce
correct results from Alpha instructions, even if some of the instructions are
not implemented on the chip. Applications using emulated instructions run
correctly, but can incur significant emulation overhead at run time.

On Tru64 UNIX, the psrinfo -v command can be used to determine which type
of processor is installed on any given Alpha system.

-assume option
Allow the compiler to make assumptions regarding certain alignments or code
transformations. On Tru64 UNIX, the following options are supported. On
HP-UX and XC Linux, only the nested_upc_forall and nonested_upc_forall
options are supported.

[no]accuracy_sensitive
Specify whether certain code transformations that affect floating-point operations
are allowed. These changes may affect the accuracy of the program’s results.

The accuracy_sensitive option directs the compiler to use only certain scalar
rules for calculations. This setting can prevent some optimizations. This is the
default.

The noaccuracy_sensitive option frees the compiler to reorder floating-point
operations based on algebraic identities (inverses, associativity, and distribution).
This allows the compiler to move divide operations outside loops, for improved
performance.

[no]aligned_objects
The aligned_objects option causes the compiler to assume that a dereferenced
object’s alignment matches or exceeds the alignment indicated by the pointer to
the object. This is the default. On Tru64 UNIX systems, dereferencing a pointer
to a longword- or quadword-aligned object is more efficient than dereferencing a
pointer to a byte- or word-aligned object. Therefore, when the compiler assumes
that a pointer object of an aligned pointer type does point to an aligned object, it
can generate better code for pointer dereferences of aligned pointer types.

The noaligned_objects option flag causes the compiler to generate longer
code sequences to perform indirect load and store operations in order to avoid
hardware alignment faults for arbitrarily aligned addresses. Although this flag
may generate less efficient code than the aligned_objects option, by avoiding
hardware alignment faults, it speeds the execution of programs that reference
unaligned data.

4–14 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

[no]math_errno
Controls the compiler’s assumption about a program’s dependence on the setting
of errno by math library routines:

By default (-assume math_errno), the compiler assumes that the program
might interrogate errno after any call to a math library routine that is capable
of setting errno. The definition of the ANSI C math library allows programs to
depend on this behavior, which unfortunately restricts optimization because this
causes most math functions to be treated as having side effects.

Specifying -assume nomath_errno instructs the compiler to assume that the
program does not look at the value of errno after calls to math functions. This
assumption allows the compiler to reorder or combine computations to improve
the performance of those math functions that it recognizes as intrinsic functions.
In practice, robust floating-point code seldom relies on errno to detect domain
or range errors, so -assume nomath_errno can often be safely used to improve
performance.

[no]nested_upc_forall
Specifies that all upc_forall statements are to be presumed possibly nested or
never nested, respectively. -assume nested_upc_forall is equivalent to placing
a #pragma upc nested at the beginning of the compilation unit, and is the default
setting. -assume nonested_upc_forall is equivalent to putting a #pragma upc
unnested at the beginning of the compilation unit.

[no]ptrs_to_globals
Controls whether the compiler can safely assume that global variables have not
had their addresses taken in code that is not visible to the current compilation.

The default is ptrs_to_globals, which directs the compiler to assume that global
variables have had their addresses taken in separately compiled modules and
that a pointer dereference in the module could be accessing the same memory as
a global variable. This is often a significant barrier to optimization.

While the ansi_alias option allows some resolution based on data type, ptrs_to_
globals provides significant cant additional resolution and improved optimization
in many cases.

noptrs_to_globals tells the compiler that any global variable accessed through
a pointer in the compilation unit must have had its address taken within that
compilation unit. The compiler can see any code that takes the address of an
extern variable. If it does not see the address of the variable being taken, the
compiler can assume that no pointer within this compilation unit points to the
variable.

[no]trusted_short_alignment
Control the alignment assumptions for code generated for indirect load and store
instructions.

The trusted_short_alignment option indicates that the compiler should assume
any short accessed through a pointer is naturally aligned. This generates the
fastest code, but can silently generate the wrong results when an unaligned short
object crosses a quadword boundary.

The notrusted_short_alignment option tells the compiler that short objects
might not be naturally aligned. The compiler generates slightly larger (and
slower) code that will give the correct result, regardless of the actual alignment of
the data. This is the default.

Compiling and Running UPC Programs 4–15

Compiling and Running UPC Programs
4.3 Compiler Options

The notrusted_short_alignment option does not override the _ _unaligned
type qualifier or the -assume noaligned_objects flag.

[no]whole_program
Asserts to the compiler that except for "well-behaved library routines", the
whole program consists only of the single object module being produced by this
compilation. The optimizations enabled by whole_program include all those
enabled by nopointer_to_globals, and possibly other optimizations.

The default is nowhole_program.

-inline keyword, -noinline keyword
Specifies whether to provide inline expansion of functions. The -noinline flag
disables the inlining optimization that would otherwise be performed by default
under the following compiler optimization -O[n] flags:

- When -O2, -O3, or -O4 is specified.

You can specify one of the following as the keyword to control inlining:

all Inline every call that can be inlined while still generating correct code.
Recursive routines, however, do not cause an infinite loop at compile time.

manual Inline only those function calls explicitly requested for inlining by an inline
keyword. This is the default when compiling with the -O1 flag.

none Do not do any inlining. This is the default when compiling with the -O0
optimization level.

size Inline all of the function calls in the manual category, plus any additional
calls that the compiler determines would improve run-time performance
without significantly increasing the size of the program. This is the default
when compiling with either the -O2 or the -O3 flag.

speed Inline all of the function calls in the manual category, plus any additional
calls that the compiler determines would improve run-time performance,
even where it may significantly increase the size of the program.

For optimization level 0 (-O0), the -inline flag is ignored and no inlining is done.

-[no]intrinsics
The -intrinsics option causes the compiler to recognize intrinsic functions
wherever it can automatically, based only on name and call signature. On Tru64
UNIX, unlike -D_INTRINSICS, this option can treat library function calls as
intrinsic even when the appropriate header file is not included. Any function
declaration or call site (in the case of implicit declaration) with a name matching
the name of an intrinsic function is examined to see if its parameters and return
result are consistent with the intrinsic function of that name. If so, calls are
treated as being intrinsic. If not, a diagnostic is issued and calls are treated as
ordinary external function calls.

When the compiler identifies a function as an intrinsic function, it is then free
to make code optimizations (transformations) based on what it knows about the
operations performed by the standardized version of that function—given an
optimization level (-On) that enables the intrinsic treatment of that particular
function.

The optimization level determines which functions can be treated as intrinsics:

4–16 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

-O0 or -O1 No intrinsic functions. The -intrinsics option has no effect at
this optimization level.

-O2 (or -O) Memory and string functions: alloca, bcopy, bzero, memcpy,
memmove, memset, strcpy, strlen
Math functions: abs, fabs, labs, atan, atan2, atan2f, atand,
atand2, atanf, ceil, ceilf, cos, cosd, cosf, floor, floorf, sin,
sind, sinf,

-fast (due to its supplying -assume nomath_errno, and -O3,) acos,
acosf, asin, asinf, cosh, coshf, exp, expf, log, log10, log10f,
logf, log2, pow, powf, sqrt, sqrtf, sinh, sinhf, tan, tand,
tanf, tanh

The -intrinsics option is in effect by default. To disable the default, specify the
-nointrinsics option. To disable the intrinsic treatment of individual functions,
specify the function names in a pragma function directive in your source code.

