
Sparse data structure design

for wavelet-based methods

Ecole CNRS - Fréjus, juin 2010

Méthodes multirésolution et méthodes de raffinement adaptatif de maillage

Guillaume Latu

CEA, IRFM, F-13108 Saint−Paul−lez−Durance, France.

guillaume.latu@cea.fr

and

University of Strasbourg & INRIA/Calvi project

7 rue Descartes, 67084 Strasbourg Cedex, France

Abstract

This course gives an introduction to the design of efficient datatypes
for adaptive wavelet-based applications. It presents some code frag-
ments and benchmark technics useful to learn about the design of
sparse data structures and adaptive algorithms. Material and practi-
cal examples are given, and they provide good introduction for anyone
involved in the development of adaptive applications. An answer will
be given to the question: how to implement and efficiently use the
discrete wavelet transform in computer applications? A focus will be
made on time-evolution problems, and use of wavelet-based scheme for
adaptively solving partial differential equations (PDE). One crucial is-
sue is that the benefits of the adaptive method in term of algorithmic
cost reduction can not be wasted by overheads associated to sparse
data management.

1 Introduction

1.1 Multiscale and adaptive approaches

Mathematical techniques such as multiresolution analysis, multigrid meth-
ods, adaptive mesh refinement, among others, have produced significant

1

advances in understanding multiscale problems [17]. However, these tech-
niques have typically been developed and employed in very specific applica-
tion areas. Consequently, multiresolution research remains largely disjointed
among several disciplines, and researchers within each discipline are unlikely
to be familiar with a broad range of techniques in the other fields. The devel-
opment of adaptive methods needs a greater exchange of information among
disparate lines of research. Multiresolution methods yield sparse, complex,
hierarchical data representations. The data structures that implements spar-
sity may hinder performances if one does not pay enough attention. There-
fore, there is an actual need to develop new mathematical techniques, new
computational methods, and new softwares in a collaborative framework. It
will allow one to better address challenging scientific problems that require
these adaptive techniques.

In this context, wavelets have proven especially useful. When trying to
classify wavelet applications by domain, it is almost impossible to sum up
the thousands of papers written since the 1990s. The present document
addresses the design of data structures and algorithms in wavelet-based ap-
plications. We will look at how to implement and efficiently use the discrete
wavelet transform in computer applications and especially we will focus on
time-evolution problems. One aim of this document is to reinforce the bridge
between mathematicians and computer scientists working on wavelet-based
applications.

The reader of this document is expected to have some basic knowledge
of computer science, C language and wavelet analysis theory. Examples
and source code included in this document are available from the web site
http://icps.u-strasbg.fr/people/latu/public_html/wavelet/data_wav.tgz.

1.2 Some wavelet applications

Because there are so many applications that use the wavelet decomposition
as a tool, we will focus on applications of wavelets in just a few fields. The
connection between these fields is the use of the discrete wavelet transform
computation on potentially huge data.

1.2.1 Image compression

Image compression consists in a reversible transform that maps the image
into a set of coefficients which are finally encoded. An image, decomposed
in wavelet coefficients, can be compressed by ignoring all coefficients below
some threshold values. Threshold values are determined based on a qual-

2

http://icps.u-strasbg.fr/people/latu/public_html/wavelet/data_wav.tgz

ity number calculated using the Signal-to-Noise Ratio (often abbreviated
SNR). The trade-off between compression level and image quality depends
on the choice of the wavelet function, the filter order, the filter length, and
the decomposition level. The optimal choice depends on the original image
quality and on the expected computational complexity.

Numerous compression schemes have been developed in the image pro-
cessing community. Wavelet encoding schemes are increasingly used and
successfully compete with Fourier-based alternatives. They provide high
compression rates together with a high SNR.

1.2.2 Video encoding, signal processing

In images and videos, the lowest frequencies, extracted by high scale wavelet
functions, represent flat backgrounds. The high frequencies (low scale
wavelet functions) represent textured regions [39, 54]. The low-pass sub-
band gives an approximation of the original image, the other bands contain
detail information.

Bit allocation is crucial in this context, as image parts with low energy
levels should have fewer bits. The wavelet filters should be chosen to maxi-
mize encoding gain and to avoid adding noise. After the 2D wavelet analysis,
quantization is performed on the coefficients. Quantization is a procedure
that maps a continuous set of values (such as real numbers) into a set of
discrete values (such as integers from 0 to 255). The coefficients are grouped
by scanning and then entropy coded for compression. Entropy coding is a
form of lossless data compression. The process of entropy coding can be split
into two parts: modeling and coding. Modeling assigns probabilities to the
coefficients, and coding produces a bit sequence from these probabilities. A
coefficient with probability p gets a bit sequence of length −log(p). So the
higher the probability of the coefficient, the shorter the bit sequence. This
coding technique reduces the length of the original bit sequence of coeffi-
cients. Entropy coding maps data bit patterns into code words, replacing
frequently-occurring bit patterns with short code words.

In video compression, the time dimension has to be taken into account.
This expands the wavelet analysis to 3D. Compression can be performed
similarly to 2D image compression. Another video compression method
performs motion estimation. This approach is based on the compression of
the separate images in combination with a motion vector. In the synthesis
bank, the separate images are reconstructed and the motion vector is used
to form the subsequent frames and to reduce the differences between these
frames [54].

3

1.2.3 Application to PDEs

Partial differential equations (PDEs) can be used to describe physical phe-
nomena. They are often difficult to solve analytically, hence numerical meth-
ods have to be used. In order to keep computation time low enough, partial
differential equations that encounter either singularities or steep changes re-
quire non-uniform time-spatial grids or moving elements. Wavelet analysis
is an efficient method for solving these PDEs [13, 27, 39, 59]. The wavelet
transform can track the position of a moving steep front and increase the
local resolution of the grid by adding higher resolution wavelets. In the
smoother regions, a lower resolution can be used. An essential point is the
ability to locally refine the grid in the regions where the solution exhibits
sharp features. This implies a strategy for dynamically identifying those
critical regions and allocating extra grid points accordingly.

In the present work, this is done by taking advantage of multiresolution
data representation. This adaptive strategy allows for a nearly constant
discretization error throughout the computational domain. In addition, be-
cause smooth regions are represented by only a relatively small amount of
data, memory and processor requirements are reduced. Grid points are re-
moved or added according to the magnitude of the corresponding wavelet
coefficient. If the wavelet coefficient is smaller than a predefined thresh-
old, the grid point can be removed. Transient changes in the solution are
accounted for by adding extra grid points at the same levels and at lower
levels. To exemplify this point, an adaptation procedure in 1D can be de-
scribed as follows [13, 39, 59]. Suppose we have a given function f sampled
on a uniform grid xk∈[0,2N] and we want to adapt the grid to the function.
A criterion for this adaptation is:

1. Compute an interpolation P (x2k+1) for each odd grid point x2k+1 of
the grid using the f values known on even points [f(x2k)]k=∗.

2. Compute the interpolative error coefficients

dk = |P (x2k+1)− f(x2k+1)| ,

and apply the grid reduction/extension according to

(a) if dj
k < ε, remove the grid point,

(b) if dj
k ≥ ε, keep the grid point.

If the original function is smoothly varying, then the details dj
k are small

and associated grid points can be removed. Doing so, the number of grid

4

points in the sparse representation is optimized; and, the accuracy of the
representation stays really under control.

1.3 Objectives

In this document, the design of sparse data structures and related algorithms
for wavelet-based applications are discussed.

A sparse data structure is usually described as a data in which many of
the coefficients are equal to zero, so that we can gain both in time and space
by working only on the non-zero coefficients. For sparse matrix calculations,
this approach has been very successful for tackling large sparse problems [43].
The difficulty is that sparse data structures induce memory overhead since
locations of non-zero entries have to be stored alongside the numerical values.
Furthermore, as the data structure is sometimes dynamically updated (the
shape of the data structure evolves), the design of a compact representation
in memory is difficult because one has to think that the data structure may
extend in several ways. A crucial parameter of a sparse representation is the
Number of Non-Zero entries (hereinafter abbreviated as NNZ). The NNZ
quantity parametrizes the costs of algorithms working on the compressed
representation.

Sparse representations has become the topic of an active field of re-
search in both mathematics and engineering, providing a powerful tool for
many applications. Developing, implementing and analyzing fast sparse al-
gorithms for dedicated applications is challenging because it is related to
multiple fields in the computer science area, such as computer architecture,
compilation, data structures, algorithms, information theory, and applied
mathematics. Here is a list of several objectives we would like to concen-
trate on, while designing a sparse wavelet representation:

• Reduce the number of operations when performing sparse computa-
tions (including the possible overhead due to sparse data manage-
ment).

• Implement a compact representation in memory of sparse data struc-
tures.

• Obtain a multiresolution approximation: we want to possibly access
to a given wavelet resolution without taking care of finer scales.

• Improve computer performance for managing sparse representations:
use cache memory better, avoid random access in memory, maximize
the number of operations done per processor cycle.

5

1.4 Pitfalls

1.4.1 Efficient data structures

Processor and memory technology trends show a continual increase in the
cost of accessing main memory. Machine designers have tried to mitigate
this through user-transparent mechanisms, such as multiple levels of cache,
dynamic instruction scheduling, speculative execution or prefetching. Yet,
a wide gap remains between the available and achieved performance of soft-
ware, notably because of access time to main memory. Furthermore, today’s
compilers are unable to fully harness the complexity of processor architec-
ture. Thereby, there is a need for efficient programming techniques and
performance tuning strategies.

In this context, the task of redesigning and reorganizing data struc-
tures to improve cache locality should be considered, especially for pointer-
manipulating programs. Pointer-based structures allow data to be placed
in arbitrary locations in memory. This freedom enables a programmer to
improve performance by applying data optimization techniques1 in order to
use caches better. Implementing cache-conscious data structures is a tricky
task, but some simple techniques will be shown in this document. All data
structures we will examine here are related to wavelet representation and
are used in real-world applications. We will see that tuned data structures
can save a lot of computer resources.

1.4.2 Designing correct algorithms

Designing the right algorithm for a given application is a difficult job [51]. In
the field of wavelet-based application, the task is especially difficult because
we mix sharp mathematics, with sparse representations in memory and a
collection of tricky algorithms.

Generally, programmers seek algorithms that are correct and efficient,
while being easy to implement (partly in order to reduce the debug cycle).
These three goals may not be simultaneously achievable. In industrial set-
tings, any program that seems to give good enough answers without being
too slow is often acceptable, regardless of whether a better algorithm ex-
ists. The issue of finding the best possible answer, or achieving maximum
efficiency, or even prove the correctness of the program, usually arises only
after serious trouble.

One can expect that correct algorithms come with a proof of correctness,
1such as clustering or compression of data in memory.

6

which is an explanation of why we know that the algorithm must take every
instance of the problem to the desired result. Looking for invariants that
should remain true during problem resolution is an important task for the
application designer. These invariants are quite different for each specific
application or algorithm. It may require discussing with collaborators be-
longing to a specific application domain. Identifying some invariants helps
both to debug and to give a proof of correctness. In wavelet applications,
some commonly used invariants are mass conservation (average conserva-
tion), or energy conservation.

There is a real difficulty in programming wavelet-based applications. A
robust implementation should provide some invariants or some quantities
that can be checked.

1.4.3 Optimizing program performance

Modern compilers are sophisticated tools that are able to produce good
code [6]. As programmers, we do not need to know the inner workings of
the compiler in order to write efficient code. However, in order to make
good coding decisions in our programs, we do need a basic understanding
of machine-level code and how the compiler is most likely to translate code
statements into machine code. For example, is an if-else statement costly
or not? How much overhead is incurred by a function call, by a system call ?
Are pointer references more efficient than array indexes? Why does our loop
run so much faster if we sum into a local variable instead of an argument
that is passed by reference?

Exercise 1. Answer to the previous questions.

Optimization of computer programs is a wide area that can not be cov-
ered here. We will however focus on some particular points that can be
useful for wavelet applications.

2 Algorithmic and performance issues

The topics of algorithms and data structures cannot be separated since the
two are inextricably intertwined [40]. So before we begin to talk about data
structures, we must quickly look at some basic notions of algorithmics and,
in particular, on how to characterize algorithm performance. The main
issue in studying the efficiency of algorithms is the amount of resources
they consume. It is usually measured in either the memory space or time

7

consumed. There are classically two ways of measuring these quantities.
The first one consists in a mathematical analysis of the algorithm under
consideration, called an asymptotic analysis, which can capture gross aspects
of efficiency for growing input sizes (but cannot predict exact execution
times). The second is an empirical analysis of an actual implementation, to
determine exact running times for a sample of specific inputs. Both measures
will be explained in this section, and the same type of approach can be also
employed to evaluate memory consumption. These measures characterize
the performance of programs.

2.1 Computer architecture

2.1.1 Memory hierarchy

In a simple schematic view of a computer system, the central processing
unit (CPU) executes instructions, and a memory system holds instructions
and data for the CPU. In this view, the memory system is a linear array of
bytes, and the CPU can access every memory location in a constant amount
of time. The truth is quite more complex and this view does not reflect the
way that modern systems really work.

In practice, a memory system is a hierarchy of storage devices with dif-
ferent capacities, costs, and access times. CPU registers hold the most fre-
quently used data. Small and fast cache memories nearby the CPU (named2

L1, L2, L3) act as staging areas for a subset of the data and instructions
initially-stored in the relatively slow main memory. The memory hierarchy
works well because optimized programs tend to access the storage at any
particular level more frequently than they access the storage at the next
lower level. The storage at the next level can thus be slower, larger and
cheaper per bit. The expected overall effect is the illusion of accessing a
large pool of memory that costs as much as the cheap storage near the bot-
tom of the hierarchy, but that serves data to programs at the rate of the
fastest storage near the top of the hierarchy.

As a programmer, you need to understand the memory hierarchy because
it has a big impact on the performance of your applications. If the data
needed by your program are stored in a CPU register, then they can be
accessed in zero or one cycle 3 during the execution of the instruction; if
stored in a cache, from 1 to 30 cycles; if stored in main memory, from 50
to 200 cycles. Therefore, one can notice that a well written program that

2letter ’L’ stands for cache level.
3CPU cycle refers to a single pulse of the processor clock.

8

often access data in cache memory will be much faster than another version
of the program that mainly accesses data randomly in main memory. That
work can not be made entirely by the compiler and the programmer should
think accurately about the organisation of data in memory (also called data
layout).

If you understand how the system moves data up and down the memory
hierarchy, then you can write your application programs so that their data
items are stored higher in the hierarchy, where the CPU can access them
quicker. This idea centers around a fundamental property of computer pro-
grams known as locality. Programs with good locality: 1) tend to access the
same set of data items over and over again, or 2) they tend to access sets of
nearby data items. Programs with good locality tend to access more data
items from the upper levels of the memory hierarchy (registers, L1 and L2
caches) than programs with poor locality, and thus run faster. For example,
the running times of different matrix multiplication kernels that perform the
same number of arithmetic operations, but have different degrees of locality,
can vary by a factor of more than 20. This example is illustrative of a typ-
ical situation in scientific computing. We will emphasize this point in the
matrix-matrix multiplication example (see section 3.1.2).

2.1.2 Cache matters

A computer spends a lot of time moving information from one place to an-
other. As the processor runs a program, instructions are copied from main
memory into the processor registers. From a programmer’s perspective,
much of this copying is overhead that slows down the “real work” of the
program. Thus, a major goal for system and hardware designers is to make
these copy operations run as fast as possible. Because of physical laws, larger
storage devices are slower than smaller storage devices, and faster devices are
more expensive to build than their slower counterparts. For example, a typ-
ical register file stores only a few hundred bytes of information, as opposed
to billions of bytes in the main memory. However, the processor can read
data from registers almost 100 times faster than from main memory. Even
more troublesome, as semiconductor technology progresses over the years,
this processor-memory gap still remains. Application programmers who are
aware of cache memories can exploit them to improve the performance of
their programs by a few orders of magnitude.

9

2.1.3 Data access: spatial locality, temporal locality

Temporal locality is the tendency of programs to use data items over and
again during the course of their execution [5]. This is the founding principle
behind caches. If a program uses an instruction or data variable, it is prob-
ably a good idea to keep that instruction or data item nearby in case the
program wants it again in the near future.

One corresponding data-management policy or heuristic that exploits
this type of locality is demand-fetch. In this policy, when the program
demands an instruction or data item, the cache hardware or software fetches
the item from memory and retains it in the cache. Before looking into
memory for a particular data item, the cache is searched for a local copy
that can already be there.

Spatial locality arises because of the tendency of programmers and com-
pilers to cluster related objects together in the memory space. As a result
of this, memory references within a narrow range of time tend also to be
clustered. The classic example of this behavior is array processing, in which
the elements of an array are processed sequentially, one right after the other:
elements i and i+1 are adjacent in the memory space, element i+1 is usually
processed immediately after element i. To tackle this behavior, a look-ahead
strategy can be used. When instruction i (or data item i) is requested by
the program, that datum should be brought into the processor core, and, in
addition, instruction (or data) i+ 1 should be brought in as well.