Although on Tru64 UNIX -intrinsics is the default (and it generally treats
calls to [f]printf as intrinsic), to have the low-level support routines for
intrinsic [f]printf inlined, the compilation must include and also specify both
-D_INTRINSICS and -D_INLINE_INTRINSICS on the command line.

-D_INTRINSICS
Affects the compilation of some system header files, causing them to compile
#pragma intrinsic directives for certain functions that they declare. The
exact functions affected can vary depending on the language mode and other
macro definitions. See the header files math.h, stdio.h, stdlib.h, string.h,
and strings.h for details. The exact effect of each #pragma intrinsic varies
by function, by optimization options, and by other compile-time options. The
basic effect is to inform the compiler that the function specified in the pragma
is the one by that name whose behavior is known to the compiler (that is, it
is a standard C or commonly-used library function rather than a user -written
external function). This gives the compiler license to perform additional checks
on the usage of the function and issue diagnostics, and to optimize and/or rewrite
calls to it based on the compiler’s understanding of what the function does.
Some possible optimizations include generating complete inline code, generating
partial inline code with calls to one or more different functions, or just using
characteristics of the function to move the call site or avoid some of the overhead
triggered by an external call.

-D_INLINE_INTRINSICS
Affects the compilation of stdio.h in two ways:

• Whenever the header file would otherwise define getc and putc as
preprocessor macros expanding into code to access the _cnt and _ptr
members of the referenced FILE object directly, instead these macros are
defined to invoke inlined static functions defined in the header file. The use
of an inlined static function instead of a simple macro prevents the argument
from being evaluated more than once (so arguments containing side effects
do not cause a problem), and the function generally will produce better code
because it uses local declarations to avoid aliasing assumptions that the
compiler has to make when analyzing the traditional macro expansions of
getc and putc. Note that getc and putc are not expanded inline when
i/o locking is required, as is normally the case for reentrant or thread-safe
compilations.

Compiling and Running UPC Programs 4–17

Compiling and Running UPC Programs
4.3 Compiler Options

• If -D_INTRINSICS was also specified, making printf and fprintf intrinsic
functions, then certain of the low-level runtime support routines that may be
called for special cases of format strings are defined as inline static functions
in the header file, avoiding external calls to these routines in libc.

-O[n]
Determine the level of optimization, as follows:

Option Optimization

-O0 No optimization.

-O1 Optimization with space as the primary criterion. This is the default if no
optimization option is specified.

-O2 Optimization with time as the primary criterion. This is the default if you
specify -O without a level number. Optimization levels -O2 and higher
enable specific UPC optimizations, such as thread local fetch and store
optimizations.

-O3 Enables inline expansion of C global functions.

-O4, -O5 Additional global optimizations that improve speed at the cost of extra
code size. -O4 and -O5 have the same effect.

In addition to affecting the generated code, the -O level is passed on to ld and is
used by both ld and -om (if -om is specified).

The general guidelines for optimization are as follows:

• If the speed of the generated code is more important than code size, specify
-O (same as -O2). In some cases, -O4 may produce faster code. Using inline
all at -O or -O4 can inline more calls (particularly calls to constructors) and
improve speed, but this option may increase the code size for some programs
beyond an acceptable limit. If you are potentially interested in this option,
you should build your program both with and without the option and compare
the code size.

• If the size of the generated code is more important than speed, some
experimentation may be necessary to determine the best optimization option.
Whereas -O1 (default if an optimization level is not specified) is intended to
optimize for code size, in some cases code that is compiled with -O (or -O2)
to optimize for speed may actually be smaller. Also try -O -unroll 1 to see
whether a smaller size is generated. Using -unroll 1 disables a loop unrolling
optimization and generally reduces the code size when -O is used. You might
also try compiling with the -noinline option both with and without -O to see
whether a reduction in code size occurs.

Other options that can affect run-time size and speed are -non_shared and -om.

When you use -g for best debugging, optimizations are suppressed. Thus, when
comparing the effects of different optimization levels, you should not specify
-g or -g2. For such comparisons, you specify -g0, which suppresses debugging
information.

-om
Perform code optimization after linking, including nop (NoOperation) removal,
.lita removal, and reallocation of common symbols. This flag also positions the
global pointer register so the maximum addresses fall in the global pointer-
accessible window. The -om flag is supported only for programs compiled with
the -non_shared flag. The following options can be passed directly to -om by

4–18 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

using the -WL compiler flag. Note that some flags that improved performance on
older Alpha processors now primarily degrade performance on EV56 and later
Alpha processors.

-WL,-om_compress_lita
Remove unused .lita entries after optimization, and then compress the .lita
section.

-WL,-om_dead_code
Remove dead code (unreachable instructions) generated after applying
optimizations. The .lita section is not compressed by this flag.

-WL,-om_ireorg_feedback,file
Use the pixie-produced information in file.Counts and file.Addrs to reorganize
the instructions to reduce cache thrashing.

-WL,-om_no_inst_sched
Disable instruction scheduling.

-WL,-om_no_align_labels
Disable alignment of labels. Normally, the -om flag quadword-aligns the targets
of all branches to improve loop performance.

-WL,-om_Gcommon,num
Set size threshold of "common" symbols. Every "common" symbol whose size is
less than or equal to num will be allocated close to each other. This flag can be
used to improve the probability that the symbol can be accessed directly from
the global pointer register. Normally, the -om flag causes the compiler to try to
collect all "common" symbols together.

-tune option
Select processor-specific instruction tuning for implementations of the operating
system architecture. Using the -tune option causes the generated code to
run correctly on all implementations of the architecture. Tuning for a specific
implementation may improve run-time performance; however, code tuned for a
specific target may run slower on another target. For a list of options, see the
description of -arch.

Note that -tune ev[x] does not imply -arch ev[x]. Unlike -arch, -tune does not
cause instruction emulation or illegal instructions on any Alpha architecture.

A program compiled with any of the options runs on any Alpha processor.
Beginning with Version 4.0 of the operating system and continuing with
subsequent versions, the operating system kernel includes an instruction
emulator. This capability allows any Alpha chip to execute and produce
correct results from Alpha instructions, even if some of the instructions are
not implemented on the chip. Applications using emulated instructions run
correctly, but can incur significant emulation overhead at run time.

The psrinfo -v command can be used to determine which type of processor is
installed on any given Alpha system.

-unroll n
Control loop unrolling done by the optimizer. n signifies the number of times to
unroll loop bodies. Specifying zero for n tells the optimizer to use its own default
unroll amount. This is the default. Note that the argument n is only a suggestion
to the optimizer.

Compiling and Running UPC Programs 4–19

Compiling and Running UPC Programs
4.3 Compiler Options

4.3.7 Preprocessor Options Supported on All Platforms
Preprocessor options control the action of the preprocessing phase. The upc
command supports the following preprocessor options on all platforms.

-cpp
Run the preprocessor on the source files before compiling. This is the default. If
both -cpp and -nocpp are included on the command line, the option specified last
is in effect.

-C
Prohibit the preprocessor from removing comments in the source file. (Use with
the -E or -Em option.)

-Dname=def, -Dname
Define name to the preprocessor, as if the line #define name def were prepended
to the UPC source file. No space is allowed space between the option and name.
If name or def contains a dollar sign ($), it must be surrounded by apostrophes (’).
If no =def is given, the name is defined as 1.

-E
Run only the preprocessor on the source files (regardless of whether a suffix
exists), and send the result to the standard output. This sets the -cpp option.

-I
Do not search for #include files in the standard directories. Because -I can be
followed by a directory, do not place a nondirectory file name on the command
line immediately following -I. If -I is being used without a directory, follow
it with another option or place it at the end of the command line to avoid
misinterpretation.

-Idir
Define the directory name dir to the preprocessor for use in searching for quoted
and angle-bracketed include files. There can be a space between the option and
dir. The preprocessor searches for include file names that do not begin with a
slash (/) in the following order:

Quoted file names:

1. In the directory containing the source file with the #include directive.

2. In the directories specified by the -I option.

3. In the /usr/include/c and /usr/include

Angle-bracketed files are searched for in the list of directories specified on
the command line, then in the /usr/include/c directory, and finally, in the
/usr/include directory.

If -nocurrent_include is specified, the preprocessor does not search in the
directory containing the source file (#1 above).

-P
Run only the preprocessor and put the result for each source file in a
corresponding .ixx file, without including line numbers. If specified after -E,
a .ixx file is not created. If specified before -E, it overrides -E. On HP-UX output
is sent to stdout.

4–20 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.3 Compiler Options

4.3.8 Preprocessor Options Supported Only on Tru64 UNIX
The upc command supports the following options only on Tru64 UNIX systems.

-M
Run only the compiler on the source files (regardless of whether a suffix exists),
and produce makefile dependencies instead of the usual output. For each source
file, the preprocessor creates one makefile entry naming the object file and
listing all included files as dependencies. To identify correctly the template
implementations on which the source depends, the compiler parses and analyzes
the source; the source must be a valid UPC program. To disable this analysis,
specify the -noimplicit_include option. Same as -Em.

-MD
Produce a dependency file, which has the suffix .d appended to the object
file name. This dependency file is created even if the object file is not. The
information and the format in the dependency file is identical to that produced by
the -M flag. The -MD flag allows dependency information to be generated at the
same time that a compilation is occurring. If multiple files are specified, only the
last file’s information is saved.

-nocurrent_include
Do not search for quoted include files in the directory con- taining the source file
with the #include line. The preprocessor searches the directories specified by the
-I option and in the standard directory. See also the -Idir option.

-Uname
Cancel any command-line definition of name to the preprocessor, as if the line
#undef name were prepended to the UPC source file. There can be a space
between the option and name. If name contains a dollar sign ($), name must
be surrounded by apostrophes (’). The undefine operation occurs after any
definitions produced by the -D options. Symbols defined by default are listed in
the Description section.

4.3.9 Language Mode Options
The upc command supports the following language mode options on all platforms.

-std

-std0
Support the pre-ANSI (K & R) C dialect for cases in which the syntax conflicts
with ANSI C syntax or semantics.

-std1
Use this option if you want the compiler to enforce the ANSI UPC standard
strictly. The default ANSI mode permits some common extensions and provides
less strict error checking than the STRICT_ANSI mode. This option also defines
the macros _ _STD_STRICT_ANSI, _ _STDC_ _, and _ _STDC_VERSION_ _.

4.3.10 Message Information and Control Options Supported on Tru64 UNIX
On Tru64 UNIX systems, the upc command supports the following message
information and control options. The options apply only to discretionary, warning,
and informational messages. The tag variable can be the keyword all, a tag
obtained from the -msg_display_tag option, or a number obtained from the
-msg_display_number option.

Compiling and Running UPC Programs 4–21

Compiling and Running UPC Programs
4.3 Compiler Options

-msg_inform tag,...
Reduce message(s) severity to informational.

-msg_warn tag,...
Reduce message(s) severity to warning.

-msg_error tag,...
Increase message(s) severity to error.

-msg_enable tag,...
Enable specific messages that would normally not be issued. You can also use
this option to re-enable messages disabled with -msg_disable.

-msg_disable tag,...
Disable message. Can be used for any non-error message.

-msg_quiet
Fewer messages are issued using this option. The -msg_enable option can be
used with this option to enable specific messages normally disabled using -msg_
quiet.

The upc command supports the following message information options. Both are
off by default.

-msg_display_number
Displays the error number at the beginning of each message. Note that "D"
(meaning discretionary) indicates that the severity of the message can be
controlled from the command line. The message number can be used as the tag
in the message control options. If "D" is not displayed with the message number,
any attempt to control the message is ignored.

-msg_display_tag
Displays a more descriptive tag at the end of each message. "D" indicates that
the severity of the message can be controlled from the command line. The tag
displayed can be used as the tag in the above message control options. Note
that you can also change the severity of a diagnostic message if the message is
discretionary. For example, -msg_inform 110 changes the severity of message
110 to an informational. These options interact with -w0, -w1, and -w2.

4.4 Examples
This section provides usage examples.

% upc -g -DUSE_CONCENTRATOR -o netmud netmud.c

This example creates an executable file named netmud with symbol table
information for full symbolic debugging (-g). The -D option defines the macro
name USE_CONCENTRATOR for the preprocessor.

% upc -o gfview -I/usr/kafka/src -I/usr/barnes/include gfview.c

This command line creates an executable file from the gfview.c source file. The
-o option names the output file gfview. The -I option directs the preprocessing
phase to search the specified directories for include files not found in the current
working directory.

% upc -c io_module.c

4–22 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.4 Examples

This example preprocesses and compiles the source file io_module.c and
produces an object file named io_module.o. Processing stops after creating the
object file.

% upc -o newsreader io_module.o ui.c -L/users/dave -lnews

This example creates an executable file, and the -o option names the file
newsreader. The source file ui.c is preprocessed and compiled, and then linked
with the object file io_module.o. The link operation uses the library specified
by -l (libnews.a). The linker first looks for the library in the current working
directory, then in the directory specified by -L (/users/dave), and finally in
$PATH.

% upc -pg a.c b.c -nopg c.c

On Tru64 UNIX systems, this command line enables gprof profiling for files a.c
and b.c and disables profiling for file c.c.

4.5 Diagnostics
The error messages produced by the UPC compiler are self-explanatory. The
line number and file name where the error occurred are printed along with the
diagnostic.

SEE ALSO
upcrun(1), upcrund(8), cc(1), csh(1), gcc(1) (<REFERENCE>(platform_
linux)), sh(1), ladebug(1) (<REFERENCE>(platform_linux)), ld(1)
(<REFERENCE>(platform_linux)), what(1), the Tru64 UNIX Programmer’s
Guide, the HP-UX Programmer’s Guide, and the HP XC System Software User’s
Guide

4.6 Use of the comp.config File
The comp.config file allows system administrators to establish a set of
compilation options that are applied to compilations on a system-wide basis.
The compiler options are specified on a single line in the comp.config file. The
file is placed in the the compiler target directory, /usr/lib/cmplrs/upc.

Options from comp.config are processed first, and so may be overridden by
options specified on the command line. It is possible to control this by use of a
vertical bar in the comp.config line; switches specified to the left of the vertical
bar are placed before command line switches, and those to the right are placed
after the command line switches. For example, if the comp.config file were as
follows:

-signed|-intrinsics

the -signed switch would appear before command line switches, and the
-intrinsics switch would appear afterward.

You can use the the DEC_CC environment variable to establish a set of
compilation options that are applied to subsequent compilation on a per-user
basis.

The DEC_CC environment variable can contain two distinct sets of compilation
options separated by a single vertical bar (|). The options before the vertical
bar are known as prologue options, and the options after the bar are know as
epilogue options.

Compiling and Running UPC Programs 4–23

Compiling and Running UPC Programs
4.6 Use of the comp.config File

The DEC_CC environment variable can begin or end with a vertical bar, or have
no vertical bar at all. If no vertical bar is present, the options are treated as
prologue options by default. Any vertical bar found after the first vertical bar is
treated as whitespace and a warning is issued.