The use of cache blocks4 is a passive form of exploiting spatial locality.
Whenever a program requests a single data item, it results in the loading
from main memory to the cache of the entire block to which the data item
belongs. Another effective way to exploit spatial locality is prefetching (an
active form). Prefetching is a mechanism in which the program asks for
loading an instruction or a data item before the processor really needs it.
Therefore, one can expect reduce memory latency to access this data in an-
ticipating the needs. A possible strategy for prefteching uses the memory
address with the associated recent history or requested addresses to spec-
ulate on which cache block(s) might be used next. An obvious hardware
algorithm can be something like “always fetch next cache block”, called
one-block look-ahead prefetching.

4also referred to as “cache line”.

10

2.1.4 Pointers, indirections

Every variable defined in a program is located at an unique location within
the computer memory. This location has its own unique address, the
memory address. A variable that stores a memory address is called a
pointer. Accessing a variable’s value by a pointer is called indirection, since
the value of variable is accessed indirectly.

Dynamic data structures are those data structures whose size and shape
can change during run-time. Linked-lists and binary trees are two common
examples. In traditional imperative programming languages, pointers or
indirections enable the existence of such dynamic structures. The common
approach is to allocate storage to the individual nodes of such structures
dynamically, maintaining the logical connection between these nodes via
pointers or indirections. Once such a data structure goes through a sequence
of updates (such as insert/delete or modify), it may get scattered accross
the entire memory space; resulting in poor spatial locality and making poor
usage of cache.

2.1.5 Data layout and algorithms that favor locality

If the application accesses instructions and data in a largely sequential
manner, then a simple mechanism is all that is necessary to get temporal
locality, and the performance results can be quite good. If the program
behavior is more complex (say, for example, that accesses in memory are
quite random), the performance can be hindered.

If the program accesses data that are distributed widely across the
memory space, simple look-ahead or prefetching strategies are expected to
be insufficient. For example, let us assume that your application contains a
linked list as main data structure. Let us say this list is large enough not to
fit into any of the caches of the machine. A walk through the list will possi-
bly exhibit neither temporal nor spatial locality. Depending on the way the
data has been filled, the performance of the walk may be very bad because
of the big jumps in memory space between two consecutive cells in the list.
The performance of the walk will be largely parametrized by the order of ele-
ments in the linked list together with the element locations in memory space.

To improve the execution time, at least three ways can be explored.

1. First, it is possible that the choice of a linked list as the main data

11

structure is not compulsory and can be revised. In this case, one can
think of replacing the linked list with a data structure with a lin-
ear memory access pattern, such as an array or a dynamic array [66].
Compared to linked lists, arrays have faster indexing (constant time
versus linear time) and typically faster traversal due to improved lo-
cality of reference. However, dynamic arrays require linear time to
insert or delete an element at an arbitrary location, since all following
elements must be moved, while linked lists can do this in constant
time. Another alternative is the chunk list : instead of storing a sin-
gle record in every node, store a small, constant size, array of records
in every node. Tuning the number of elements per node can exhibit
different performance characteristics: storing many elements per node
has performance more like an array, storing few elements per node has
performance more like a linked list.

2. A second solution, less invasive for the source code, consists in im-
proving the locality of the linked list. One can periodically copy the
list into a new one with the goal of reordering the records in memory.
After such a copy, a walk through the copied linked list induces only
contiguous accesses in memory. If we suppose that the list does not
change very often, one can expect an improvement in spatial locality
and performance by doing this. Modern memory systems are tuned to
favor the access of contiguous areas of memory. In contrast, linked lists
can actually be a little inefficient, since they tend to iterate through
memory areas that are not adjacent. The copy/reorder algorithm is a
cheap way to do a sort of list records according to memory addresses.

3. A third solution, simpler but a bit more technical, is software prefetch-
ing. Data prefetch occurs when a program requests a data from main
memory before it is actually needed The processor that receives such a
demand decides on his own to perform or not the prefetch. In the walk
through the linked list, it would mean that we add a compiler specific
built-in function (for example, builtin prefetch for gcc/icc compil-
ers) in the loop, in order to preload next records of the list. The main
objective of this strategy is to hide memory latency by requesting data
before it is really needed. Albeit this third solution is quite simple (i.e.
only one single statement to add to the code), one should noticed that
it can hardly give better performance than solutions 1 and 2. Let us
remark that if you activate some optimisations during compiling step,
it can happen that prefetch is automatically turned on, and you may
see no improvement at all inserting prefetch statements.

12

Timing results are given in Table 1 to compare the three solutions
against the initial one. All tests were done on the same machine, an
Intel Nehalem-EP node5. We consider here a program that performs
a traversal (computing the sum of the data stored in records) on a
linked list. The size of the list is 8M records (corresponding to 160MB
in memory which is larger than the L3 cache). Source code is stored
into the linked-list directory. The execution times of the traversal are
given in Table 1. Solutions 1 or 2 lead to speedups larger than 10 com-
pared to initial linked-list version. Solution 1 shows that the speedup of an
optimized data structure can be as large as 15 over a simpler data structure.

time (second) speedup
Initial traversal (linked list) 0.84 s 1
Solution 1 (array) 0.056 s 15
Solution 2 (copy/reorder) 0.061 s 13.8
Solution 3 (prefetch statement) 0.82 s 1.02

Table 1: Time measurements for performing a sum over nodes stored in a
linked list or in other data structures

The work we have done on the linked list can be transposed so as to
improve access locality in other dynamic data structures (as trees, for ex-
ample, as we will see afterwards). The lesson learned from this study is that
changing a program’s data access pattern or its data layout can radically
modify spatial or temporal locality.

The careful placement of records in memory provides the essential mech-
anism for improving cache locality, and therefore performance. A cache-
conscious data layout [57] places objects with high temporal/spatial affinity
close to each other so they can reside in the same cache block. The design
of optimized data-structures is often difficult for programmers because it
requires:

• a complete understanding of an application’s code and data structures,

• knowledge of the underlying cache architecture, something many pro-
grammers are unfamiliar with,

• significant rewriting of an application’s code, which is time-consuming,

• eventually consulting a computer scientist.
5Xeon X5570, Bi-processor quad-core, 2.93 Mhz CPU frequency, 32 KB L1 data cache

per core, 256 KB L2 cache per core, 16MB L3 cache per node.

13

2.2 Computational complexity

2.2.1 Asymptotic analysis

Given a program, its running time is parametrized by several things among
which the program input (or the program parameters) plays a major role.
Presumably, as input size increases, so does running time (for example think
about the loading time of a small file [1 KB] or of a large file [100 GB] in
a program). Consequently we often describe running time as a function of
input data of size n, denoted T (n). We expect our notion of time to be
largely machine-independent, so rather than measuring in terms of elapsed
running time, it is more convenient to measure basic steps that the algorithm
makes (usually either the number of arithmetic/atomic operations executed,
or the number of memory accesses). This will not exactly predict the true
running time, since the way the program is written and the quality of the
compiler affect performance. As soon as n is large enough, the T (n) function
will approximate the true running time by a multiplicative constant factor.

In numerical analysis, it is common to use a notation to describe the
asymptotic behaviour of functions, called “big O notation” or “Landau sym-
bol”. This notation is used in two situations:

1. to describe how errors behave as some parameter such as a grid spacing
h approaches 0,

2. to describe how the computational cost (such as number of operations
or amount of memory space) behaves as the size of the problem input
n tends towards ∞.

Hereafter, we give a minimal review of some useful asymptotic notations.

• O(g(n)): A function f is O(g(n)) iff there exist positive constants c
and n0 such that

∀n ≥ n0, 0 ≤ f(n) ≤ c g(n) .

• Θ(g(n)): A function f is Θ(g(n)) iff there exist positive constants
c1, c2, and n0 such that

∀n ≥ n0, 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) .

Example: n2 + n is O(n2) as n → ∞, since for large n the quadratic term
dominates the linear term.

Example: In sorting a list of n items, a naive algorithm takes O(n2) work

14

and an optimal algorithm (e.g. quicksort) takes O(n log(n)) work. If you
put restrictions on the items - e.g. they come from a finite alphabet - you
can reduce this to O(n) work (by using bucket sort, see [64]).

In modern computers, caches and fast registers induces a bias and these
asymptotic estimates can be only roughly correlated with actual compute
time. Nevertheless, they are a useful way to distinguish potentially fast
algorithms from the rest.

Exercise 2. Implement a bucket sort [64] on an integer array of N elements.
Benchmark the code and check the asymptotic behaviour in O(N).

2.2.2 Renewal of the subject

More and more frequently, computer systems are called on to handle
massive amounts of data, much more than can fit in their memory. In this
context, the cost of an algorithm is more aptly measured in terms of the
amount of data transferred between slow memory (disks, for example) and
fast memory, rather than by the number of executed instructions. Similar
issues arise when designing algorithms and data structures to exploit cache
memory efficiently [16, 20]. It will remain a critical topic to use future
generations of supercomputers [49].

A fairly new area of algorithm research called cache-oblivious and cache-
aware algorithms has appeared [3]. The main idea of cache-oblivious algo-
rithms is to achieve optimal use of caches on all levels of a memory hierarchy
without knowledge of their size. Cache-oblivious algorithms should not be
confused with cache-aware algorithms. Cache-aware algorithms and data
structures explicitly depend on various hardware configuration parameters,
such as cache size, while cache-oblivious algorithms do not. An example of
cache-aware data structure is a B-tree which possesses an explicit parame-
ter B which represents the size of a node6 (we will develop further on this
B-tree structure in another section). The main disadvantage of cache-aware
algorithms is that they are based on the knowledge of the memory structure
and size, which makes it difficult to port implementations from one archi-
tecture to another. Another problem is to adapt these algorithms to work
with multiple levels of the memory hierarchy. It can require the tuning of
parameters at each level. Cache-oblivious algorithms solve both problems in

6the memory footprint size of the node is parametrized by B.

15

avoiding the need of hardware parameters. Unfortunately they can be even
more complex to implement than cache-aware algorithm.

3 Data structures for multiresolution

A small collection of dense and sparse data structures are introduced in this
section. These data structures are instructive and will be useful example
to design data structures for multiresolution. A set of simple algorithms
allows for benchmarking these data types. If some data structure focus
on improving performance during runtimes, other ones find ways to reduce
memory footprint. Looking for an ideal sparse data structure that provides
quick access, compact representation and ease of use, it is a hard way to go.

3.1 Multidimensional array

3.1.1 Memory Layout of 2D arrays and matrices

Basic Linear algebra is a common tool in scientific computing. Consequently
there exists some standardization about how to perform operations on vec-
tors and matrices. Thus, the layout for dense matrix storage is somehow
always the same. Thereafter, the alternatives for storing a matrix in the C
language are described. Assume that we would like to store a 2D array A
(a square matrix) having 4 rows and 4 columns.

1. One method of storing the matrix is as an array of arrays (i.e., array
of pointers). The matrix variable A is a pointer to an array of pointers
(double** for example). Each element of the array of pointers points
to an array storing a matrix row, as shown in Fig. 1(b). Note that
although elements of each row are stored contiguously, the rows can
be non-contiguous in memory.

2. The second method, which is common in the scientific computing com-
munity, is to store the entire matrix as one single contiguous block of
memory. Variable A has the address of the first array element, i.e. the
address of entry A[0][0]. Two flavors exist for this storage: row-major
order and column-major order.

Row-major order (Fig. 1(c)): If the matrix is stored in memory row-
wise (elements of the first row followed by elements of the second row,
and so on), the storage format is called row-major order. This is how
2D arrays are usually stored in the C language.

16

|----+----+----+----|
| 1 | 2 | 3 | 4 |
|----+----+----+----|
| 5 | 6 | 7 | 8 |
|----+----+----+----|
| 9 | 10 | 11 | 12 |
|----+----+----+----|
| 13 | 14 | 15 | 16 |
|----+----+----+----|

(a) Initial Matrix

---		----+----+----+----			
	-->	1	2	3	4
---		----+----+----+----			
	.				
---	.				
	.				
---		----+----+----+----			
	-->	13	14	15	16
---		----+----+----+----			

(b) Storage using indirections

|---+---+---+---+---+---+---+---+-----+----+----+----+----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ... | 13 | 14 | 15 | 16 |
|---+---+---+---+---+---+---+---+-----+----+----+----+----|

(c) Storage using row major order

|---+---+---+----+---+---+----+----+-----+---+---+----+----|
| 1 | 5 | 9 | 13 | 2 | 6 | 10 | 14 | ... | 4 | 8 | 12 | 16 |
|---+---+---+----+---+---+----+----+-----+---+---+----+----|

(d) Storage using column major order

Figure 1: matrix storage

Column-major order (Fig. 1(d)): On the other hand, if the matrix is
stored column-wise (elements of the first column followed by elements
of the second column, and so on), the storage format is called column-
major order. This is how 2D arrays are stored in the Fortran language.

It is important for the programmer to be aware of how matrices are
stored in memory while writing performance critical applications. Ac-
cessing the matrix elements in the wrong order can lead to poor locality
of reference and, therefore, suboptimal performance. For example, if
a matrix is stored in row-major format, but the elements are accessed
column-wise by incrementing the column index, then memory accesses
are strided 7, causing poor cache utilization.

3.1.2 Matrix-multiply example

Let’s take a look at a few algorithms for multiplying large, dense matrices.
Figure 2(a) exemplifies a simple matrix-multiplication algorithm on square
matrices of size n2 (matrices are stored in column-major order). To improve
cache usage, a classical improvement is to rearrange calculation by blocking

7 stride in memory between two successive elements is often the size of a row.

17

22 void mat mul bas ic (double∗A, double∗tB ,
23 double∗tC , int N) {
24 register double sum ;
25 register int i , j , k ; /∗ i t e r a t o r s ∗/
26 for (i =0; i<N; i++)
27 for (j =0; j<N; j++) {
28 for (sum=0. , k=0; k<N; k++) {
29 sum += A[k+i ∗N]∗ tB [k+j ∗N] ;
30 }
31 tC [i+j ∗N] = sum ;
32 }
33 }

(a) Basic

64 void mat mul dgemm (double∗A, double∗tB ,
65 double∗tC , int N) {
66 double alpha = 1 . ;
67 double beta = 0 . ;
68 #ifde f MKL
69 char ∗notransp = ”N” ;
70 char ∗ t ranspos = ”T” ; /∗ t r ansp ose ∗/
71 dgemm(transpos , notransp , &N, &N, &N,
72 &alpha , A, &N, tB , &N, &beta ,
73 tC , &N) ;
74 #else
75 cblas dgemm (CblasColMajor , CblasTrans ,
76 CblasNoTrans , N, N, N, alpha ,
77 A, N, tB , N, beta , tC , N) ;
78 #endif
79 }

(b) BLAS library call

35 void mat mul block (double∗A, double∗tB ,
36 double∗tC , int N,
37 int b lock i , int block j ,
38 int blockk) {
39 register int i , j , k ;
40 /∗ b l o c k i t e r a t o r s ∗/
41 int bki , bkj , bkk ;
42 /∗ upper bounds ∗/
43 int maxi , maxj , maxk ;
44 for (i =0; i<N; i++)
45 for (j =0; j<N; j++)
46 tC [i+j ∗N] = 0 . ;
47
48 for (bki =0; bki<N; bki+=b l o c k i) {
49 maxi=MIN(N, bki+b l o c k i) ;
50 for (bkj =0; bkj<N; bkj+=b l o c k j) {
51 maxj=MIN(N, bkj+b l o c k j) ;
52 for (bkk=0; bkk<N; bkk+=blockk) {
53 maxk=MIN(N, bkk+blockk) ;
54 for (i=bki ; i !=maxi ; i++)
55 for (j=bkj ; j !=maxj ; j++)
56 for (k=bkk ; k!=maxk ; k++)
57 tC [i+j ∗N] +=
58 A[k+i ∗N]∗ tB [k+j ∗N] ;
59 }
60 }
61 }
62 }

(c) Blocked

Figure 2: Some matrix-multiply source codes

the loops, see Fig. 2(c). We get six loops in the new version, instead of the
initial three loops. The loop blocking technique allows for the reuse of the ar-
rays by transforming the loops such that the transformed loops manipulate
sub-matrices that fit into some target cache. The idea is to perform as many
computations as possible on data already residing in some cache memory,
and therefore to minimize the amount of transfer between the main memory
and this cache. A third source code is presented in Fig. 2(b), which shows
how to use a call to an external optimized routine to compute the matrix
multiply. It uses a library (BLAS implementation) that performs basic lin-
ear algebra operations such as vector and matrix multiplications8. Please
note that in the three matrix-multiply routines that are shown, identical op-
erations are done on the same data. Only the sequence in which independent
operations are performed and compiler optimizations are different.

8Basic Linear Algebra Subprograms (BLAS) is an Application Programming Interface
standard. Many implementations of this API are available, among which: ATLAS, Goto-
BLAS, Intel MKL, LAPACK . . .