Compiler options are processed in the following order during a compilation:

1. comp.config prologue options

2. DEC_CC prologue options

3. command line options

4. DEC_CC epilogue options

5. comp.config epilogue options

If -v is specified on the command line, the contents of DEC_CC and comp.config, if
present, are displayed.

4.7 Header Files
All UPC programs should include upc.h. You can do this by including either
upc_strict.h or upc_relaxed.h; these files set the default coherence to strict
or relaxed, respectively, and then include the common files upc.h, upcstrict.h,
and upc_relaxed.h. Alternatively, you could include upc.h file directly and
specify the -fstrict or -frelaxed option with the compile command. If the source
file references the collective functions (see Section 3.4), you must inlude the
upc_collective.h file.

4.8 Linking UPC Programs
Unless the -c compiler option is used, the upc command automatically links
the compiled object modules into an executable UPC program file. This file is
named a.out unless the -o option is used to change the file name. The upc
command also includes the UPC Run-Time System (UPCRTS) in the link step
automatically. The program must not be linked non-shared On Tru64 UNIX, the
UPCRTS also references the Quadrics Elan and RMS libraries provided as a part
of the AlphaServer SC system software.

4.9 Debugging UPC Programs
In Tru64 UNIX clusters, you can use the TotalView debugger from Etnus, Inc.
to debug UPC programs. TotalView is a full-featured, GUI-based debugger
specifically designed to meet the needs of parallel applications running on many
processors. The TotalView documentation set is available directly from Etnus,
Inc. However, Totalview is not included with the HP UPC software and is not
supported. If you install and use TotalView and have problems with it, contact
Etnus, Inc. UPC support in Totalview may not yet be complete.

You can also debug UPC programs using the UPCRTS family of display
facilities (see Chapter 7 or Appendix A). Note that an application that exits
with upc_global_exit may not generate output for certain run-time statistics.

4–24 Compiling and Running UPC Programs

Compiling and Running UPC Programs
4.10 Running UPC Programs

4.10 Running UPC Programs
You can run UPC programs in one of three ways:

• Single-threaded execution (Section 4.10.1)

• Multithreaded execution using the prun or srun command (Section 4.10.2)

• Multithreaded execution on an SMP system (or on a single-CPU system)
using the UPC Run-Time Environment (Section 4.10.3)

4.10.1 Running Programs in Single Thread Mode
If a UPC program has been compiled with -fthreads set to 1, or without having
specified a value for -fthreads, then it may be run in single thread mode by
simply executing the program image directly, as with any normal UNIX program.

Single thread mode is useful for basic testing and debugging of UPC programs.
Single thread mode can be used on HP-UX, on XC Linux, or on Tru64 UNIX
Version 5.1 or later systems; the AlphaServer SC software is not needed.

4.10.2 Running Programs in Multithread Mode
The prun (parallel run) command is included as part of the the software
provided with the AlphaServer SC system, and provides access to the Resource
Management Services (RMS) databases and system management services. For
detailed information on the prun command, refer to the reference page for
prun and the RMS User Manual, provided with the AlphaServer SC software
documentation.

On XC Linux systems, use the srun command provided with the Simple Linux
Utility for Resource Management (SLURM). For detailed information, see the XC
Linux documentation and the reference page for srun.

Examples:

prun -n 4 upc_loadtest3
srun -n 4 upc_loadtest3

These commands run the program upc_loadtest3 in the default parallel
partition, using four threads on four CPUs. You can use all prun or srun
command options to run UPC programs on any configuration of CPUs and nodes.
Output from each thread’s stdout is buffered and displayed at the terminal
where the command is executed. Diagnostics output to stderr is not buffered; it
is immediately displayed at the terminal.

If any inconsistencies are found, the UPCRTS issues a diagnostic message
describing the problem and exits before running the main function.
Inconsistencies might be found in the following areas:

• The declaration of a shared array in different modules

• The value specified for -fthreads in diverse modules

• The value specified for -fthreads and the value used for the -n option to the
prun or srun command

• Some modules are compiled with the -smp or -smp_local while others are
not

Compiling and Running UPC Programs 4–25

Compiling and Running UPC Programs
4.10 Running UPC Programs

If inconsistencies are found, you must modify one or more modules to correct the
problem. You must then recompile one or more modules with a consistent value
for -fthreads and reissue the prun or prun command with a -n value consistent
with the value used for -fthreads. If all modules compile successfully without
specifying -fthreads, you can use any value for the -n option of the prunor srun
command.

4.10.3 Running Programs in Multithread Mode Using the UPC Run-Time
Environment

HP UPC provides its own job control mechanism for SMP machines that do not
have Quadrics RMS software, or as an alternative to Quadrics RMS software for
jobs that can run on a single SMP node. This job control mechanism is called the
UPC Run-Time Environment (RTE) and comprises the UPC job control daemon
upcrund and the upcrun command. For detailed information about the RTE, see
Chapter 5.

For a program to run on an SMP system (where all processors share the same
physical memory), the shared data must be made visible to all threads. Use
the -smp_local or the -smp compiler option. The -smp option provides better
performance. Note that you can include the desired option in the comp.config
file (see Section 4.6).

On HP-UX, the default is to run in SMP mode. It is not necessary to specify the
-smp option.

4–26 Compiling and Running UPC Programs

5
The UPC Run-Time Environment

For a program to run on an SMP system (where all processors share the same
physical memory), the shared data must be made visible to all threads. To do
this, use the -smp_local or the -smp compiler option. The -smp option provides
better performance. Note that you can include this option in the comp.config file
(see Section 4.6).

On HP-UX, the default is to run in SMP mode. It is not necessary to specify the
-smp option.

HP UPC provides its own job control mechanism for SMP machines that do not
have Quadrics RMS software, or as an alternative to Quadrics RMS software for
jobs that can run on a single SMP node. This job control mechanism is called
the UPC Run-Time Environment (RTE). The RTE comprises the UPC job control
daemon (upcrund) and the upcrun command.

5.1 The UPC Job Control Daemon
The UPC installation procedure automatically configures and starts the UPC job
control deamon on Tru64 UNIX and HP-UX. The daemon is normally restarted at
boot time when the system executes its init script, called /sbin/init.d/upcrund.
The process runs with root privileges. On XC Linux systems, the daemon is not
needed, because these systems use the srun command provided with the Simple
Linux Utility for Resource Management (SLURM).

The UPC job control daemon determines the number of CPUs on the system and
uses that value as the maximum number of UPC programs that can be run at
one time. On a four-CPU system, for example, a user can specify a maximum
-n value of 4 to the upcrun command. However, specifying the -O option allows
more than one UPC thread per processor.

The UPC daemon starts the UPC programs and waits for them to exit. It
forwards output from the programs to the user and writes whatever the user
types to each program’s stdin. If the upcrun(1) command receives a INT, QUIT,
or TERM signal, the UPC daemon kills the programs with that signal.

After a successful initialization, the UPC daemon writes all messages to the
system log maintained by the syslogd daemon.

5.1.1 upcrund Options
The upcrund command supports the following options:

-S
Disable the CPU Resource Manager. Not currently supported.

-D
Reserved for use by HP.

The UPC Run-Time Environment 5–1

The UPC Run-Time Environment
5.1 The UPC Job Control Daemon

-a
Use the -a option to specify an alternate socket port number when another service
is using the same number as the UPC RTE. The alternate port number must be
the same value used by the upcrun(1) command, which has a corresponding -a
option. The default port number for UPC RTE is 9112.

-h
Display help information.

-v
Display the version of the UPC RTE.