18

Consider the simple algorithm of Fig. 2(a). If matrix B is bigger than
the cache, one can figure out that for each i value (each line of A that we
are considering) the entire matrix B is reloaded from memory to the cache.
The reason for that is that, when we have finished to read the last elements
of matrix B, the first elements of B have disappeared from the cache. So,
the processor has to read matrix B again in order to put its elements into
the cache.
Now, let’s assume that the size of the blocking factors of the blocked algo-
rithm (that is, the blocki, blockj and blockk parameters of Fig. 2(c)) are
well chosen for the largest cache of the machine. One can expect that a B
sub-matrix stored in the cache will be used again and again for each row of
a A sub-matrix (along dimension k). The direct gain of using data of the B
sub-matrix remaining in the cache is that we avoid reloading such data from
memory and then we improve the mean memory access times compared to
the basic version that reloads matrix B for each line of A. A new measure
has been introduced recently that evaluates the number of Memory Transfers
incurred by problem of size n. The notation used for this is MT (n). For an
algorithm to be efficient, the number of memory transfers should be as small
as possible. Let us denote MTbasic and MTblocked the number of memory to
cache transfers for the basic and blocked algorithms9. From the explanation
above, it is clear that MTblocked(n) < MTbasic(n).

There are several ways to estimate the blocking factors for the algorithm
of Fig. (2(c)). ATLAS library10 has chosen, for example, to benchmark
extensively the target machine in order to obtain them. During the instal-
lation of ATLAS on a machine, this software tunes itself to provide best
performances.

Several time measurements of the three versions of the matrix-multiply
were performed on a Intel Nehalem-EP node. Table 3.1.2 shows execution
times for one matrix-multiplication of two matrices of size 20482 computed
on a single core of the node. The performance is also evaluated in terms of
FLOPS. A FLOPS is equal to one floating-point arithmetic operation per
second. This unit of computer speed is frequently used in scientific com-
puting community. To compute the number of GFLOPS (= 109 FLOPS)
obtained, we need the number of floating point operations for a single matrix
multiply. This number is the sum of 20483 additions and 20483 multiplica-
tions, so we get 2 × 20483 operations. For the Nehalem machine, the the-

9One can evaluate MT, for example if n is large enough: MTbasic(n) = 2 n3 + n2,

MTblocked(n) = 2 n3

m
+ n2.

10Automatically Tuned Linear Algebra Software library, yet another implementation of
BLAS.

19

oretical peak performance is 16 GFLOPS (double precision computations).
In Table 3.1.2, performance of matrix-multiply subroutines are shown.

Basic algo. Blocked algo. BLAS call

Time 19.3 s 5.66 s 1.68 s

GFLOPS 0.89 3.04 10.2

Table 2: Performance of a matrix-multiply on two square matrices of size
20482 on single core of a Nehalem node.

The main goal of this paragraph was to exemplify a cache optimization
technique. The blocked algorithm is in-between the performances of the
basic algorithm and the one of the optimized BLAS call. We notice that
taking into account the cache issue with a blocked algorithm greatly im-
proves performance. Then, to go from the blocked algorithm to the BLAS
implementation, other optimizations should be done, such as multi-level
cache blocking, innermost loop optimization, compiler best options choice,
among other things. Yet, these elements are beyond the scope of this paper.

3.2 Dynamic array

Fixed-size arrays lack the possibility of being resizable, but provide very
fast access to their elements. The goal of a dynamic array data structure
is to give the possibility to resize the array whenever required, together
with access performance close to the one of classical fixed-size arrays. The
simplest dynamic array is constructed by first allocating a fixed-size array
and then dividing it into two parts [66]: the first one stores the elements of
the dynamic array and the second one is reserved (allocated but unused).
We can then add elements at the end of the first part in constant time by
using the reserved space, until this space is completely filled up. The number
of elements currently stored in the dynamic array is its actual size, while
the size of the underlying array in memory is called the capacity, which is
the maximum possible size without reallocating. Resizing the underlying
array is an expensive operation, typically it involves: allocating memory
space, copying the entire contents of the array. To avoid incurring the cost
of resizing many times, dynamic arrays usually resize by a large amount,
such as doubling in size (geometric expansion), and use the reserved space
for future expansion. The operation of adding an element to the end might
work as follows:

20

� �
i n l i n e void dynarray append (dynarray ∗a , element ∗e) {

i f (a−>s i z e == a−>capac i ty) {
i f (a−>capac i ty == 0) a−>capac i ty = 1 ;
else a−>capac i ty = 2 ∗ a−>capac i ty ;

// r e a l l o c : a l l o c a t e new array and copy the c o n t e n t s o f p r e v i o u s array
a−>array = r e a l l o c (a−>array , a−>capac i ty ∗ s izeof (element)) ;

}
a−>array [a−>s i z e] = ∗e ;
(a−>s i z e)++;

}� �
Dynamic arrays benefit from many of the advantages of arrays, includ-

ing good locality of reference and data cache utilization, compactness (low
memory usage compared, for example, to linked list, which require extra
pointers), and random access with no extra cost. They usually have only
a reasonable additional overhead in term of memory footprint compared to
fixed size arrays. This makes dynamic arrays an attractive tool for building
cache-friendly data structures.

Benchmarks on the 8-core Nehalem-EP node have been made for dif-
ferent sizes of array. Depending of the array length, the array can fit in
L1, L2 or L3 caches (respectively sized 8×32KB, 8×256KB, 2×8MB). Ta-
ble 3 presents the measured bandwidth for reading static arrays or dynamic
arrays. The benchmark has been performed with 8 threads working simul-
taneously on 8 cores, in order to saturate the node bandwidth capacity. The
cumulative bandwidth given corresponds to the sum of thread bandwidths.
An average on several successive runs has been performed. The caches are
not flushed between two successive runs, thus increasing temporal locality.

Array length Cumulative bandwidth Cumulative bandwidth Known
static array dynamic array peak bandwidth

32 KB 370 GB/s 370 GB/s -

64 KB 220 GB/s 220 GB/s -

512 KB 150 GB/s 150 GB/s -

8 MB 31 GB/s 31 GB/s 32 GB/s

Table 3: Cumulative bandwidth obtained during the computation of a sum
of array elements (on Nehalem-EP node with 8 cores).

Dynamic and static arrays reach the same bandwidth reading. It is worth
noticing that the cumulative bandwidth of L1 cache is 370 GB/s whereas
the main memory bandwidth is 31 GB/s. The order of magnitude between
these two bandwidths intuitively shows that it is critical to design algorithm
and data structures that are able to use cache efficiently.

21

3.3 Hash table

3.3.1 Principle

In computer science, a hash table [67] or hash map is a data structure that
uses a hash function to map identifying values, known as keys, (e.g. a
person’s name) to their associated values (e.g. his/her telephone number).
The hash function is used to transform the key into the index of an array
element. This array element (denoted the bucket) stores the associated
value. Note that a hash table essentially has the same functionality as a
set, allowing for element insertion, element deletion, and element retrieval.
If the set is very small, a simple array or a linked list can be sufficient to
represent a set. Yet, for large sets, these simple solutions will most probably
require too much computing and memory resources whereas hash tables will
save memory space and will be efficient. Many people consider that hash
table are simple to use and fast.

Ideally, the hash function should map every possible key to a unique
bucket index (or slot index), but this ideal is unfrequently achievable in
practice. Most hash table designs assume that hash collisions (the situation
where different keys happen to have the same hash slot/index) are normal
occurrences and must be accommodated in some way. A classical approach
to deal with that is to have a linked list of several key-value pairs that are
hashed to the same location (bucket). By doing so, we avoid storing values
directly in buckets, and we use per-bucket linked lists instead. To find a
particular value, its key is hashed to find the index of a bucket, and the
linked list stored into the bucket is scanned to find the exact key. These
data structure that uses linked lists are called chained hash tables. They
are popular because they require only basic data structures with simple
algorithms, and they support the use of simple hash functions that may
induce collisions (see example shown in Fig. 3).

In a good hash table, the average cost (number of instructions) for each
lookup is independent of the number of elements stored in the table re-
sulting in a cost O(1). Many hash tables allow arbitrary insertions and
deletions of key-value pairs, also at constant average cost per operation. In
many situations, hash tables are as fast as search trees or any other table
lookup structures, and sometimes are even faster. For this reason, and their
simplicity of use, they are widely used in many kinds of computer softwares.

22

100

31

77

3

2 .8932

100

31

77

3

.112

.0543

.0155

.0671

Keys

000

001

002

003

004

005

006

007

008

2

Hash function

Hash values EntriesBuckets

Figure 3: A chained hash table with five pairs (key-value) and one collision
located at bucket (id 003).

3.3.2 Hash functions

In principle, a hashing function returns a bucket index directly; in practice,
it is common to use the return value modulo the number of buckets as the
actual index.

The chaining and the use of linked list represents a big overhead in a hash
table. Therefore, it is important that the chains always remain short (that
is, the number of collisions remains low). A good hashing function would
ensure that it distributes keys uniformly accross the available buckets, thus
reducing the probability of collisions [38, 67].

Another way to keep chains short is to use a technique known as dynamic
hashing: adding more buckets when the existing buckets are all used (that is
when collisions become inevitable, the hash table is resized up), and using a
new hashing function that distributes keys uniformly into all of the buckets.
All keys need to be redistributed and copied, since the corresponding indices
will be different with the new hashing function.

3.3.3 Drawbacks

A hash table is a natural and quite easy way to represent a set or a sparse
array. If the hash function is effective (that is, induces few collisions), then
accessing an element in the array is effectively O(1). However, achieving
this level of performance is not simple. Furthermore, the constant before
the O(1) can be quite large. Thereafter is given a list of some drawbacks
one can expect of hash tables:

• Choosing an effective hash function for a specific application is more

23

an art than a science. Furthermore, if we choose a bad hash function,
hash tables become quite inefficient because there are many collisions.

• Although operations on a hash table take constant time on average,
the cost of a good hash function can be significantly high.

• There is no efficient way to locate an entry whose key is closest to a
given key. In situations where spatial correlations exist between neigh-
boring keys, it can be penalizing. In comparison, ordered search trees
have lookup and insertion cost proportional to log(n), but allow find-
ing the nearest key at about the same cost, and ordered enumeration
of all entries at constant cost per entry.

• Hash tables in general exhibit poor spatial locality: the data to be
accessed is distributed seemingly at random in memory. Because hash
tables cause access patterns that jump around, this can trigger cache
misses and slow down memory accesses.

• There is a significant runtime overhead in calling a subroutine 11, in-
cluding passing the arguments, branching to the subprogram, saving
local context, and branching back to the caller. The overhead often in-
cludes saving and restoring certain processor registers, allocating and
deallocating memory space. So, if you use a library that furnishes an
implementation of a hash table, you may pay a lot for all function
calls made to the library subroutines. Thus, you may want to design
a home made hash table, in order to reduce the costs associated by
function calls (using macros or inlining techniques).

3.3.4 Traversal of a sparse array

In the hash directory, you will find a short program that benchmarks a hash
table. The glib implementation of hash tables has been chosen [21]. This
C utility library is portable across different operating systems. Few studies
report performance of available hash table libraries, so our choice of glib as
a reference library assume that it is a representative case.

The source code has user-defined macros to access the hash table (see
hash.h). These macros look like functions but do not have the overhead
associated with classical function calls12. Suppression of the overhead due

11A technique used to eliminate this overhead is called inline expansion or inlining.
12Macros looks like functions that are expanded and processed by the preprocessor, the

compiler does not see them. Just before the compiler does its job, the preprocessor is

24

to function calls is required in order to analyse correctly the timing results
for accessing the hash table. Furthermore, these macros provide a generic
interface for transferring information between the application on the first
hand and the hash table implementation on the other hand. Also, it provides
an easy way to quickly change the hash table implementation: one just has
to modify a few macros and few functions in hash.h and hash.c in order to
use a new library or a home-made hash table.

In the directory hash, some sparse array implementations are bench-
marked. Let us define a sparse array as a data structure where S is the
number of items to store and N is the size of the range of key values
k (k ∈ [0, N − 1]). In the proposed test, the sparse array has an inverse
fill ratio (the ratio of N over S which is a measure of sparsity) equal to
α = bN/Sc = 15. Two implementations of sparse array are considered and
several traversals are performed on them. The first implementation is based
on dense array, most entries of which are not set (practically, all unset en-
tries have a default value NOTAVALUE). The second implementation uses a glib

hash table [21, 35]. The first solution won’t save memory (space complexity
is O(N)), while the second one will (space complexity is O(S)).

The test program initializes a dense array of size N by assigning a value
to an entry over α = 15 (the total number of assigned entries is equal to S).
Also, the hash table is filled with the same S values. Once the initialization
is done, we measure the execution time for summing all S values stored both
in the dense array and in the hash table. To perform this sum, the three
traversals are compared, with respect to execution time:

1. Iterate over the S records of the hash table, using a glib iterator
(complexity in time O(S)).

2. Traverse the whole dense array, test each entry, and select only defined
values (i.e the values not equal to NOTAVALUE - complexity in time
O(N)).

3. Traverse the whole dense array and make a lookup to the hash table
at each position and try to retrieve the associated value (complexity
in time O(N)).

automatically called and performs simple text substitutions into the source code. Macros
can be replaced by a function call with inline code. Macros and inline functions eliminate
the overhead of a function call. Inline functions can be preferable to macros because they
offer the type-checking services of functions and they avoid collisions in the naming of
macro parameters and local variables.

25

4. Traverse the dense array by successive pseudo-random accesses and
try to retrieve the associated value (complexity in time O(N)).

For the Nehalem machine that we previously described, the execution
times of the two first solutions are quite the same (for N = 8.107). This
means that the access time of an entry in the hash table via the iterator is
15 times larger than the access time of a single dense array access.
The execution time of the third traversal is approximately 20 times bigger
than the second traversal time. We can therefore estimate that the lookup
operator of the hash table has an average time cost which is 20 times the
one of a single array access time (through sequential accesses). The fourth
traversal time is almost the same as the third one, meaning that reading
access of the hashtable is roughly equal to one random access time.

The same benchmark has been undertaken on other machines, and sim-
ilar behaviour is observed: the access time to the hash table is between
13 and 30 times slower than an array access (a sequential access, not a
random access). We can still improve this access time by designing a home-
made implementation of hash table with specific features and optimized hash
function for a target application. But the difference coming from a quick
sequential access versus a slow random access will still remain anyway.

3.4 Tree

3.4.1 Definition

Formally a tree (actually a rooted tree) is defined recursively as follows [40].
In a tree, there is a set of items called nodes. At the top of the tree, one
distinguished node is called the root r, and below one can find a set of zero
or more nonempty subsets of nodes, denoted T1, T2, . . . , Tk , where each Ti

is itself a tree. These are called the sub-trees of the root.
The root of each sub-tree T1, T2, . . . , Tk is said to be a child of r, and

r is the parent of each root. The children of r are said to be siblings of
one another. Trees are typically drawn like graphs, where there is an edge
(sometimes directed) from a node to each of its children. See figure 4(a).

26

r

T1 T2 . . . Tk

(a) Root r and its k sub-
trees

A

B

C

D

E

F G H I

J

(b) Example of a general tree

A

B

C

∅ D

E F

∅

I

(c) Example of a binary
tree

Figure 4: Tree examples

The degree of a node in a tree is the number of children it has. A leaf
is a node of degree 0. A path between two nodes is a sequence of nodes
u1, u2, . . . , uk such that ui is a parent of ui+1. The length of a path is the
number of edges on the path (in this case k−1). The depth of a node in the
tree is the length of the unique path from the root to that node. The root
is at depth 0. The height of a node is the length of the longest path from
the node to a leaf. Thus all leaves are at height 0. If there is a path from u
to v we say that v is a descendants of u. Similarly, u is an ancestor of v.

3.4.2 Implementation

One difficulty in designing a data structure for general tree is that there
is no bound on the number of children a node can have. A constraint is
that each node must have access to pointers to all its children. A common
representation of general trees is to store two pointers within each node: the
leftChild and the rightSibling (see figure 5 at left). Another way to represent
a node is to store an array of children (if the maximum number of children
is known). On the right of figure 5, the data structure that uses the array
of children simplifies the management of data structure. It avoids some
pointers manipulation compared to the first solution with the chained nodes
(that looks like linked-list). Nevertheless, memory space is wasted because
a fixed size array is used whenever the tree actually has no child. The code
corresponding to the general tree data structures shown here are stored in
the gtree directory.

27

� �
struct gt r ee1 {
struct data ob j e c t ;
struct gt r ee1 ∗ l e f tCh i l d ;
struct gt r ee1 ∗ r i g h t S i b l i n g ;
} ;� �

� �
struct gt r ee2 {
struct data ob j e c t ;
struct gt r ee2 ch i ldArray [MAX NB CHILD] ;
} ;� �

Figure 5: Data structures for general tree

To design an efficient data structure, one has to answer the following
questions: May the number of children per node vary over a large range
(possibly with no upper limit)? What kind of structure is taken to store
dynamic list of children (e.g. linked-list, dynamic array)? Does the data
representation permit: efficient search, node insertion, node deletion, quick
traversal?� �

struct gt r ee3 {
struct data ob j e c t ;
int l e f tCh i l d ;
int r i g h t S i b l i n g ;
int parent ;
} ;� �

� �
struct dar ray g t r e e3 {

struct gt r ee3 ∗nodesArray ;
int s i z e ;
int capac i ty ;

} ;� �
Figure 6: Efficient data structures for general trees

Depending on the data type, the performance of operations on the gen-
eral tree may vary. In figure 6, an advanced data structure is shown. It
can be implemented with several langages (including C and Fortran). The
main idea is to store nodes of the tree in a dynamic array. This repre-
sentation provides for a quick traversal of the tree in simply scanning the
array of nodes (without following links between nodes). Indeed for some
operations, it is not required to perform a postfix, prefix, breadth-first or
another traversal specifically. Then, a simple scan of the array prevents one
to perform a costly effective tree traversal that requires to follow the links
between nodes. All these indirections are penalizing in term of execution
time because they induce random accesses. The table 4 shows the memory
bandwidth achieved using the simple gtree1 and the sophisticated gtree3
data structures13 (using the same machine as before).

13The bandwidth were estimated using only the size of object field encompassed within
a node which is here a field of size 8 Bytes (double type).

28

Nb nodes Cumulative bandwidth Cumulative bandwidth Cumulative bandwidth
breadth-first algo. breadth-first algo. array traversal

gtree1 gtree3 gtree3

1K 4.4 GB/s 4.8 GB/s 90 GB/s

8K 2.9 GB/s 3.4 GB/s 60 GB/s

32K 1.2 GB/s 2.7 GB/s 36 GB/s

64K 0.6 GB/s 1.6 GB/s 12 GB/s

Table 4: Performance for traversal of different general tree data struture

Columns 2 and 3 give the performance of the breadth-first traversal of
data structures gtree1 and gtree3 respectively. In column 4, the bandwidth
of the array traversal in a gtree3 tree is shown.
The breadth-first algorithms used to walk through gtree1 and gtree3 are
identical. The main reason that explains a higher bandwidth in columns 3
than in column 2 is twofold:

1. in gtree3, the indirections are specified by means of 32-bit integers 14,
whereas in gtree1 the indirections use 64-bit pointers15. The larger
integer type you use for the indirections, the larger bandwidth con-
sumption (and execution time overhead) you get.

2. in gtree3, all nodes are in a relatively compact memory area (all nodes
of the tree benefit from contiguous memory allocation); but in gtree1
the nodes can be scattered over a large memory space because each
node is allocated separately. Thus, much more random accesses can be
generated in the gtree1 case than in the gtree3 case. It follows that
the bandwidth of gtree1 must be lower or equal to the bandwidth of
gtree3.

Concerning column 4, the used algorithm is a loop that iterates through
the array of nodes. Here, no indirection at all are followed and the access
pattern in memory is contiguous. It is the first reason why this algorithm
has larger memory bandwidth than the breadth-first algorithm of column 3.
The second reason, is that in the array scan we avoid the use of many
conditionals (if statements) that are needed in the breadth-first algorithm.
And one has to notice that if statements can drastically slow down code.

14If you manipulate only trees with a few nodes you can even take 16-bit integer.
15The machine used for the benchmarks uses a 64-bit operating system.

29

Remark: When a processor sees a conditional instruction appear in the
instruction stream, a mechanism called branch prediction is activated.
Sometime, the processor can guess which branch of the if (i.e. the then
part versus the else part) is taken. In this case, the program may keep
going at full speed. However, if the processor does not guess beforehand the
right branch of the conditional, there is a big performance hit. The reason
behind that is that many processors partially overlap instructions, so that
more than one instruction can be in-progress simultaneously. An internal
engine called a pipeline takes advantage of the fact that every instruction
can be divided into smaller identifiable steps, each of which uses different
resources on the processor. At each processor cycle, the pipeline can con-
tain several instructions in-progress. A bad guess of the branch prediction

mechanism leads to clear out the pipeline and to prevent the execution of
several instructions in parallel. As a consequence, a program tends to slow
down its execution whenever conditional statements are encountered.

Considering wavelet algorithms specifically, breadth-first traversal of a
tree is very often needed. Then, one may expect to find a way to perform
breadth-first traversal with maximal performance. A proposal is made in
the gtree.c example. Assume we have a gtree3 data structure as input.
A standard breath-first traversal is done; for each node encountered during
the traversal, a copy of the node data is inserted in a new tree. In the end,
the new tree has its nodes ordered the same way as a breadth-first traversal
performed on the initial tree. Considering the new tree, a simple array
scan (performance of column 4) will exactly mimic a breadth-first traversal
without the cost induced by indirections (same idea as the compacted data-
structures described in [57]).

3.4.3 Binary tree

The binary tree is a fundamental data structure in computer science. One
of the most useful types of binary tree is a binary search tree, used for
rapidly storing sorted data and rapidly retrieving stored data16.

A binary tree is defined recursively as follows. A binary tree can be
empty. Otherwise, a binary tree consists of a root node and two disjoint

16A binary search tree is a binary tree in which the value stored at each node of the
tree is greater than the values stored in its left sub-tree and less than the values stored in
its right sub-tree.

30

binary trees, called the left and right sub-trees. Notice that there is a
difference between a node with a single left child, and one with a single
right child. In the previous setting of general trees no distinction has been
made between these two situations.

A binary tree can be implicitly stored as an array (this method is also
called Ahnentafel list). We begin by storing the root node at index 0 in the
array. We then store its left child at index 1 and its right child at index 2 The
children of the node at index 1 are stored at indices 3 and 4 and the children
of the node at index 2 are stored at indices 5 and 6. This can be generalized
as follows: if a node is stored at index k then its left child is located at
index 2k+ 1 and its right child at 2k+ 2. This form of implicit storage thus
eliminates overheads of the tree structure17 (indirection or pointer storage).

A quadtree is a tree data structure in which each internal node has exactly
four children instead of two for the binary tree. Quadtrees are most often
used to partition a two dimensional space by recursively subdividing it into
four quadrants or regions.

3.4.4 Optimization of the tree structure

Many improvement can be done to adapt the data layout of trees to a
particular use. In rearranging the nodes in memory, one can increase the
spatial locality and temporal locality. Several authors have described cache-
aware or cache-oblivious data structures in order to maximize cache effects
and to reduce memory bandwidth requirements [32].
Depending on the usage one foresee for the tree data structure, one may also
be interested in reducing the memory consumption. In the signal processing
and image compression communities, many sophisticated tools have been
developed for this purpose. Two main issues have been addressed:

1. pointer elimination by the way of a specific data structure that store a
compact representation of the tree (like significance map for example,
see p.34),

2. compression of the information carried by the node.

The B-tree is an example of an optimized tree structure [11, 65]. Let
us assume that we have a binary tree. We transform it in a B-tree by
encapsulating a set of nodes of the original binary tree into a big node in

17This implicit storage is really advantageous for trees that tend to be balanced.

31

the new B-tree. The large size of the nodes in a B-tree makes them very
cache efficient. It reduces the average number of nodes we need to access
when walking from the root node to a leaf, and thus the average number of
indirections.
Each internal node of a B-tree will contain several objects. Usually, the
number of objects is chosen to vary between B and 2B (where the constant
B is fixed by the user).

In a B-tree implementation, one can also optimize memory storage. A
classical approach is that each node contains an implicit binary tree (see the
previous section on binary tree) along with pointers to the child nodes. In
reducing the storage induced by pointers, the memory overhead due to the
tree becomes quite small.

Remark: Another approach to the B-tree (but quite more complex) is
to store the tree in memory according to a recursive layout called the van
Emde Boas layout. Conceptually, the recursive nature of the decomposi-
tion permits to handle trees with cache-oblivious property. It means that
whatever the capacity of cache memories is, this structure handles them
efficiently (we do not need to know the effective cache size and tune any
parameter like B). Many other cache-optimized tree structures exist and
have been designed for specific applications.

3.5 Wavelet trees in image processing

3.5.1 Introduction to the EZW scheme

Embedded Zerotree wavelet (EZW) coding has been introduced by
J. Shapiro [50]. It is an effective and computationally simple technique for
image compression (see [10] for a review of other coding strategies). De-
signing new compression algorithms was a very active research topic in the
1990s. This scheme has interrupted the simultaneous progression of effi-
ciency and complexity of algorithms proposed by other researchers of the
community. Indeed, this technique not only is competitive in performance
with the most complex techniques, but is also extremely fast in execution.

Furthermore, the EZW algorithm has the property that the bits of the
encoded image are generated in order of importance. The bit stream begins
with the largest coefficient and ends up with smallest ones. This technique,
called embedded coding, is very useful for progressive image transmission
and video compression. A compact multi-resolution representation is pro-
vided by this coding. The encoder can terminate the encoding at any point
according to an initially prescribed target rate or target distortion metric.

32

Also, the decoder can cease decoding at any point in the bit stream in order
to recover the image at a given resolution [44]. A major objective in a pro-
gressive transmission scheme is to select the most important information -
which yields the largest distortion reduction - to be transmitted first. Since
most of the coefficients will be zero or close to zero thanks to the wavelet
representation18, the spatial locations of the significant coefficients make up
a large portion of the total size of a typical compressed image. The outline
of the image compression process is the following: 1) Wavelet transform
of the 2D image, 2) Quantization step (applying the EZW algorithm, see
subsection 3.5.2), 3) Entropy coding that provides lossless compression (see
subsection 3.5.3).

A main component of the EZW algorithm, as many other image com-
pression schemes, is the bit-plane encoder. Such a bit-plane encoder takes as
input a set of binary numbers (having the same size of n bits). The principle
is to first select the most significant bit (n) of all binary numbers. Then, in
a second pass, the encoder selects the (n − 1)-th bit of all numbers. Itera-
tively, all j-th bits are considered until the lowest significant bit is reached.
In that procedure, a bit-plane represents all the bits having the same posi-
tion j in the considered set of binary numbers. The main advantage of this
type of encoder is the possibility of decoding only first bit-planes during the
decompression. The larger the number of discarded bit-planes, the higher
the distortion due to a larger quantization error [63].

The SPIHT strategy (Set Partitioning in Hierarchical Trees) is a more
recent work that shares many of the EZW characteristics.

3.5.2 EZW Algorithm

In the EZW algorithm, all bit-planes are encoded one after the other, be-
ginning with the most significant bit and ending with the lowest bit [58]. In
order to reduce the number of bits to encode, not all coefficients is encoded
in each bit-plane (only significant coefficients above a given threshold are
selected). The bit-plane encoding will be done in the so-called refinement
pass. Because a partial subset of coefficients are encoded in each bit-plane,
one has to specify also what the 2D locations of transmitted bits are in the
refinement pass. These locations will be encoded during the significance
pass.

In short, for each bit-plane j, the encoder sends two series of bits. The
first one encodes the location of new significant coefficients we must add

182D wavelet transform in the case of images.

33

(significance pass). The second one gives the j-th bit of all coefficients dis-
tinguished as significant (refinement pass). To start the algorithm, an initial
threshold is set, for example 2jmax . A coefficient in the wavelet 2D decom-
position is significant if its absolute value is greater than the threshold. For
every pass j a threshold is chosen against which all the wavelet coefficients
are measured (e.g. 2j). If a wavelet coefficient is larger than the threshold,
its location is put in a subordinate list of significant coefficients and “re-
moved” from the image (we will no longer look at it in next significance
pass). The subordinate list is an incremental list of coefficient locations,
at each significant pass some locations are added to the list. When all the
wavelet coefficients have been visited, the threshold is lowered (e.g. 2j−1)
and the image is scanned again.

During the significance pass, wavelet coefficients are analyzed (recall that
coefficients already in the subordinate list are considered equal to zero) and
labeled with the following rules:

• label p if the coefficient is significant and positive,

• label n if the coefficient is significant and negative,

• label t if a coefficient is not significant as well as all its descendants
(Zero Tree root),

• label z if a coefficient is insignificant but all its descendants are not
insignificant (Insignificant Zero).

The scanning of coefficients is performed in such a way that no child
node is scanned before its parents (in order to detect easily Zero Tree Root
and Insignificant Zero nodes).

For each pass (bit-plane j), a stream of bit is generated:

• First, a sequence of p, n, t, z letters is encoded (this stream is called
significance map). It implicitly gives the locations where the new
coefficients lie. This representation of the locations of new coefficients
is far more compact compared to simply list the location indices in the
image.

• Second, The j-th bit of all coefficients appearing in the subordinate list
is extracted. This list of bits is encoded

An example of a stream generated with the EZW algorithm [58] is given
in Fig. 3.5.2.

34

[Significance pass 1] pnztpttttztttttttptt
[Refinement pass 1] 1010
[Significance pass 2] ztnptttttttt
[Refinement pass 2] 100110
[Significance pass 3] zzzzzppnppnttnnptpttnttttttttptttptttttttttptttttttttttt
[Refinement pass 3] 10011101111011011000
[Significance pass 4] zzzzzzztztznzzzzpttptpptpnptntttttptpnpppptttttptptttpnp
[Refinement pass 4] 11011111011001000001110110100010010101100
[Significance pass 5] zzzzztzzzzztpzzzttpttttnptppttptttnppnttttpnnpttpttppttt
[Refinement pass 5] 10111100110100010111110101101100100000000110110110011000111

Figure 7: Example of a stream output by EZW algorithm of a an image of
size 8× 8

The EZW scheme shows us how to overcome storage problems through
the design of a combination of complex data structure and algorithms that
minimize the size of the wavelet representation. But the stream we have
obtained in Fig. 3.5.2 can be further compressed using a method called
entropy coding.

3.5.3 Entropy coding

Entropy coding is the process of taking all the information generated by a
process and compressing it losslessly into an output stream. It enables to
represent a bit stream with a smaller size for storage or for transmission.
This method is widely used for data compression.

One of the main types of entropy coding creates and assigns a unique
prefix code to each unique symbol that occurs in the input stream. These
entropy encoders then compress data by replacing each fixed-length input
symbol by corresponding variable-length prefix codeword. The length of
each codeword is approximately proportional to the negative logarithm
of the probability. Therefore, the most common symbols use the shortest
codes. Popular entropy coder are for example Huffman coding, or Arith-
metic coding. Classically, arithmetic coding further compresses the stream
generated by the EZW algorithm.

In this section we had a look to the EZW scheme that combines several
compression techniques.

35

4 Some wavelet algorithms

Algorithms closely related to the discrete wavelet transform are shown in
this section. In these algorithms, wavelet representations are stored into
non-sparse data structures. Sparse data structures usage will be shown in
the next section. Compactly supported wavelets are considered here, and
the lifting scheme is employed [14, 15, 30, 55, 56].

4.1 Haar

4.1.1 Notations

The Haar transform is a very simple example of wavelet transform. This
transform holds many of the common issues arising in wavelet transforms,
and requires just a little bit of programming effort. Let us give some nota-
tions introduced in a founding paper entitled ’Building your own wavelets
at home’ [55].

Consider the sampled function c n of 2n sample values c n
k :

c n = {c n
k | 0 ≤ k < 2n} .

Apply a difference and an average operator onto each pair (c 2k, c 2k+1), and
denote the results by d n−1

k and c n−1
k :

d n−1
k = c n

2 k+1 − c n
2 k , c n−1

k =
c n

2 k + c n
2 k+1

2
. (1)

or considering the lifting methodology [55], it can also be written:

d n−1
k = c n

2 k+1 − c n
2 k , c n−1

k = c n
2 k +

d n−1
k

2
. (2)

The input function cn is split into two parts: on one hand d n−1 with
2n−1 differences, and on the other hand c n−1 with 2n−1 averages. One can
think of the averages c n−1 as a coarser resolution representation of the input
c n, and d n−1 as details that allow to recover c n from c n−1. If the original
function is very smoothly varying, then the details are small and can be
cut off in order to get a more compact representation (we can store only
coefficients d n−1 above a given threshold).

We can apply the same transform iteratively on c n−1, c n−2, . . . , c 1.
We end up with the following representation: c 0 is the average of the input
function, and detailed information is stored in

(
d j
)
j=0...n−1

. This represen-
tation occupies the same space as the original input (N coefficients), but

36

the difference is that we have a representation with many coefficient near 0
if the original function is smooth enough. The complexity of the transform
computation is Θ(N). The localization of c∗∗ coefficients are shown in Fig. 8
(left side).

c 4

c 2

c 0

c 1

c 3

c 0
0

c 1
0

c 3
0

c 2
0

c 3
1 c 3

2 c 3
3 c 3

4 c 3
5 c 3

6 c 3
7

c 2
1 c 2

2 c 2
3

c 1
1

c 4
0 c 4

15

level-by-level storage

c 0
0 d 0

0 d 1
0 d 1

1 d 2
0 d 2

1 d 2
2 d 2

3 d 3
0 d 3

1 d 3
2 d 3

3 d 3
4 d 3

5 d 3
6 d 3

7

in-place storage

d 2
0 d 3

1 d 1
0 d 3

2 d 2
1 d 3

3 d 0
0 d 3

4 d 2
2 d 3

5 d 1
1 d 3

6 d 2
3 d 3

7
d 3

0c 0
0

dyadic grid and localization of c∗∗ coefficients

Figure 8: Dyadic grid and two classic storage layouts in memory for the
wavelet representation

4.1.2 Storage issue

Two type of data storage can be foreseen for the wavelet representation.
On the first hand, we can store coefficients and details in increasing level
order, from 0 to level n−1 (see Fig. 8, upper right side) and in each level
coefficients are sorted by index. This way, we store contiguously all wavelet
coefficients of the same level, one level after the other. In the literature,
several notation are used for this storage layout: level-by-level or mallat
representation [7, 36]. Another storage type called in-place is presented on
Fig. 8, lower right side. This storage has become popular with the arrival
of the wavelet lifting scheme [14, 55]. It mainly avoids moving of data in
memory during the forward and inverse wavelet transform (as we shall see).
For this ordering of data, coefficient dj

k has the vector index (1+2 k) 2jmax−j

(with jmax = 3 in the example), wheras coefficient cjk has the vector index
k 2jmax−j+1. For this storage setting: coefficient cj2 k+1 lives at the same
location as dj−1

k , and coefficient cj2 k lives at the same index as cj−1
k . A

set of in-place algorithms allows for that kind of storage, during one single
traversal they replace coefficients from one level by coefficients of another
level.