5.1.2 upcrund Environment Variables
The UPC daemon uses the following environment variables, but none are required
by the user.

UPC_RTE_HOME
This is the working directory of the UPC daemon. By default, UPC_RTE_HOME
is set to /etc/upc_rte. The UPC daemon executes chdir to this directory as part
of its initialization.

UPC_RTE_CONF
This variable may be used in future versions to control UPC node configuration.

5.1.3 upcrund Files
The UPC daemon uses the following files:

/sbin/init.d/upcrund
Init script for the UPC daemon.

/usr/sbin/upcrund (Tru64 UNIX), /opt/upc/bin/upcrund (HP-UX)
The UPC daemon executable

/etc/upc_rte
The default HOME directory for the UPC daemon.

/etc/upc_rte/crm_sock@nodename
A socket created by the UPC daemon.

5.2 The upcrun Command
To execute UPC programs within the UPC RTE, you use the upcrun command.
In this release, upcrun is restricted to SMP programs on a single system. For
proper execution, UPC programs must be compiled using the -smp_local or -smp
option. The -smp option is preferred.

On HP-UX, the default is to run in SMP mode. It is not necessary to specify the
-smp option.

The upcrun command executes multiple copies of the specified program. The set
of processes started by a upcrun command is called a job. Each job is assigned a
unique job id.

The programs start in the same directory from which the upcrun command
is issued and execute as if the owner ran them directly. The user’s entire
environment is made available to the running program.

5–2 The UPC Run-Time Environment

The UPC Run-Time Environment
5.2 The upcrun Command

The upcrun command exits when all the processes have exited or when one of
the processes exits upon receiving a signal. Normally, the exit values for the
processes are summed and the result value becomes the exit value of the upcrun
command. However, if a process is killed because of a signal, the UPC RTE
displays a job failure message containing the number of the signal that killed the
job.

Once a job is started, the upcrun command catches the signals INT, QUIT, and
TERM, and forwards them to all the programs. Normally these signals cause
programs to exit, but programs may choose to act on the signals or block them.

5.2.1 upcrun Options
The upcrun command supports the following options:

-a port
Use the -a option to specify an alternate socket port number when another service
is using the same number as the UPC RTE. The alternate port number must be
the same value used by the upcrund(8) daemon, which has a corresponding -a
option. The default port number for UPC Run-Time Environment (RTE) is 9112.

-h
Display help information.

-I
Normally, upcrun starts jobs as long as CPU resources are available. When
resources are exhausted, running jobs terminate immediately, and pending jobs
are queued for later execution. Use the -I option to prevent the queueing of jobs
when there are insufficient CPU resources.

-n procs
Specifies the number of processes to start. The value of procs must be less than
or equal to the number of CPUs on the system. The default value is 2. On Tru64
Unix, each process runs on its own CPU and has sole use of that CPU.

-N nodes
Specifies the number of nodes on which to run the program. By default, upcrun
uses as many nodes as needed to fulfill the -n procs specification. In the current
release, only -N 1 is supported; that is, all threads must run on CPUs in a single
multiprocessor node.

-0
Allows more than one UPC thread per processor. Used in conjunction with the -n
option of the upc command.

-q
Displays information about jobs that are running or are queued.

-t
Prefixes each line of output with the value of MYTHREAD (the UPC thread
number). You can use the -t option to tag output from programs (stdout and
stderr) and thus determine which UPC process wrote which line of output. The
UPC RTE does not buffer any output it reads from the UPC program. Any data
available at the time of the read request is written to the output of the upcrun
command. Separation of stderr/stdout data is maintained. Read requests are
made for 8K blocks.

The UPC Run-Time Environment 5–3

The UPC Run-Time Environment
5.2 The upcrun Command

Programs may read from stdin. The upcrun program forwards data read from
stdin to all of the programs. The upcrun program can be executed in the
background.

-v
Display the version of the UPC RTE.

5.2.2 upcrun Operands
program [args...]
The name of the UPC program optionally followed by its arguments. The program
can be specified with a full or relative path name or found using the user’s path
environment variable.

5.2.3 upcrun Warnings
For the UPC RTE to manage multiple jobs, processes are placed in process
groups. A UPC program cannot change its process group.

5.2.4 upcrun Exit Status
The upcrun command exit code is a bitwise OR of all the exit codes of the parallel
processes. An exit value of 1 indicates that upcrun could not fulfill the users
request.

5.2.5 upcrun Examples
In the following example, upcrun is used to execute 2 copies of the following
program:

main()
{
printf("MYTHREAD is %d\n", MYTHREAD);

}

$ upcrun -n2 a.out
upcrun: starting job #1
MYTHREAD is 1
MYTHREAD is 0

In the following example, upcrun executes four copies of the shell; each shell calls
echo to print its pid.

$ upcrun -n4 sh -c ’echo My PID is $$’
upcrun: starting job #56
My PID is 2984
My PID is 2985
My PID is 2986
My PID is 2987

In the following example, an error occurs because too many resources are
requested:

$ upcrun -n8 my_upc_prog
Unable to fulfill your request to run 8 processes.
There are only 4 CPUs available for UPC.

The following behavior occurs if there is a temporary CPU resource shortage:

$ upcrun -n4 my_upc_prog
upcrun: queuing job #64
upcrun: starting queued job #64

5–4 The UPC Run-Time Environment

The UPC Run-Time Environment
5.2 The upcrun Command

To prevent the job from being queued, use the ’-I’ option:

$ upcrun -n4 -I my_upc_prog
Unable to allocate CPU resources immediately.

If you specify an alternate socket port which is not the same as that being used
by the UPC daemon, upcrun displays an error message appears like the following:

$ upcrun -a9001 -n2 my_upc_prog
upcrun: starting job #71
Connect to port 9001 on node upc failed
Proceeding to shutdown job ...
Shutdown of job is complete

In the following example, the user program contains an error that causes one of
the processes (with MYTHREAD = 1) to get a segmentation violation:

$ upcrun -n2 my_bad_prog
Job failure on node upc: my_bad_prog (UPC_PEER_PID=1) was killed
with signal ’11’ on Fri Sep 7 15:41:41 2001
Proceeding to shutdown job ...
Shutdown of job is complete

If the UPC daemon is not running, upcrun displays the following error messages:

$ upcrun -n2 my_upc_prog
Failed to connect to the CPU Resource Manager.
Connect failed in init_client_unix_sock
path /etc/crm_sock@upc: No such file or directory

Check if the UPC Daemon is running and that it can
respond to CPU resource requests (no ’-S’ switch).

5.2.6 upcrun Environment Variables
Each thread receives an environment variable UPC_PEER_PID with a value
of that particular thread’s thread number. In addition, all user environment
variables are made available to the programs.

The UPC Run-Time Environment 5–5

6
Programming Techniques

This chapter describes UPC programming techniques.

6.1 Sharing Data Across Multiple Threads
Variables that are declared with the shared type qualifier are visible to all
threads. Shared arrays are distributed across all threads, while shared scalars
have affinity to thread 0.

6.1.1 Granularity
Adjacent small data types (anything smaller than an int, but see discussion
of bit fields below) may be accessed by different threads without interference
when referenced as shared data. There may be a performance penalty, however,
in making such references. It is suggested that small data types, if needed, be
referenced primarily on the thread to which the data have affinity.

A pointer to a shared small data type may be cast to a pointer to private. If
the small datum is stored via the pointer to private, the compiler may find it
more efficient to read, modify, and write out a larger number of bytes than the
specified data type. This has the potential of overwriting modified data if some of
the adjacent bytes have been written by a different thread. There are several ways
to avoid this problem:

• Avoid small data types;

• Avoid having adjacent small data written concurrently by multiple threads;

• Use locks to synchronize access to small data;

• Declare any pointers to private to small shared data volatile, and specify the
-strong_volatile option on the command line. (This option is available only
on Tru64 UNIX.)

6.1.2 Bit Fields
If a shared structure contains a bit field, and that bit field is modified, the entire
containing structure is fetched, the bit field modified, and the entire structure
written back. This operation can be slow, and can cause overwriting of other
data modifications if any part of the structure is referenced by other threads. Bit
fields in shared structures should be avoided, and where possible accessed
via pointers to private.

Programming Techniques 6–1

Programming Techniques
6.2 Synchronizing Access To Shared Data

6.2 Synchronizing Access To Shared Data
References to shared data may be synchronized via several methods:

• Locks;

• Strict references and fences;

• Barrier statements.

Each has its own characteristics. Strict references and fences guarantee that
a thread will see any writes to shared data that have occurred, but do not
guarantee that any particular write has taken place. Barriers provide uniform
synchronization across all threads, guaranteeing that all have reached a
particular point in the program. Locks permit finer-grain synchronization for any
subset of threads. Use of locks is usually for the purpose of resource allocation—
to allow a single thread to allocate memory, perform I/O, or protect access to a
commonly used data structure.

6.3 Improving Performance Of Shared Data Access
References to shared memory locations can be several orders of magnitude slower
than references to private memory. See Chapter 7 for a discussion of several
features in the HP UPC Run-Time System that can alleviate these delays. UPC
programmers can further reduce these overheads by paying attention to allocation
of shared data and using access techniques that minimize these delays.

Shared data references are ultimately always performed using pointers to shared.
Such references may be performed on the thread to which the target has affinity
(call this case a local target), or on a different thread (call this case a remote
target). Alternatively, in the case of a local target, the pointer to shared may be
cast to a pointer to private and the target referenced via the pointer to private.
In decreasing speed order:

1. Referencing a local target via a pointer to private.

2. Referencing a local target via a pointer to shared.

3. Referencing a remote target via a pointer to shared.

If a large amount of work can be done by the threads on their own data (data
with affinity to the current thread), without the data being modified by other
threads, it is best to do the work using pointers to private. If this is not possible,
it is best to have the threads do most of the modifications of their own data. (See
also the discussion of granularity in Section 6.1.1.)

References to fields of structures that are shared are turned into direct references
to the field type, and so are handled efficiently, with the exception of bit fields
(see Section 6.1.2).

Even with relaxed references, remote data fetches must be completed in order to
provide a value used in an expression. On the other hand, relaxed remote stores
may be delayed. The programmer may take advantage of this fact by assigning
work to threads accordingly. For example:

shared int A[THREADS], B[THREADS];
upc_forall(i = 0; i < THREADS; i++; &A[i])
A[i] = B[(i+1)%THREADS];

6–2 Programming Techniques

Programming Techniques
6.3 Improving Performance Of Shared Data Access

In this loop, the store to A is performed locally, as specified in the affinity
expression of the forall statement. Meanwhile, the remote fetch of the array
B must complete in order to have a value to assign to A. It would be better to
switch the thread assignments by changing the affinity expression:

upc_forall(i = 0; i < THREADS; i++; &B[(i+1)%THREADS])

In the modified loop, the fetch of B is performed locally, and the remote store to A
can be delayed.

6.4 Using the upc_forall Statement
As discussed in Section 2.12.1, the upc_forall statement is a UPC-specific
statement designed to allow distribution of executed loop iterations based on an
affinity expression. The following sections describe some possible uses for this
statement. See also the examples is Section 6.3.

6.4.1 Null Affinity Expressions
Even without an affinity expression, the upc_forall statement is slightly
different from an ordinary for statement in the C language. The difference is
that, because upc_forall is a parallel statement, the programmer is asserting
that no premature loop exits exist, and that no iteration modifies the values
computed for any iteration executed on a different thread. All threads see the
same sequence of iterations.

These properties allow the compiler to make useful assumptions about the
operations in the loop body, such as, that any functions called do not modify
values needed for future iterations. These properties thus allow the compiler to
perform memory-access optimizations such as pre-fetching and store delaying
with the assurance that these speedups will not cause the loop to compute
incorrect results.

6.4.2 Integer Affinity Expressions
Next, it is important to note that the affinity expression can be either an integer
or the address of a pointer to shared value. The simplest form of a upc_forall
that partitions the iteration space into THREAD independent streams using the
loop index for its affinity expression, for example:

upc_forall (i=0; i<LOOPLIMIT; i++; i) { body }

In this case, assuming ��������� � ���	
�� , all iterations where the
relationship i%THREADS = = MYTHREAD holds will have their body statement
executed by the current thread. This construct partitions the iteration space
evenly among the threads in a round-robin fashion. The HP UPC compiler
optimizes such constructs in such a way that the skipped iterations do not
actually take extra time.

If all computations in the loop body involve only private memory values, or
shared values whose affinity is to the current thread, then such loops will run at
approximately the same speed as their counterparts in an ordinary C program.

Such a construct is also appropriate if all shared array elements referenced in
the loop are not declared with block size specifiers, and use only simple indexes,
such as a[i]. In this case, the array index matches the affinity of the individual
element, and the performance hit of a remote-affinity shared reference need not
be paid.

Programming Techniques 6–3

Programming Techniques
6.4 Using the upc_forall Statement

Integer affinity expressions are also appropriate if the user desires to partition
the iteration space into non-uniform chunks, or if the dominant affinity of the
body statement changes in a non-uniform manner throughout the iteration
space. By using an affinity expression that is an integer expression or function
call, any arbitrary pattern of iteration references can be produced. Such an
expression need only return MYTHREAD for the iterations where the body must
be executed, and a non-MYTHREAD value for other iterations. UPC requires
that each iteration be executed by exactly one thread.

6.4.3 Shared Address Affinity Expressions
The most common form of affinity expression is the address of a shared array
element referenced within the loop. The main benefit of this form is to provide
a simple way to partition the iteration space in a way that takes advantage of
the alignment of the affinities of several shared arrays used within the loop. For
example, in a simple summation loop:

shared int a[100*THREADS], b[100*THREADS], c[100*THREADS];
. . .
upc_forall (i=0; i<100*THREADS; i++; &a[i]) {
[i] = a[i] + b[i];
}

the iteration space is partitioned in such a way that every iteration is executed on
exactly those threads for which the a[i], b[i], and c[i] values have local affinity. No
remote shared references are needed to execute this loop, so it will run almost as
fast as a simple C for loop with similar form. This method works well regardless
of the block size values used for the array declarations.

For more complicated loops, the design goal is to choose an affinity expression
that minimizes the aggregate overhead of remote references, and partitions
them evenly among the threads. Often, that goal will be achieved by choosing
the address of an array element that appears within the loop body and which
has the same affinity as other array elements used in the body. However, more
complicated situations may require the use of a ‘‘surrogate’’ array, which is not
used in the body at all, but which is only declared to provide an affinity pattern
to follow.