The finest coefficients have been surrounded for the two storage layouts
of Fig. 8. Let us remark that for the level-by-level solution all these finest

37

coefficients are kept together, but in the in-place solution, they are scattered
accross memory.

4.2 Forward Wavelet transform

� �
void haar fdwt (double∗ vec , int N) {

register int i t f , i t c ;
register int i d e t a i l , i c o a r s e ;
/∗ l oop from f i n e s t l e v e l to c o a r s e s t l e v e l ∗/
for (i t c = 2 , i t f = 1 ;

i t c <= N; i t c ∗= 2 , i t f ∗= 2) {

/∗ l oop on a l l c o e f f i c i e n t s a t t h i s l e v e l ∗/
for (i c o a r s e = 0 ;

i c o a r s e < N; i c o a r s e += i t c) {
/∗ At index ’ i d e t a i l ’ : the d i f f e r e n c e

at ’ i c o a r s e ’ : the average ∗/
i d e t a i l = i c o a r s e + i t f ;
/∗ PREDICT ∗/
vec [i d e t a i l] =

vec [i d e t a i l] − vec [i c o a r s e] ;
/∗ UPDATE ∗/
vec [i c o a r s e] =

vec [i c o a r s e] + . 5 ∗ vec [i d e t a i l] ;
}

}
}� �

(a) In-place storage

� �
void haar fdwt (double∗ vec , double ∗ ts , int N) {

register int ha l f , k ;
register int i d e t a i l , i c o a r s e ;
/∗ l oop from f i n e s t l e v e l to c o a r s e s t l e v e l ∗/
for (h a l f = N/2 ; h a l f >= 1 ; h a l f /= 2) {

/∗ Copy input ’ vec ’ to tempory ’ t s ’ ∗/
for (k = 0 ; k < 2∗ h a l f ; k++)

t s [k] = vec [k] ;

/∗ l oop on a l l c o e f f i c i e n t s a t t h i s l e v e l ∗/
for (k = 0 ; k < h a l f ; k ++) {

/∗ At index ’ i d e t a i l ’ : the d i f f e r e n c e
at ’ i c o a r s e ’ : the average ∗/

i c o a r s e = k ;
i d e t a i l = h a l f + k ;
/∗ PREDICT ∗/
vec [i d e t a i l] = t s [2∗ k+1] − t s [2∗ k] ;
/∗ UPDATE ∗/
vec [i c o a r s e] =

t s [2∗ k] + . 5 ∗ vec [i d e t a i l] ;
}

}
}� �

(b) Mallat representation

Figure 9: Forward wavelet transform - Haar

From Equation (2), one can deduce the algorithm of the Haar forward trans-
form. For a detailed description on the design of this algorithm, we refer
the reader to [55]. This algorithm is shown in Fig. 9 for the two storage
layouts that has been just introduced. The input vector vec of size N is pro-
cessed in order to provide the wavelet representation also in vec at the end
of each function call. Let us notice that the Mallat representation requires
a temporary array (parameter ts of the function). It is possible to avoid
this supplementary storage at the expense of a reordering algorithm that
represents a significant computational overhead.

38

4.3 Inverse wavelet transform

� �
void haar idwt (double∗ vec , int N) {

register int i t f , i t c ;
register int i d e t a i l , i c o a r s e ;
/∗ l oop from c o a r s e s t l e v e l to f i n e s t l e v e l ∗/
for (i t c = N, i t f = N/2 ;

i t c >= 2 ; i t c /= 2 , i t f /= 2) {
/∗ l oop on a l l c o e f f i c i e n t s a t t h i s l e v e l ∗/
for (i c o a r s e = 0 ;

i c o a r s e < N; i c o a r s e += i t c) {

/∗ At index ’ i d e t a i l ’ : the d i f f e r e n c e
at ’ i c o a r s e ’ : the average ∗/

i d e t a i l = i c o a r s e + i t f ;
/∗ UPDATE ∗/
vec [i c o a r s e]

= vec [i c o a r s e] − . 5 ∗ vec [i d e t a i l] ;
/∗ PREDICT ∗/
vec [i d e t a i l]

= vec [i d e t a i l] + vec [i c o a r s e] ;
}

}
}� �

(a) In-place storage

� �
void haar idwt (double∗ vec , double ∗ ts , int N) {

register int ha l f , i ;
register int i d e t a i l , i c o a r s e ;
/∗ l oop from c o a r s e s t l e v e l to f i n e s t l e v e l ∗/
for (h a l f = 1 ; h a l f <= N/2 ; h a l f ∗= 2) {

/∗ l oop on a l l c o e f f i c i e n t s a t t h i s l e v e l ∗/
for (i = 0 ; i < h a l f ; i ++) {

/∗ At index ’ i d e t a i l ’ the d e t a i l w i l l be
s t o r e and at ’ i c o a r s e ’ i s the average
w i l l be s t o r e ∗/

i c o a r s e = i ;
i d e t a i l = h a l f + i ;
/∗ UPDATE ∗/
t s [2∗ i] =

vec [i c o a r s e] − . 5 ∗ vec [i d e t a i l] ;
/∗ PREDICT ∗/
t s [2∗ i +1] =

vec [i d e t a i l] + t s [2∗ i] ;
}
/∗ Copy tempory ’ t s ’ to input ’ vec ’ ∗/
for (i =0; i < 2∗ h a l f ; i++) vec [i] = t s [i] ;

}
}� �

(b) Mallat storage

Figure 10: Inverse wavelet transform - Haar

The loop structures of the previous forward transform and of inverse trans-
form are very similar as it is illustrated in Figure 10. But these loops differ
in three ways:

1. the scanning of level goes from fine to coarse (forward transform) or
coarse to fine (inverse transform),

2. the update and predict steps are not performed in the same order,

3. there is a sign modification in both predict and update steps.

With the Mallat storage, the array copy induces an overhead that does
not exist in the in-place version. Nevertheless, on most machines execution
times of forward and inverse transforms are quite the same with the two
storage flavors. Besides the copy overhead, the Mallat storage induces more
cache locality at the coarsest level. Sometimes, on some machines, the Mallat
version is even faster than the in-place one.

4.4 Thresholding

To denoise or compress a signal, one can use a wavelet thresholding tech-
nique. It involves two steps: 1) taking the wavelet transform (i.e., calculat-
ing the wavelet coefficients); 2) discarding (setting to zero) the coefficients

39

with relatively small or insignificant magnitudes (using a specific criteria as
we shall see). By discarding small coefficients, one actually avoids wavelet
basis functions which have coefficients below a certain threshold. One can
either set a global threshold which is the same for all coefficients, or set a
level-dependent threshold. There is an extensive academic literature on the
thresholding subject.

� �
void h aa r t h r e sh o l d in g (double ∗vec , int N,

double normcoef ,
double th r e sho ld) {

int nnz tot ; /∗ number o f non−zero c o e f f . ∗/
register int i ;
double ∗ t h r e s h o l d l e v e l ;
/∗ number o f non−zero c o e f f . f o r each l e v e l ∗/
int ∗ n n z l e v e l ;
/∗ number o f l e v e l , a c t u a l l e v e l ∗/
int nbleve l , l e v e l ;
n b l e v e l = (int) round (log2 (N)) ;
t h r e s h o l d l e v e l =

(double∗) mal loc (n b l e v e l ∗ s izeof (double)) ;
n n z l e v e l =

(int ∗) mal loc (n b l e v e l ∗ s izeof (int)) ;
for (l e v e l = 0 ; l e v e l < n b l e v e l ; l e v e l++) {

t h r e s h o l d l e v e l [l e v e l] =
t h r e s h o l d f u n c (thresho ld , norm , l e v e l) ;

n n z l e v e l [l e v e l] = 0 ;
}
for (i = 1 ; i < N; i +=1) {

l e v e l = h a a r l e v e l (i , n b l e v e l) ;
i f (f abs (vec [i]) < t h r e s h o l d l e v e l [l e v e l]) {

vec [i] = 0 . ;
} else {

n n z l e v e l [l e v e l]++;
}

}
nnz tot = 0 ;
for (l e v e l = 0 ; l e v e l < n b l e v e l ; l e v e l++) {

p r i n t f (” l e v e l %4d thre sho ld %20e nnz %10d\n” ,
l e v e l , t h r e s h o l d l e v e l [l e v e l] ,
n n z l e v e l [l e v e l]) ;

nnz tot += n n z l e v e l [l e v e l] ;
}
p r i n t f (”Number o f non−zero c o e f f i c i e n t s : ”\

”%13d over %13d (%.7 f pe r cent s)\n” ,
nnz tot ,N, (1 0 0 . ∗ nnz tot)/N) ;

f r e e (n n z l e v e l) ;
f r e e (t h r e s h o l d l e v e l) ;

}� �
(a) In-place storage

� �
/∗ Thresho ld ing o f c o e f f i c i e n t s ∗/
void h aa r t h r e sh o ld in g (double ∗vec , int N,

double norm ,
double th r e sho ld) {

register int l e v e l , i ;
/∗ number o f non−zero c o e f f . a t one l e v e l ∗/
register int n n z l e v e l ;
int nnz tot ; /∗ t o t a l nb . o f non−zero ∗/
register int h a l f ;
register double t h r e s h o l d l e v e l ;
nnz tot = 0 ;
for (l e v e l =0, h a l f =1; h a l f < N;

h a l f ∗= 2 , l e v e l ++) {
t h r e s h o l d l e v e l =

t h r e s h o l d f u n c (thresho ld , norm , l e v e l) ;
n n z l e v e l = 0 ;
for (i = h a l f ; i < 2∗ h a l f ; i++) {

i f (f abs (vec [i]) < t h r e s h o l d l e v e l) {
vec [i] = 0 . ;

} else {
n n z l e v e l ++;

}
}
p r i n t f (” l e v e l %4d thre sho ld %20e nnz %10d\n” ,

l e v e l , t h r e s h o l d l e v e l , n n z l e v e l) ;
nnz tot += n n z l e v e l ;

}
p r i n t f (”Number o f non−zero c o e f f i c i e n t s : ”\

”%13d over %13d (%.7 f pe r cent s)\n” ,
nnz tot ,N, (1 0 0 . ∗ nnz tot)/N) ;

}� �

(b) Mallat storage

Figure 11: Wavelet thresholding - Haar

5 Applications

Lifting was originally developed by Sweldens to adjust wavelet transforms
to complex geometries and irregular sampling. A main feature of lifting is
that it provides an entirely spatial-domain interpretation of the transform,

40

as opposed to the more traditional frequency-domain based constructions.
In this framework, algorithms can be adapted in order to exploit spatial
locality and to boost performance in reducing the amount of data transfers
(memory loads from random access memory to cache memory). We will use
this formalism to illustrate the use of some sparse data structures in wavelet-
based applications. A short analysis of the performance one can achieved
for some 2D discrete wavelet transforms will be given. To begin with, a
short overview of the lifting scheme is presented here; much of notations
and materials come from [30].

5.1 Lifting overview

Lifting scheme consists of iteration of the following three operations:

• Split Divide the original 1D data vector x[i] into two disjoint subsets.
Even and odd indices are distinguished. The even index points are
stored into xe data set and odd points into xo data set, such as

xe[i] = x[2 i], xo[i] = x[2 i+ 1]

• Predict Generate the wavelet coefficients d[i] as the error in predicting
xo[i] from xe[∗] using prediction operator P translated at index n:

d[i] = xo[i]− P(xe[∗])[i]

If the underlying sampled function is locally smooth, the residuals d[i]
will be small.

• Update Combine xe[i] and d[∗] to obtain scaling coefficients c[i] that
represent a coarse approximation to the original vector x[i]. This is ac-
complished by applying an update operator U translated at location n
to the wavelet coefficients and adding the result to xe[i]:

c[i] = xe[i] + U(d[∗])[i]

Because each transforms are invertible, no information is lost during the
split-predict-update sequence. Going backward, one can reconstruct per-
fectly the initial data vector x[∗] thanks to c[∗] and d[∗] vectors. To do that
inverse transform, one has just to apply a mirrored update-predict-merge se-
quence using the same U and P operators as in the forward transform. A
simple example of lifting is the construction of the Deslauriers-Dubuc family

41

of wavelets. In this transform, a single prediction step is followed by a single
stage update step (boundary conditions are not discussed here):

d[i] = xo[i]− −xe[i− 1] + 9xe[i] + 9xe[i+ 1]− xe[i+ 2]
16

,

c[i] = xe[i] +
d[i− 1] + d[i]

4
.

The prediction and update operators are completly defined by a set of
filter coefficients, respectively pk and uk, as follows:

P(x[∗])[i] =
∑

k pk x[i+ k] (3)
U(x[∗])[i] =

∑
k uk x[i+ k] (4)

For the Deslauriers-Dubuc example, the coefficients for predict and up-
date operators are

(k, pk) ∈
{

(−1, 1
16), (0, 9

16), (1, 9
16), (2,− 1

16)
}
,

(k, uk) ∈
{

(−1, 1
4), (0, 1

4),
}
.

The Haar transform, that has been shown previously, fits easily in this
lifting methodology, as many other wavelet filters do [15]. The filter coeffi-
cients of the Haar transform introduced previously (p. 36) are:

(k, pk) ∈ {(0, 1)} , (k, uk) ∈
{

(0, 1
2)
}
.

5.2 Implementation of a 2D wavelet transform

Traditional wavelet-based adaptive methods can be further classified either
as wavelet-Galerkin methods [28] or wavelet-collocation methods [27, 62].
The major difference between these two is that wavelet-Galerkin algorithms
solve the problem in the wavelet coefficient space and, in general, can be con-
sidered as gridless methods. On the other hand, wavelet-collocation methods
solve the problem in the physical space, using a dynamically adaptive grid.

The approach used in the following is known as adaptive wavelet-
collocation method (AWCM). Wavelet coefficients are found based on the
values of a function at certain locations (grid points), called collocation
points. In typical algorithms, a set of collocation points is defined in
such a way that the collocation points of the coarser level of resolu-
tion is a subset of the collocation points of the finer resolution. Often
enough, these methods utilize interpolating wavelets instead of other types of
wavelets [9, 19, 26, 27, 29, 34, 39, 56, 59, 61, 62]. In this framework, wavelets

42

are typically used to adapt the computational grid (and hence compress the
solution), while finite differences are used to approximate derivatives, if ever
needed. Mathematically, interpolating wavelets can be formulated in a lift-
ing biorthogonal setting.

Multi-dimensional wavelets can be constructed as tensor products
of corresponding one-dimensional wavelets. It yields a separable multi-
dimensional transform. On a 2D array, a two-dimensional wavelet
transform is then simple. The tensor-product transform amounts to
first computing one-dimensional wavelet transforms of each row of the
input, collecting the resulting coefficients into the same data structure,
and finally computing the one-dimensional transform of each column. An
implementation of a 2D wavelet transform is presented in Figures (12,13,14).

� �
/∗

Wavelet transform .
In−p l a c e w a v e l e t a l go r i th m i s used here .
A dense 2D array (fwav) o f N∗N elements i s
passed to the 2D transform f u n c t i o n .
The r e s u l t o f the w a v e l e t scheme i s c a l c u l a t e d
in−p l a c e (wi thou t any array temporar ies) in the
array ’ fwav ’ .

∗/
void wav ftrans form (VALTYPE ∗ fwav , int N) {

int i t c ;
for (i t c = 2 ; i t c <= N; i t c = i t c ∗ 2) {

wav pred ic t x (fwav , i t c , N, 1) ;
wav update x (fwav , i t c , N, 1) ;
wav pred ic t y (fwav , i t c , N, 1) ;
wav update y (fwav , i t c , N, 1) ;

}
}� �

(a) Forward transform

� �
/∗

Wavelet i n v e r s e transform .
Same comments as wav f t rans form f u n c t i o n

∗/
void wav itrans form (VALTYPE ∗ fwav , int N) {

int i t c ;
for (i t c = N; i t c >= 2 ; i t c = i t c / 2) {

wav update y (fwav , i t c , N, −1) ;
wav pred ic t y (fwav , i t c , N, −1) ;
wav update x (fwav , i t c , N, −1) ;
wav pred ic t x (fwav , i t c , N, −1) ;

}
}� �

(b) Inverse transform

Figure 12: 2D wavelet transform - Lifting scheme plus tensorial product

The principle of the forward 2D transform algorithm is to perform a
traversal of each level j from the finest to the coarsest in both directions.
For the sake of simplicity, the implementation shown here uses periodic
boundary conditions and a square domain (N grid points in each direction).
We assume the number of wavelet levels jmax = log(N)−1 to be equal in
each direction.