6–4 Programming Techniques

7
Run-Time Library Configuration and Control

The HP UPC Run-Time System (UPCRTS) is a general purpose interprocess
communication system with calling interfaces optimized for UPC programs
compiled by the HP UPC compiler. In addition to its primary function of
supporting the UPC language shared fetch and store operations, the UPCRTS
supports an extensive error checking system, the UPC language functions for
memory management, synchronization, and locking. The UPCRTS provides
binary control interfaces for initialization, communication, synchronization,
and resource management, as well as an extensive user interface in the form
of a variety of environment variables and display services. The values of any
recognized environment variables (prefixed by UPCRTS_) are examined at start-up
time and used to control operating modes, which run-time optimizations to
attempt, and what display services to activate. The default modes are chosen
to support correct UPC program execution with minimal interference with the
underlying Quadrics™ Elan™ services (when applicable). Optional modes offer
higher performance for UPC programs that can tolerate certain restrictions in
resource usage.

RTS behavior differs according to its implementation in the Quadrics or SMP
environment.

7.1 Quadrics Environment
The Quadrics Elan software interface supports a high-speed Remote Direct
Memory Access (RDMA) facility and relies on the Quadrics Resource Management
Services (RMS) facilities for parallel startup and I/O to stdin, stdout, and
stderr for all threads. The UPCRTS provides several significant performance
optimization systems targeting the performance characteristics of the Quadrics
Elan Network Interfaces and Elite™ switches.

The properties that make such enhanced operating modes possible are:

• The latency and bandwidth characteristics of the Quadrics interconnect.
While the first word of a Quadrics RDMA store or fetch takes 2-6
microseconds, each additional word requires only a few additional
nanoseconds.

• By combining several UPC language fetch or store operations into a single
Quadrics operation, aggregate shared access performance can be increased by
10-fold or greater.

• The Quadrics Elan interfaces support overlapping several shared memory
access operations at a time on each thread. By supporting binary interfaces
and resource management capabilities that exploit this feature, the UPCRTS
can hide a significant amount of the base latencies of the individual
operations. Aggregate performance improvement can be as much as five-fold
from this feature.

Run-Time Library Configuration and Control 7–1

Run-Time Library Configuration and Control
7.1 Quadrics Environment

• Several of the system configurations that are supported as individual nodes
in AlphaServer SC systems are themselves shared memory multiprocessors.
Shared memory access operations performed between CPUs in such systems
using true shared memory operations can be two orders of magnitude faster
than using the Quadrics interconnect for such references. By supporting
the use of the -smp_local operating mode, the UPCRTS allows UPC
programmers access to this high performance feature.

• The Quadrics Elan network interconnect adapters are themselves
programmable. Certain operations, such as global synchronization
and lock management, can use this feature to deliver high performance
implementations of UPC operations that correspond to these primitives.

Because access operations involving shared memory can be 2 to 4 orders of
magnitude slower than similar operations involving local private memory, it is
not unusual for UPC programs to have shared memory access delays as their
primary performance bottlenecks. However, by exploiting the enhanced modes
and optimizations in the UPCRTS, the HP UPC programmer and user can shift
the overall bottlenecks of many applications away from interconnect performance
and back to individual CPU performance, thus achieving the ultimate goal of
parallel programming: linear performance increases up to high processor counts
without the high programming complexity of explicit message-passing calls.

7.2 SMP Environment
HP UPC provides its own job control mechanism for SMP machines that do not
have Quadrics RMS software, or as an alternative to Quadrics RMS software for
jobs that can run on a single SMP node. This job control mechanism is called the
UPC Run-Time Environment (RTE) and comprises the UPC job control daemon
(upcrund) and the upcrun command. For detailed information about the RTE, see
Chapter 5.

For a program to run on an SMP system (where all processors share the same
physical memory), the shared data must be made visible to all threads. To
do this, use the -smp_local or the -smp compiler option. The -smp option
provides better performance. Note that you can include the desired option in the
comp.config file (see Section 4.6).

On HP-UX, the default is to run in SMP mode. It is not necessary to specify the
-smp option.

7.3 UPC RTS Memory Usage
The RTS uses the following memory zones:

all alloc
Contains all shared data dynamically allocated using the upc_all_alloc memory
allocator.

global alloc
Contains all shared data dynamically allocated using the upc_global_alloc
memory allocator.

local alloc
Contains all shared data dynamically allocated using the upc_alloc memory
allocator.

7–2 Run-Time Library Configuration and Control

Run-Time Library Configuration and Control
7.3 UPC RTS Memory Usage

static alloc
If -smp_local is specified (note that -smp implies -smp_local), statically
declared shared data (data declared at file scope or with the static storage
class) are dynamically allocated in the static alloc memory zone. Otherwise,
the compiler allocates space for the data, and the static alloc memory zone is
empty.

The RTS uses the following mechanism to determine the zone sizes:

• During application initialization, the RTS learns the following from the
compiler:

Total size of the static alloc zone

Whether the application makes any calls to allocate from the all alloc
zone.

Whether the application makes any calls to allocate from the local alloc
zone.

Wheter the application makes any calls to allocate from the global alloc
zone.

• When running in the Quadrics environment, the RTS detects the size of
Elan-Visible space. This size is the maximum amount of memory that can be
considered shared. The size of Elan-visible space can be modified using the
following Environment Variables:

LIBELAN_GALLOC_SIZE
LIBELAN_ALLOC_SIZE

Note that Galloc size is a portion of the Alloc size, so the Alloc setting must
be larger than the Galloc setting.

• The RTS detects the maximum shared memory segment size from the ipc
subsystem. When running under the prun environment, the minimum of this
value and the size of the Elan-Visible space determines the maximum amount
of memory that can be shared.

• Once the RTS has gathered this data, it is able to partition the shared
memory segment into appropriately sized zones. It allocates a shared memory
segment based on the computations described earlier and reserves space for
the static alloc memory zone, if applicable. It then partitions the remaining
portion of the segment into the dynamic zones. Note that the global alloc
and all alloc zones require a minimum amount of space for internal UPC
housekeeping, so they will never be 0, but they will be a minimum size
if there are no calls to those allocators in the application. If there are no
application calls to allocate from the local alloc zone, then no memory will
be reserved for the local alloc zone. Thus, the RTS strives to reserve the
largest zones possible based on the perceived usage of the zone.

Refer to the Quadrics Elan documentation for more information.

7.4 Environment Variables
The UPC Run-Time System (UPCRTS) supports diverse behavior controls
using the environment variables described in this section. See the Section A.3
for information on environment variables that affect the behavior of UPC
applications running in an SC environment.

Run-Time Library Configuration and Control 7–3

Run-Time Library Configuration and Control
7.4 Environment Variables

Some of the variables in this section are described as boolean. Such variables
are considered FALSE if they are not defined, or if they are defined to FALSE,
F, OFF, or 0. They are considered TRUE if they are defined with no value, or if
they are defined to TRUE, T, ON, or 1.

7.4.1 Performance Control Variables
By default, the UPCRTS caches remote operations; the caching mechanism
causes the UPCRTS to expand remote fetch operations to a cache block sized
region containing the requested address. Subsequent fetches from nearby remote
addresses may be satisfied from the cached results of the expanded remote fetch,
eliminating the need for remote operations. A four-way set associative cache
method is used. Note that the cache is only used if the cache block size is greater
than zero and there are more than zero cache blocks. Note that caching is not
used in SMP environments.

Table 7–1 Caching Control Variables

Variable Type Default Description

UPCRTS_USE_CACHE Boolean True Turns the use of the cache on or off.

UPCRTS_CACHE_SETS Integer 128 Indicates how many cache sets (lines) to use
per thread. Must be greater than zero.

UPCRTS_CACHE_BLOCK_SIZE Integer 64 Indicates the size in bytes of a cache block.
Permitted values are the powers of 2 from 64
bytes up to 8192 bytes.

UPCRTS_CACHE_ASSOCIATIVITY Integer 4 Indicates the number of cache blocks per cache
set. Must be in the range 1 to 128.

UPCRTS_DISP_CACHE_STATISTICS Boolean False Displays information about cache performance
after the program is run. Only operates if the
cache is turned on.

Note that the total number of cache bytes available per thread is:

SETS * BLOCK_SIZE * ASSOCIATIVITY

7.4.2 Diagnostic Library and Output Control Variables
The Standard Library provided with the RTS, /usr/lib/cmplrs/upc/libupc.so
on Tru64 UNIX and /opt/upc/lib/libupc.sl on HP-UX and XC
Linux, cannot emit debugging diagnostic information. Another library,
/usr/lib/cmplrs/upc/diagnostics/libupc.so on Tru64 UNIX and
/opt/upc/lib/diagnostics.sl on HP-UX and XC Linux, maintains this
capability at a small performance cost. If you need the diagnostic library,
include /usr/lib/cmplrs/upc/diagnostics in the definition of the environment
variable LD_LIBRARY_PATH.

By default, the output stream for UPCRTS statistics reporting and logging is
stdout, and for diagnostics is stderr. These output streams can be modified
by setting the appropriate variable from Table 7–2 to a file name. When run
with Quadrics RMS software on an AlphaServer SC system, these files have a
.threadnumber appended to their name, one for each separate thread number.
An application that exits with upc_global_exit might not generate output for
certain run-time statistics.

7–4 Run-Time Library Configuration and Control

Run-Time Library Configuration and Control
7.4 Environment Variables

Table 7–2 Diagnostic Library and Output Control Variables

Variable Type Default Description

UPCRTS_DISP_CACHE_STATISTICS Boolean False Displays information about cache performance
after the program is run. Only operates if the
cache is turned on.

UPCRTS_STATISTICS_STREAM File None Changes statistics reporting output stream
from stdout to the specified file.

UPCRTS_LOGGING_STREAM File None Changes logging output stream from stdout
to the specified file.

UPCRTS_DIAGNOSTICS_STREAM File None Changes diagnostic output stream from
stderr to the specified file.

UPCRTS_SUPPRESS_LOCAL_ALLOC_
MESSAGE

Boolean None Suppresses display of the informational
message indicating the obsolesense of
upc_local_alloc.

7.4.3 Configuration Variables
These variables control aspects of UPCRTS normal operation.

Table 7–3 Configuration Variables

Variable Type Default Description

UPCRTS_BUFFERS Integer 1024 Number of memory buffers for controlling the
remote memory operations supported by the
Quadrics switch software. The default value has
proven adequate for small load tests. However,
larger loads may benefit from allocating a larger
numbers of buffers at UPCRTS startup time.

UPCRTS_LOCK_TYPE Lock Type GREEDY Two algorithms may be used for obtaining locks:
FAIR or GREEDY.

7.4.4 Display Variables
The UPCRTS can display information summarizing its behavior after the
program is run. All display variables are boolean variables. Setting any of
these variables to TRUE causes the UPRTS to write summary information to
UPCRTS_STATISTICS_STREAM.

Note

Use of these variables requires the diagnostic library.

Run-Time Library Configuration and Control 7–5

Run-Time Library Configuration and Control
7.4 Environment Variables

Table 7–4 Display Variables

Variable Description

UPCRTS_DISP_TOTALTIME Total system, user, and elapsed time.

UPCRTS_DISP_TOTALCOMM Total number of local and remote GET and PUT
operations.

UPCRTS_DISP_TOTALSYNCS Number of upc_wait and upc_barrier operations
performed.

UPCRTS_DISP_TOTALGETS Number of GET operations.

UPCRTS_DISP_TOTALPUTS Number of PUT operations.

UPCRTS_DISP_LOCALGETS Number of GET operations for data with affinity to
the requesting thread.

UPCRTS_DISP_LOCALPUTS Number of PUT operations for data with affinity to
the requesting thread.

UPCRTS_DISP_REMOTEGETS Number of GET operations for data with affinity to
other threads.

UPCRTS_DISP_REMOTEPUTS Number of PUT operations for data with affinity to
other threads.

UPCRTS_DISP_BARRIERTIMES Documents barrier operations as they are
performed, rather than just at the end of the
program run.

UPCRTS_DISP_TOTALGETSIZES Displays local bytes fetched, remote bytes fetched,
remote GET operations per second, and total GET
operations per second.

UPCRTS_DISP_TOTALPUTSIZES Displays local bytes written, remote bytes written,
remote PUT operations per second, and total PUT
operations per second.

UPCRTS_DISP_MAXPUTS Peak number of PUTs issues between PutAllSyncs
(fences) or barriers. In strict mode, this should
never exceed one.

UPCRTS_DISP_BUFFER_WAITS Number of times the UPCRTS had to wait for a
remote operation to complete in order to obtain a
buffer for an operation.

UPCRTS_DISP_CACHE_STATISTICS Only has effect when caching is turned on.

UPCRTS_DISP_ALLSTATISTICS Activates all the other statistics display variables.
Also causes global allocation overhead information
to be displayed.

7–6 Run-Time Library Configuration and Control

A
Recovering from Errors

This appendix provides information to help you deal with failures or errors that
might occur during product installation or product use. See Section A.3 for
additional information on troubleshooting memory problems.

If you find an error in the documentation or would like to provide suggestions for
improvement, please send mail to the following Internet address:

hp_upc@hp.com

Include the title of the document, section, and page number where appropriate.

A.1 Failures During Product Installation
If errors occur during the installation, the system displays failure messages. For
more information, see the UPC Installation Guide.

A.2 Failures During Product Use
If an error occurs while HP UPC is in use and you believe the error is caused by
a problem with the product, please report it to HP.

Please provide as much detail as possible (problem description, compiler version,
OS version, hardware, and so on).

Customers with support contracts should seek support for problems through local
customer support centers.

Customers who do not have support contracts are encouraged to mail problem
reports to compaq_upc.support@hp.com. Although these reports will certainly be
used as a source of input for fixing problems for new releases, we cannot give the
reports individual attention. We can take remedial action only on a best-effort
basis.

A.3 UPC RTS Run-Time Errors
This section describes UPC RTS Run-time errors.

The RTS detects the following run-time error conditions and their causes. You
can take the suggested corrective actions.

Condition: Static shared data exceeds the maximum shared memory
segment size

Cause: The amount of statically declared shared data exceeds the current
system configuration limits for shared memory maximum.

RTS Message:

Static shared data (size: XXX) exceeds maximum shared memory segment size (YYY)

Corrective action: On Tru64 UNIX systems, you can increase the shared
memory max size (shm_max) using the sysconfigdb utility.

Recovering from Errors A–1

Recovering from Errors
A.3 UPC RTS Run-Time Errors

Condition: Static shared data exceeds the Elan Galloc memory size

Cause: The amount of statically declared shared data exceeds the current
Galloc region within Libelan.

RTS Message:

Static shared data (size: XXX) exceeds Elan galloc size (YYY)
Try increasing global memory size via the LIBELAN_GALLOC_SIZE environment variable

Corrective action: As the message suggests, you can increase the Galloc
region with the LIBELAN_GALLOC_SIZE environment variable. Note: Because
the Galloc region is a partition of the Alloc region, you might also need to
increate the LIBELAN_ALLOC_SIZE accordingly.

A–2 Recovering from Errors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e006700730020007700680065006e0020007300750062006d0069007400740069006e006700200074006f002000410053004d002000610074000d004800650077006c006500740074002d005000610063006b006100720064002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