We introduce some variables itc(j) and itf(j) associated to each level j:
itc = 2jmax−j+1 and itf = 2jmax−j . Variable itc stores the distance along
one direction between two consecutive details of level j. In subsection 4.1.2,
that introduces storage issue, we have already see where are stored details
dj

k in the 1D case (in-place storage). The index of detail dj
k in a 1D vector is

(1+2 k) 2jmax−j ; it is straightforward that this index can be also expressed

43

as: itf+k × itc. To traverse all details of one level j, it is computationally
cheaper to use this last expression. In the source code of Fig. 13(a), the loop
on ix index uses it explicitly. Also, in the forward and inverse transforms
of Fig. 12, the main loop that scans all levels is done on variable itc instead
of j for convenience.

� �
/∗ P r e d i c t f u n c t i o n in x−d i r e c t i o n

fwav : input / output array
i t c : l e v e l +1 which i s cons idered
N: square roo t o f the 2D domain s i z e
d i r : (1= forward) or (−1= i n v e r s e) transform
w a v f i l t e r P r e d : p r e d i c t f i l t e r
wav np : s i z e o f the p r e d i c t f i l t e r

∗/
i n l i n e void wav pred ic t x (VALTYPE∗ fwav , int i t c ,

int N, int d i r) {
register int ix , iy , i c o a r s e ;
register const int i t f = (i t c >>1); /∗ i t c /2 ∗/
register int k , Nplus = N∗N;
register double pred i c tVa l ;
/∗ Scan a l l i y a t l e v e l ’ i t f ’ ∗/
for (i y = 0 ; iy < N; iy += i t f) {

/∗ Apply p r e d i c t opera tor in x−d i r e c t i o n ∗/
for (i x = i t f ; i x < N; ix += i t c) {

/∗ At index i x i s the d e t a i l p o i n t we are
l o o k i n g at , compute p r e d i c t v a l u e ∗/

pred i c tVa l = 0 . ;
for (k = 0 ; k < wav np ; k++) {

i c o a r s e = (Nplus + ix +
(k + wav of fp)∗ i t c − i t f)%N;

pred i c tVa l += w a v f i l t e r P r e d [k] ∗
fwav [XY(i c o a r s e , iy ,N)] ;

}
/∗ Add or r e t r i e v e the p r e d i c t v a l u e to

the ’ odd ’ p o i n t s whether the forward
or i n v e r s e transform i s a p p l i e d ∗/

fwav [XY(ix , iy ,N)] += − d i r ∗ pred i c tVa l ;
}

}
}� �

(a) Predict along x-direction

� �
/∗ Update f u n c t i o n in x−d i r e c t i o n

fwav : input / output array
i t c : l e v e l +1 which i s cons idered
N: square roo t o f the 2D domain s i z e
d i r : (1= forward) or (−1= i n v e r s e) transform
w a v f i l t e r P r e d : p r e d i c t f i l t e r
wav np : s i z e o f the p r e d i c t f i l t e r

∗/
i n l i n e void wav update x (VALTYPE∗ fwav , int i t c ,

int N, int d i r) {
register int ix , iy , i d e t a i l ;
register const int i t f = (i t c >>1); /∗ i t c /2 ∗/
register int k , Nplus = N∗N;
register double updateVal ;
/∗ Scan a l l i y a t l e v e l ’ i t f ’ ∗/
for (i y = 0 ; iy < N; iy += i t f) {

/∗ Apply update opera tor in x−d i r e c t i o n ∗/
for (i x = 0 ; ix < N; ix += i t c) {

/∗ At index i x i s the coarse p o i n t we
are l o o k i n g at , compute udapte v a l u e ∗/

updateVal = 0 . ;
for (k = 0 ; k < wav nu ; k++) {

i d e t a i l = (Nplus + ix +
(k + wav of fu)∗ i t c − i t f)%N;

updateVal += wav f i l t e rUpd [k] ∗
fwav [XY(i d e t a i l , iy ,N)] ;

}
/∗ Add or r e t r i e v e the update v a l u e to

the ’ even ’ p o i n t s whether the forward
or i n v e r s e transform i s a p p l i e d ∗/

fwav [XY(ix , iy ,N)] += d i r ∗ updateVal ;
}

}
}� �

(b) Update along x-direction

Figure 13: Predict and update operators in x-direction

Concerning the predict operator (x-direction), shown in Fig. (13(a)),
one can see two loops in ix and iy. These loops perform a traversal of
all details (in x-direction) over the whole 2D domain at one given level
jx = jmax + 1− log(itc). The inner loop in k apply the predictor operator
P using: 1) filter coefficients stored into wav filterPred, and 2) coarse
coefficients indexed by icoarse. The size of the predict filter is equal to
wav np, and an offset wav offp is used in order to translate the filter operator
at the right position. All these parameters concerning the predict filter are
set at the initialization stage depending on the effective filter the user wants.

The skeleton of the update operator in x-direction (Figure 13(b)) is simi-
lar to the predict operator. Nevertheless, there remain two main differences:

44

first, the update phase uses its own filter wav filterUp; second, the inner
loop accesses to fine coefficients indexed by idetail instead of coarse coef-
ficients.

Algorithms presented on Fig. 14 illustrate the predict/update steps at
one level itc in y-direction. They match the corresponding algorithms in
x-direction except a few differences.

� �
/∗ P r e d i c t f u n c t i o n in y−d i r e c t i o n

fwav : input / output array
i t c : l e v e l +1 which i s cons idered
N: square roo t o f the 2D domain s i z e
d i r : (1= forward) or (−1= i n v e r s e) transform
w a v f i l t e r P r e d : p r e d i c t f i l t e r
wav np : s i z e o f the p r e d i c t f i l t e r

∗/
i n l i n e void wav pred ic t y (VALTYPE∗ fwav , int i t c ,

int N, int d i r) {
register int ix , iy , i c o a r s e ;
register const int i t f = (i t c >>1); /∗ i t c /2 ∗/
register int k , Nplus = N∗N;
register double pred i c tVa l ;

/∗ Apply p r e d i c t opera tor in y−d i r e c t i o n ∗/
for (i y = i t f ; i y < N; iy += i t c) {

/∗ Scan a l l i x a t l e v e l ’ i t f ’ ∗/
for (i x = 0 ; ix < N; ix += i t f) {

/∗ At index i y i s the d e t a i l p o i n t we are
l o o k i n g at , compute p r e d i c t v a l u e ∗/

pred i c tVa l = 0 . ;
for (k = 0 ; k < wav np ; k++) {

i c o a r s e = (Nplus + iy +
(k + wav of fp)∗ i t c − i t f)%N;

pred i c tVa l += w a v f i l t e r P r e d [k] ∗
fwav [XY(ix , i c oa r s e ,N)] ;

}
/∗ Add or r e t r i e v e the p r e d i c t v a l u e to

the ’ odd ’ p o i n t s whether the forward
or i n v e r s e transform i s a p p l i e d ∗/

fwav [XY(ix , iy ,N)] += − d i r ∗ pred i c tVa l ;
}

}
}� �

(a) Predict along y-direction

� �
/∗ Update f u n c t i o n in y−d i r e c t i o n

fwav : input / output array
i t c : l e v e l +1 which i s cons idered
N: square roo t o f the 2D domain s i z e
d i r : (1= forward) or (−1= i n v e r s e) transform
w a v f i l t e r U p d : update f i l t e r
wav nu : s i z e o f the update f i l t e r

∗/
i n l i n e void wav update y (VALTYPE∗ fwav , int i t c ,

int N, int d i r) {
register int ix , iy , i d e t a i l ;
register const int i t f = (i t c >>1); /∗ i t c /2 ∗/
register int k , Nplus = N∗N;
register double updateVal ;

/∗ Apply p r e d i c t opera tor in y−d i r e c t i o n ∗/
for (i y = 0 ; iy < N; iy += i t c) {

/∗ Scan a l l i x a t l e v e l ’ i t f ’ ∗/
for (i x = 0 ; ix < N; ix += i t f) {

/∗ At index i y i s the coarse p o i n t we
are l o o k i n g at , compute update v a l u e ∗/

updateVal = 0 . ;
for (k = 0 ; k < wav nu ; k++) {

i d e t a i l = (Nplus + iy +
(k + wav of fu)∗ i t c − i t f)%N;

updateVal += wav f i l t e rUpd [k] ∗
fwav [XY(ix , i d e t a i l ,N)] ;

}
/∗ Add or r e t r i e v e the update v a l u e to

the ’ even ’ p o i n t s whether the forward
or i n v e r s e transform i s a p p l i e d ∗/

fwav [XY(ix , iy ,N)] += d i r ∗ updateVal ;
}

}
}� �

(b) Update along y-direction

Figure 14: Predict and update operators in y-direction

The setting of interpolating wavelets within the lifting framework is de-
scribed in [56]. Example of the effective predict and update filters to use
are also given.

5.3 Adaptive remeshing in 2D

Wavelet-based scheme can be used to solve partial differential equations
(PDE) that involve different spatial and temporal scales [61]. The adaptive
framework helps modelling time-evolution problems with multilevel features.
Wavelets have the ability to dynamically adapt the computational grid to

45

local structures of the solution. Wavelets appear to combine the advantages
of both spectral (Fourier space solver) and finite-difference bases. One can
expext that numerical methods based on wavelets attain both good spatial
and spectral resolution.

For time-evolution problems, numerical schemes must be able to catch
all structures that change over time. In the following, we assume that we are
using an explicit time-marching scheme. In order to minimize the number
of unknowns, the basis of active wavelets and, consequently, the compu-
tational grid should adapt dynamically in time to reflect changes in the
solution between two consecutive time steps. The adaptation of the compu-
tational grid is based on the analysis of wavelets structure. We may drop
fine scale wavelets with smallest coefficients in the regions where the solu-
tion is smooth. As a consequence, a grid point should be omitted from the
computational domain, if the associated wavelet is omitted from the wavelet
approximation. To ensure accuracy, the basis should also consider wavelets
whose coefficients can possibly become significant during one time step of
the time-integration scheme. Thus, at any instant of time, the basis should
not only include wavelets whose coefficients are above a prescribed thresh-
old parameter, but also include wavelets belonging to an adjacent zone. The
size of the adjacent zone is determined specifically depending on the problem
to be solved [26, 27, 59]. The method can be viewed as an adaptive mesh
method, where the mesh is automatically refined around sharp variations
of the solution. An advantage of the method is that we never have to care
about where and how to refine the mesh. All that is handled by thresholding
the wavelet coefficients. This method is well suited for large problems with
a solution that is largely compressed in a wavelet basis.

In wavelet-based application with dynamic adaptive remeshing, one can
use both the physical representation of the signal and its wavelet repre-
sentation. An operator can be cheaper to compute in one of these two
representations. With this approach one may transform back and forth be-
tween the physical domain and the wavelet domain at each time step, which
however introduces some overhead. In this context, a specific computation
kernel is required: the adaptive wavelet transform (with two flavors forward
and inverse). This algorithm has the ability to apply the wavelet transform
to a sparse representation of a signal. A sketch of a global algorithm using
time-marching scheme and adaptive remeshing is shown in Fig. 15.

46

Initialize input signal f ;
Wold ← THR(FWT(f)) ; // Get wavelet coeff. and threshold them
for n = 1 to nb time steps do

Mnew ← ENRICH(Wold) ; // Compute a new adaptive mesh
Mnew ← TREE(Mnew) ; // Build a proper tree structure
Fnew ← EVOLVE(Mnew, Fold,Wold) ; // Apply time-marching scheme
Wnew ← AFWT(Fnew) ; // Adaptive wavelet transform
Wnew ← THR(Wnew) ; // Threshold
Swap Wnew and Wold;
Swap Fnew and Fold;

Figure 15: A time-marching scheme with wavelet-based adaptive remeshing

In this algorithm, Fnew (as Fold) refers to a set of active points and the
corresponding signal values, Wnew (as Wold) the same set of active points
and the associated wavelet coefficients, and finally Mnew a set of locations
where we want to know wavelet coefficients (i.e. the adaptive mesh). Let
us describe the algorithm. Initially, a forward wavelet transform (FWT) is
applied on the input signal which is known on a fine uniform mesh. The
resulting wavelet representation is thresholded (THR) and the remaining
set of wavelet coefficients plus their locations are stored into a sparse data
structure: Wold. Next, we enter the loop over time. In order to capture
all physical phenomena that can appear during the next time step, the set
of points included in Wold is enriched (ENRICH operator). It accounts for
possible translation or creation of finer scales in the signal between two sub-
sequent time steps. The TREE step adds the relevant grid points in order to
get a proper wavelet tree structure [9]. The TREE operation will assure 19 us
that for each point P stored into Mnew: all the points at coarser scales that
will be required to compute the wavelet coefficient at P are also in Mnew.
This is quite essential in order to simplify the adaptive forward transform
(AFWT) that will be performed afterwards (and sometimes also to simplify
the EVOLVE operator). Then, the evolution operator (EVOLVE) computes
the values of the signal at next time step at the locations stored into Mnew

(the operator can use values in Fold and in Wold). The adaptive wavelet
transform (AFWT) evaluates all wavelet coefficients Wnew thanks to the set
of signal values contained into Fnew. The thresholding step (THR) remove
coefficients in Wnew that are above a level dependent threshold. Finally, at

19Note that it is possible to design applications without this feature ([27]), but recursive
and costly interpolations using coarser scales may happen during the adaptive forward
transform.

47

the end of loop over time, some data structures are swapped in order to
prepare a new time step.

5.4 Sparse data structures

We want to use wavelets to obtain sparse representations of signals, so we
need a data structure to store wavelet data that takes advantage of this
sparsity [28]. This is especially important for adaptive solving of PDEs be-
cause one hopes to save both memory and computation. It is expected that
the storage amount will be, in average, linear with respect to the number of
stored values in the sparse representation. Assuming the memory required
to store S coefficients in the sparse structure is approximately cs S, we would
like cs as small as possible.

We also need an efficient representation of this sparse data structure,
in order to keep low the overheads due to sparsity management. There
are several criteria that should be met. As we just said, the data structure
must induce a minimal overhead in term of memory storage, but it must also
permit fast accesses to the wavelet coefficients. Nevertheless, both objectives
are contradictory to a certain extent. Often, sparse data types will either
propose to reduce the memory overheads and give a very compact memory
footprint (for example EZW coding), or, on the other side, put forward very
fast access to stored data. Lastly, it is desirable that the data structure will
be simple to use.

In order to compare a wavelet-based method against a standard dense
scheme, the design of the wavelet data structure is a rightfully key issue.
Even if the algorithmic complexity gives a cheaper cost to wavelet-based
method (O(S) with S the number of wavelet coefficients) compared to non-
sparse one (O(N) with N the number of grid points), a wrong choice of
the sparse data structure may drastically hinder performance of the wavelet
approach. One essential point is that dense schemes have a real big ad-
vantage over wavelet scheme, they can use arrays as main data structures.
Now, reading or writing sequentially dense data structures such as arrays
is expected to reach near the maximum available main memory bandwidth.
So, designing sparse data structures that can compete with this sequential
access pattern on large vectors is quite a difficult task.

In the sequel, two sparse data structures will be compared: hash table,
versus tree-based data type.

Tree data structure As stated in [28] and reported in subsection
3.4.4 (p. 31), using non-well-designed trees can lead to significant resource

48

waste. With straightforward tree structures, much indirection pointers or
logical indirections are needed that increase the total memory cost. Besides,
accesses to deepest leaves necessitate visiting many nodes of the tree20, hence
increasing the average cost access to stored data.

A standard strategy to reduce these costs is to gather nodes of the tree
into blocks of several nodes, sometimes calls supernode (block of B wavelet
coefficients is chosen here). The reason behind choosing a block representa-
tion is to spread the cost of memory management and pointer references over
all wavelet coefficients inside the block. In the following, we will denote by
packed Tree or P-tree this type of tree that uses the same kind of strategy as
the B-tree data structure. The number of wavelet coefficients in each block,
B, has to be chosen with two competing aims in mind. If on one hand B
is small enough one can get a tree with no zero-valued wavelets inside each
block (in the extreme case B = 1, this property is always true), but on the
other hand if B is large we get another benefit: less memory overhead due to
indirections. So, B has to be optimized depending on the data to be stored,
in order to both reduce sparsity inside blocks and the global overhead due
to indirections.

At least two implementation alternatives may be foreseen for this P-tree
data structure. On the first hand, a block of the P-tree can gather multiple
nodes at one level of resolution. On the second hand, one can put nodes
of the same spatial area but belonging to different levels in a block of the
P-tree. In order to reduce the maximal depth of leaves, we have chosen to
group wavelet coefficients of different levels together. With this approach,
we are able to guarantee that the wavelet tree will have a very small depth.
This property allows for very fast access to leaves by reducing the number
of indirections to follow [24, 25]. In the following, the P-tree data structure
is defined with only two levels of nodes. One node gathers all coefficients of
coarsest levels from level 0 to level jlimit−1 over all spatial domain. Then,
nodes of finer levels encapsulate coefficients of levels from jlimit to jmax. A
fine node has a fixed size of (2max−limit)2 and represent a square region in
the 2D index space. If one coefficient is non-zero in a fine node, the node has
to exist and coarser levels is connected to this node through one indirection.
But if a fine node does not carry any non-zero coefficient, the node is not
allocated at all. This type of trees in which some of the branches or nodes
are discarded are called pruned tree. The cost to read or write a coarse
element in the sparse structure consists in just one memory access. And it
costs two memory accesses to read an element in fine blocks because one

20the number of visited nodes is exactly the depth of a given leaf.

49

has to follow one indirection [24]. Nevertheless, coarse node and fine nodes
contain frequently zero values; so, the management of the sparsity is not
optimal. This sparse structure with one level of indirection enables both to
take into account the sparsity and to have a fast access to each element.
For small or large number of points, the traversal algorithm always benefits
from spatial locality. One has to choose a correct jlimit value that minimizes
the memory footprint (it depends on the data used).

Hash table Standard hash table libraries provide a simple way to deal
with sparse data structures. No specific optimization is necessary to ob-
tained a memory footprint of the sparse data structure linear in S. There
is one bad point with hash tables storing large data sets, their inability to
deliver fast accesses to stored elements because they rely on random access
memory. As stated in section 3.3.3, there are some other parameters to
look at: 1) if a library is used, access to a stored element can involve one
costly function call, 2) in many hash tables collisions occur that hinder per-
formance. In the sequel, the glib library implementation of hashtable is
used.

5.5 Implementation of adaptive transform

Implementations of an adaptive wavelet transform are given in this subsec-
tion. Compared to subsection 5.2 where algorithms compute wavelet trans-
forms on non-sparse data structure, the two-dimensional wavelet transform
is here applied on a sparse representation of a 2D signal of size S. The
algorithmic complexity of this adaptive transform is O(S).

In order to oversimplify both algorithmics and numerics, the algorithm
of Fig. 16(a) use lifting scheme with no update operator. So, compared to
algorithm of Fig. 12(b), you only find in Fig. 16(a), calls to predict steps in
x and y directions. But apart from that, and the explicit usage of sparse data
structure, the principle of the inverse transform algorithm remains the same
as previously seen. Hence, in Figures 16(b) and 16(c) there is a traversal of
all details at one specific level and the application of predict operator as it
was in Figure 13(a).

50

� �
void wav adapt i t rans form (FTYPE ∗ so ld , int N) {

const int d i r = −1;
int i t c ;
/∗ l oop on l e v e l s from coarse to f i n e ∗/
for (i t c = N ; i t c >= 2 ; i t c >>= 1){

wav adapt pred ic t y (so ld , i t c , N, d i r) ;
wav adapt pred ic t x (so ld , i t c , N, d i r) ;

}
}� �

(a) Inverse adaptive transform

� �
void
wav ins ide pred y (FTYPE ∗ sdata , int ix ,

int iy , int i t f , int i t c ,
int N, int dir , int Nplus ,
VALTYPE ∗ p d e t a i l) {

register int k , i c o a r s e ;
double pred ictVal , r eadva l ;
/∗ i y i s the d e t a i l index we are l o o k i n g at ∗/
pred i c tVa l = 0 ;
/∗ Apply p r e d i c t opera tor in y−d i r e c t i o n ∗/
for (k = 0 ; k < wav np ; k++) {

i c o a r s e = (Nplus + iy +
(k + wav of fp)∗ i t c − i t f)%N;

GETF(sdata , ix , i c o a r s e ,N, readva l) ;
p red i c tVa l += w a v f i l t e r P r e d [k] ∗ readva l ;

}
∗ p d e t a i l += − d i r ∗ pred i c tVa l ;

}� �
(b) Prediction operator in y-direction

� �
void wav adapt pred ic t y (FTYPE ∗ sdata , int i t c ,

int N, int d i r) {
KEYTYPE ix , iy , i d e t a i l ;
VALTYPE ∗ p d e t a i l ;
int i t f = i t c / 2 , Nplus = N∗N;
int p , pstart , pend , i l e v e l ;
i l e v e l = mylog2 (i t f) ;
i f (i l e v e l == 0) {

p s t a r t = 0 ; pend = sdata−>ends [0] ;
} else {

p s t a r t = sdata−>ends [i l e v e l −1] ;
pend = sdata−>ends [i l e v e l] ;

}
/∗ I t e r a t e over non−zero w a v e l e t c o e f f i c i e n t s

a t l e v e l parameter i zed by i t f ∗/
for (p = p s t a r t ; p < pend ; p++) {

/∗ Get ’ i d e t a i l ’ : a key from the l i s t . ∗/
i d e t a i l = sdata−>keys [p] ;
/∗ Extrac t i n d i c e s (ix , i y) from ’ i d e t a i l ’ ∗/
INVKEYXY(i d e t a i l , ix , i y) ;
/∗ With ’ i y ’ , determine wether the p o i n t

(ix , i y) i s a d e t a i l a t l e v e l ’ i t f ’ ∗/
i f ((i y&i t f) != 0) {

/∗ Get p o i n t e r to memory area ’ p d e t a i l ’
where d e t a i l v a l . w i l l be s t o r e d ∗/

GETPDETAIL(sdata , ix , iy , p ,N, p d e t a i l) ;
/∗ Compute the p r e d i c t i o n and s t o r e

d i f f e r e n c e at ’ p d e t a i l ’ ∗/
wav ins ide pred y (sdata , ix , iy , i t f , i t c ,

N, d ir , Nplus , p d e t a i l) ;
}

}
}� �

(c) Walk trough all space to predict in y-dir.

Figure 16: 2D inverse adaptive wavelet transform

A key point to achieve this transform efficiently is to traverse the sparse
data structure as quickly as possible. In order to do that, one can think
of constructing a supplementary 1D array storing the non-zero wavelet lo-
cations. Even if the building of this array induces small computation and
memory overheads, the array provides 1) a simple way to traverse the sparse
data structure and 2) a quick sequential access to all non-zero locations.

The array of non-zero locations is named sdata->keys in the code. The
macro INVKEYXY allows one to retrieve indices ix and iy wich are encoded
into one single element of this array. The array is organized and ordered such
as all entries of one given wavelet level is stored contiguously. This strategy
is useful to improve the efficiency of the algorithm, because traversals are
level-wise. Following this idea, at the beginning of the function presented in
Fig. 16(c), the two indices pstart and pend defines an interval associated to
a level j (also characterized by itc). This interval corresponds to starting
and ending indices in array sdata->keys where non-zero locations of level
j are stored.

The macros GETF and GETPDETAIL permit respectivelly to get the value

51

of a coefficient at one location, and to get the pointer towards a coefficient at
one location. The advantage of having all these macros is that they involve
no function call overhead, and they hidden the different data structure that
can be used underneath. Practically, depending on one compiler options,
the code associated with the macros will be based on whether a hashtable
or on a P-tree for example.

5.6 Performance of sparse datatype in adaptive transform

This subsection is devoted to the performance comparison of sparse data
structures. Different measures are shown concerning the execution of adap-
tive transform on a Nehalem-EP machine. Three implementations are con-
sidered based on several sparse data types: a P-tree version, a hashtable
version, a dense data structure version. Roughly speaking, algorithms used
in these versions are similar, but the macros that access sparse data are
specifically designed. Source codes corresponding to this experiment are
stored into wav2d directory.

(a) Test case A (nb mode=4) (b) Test case B

Two reference test cases have been used to conduct the experiments. In
both test cases the size of the domain were 2π in each direction. First, the
test case A is a tensor product of sine functions (along x and y dimensions)
that multiplies a decreasing exponential (see Fig. 17(a)). The user can set

52

a parameter nb modes that fixes the number of modes in each direction.
Second, the test case B define a disc in the center of the domain with the
value 1 inside and 0 outside. The radius of the circle has been set to 1.5
for this experiments (see Fig. 17(b)). For test cases A and B, several
mesh sizes were investigated as described in table 5. In the sequel, we will
note sparsity rate (abbreviated srate and also called fill ratio) the ratio of
non-zero elements to total elements. In the table 5, the srate percentage
corresponds to S, the number of non-zero elements, over the total number
of points in the uniform mesh N2. It is worth noticing that data stored are
quite sparse, we keep less than one percent of uniform mesh points in each
of the six configurations.

Case name N nb modes N2 S srate
A1 4096 32 17.106 33.103 0.20%
A2 16384 128 268.106 524.103 0.20%
A3 32768 256 1073.106 2097.103 0.20%
B1 4096 - 17.106 64.103 0.38%
B2 16384 - 268.106 258.103 0.10%
B3 32768 - 1073.106 516.103 0.05%

Table 5: Settings and sizes of test cases used in experiments

Using adaptive inverse wavelet transform algorithm, benchmarks have
been performed for these six settings (the reader is referred to the bench.sh

script in the wav2d directory). Single floating-point precision is taken for
wavelet data structure coefficients. Three data structures are compared on
the basis of runtime and amount of memory required to store sparse data.
To determine the actual memory usage taken for sparse data, a snapshot
of the process memory consumption is taken just before and just after the
filling of the main sparse data structure. Substracting the two values, one
can estimate the amount memory required by the sparse data. And this
estimation is still correct even if a library is used (which is the case when
using the hashtable in the proposed implementation).

The glib implementation uses open addressing and dynamic resizing for
the hashtable in order to enhance its efficiency. Note that the hashtable im-
plementation is parameterized by a user-selected hash function that impacts
performance. The hash function indirectly determine the average number of
read accesses that are involved per hashtable lookup. Bad hash functions,
lead to frequent collisions; then, each lookup can generate several read ac-
cesses to reach the slot where the target key-value pair is stored. The hash
function we used in our implementation is a combination of the multiplica-

53

tive and division methods described in [31] (section 6.4). The user-specified
hash function is a multiplicative scheme with the golden ratio as multiplica-
tive constant. In addition, the division method is automatically employed in
the glib library. The number of read accesses per lookup is satisfactory and
lies in average in between 2.10 and 2.61 for the six settings. Note that the
ideal case (almost perfect hash function) where nearly no collision occurs
would give only 2 read access per lookup: one read to compare the provided
key to the stored key, one read to retrieve the stored value.

A1 case A2 case A3 case
Time Memory Time Memory Time Memory

Dense array 28.6 ms 64 MB 492 ms 1 GB 2432 ms 4 GB
Hashtable 6.7 ms 3.59 MB 129 ms 56.3 MB 496 ms 101.6 MB

P-tree 1.5 ms 0.65 MB 24.3 ms 10.1 MB 99 ms 40.1 MB

B1 case B2 case B3 case
Time Memory Time Memory Time Memory

Dense array 31.2 ms 64 MB 474 ms 1 GB 2082 ms 4 GB
Hashtable 16.3 ms 7.1 MB 72.9 ms 13.7 MB 200 ms 56 MB

P-tree 4.1 ms 4.9 MB 17.6 ms 70.7 MB 44.8 ms 280 MB

Table 6: Runtime measurements for adaptive inverse wavelet transform

For the A-series (A1, A2, A3), the behaviour of the three data structures
is quite simple to analyse. The sparse storages of hashtable and P-tree save
actually much space compared to a dense array that keeps all N2 floating
point values. The P-tree achieves a lower memory usage than the hashtable,
but this ordering is not typical.

The speedup between runtimes of P-tree and hashtable is in the interval
from 4.5 to 5.5. As already said at page 26, the hashtable has two major
drawbacks: random accesses in memory narrow down performance, and
function calls induced by using a library can add an extra overhead. On
the other hand, the P-tree provides fast read access to any element with
a cost limited to two memory reads at most, and above all, has spatial
locality property. Concerning the B-series (B1, B2, B3), the P-tree data
structure takes much more memory than hashtable. This situation is the
most usual case. The runtimes show also a speedup from 4 to 4.5 for the
P-tree data type over the hashtable data type. For largest test case A3 and
B3, the random access penalty of hashtable become predominant because
compressed sparse data does not fit entirely in the L3 cache of 16 MB. As a
consequence, the gap between runtimes of P-tree and hashtable is as large

54

as a speedup factor of 5 (case A3) and a speedup of 4.5 (case B3).
As far as fast reading access is needed, the presented hashtable perfor-

mance is below P-tree performance. At least two ways can be considered
to improve the hashtable version: the elements can be stored with specific
patterns in order to improve the spatial locality [41] (this is partly done in
storing elements level by level in the proposed implementation), the over-
head of function calls can be lowered using homemade hashtable instead of
library use. Nevertheless, concerning the first improvment, pure sequential
memory accesses can not be achieved in traversing a hashtable: it would
contradict the principle of easy and cheap element insertion that induces
holes in the hashtable that can host new added values, also another objec-
tive is to scatter data evenly through hash table. Therefore, for large data
set, hashtable can not compete with P-tree reading access time. Let us
have a look now at memory storage cost, the P-tree usually consumes more
than hashtable, even if complex tree-based data structure can be designed
to decrease the number of zero coefficients that are stored.

5.7 Related works and discussion

There is a large body of work on wavelet adaptive and adaptive remesh-
ing technics applied to time evolution problems. Interpolating wavelets pa-
pers [1, 13, 19, 34, 37, 46] and lifting scheme [14, 15, 30, 55, 56] are playing a
central role in this context, because they provide a competitive tool to reduce
both computational and memory resources. The strategy of mixing inter-
polating wavelets and adaptive remeshing to solve PDEs has been applied
to several domain specific problems, such as: Navier-Stokes equations [47],
academic equation sets [26, 45, 59], reaction-diffusion equations [18], fluid
dynamics [60], parabolic PDEs [42], hyperbolic PDEs [12, 27, 28, 62], Vlasov
solvers [4, 22–25, 52].

It is noticeable that there are additional computational costs associated
with the use of the adaptive multi-resolution wavelet methodology. As it
can be seen in the algorithm of Fig. 15, three steps are added compared to
a uniform mesh framework: construct a new adaptive mesh, compute the
wavelet transform, apply the threshold. Furthermore, applying the time-
marching step involves a traversal of the adaptive mesh that adds overhead
if caution is not taken. Finally, as we have seen, the design of the sparse
data structure underlying wavelet representation has also a big impact on
performance.

Data structures adapted to wavelet implementation have been extensive-
ley studied in the computer graphics community [48]. Wavelets are used in

55

different subfields of this community, such as: image compression, automatic
level-of-detail control for editing and rendering curves and surfaces, global
illumination, volume rendering, rendering of complex scenes in real time.
Depending on their usage, data structures used in wavelet processing are
tuned specifically. Main trends are to tune data types for high compression
rates, or for fast running times. But, generally speaking, the most space
efficient methods for storing wavelet representation always leads to a rather
high overhead for lookups.

Few authors have emphasize on sparse data structures that are adapted
to wavelet storage and that have also good properties regarding fast random
access [24, 33, 34, 41]. More work needs to be done to handle efficiently
wavelet representations in multidimensionnal settings where data sets can be
large and do not fit into caches. In order to achieve lower runtimes, wavelet-
based applications have to simultanously reduce the number of operations
to be done and get a quick access to processed data. Even if an asymptotic
reduction of algorithmic cost is obtained through adaptive strategy, suitable
data structure are strongly required in order to achieve effective reduced
runtimes compared to non-adaptive classical approaches.

6 Conclusion

This course gives a deeper understanding of the role of datatype performance
in adaptive wavelet-based applications. It presents some benchmark technics
and code fragments useful to learn about sparse data structure, adaptive
algorithms, and how to evaluate their performance. Material and practical
examples are given, and they provide good introduction for anyone involved
in the development of adaptive applications.

A key ingredient for the realization of an adaptive scheme that solve
an evolution problem is the organization of the data, that is how to store
wavelet coefficients. The data must be organized such at, the benefits of
the adaptive method in term of algorithmic cost reduction is not wasted
by overheads of data management [2]. Uniform non-adaptive method based
on arrays can benefit from sequential accesses in memory. With these lin-
ear accesses, one can expect to reach the maximum available main memory
bandwidth and excellent read access mean time. By contrast, sparse data
representation needed for storing wavelet coefficients can not achieve such
high performance. When evaluating a wavelet-based application, one has
to ensure that the overhead induced by the sparse data structures is much
smaller than the gain of efficiency brought by the adaptive approach. It is

56

not straightforward to design suitable data structures for wavelet-based algo-
rithms and to benchmark them in order to obtain a quantitative validation of
the approach against a classical non-adaptive scheme. The difficulty comes
partly from the intertwining between the numerical scheme, algorithms and
datatypes used. It is not unusual that you obtain a large reduction over the
number of floting point operations thanks to an efficient adaptive numerical
scheme, but you loose at the same time all this benefit because of slow data
accesses or sparse data management.

Access time to main memory is a bottleneck for many of today’s soft-
ware. As a programmer, we have seen the important need to understand the
memory hierarchy because it has a big impact on the performance of your
applications. We have looked at the task of redesigning and reorganizing
data structures in order to improve cache locality (spatial and temporal).
Pointers and indirections should be employed carefully because they slow
down mean access time and add a memory cost. As far as performance is
concerned, the implementation of a sparse datatype requires to design an
optimized data layout and algorithms with certain access patterns to fasten
runtimes. The speedup between optimized implementation and simple one
can be as large as a factor 15.

Usage and optimization of typical data structures for sparse storage have
been discussed. Comparisons of tree-based data structures and hashtables
have been shown. Hashtables are quite simple to use and lead to mem-
ory consumption linear with the number of elements stored. Nevertheless,
tree-based data structures are versatile and optimized version can lead to
impressive resource savings. On the first hand, the EZW coding based on
a tree structure allows for a very compact memory footprint of one wavelet
representation. On the other hand, we have exhibit P-tree data type that
ensures fast read access time to coefficients of a wavelet tree. Both hashta-
bles and tree-based data structures have to be considered within wavelet
applications with repect to resource consumption or software engineering
objectives.

Wavelet-based scheme is useful in solving partial differential equa-
tions (PDE) that involve different spatial and temporal scales. Wavelet-
collocation methods is one of the methods available for solving the problem
in the physical space, using a dynamically adaptive grid. Wavelets have the
ability to dynamically adapt the computational grid to local structures of
the solution. Some algorithms and data types usable in such framework are
presented in this document. Performance comparisons between hashtable
and P-tree datatypes in a 2 dimensional setting are illustrated. The use of
macros helps evaluate and compare the different sparse datatypes.

57

The efficiency of wavelets is well established in many fields. In the scope
of computer science, wavelet based multiresolution representation became
the state of the art technique in image processing and has also been recog-
nized in computer graphics [53]. However, more research and development
is required before wavelets become core technology in numerical simulations
and in solvers for partial differential equations. A main issue among oth-
ers remains to improve memory footprint and access time performance for
wavelet representations [8].

References

[1] P. S. Addison. The Illustrated Wavelet Transform Handbook: Introductory
Theory and Applications in Science, Engineering, Medicine and Finance. IOP
Publishing Ltd., 2001.

[2] A. Barinka, T. Barsch, P. Charton, A. Cohen, S. Dahlke, W. Dahmen, and
K. Urban. Adaptive wavelet schemes for elliptic problems - implementation
and numerical experiments. SIAM J. Scient. Comput, 23:910–939, 1999.

[3] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-Trees.
SIAM Journal on Computing, 35(2):341–358, 2005. http://www.cs.sunysb.
edu/~bender/pub/sicomp05-BenderDeFa.ps.

[4] N. Besse, G. Latu, A. Ghizzo, E. Sonnendrucker, and P. Bertrand.
A wavelet-MRA-based adaptive semi-lagrangian method for the rela-
tivistic Vlasov-Maxwell system. Journal of Computational Physics,
227(16):7889 – 7916, 2008. http://www.sciencedirect.com/science/
article/B6WHY-4SGD4YJ-1/2/41fd1c69bacca48b1f3ba82c8ae6850a.

[5] J. Bruce, W. Ng Spencer, and D. T. Wang. Memory systems: cache, DRAM,
disk. Elsevier, 2008.

[6] R.E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Per-
spective. Prentice Hall, 2003.

[7] D. Chaver, C. Tenllado, L. Piñuel, M. Prieto, and F. Tirado. Vectorization
of the 2D wavelet lifting transform using SIMD extensions. Proc. 17th IEEE
Int’l Parallel and Distributed Processing Symp. (IPDPS), 2003.

[8] A. Cohen. Adaptive methods for pde’s - wavelets or mesh refinement ? In
Proceedings of the International Conference of Mathematics, 2002. www.ann.
jussieu.fr/~cohen/pekin.ps.gz.

[9] A. Cohen. Adaptive multiscale methods for evolution equations. In proceed-
ings of ENUMATH conference, (Ischia Porto 2001), 2002. http://www.ann.
jussieu.fr/~cohen/procischia.ps.gz.

58

http://www.cs.sunysb.edu/~bender/pub/sicomp05-BenderDeFa.ps
http://www.cs.sunysb.edu/~bender/pub/sicomp05-BenderDeFa.ps
http://www.sciencedirect.com/science/article/B6WHY-4SGD4YJ-1/2/41fd1c69bacca48b1f3ba82c8ae6850a
http://www.sciencedirect.com/science/article/B6WHY-4SGD4YJ-1/2/41fd1c69bacca48b1f3ba82c8ae6850a
www.ann.jussieu.fr/~cohen/pekin.ps.gz
www.ann.jussieu.fr/~cohen/pekin.ps.gz
http://www.ann.jussieu.fr/~cohen/procischia.ps.gz
http://www.ann.jussieu.fr/~cohen/procischia.ps.gz

[10] A. Cohen, I. Daubechies, O. Guleryuz, and M. Orchard. On the impor-
tance of combining wavelet-based non-linear approximation with coding strate-
gies. IEEE Trans. Inform. Theory, 48(7):1895–1921, 2002. http://www.ann.
jussieu.fr/~cohen/cdgo.ps.gz.

[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms
(3rd ed.). MIT Press, 2009.

[12] P. Cruz, M. A. Alves, F.D. Magalhães, and A. Mendes. Solution of hyperbolic
pdes using a stable adaptive multiresolution method. Chemical Engineering
Science, 58(9):1777 – 1792, 2003.

[13] P. Cruz, A. Mendes, and F.D. Magalhães. Using wavelets for solving PDEs:
and adaptive collocation method. Chemical Engineering Science, 56:3305–
3309, 2001.

[14] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps.
J. Fourier Anal. Appl., 4(3):247–269, 1998.

[15] Ingrid Daubechies and Wim Sweldens. Factoring wavelet transforms into lifting
steps. J. Fourier Anal. Appl, 4:247–269, 1998.

[16] E. Demaine and C.E. Leiserson. MIT - Introduction
to Algorithms, 2007. http://www.catonmat.net/blog/
summary-of-mit-introduction-to-algorithms.

[17] J. Dolbow, Khaleel M. A., and J. Mitchell. Multiscale mathematics initia-
tive: A roadmap. Technical report, Tech. Rep. PNNL-14966 Pacific North-
west National Laboratory, 2004. http://www.sc.doe.gov/ascr/Research/
AM/MultiscaleMathWorkshop3.pdf.

[18] Margarete O. Domingues, Sônia M. Gomes, Olivier Roussel, and Kai Schnei-
der. An adaptive multiresolution scheme with local time stepping for evolu-
tionary pdes. J. Comput. Phys., 227(8):3758–3780, 2008.

[19] D. L. Donoho. Interpolating wavelet transforms. Technical report, Preprint,
Department of Statistics, Stanford University, 1992. http://www-stat.
stanford.edu/~donoho/Reports/1992/interpol.pdf.

[20] J. Erickson. Topics in analysis of algorithms. http://compgeom.cs.uiuc.
edu/~jeffe/teaching/473/.

[21] GNOME. Glib reference manual. http://library.gnome.org/devel/glib/
2.24.

[22] M. Gutnic, M. Mehrenberger, E. Sonnendrücker, O. Hoenen, G. Latu, and
E. Violard. Adaptive 2d vlasov simulation of particle beams. In Proceedings of
ICAP 2006, 2006. http://epaper.kek.jp/ICAP06/PAPERS/THMPMP02.PDF.

59

http://www.ann.jussieu.fr/~cohen/cdgo.ps.gz
http://www.ann.jussieu.fr/~cohen/cdgo.ps.gz
http://www.catonmat.net/blog/summary-of-mit-introduction-to-algorithms
http://www.catonmat.net/blog/summary-of-mit-introduction-to-algorithms
http://www.sc.doe.gov/ascr/Research/AM/MultiscaleMathWorkshop3.pdf
http://www.sc.doe.gov/ascr/Research/AM/MultiscaleMathWorkshop3.pdf
http://www-stat.stanford.edu/~donoho/Reports/1992/interpol.pdf
http://www-stat.stanford.edu/~donoho/Reports/1992/interpol.pdf
http://compgeom.cs.uiuc.edu/~jeffe/teaching/473/
http://compgeom.cs.uiuc.edu/~jeffe/teaching/473/
http://library.gnome.org/devel/glib/2.24
http://library.gnome.org/devel/glib/2.24
http://epaper.kek.jp/ICAP06/PAPERS/THMPMP02.PDF

[23] Michael Gutnic, Matthieu Haefele, Ioana Paun, and Eric Sonnendrücker.
Vlasov simulations on an adaptive phase-space grid. Comput. Phys. Com-
mun., 164:214–219, 2004.

[24] M. Haefele, G. Latu, and M. Gutnic. A parallel vlasov solver using
a wavelet based adaptive mesh refinement. In ICPP 2005 Workshops,
pages 181–188. IEEE Computer Society, 2005. http://icps.u-strasbg.
fr/people/latu/public_html/docs/icpp-hpsec-05.pdf http://dx.doi.
org/10.1109/ICPPW.2005.13.

[25] Matthieu Haefele. Simulation adaptative et visualisation haute performance
de plasmas et de faisceaux de particules. PhD thesis, Laboratoire des Sciences
de l’Images, de l’Informatique et de la Télédétection, LSIIT, 2007.

[26] Ami Harten. Adaptive multiresolution schemes for shock computations. Jour-
nal of Computational Physics, 115(2):319 – 338, 1994.

[27] Mats Holmstrom. Solving hyperbolic PDEs using interpolating wavelets. SIAM
Journal on Scientific Computing, 21(2):405–420, 1999.

[28] Mats Holmström and Johan Waldén. Adaptive wavelet methods for hyperbolic
PDEs. J. Sci. Comput., 13(1):19–49, 1998.

[29] S. Jain, P. Tsiotras, and H.-M. Zhou. A hierarchical multiresolution adap-
tive mesh refinement for the solution of evolution PDEs. SIAM Journal on
Scientific Computing, 31(2):1221–1248, 2008.

[30] Roger L. Claypoole Jr., Geoffrey M. Davis, Wim Sweldens, and Richard G.
Baraniuk. Nonlinear wavelet transforms for image coding via lifting. IEEE
Transactions on Image Processing, 12(12):1449–1459, 2003.

[31] D. Knuth. The Art of Computer Programming (3rd ed.), volume 3. Addison-
Wesley, 1998.

[32] Piyush Kumar. Cache oblivious algorithms. In Algorithms for Memory Hierar-
chies. Editors: Meyer, U. and Sanders, P. and Sibeyn, J., volume LNCS 2625,
pages 193–212. Elsevier, 2003. http://www.compgeom.com/co-chap/co.pdf.

[33] Sylvain Lefebvre and Hugues Hoppe. Compressed random-access trees for spa-
tially coherent data. In Rendering Techniques (Proceedings of the Eurographics
Symposium on Rendering). Eurographics, 2007.

[34] R. Lippert, T. Arias, and A. Edelman. Multiscale computation with interpo-
lating wavelets. Journal of Computational Physics, 140(2):278–310, 1998.

[35] Linux magazine 88. Dissection de glib. http://www.unixgarden.com/index.
php/programmation/dissection-de-glib-les-tables-de-hachage.

60

http://icps.u-strasbg.fr/people/latu/public_html/docs/icpp-hpsec-05.pdf
http://icps.u-strasbg.fr/people/latu/public_html/docs/icpp-hpsec-05.pdf
http://dx.doi.org/10.1109/ICPPW.2005.13
http://dx.doi.org/10.1109/ICPPW.2005.13
http://www.compgeom.com/co-chap/co.pdf
http://www.unixgarden.com/index.php/programmation/dissection-de-glib-les-tables-de-hachage
http://www.unixgarden.com/index.php/programmation/dissection-de-glib-les-tables-de-hachage

[36] S. Mallat. A theory for multiresolution signal decomposition: the
wavelet representation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 11:674–693, 1989. http://www.dii.unisi.it/~menegaz/
docs&papers/mallat-89.pdf.

[37] Stéphane Mallat. A Wavelet Tour of Signal Processing, Third Edition: The
Sparse Way. Academic Press, 2008.

[38] Abhijit Menon-Sen. How hashes really work, 2002. www.perl.com/lpt/a/679.

[39] R.J.E. Merry. Wavelet theory and applications, a literature study. Tech-
nical report, Master’s thesis, Eindhoven University of Technology, 2005.
alexandria.tue.nl/repository/books/612762.pdf.

[40] D. Mount. Data structures - course. http://www.cs.umd.edu/~mount/420/.

[41] F. F. Rodler and Pagh R. Fast random access to wavelet compressed volumetric
data using hashing, 2001. http://www.brics.dk/RS/01/34/.

[42] Olivier Roussel, Kai Schneider, Alexei Tsigulin, and Henning Bockhorn. A con-
servative fully adaptive multiresolution algorithm for parabolic pdes. Journal
of Computational Physics, 188(2):493 – 523, 2003.

[43] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2003. http://www-users.
cs.umn.edu/~saad/books.html.

[44] A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on
Set Partitioning In Hierarchical Trees. IEE Trans. on Circuits and Systems
for Video Technology, 6(3):243–250, 1996.

[45] J. C. Santos, P. Cruz, F.D. Magalhães, and A. Mendes. 2-D wavelet-based
adaptive-grid method for the resolution of PDEs. AIChE Journal, 49:706–717,
2003.

[46] K. Schneider, M. Farge, F. Koster, and M. Griebel. Adaptive wavelet methods
for the Navier-Stokes equations. Numerical Flow Simulation II, 75:303–318,
2001.

[47] K. Schneider, M. Farge, F. Koster, and M. Griebel. Adaptive wavelet methods
for the navier-stokes equations. In Notes on Numerical Fluid Mechanics (Ed.
E. H. Hirschel) - Springer, pages 303–318, 2001.

[48] P. Schroder. Wavelets in computer graphics. In Proceedings of the IEEE,
volume 84(4), pages 615–625. IEEE, 1996.

[49] John Shalf, Sudip Dosanjh, and John Morrison. Exascale Computing Technol-
ogy Challenges. In High Performance Computing for Computational Science
VECPAR 2010, volume 6449 of Lecture Notes in Computer Science, chapter 1,
pages 1–25. Springer Berlin / Heidelberg, 2011.

61

http://www.dii.unisi.it/~menegaz/docs&papers/mallat-89.pdf
http://www.dii.unisi.it/~menegaz/docs&papers/mallat-89.pdf
www.perl.com/lpt/a/679
alexandria.tue.nl/repository/books/612762.pdf
http://www.cs.umd.edu/~mount/420/
http://www.brics.dk/RS/01/34/
http://www-users.cs.umn.edu/~saad/books.html
http://www-users.cs.umn.edu/~saad/books.html

[50] J. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.
IEE Trans. on Signal Processing, 41(12):3445–3461, 1993. http://www.cs.
tut.fi/~tabus/course/SC/Shapiro.pdf.

[51] Steven S. Skiena. The Algorithm Design Manual. Springer, 2008.

[52] E. Sonnendrücker, M. Gutnic, M. Haefele, and G. Latu. Vlasov simulations of
beams and halo. In PAC 2005 proceedings, 2005.

[53] Eric J. Stollnitz, Tony D. Derose, and David H. Salesin. Wavelets for computer
graphics: theory and applications. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1996.

[54] G. Strang and T. Nguyen. Wavelets and Filter Banks. Wellesley-Cambridge
Press, second edition, 1997.

[55] W. Sweldens and P. Schroder. Building your own wavelets at home. ACM SIG-
GRAPH Course notes, 1996. http://cm.bell-labs.com/who/wim/papers/
athome/athome.pdf.

[56] Wim Sweldens. The lifting scheme: A custom-design construction of biorthog-
onal wavelets. Applied and Computational Harmonic Analysis, 3(2):186 – 200,
1996.

[57] Chilimbi Trishul M., Hill Mark D., and Larus James R. Making pointer-based
data structures cache conscious. Computer, 33(12):67–74, 2000.

[58] C. Valens. EZW encoding. http://pagesperso-orange.fr/polyvalens/
clemens/ezw/ezw.html.

[59] Oleg V. Vasilyev and Samuel Paolucci. A fast adaptive wavelet collocation
algorithm for multidimensional PDEs. Journal of Computational Physics,
138(1):16 – 56, 1997. http://www.sciencedirect.com/science/article/
B6WHY-45KV05C-2/2/ba67a076220d0acba3173d425d3c4acf.

[60] O.V. Vasilyev. Solving multi-dimensional evolution problems with local-
ized structures using second generation wavelets. Int. J. Comp. Fluid Dyn.,
Special issue on High-resolution methods in Computational Fluid Dynamics,
17(2):151168, 2003.

[61] O.V. Vasilyev, D.A. Yuen, and S. Paolucci. The solution of PDEs using
wavelets. Computers in Phys., 11(5):429–435, 1997.

[62] Johan Walden. Filter bank methods for hyperbolic PDEs. SIAM Journal on
Numerical Analysis, 36(4):1183–1233, 1999.

[63] Wikipedia, bit-plane. http://en.wikipedia.org/wiki/Bit_plane.

[64] Wikipedia, bucket sort. http://en.wikipedia.org/wiki/Bucket_sort.

62

http://www.cs.tut.fi/~tabus/course/SC/Shapiro.pdf
http://www.cs.tut.fi/~tabus/course/SC/Shapiro.pdf
http://cm.bell-labs.com/who/wim/papers/athome/athome.pdf
http://cm.bell-labs.com/who/wim/papers/athome/athome.pdf
http://pagesperso-orange.fr/polyvalens/clemens/ezw/ezw.html
http://pagesperso-orange.fr/polyvalens/clemens/ezw/ezw.html
http://www.sciencedirect.com/science/article/B6WHY-45KV05C-2/2/ba67a076220d0acba3173d425d3c4acf
http://www.sciencedirect.com/science/article/B6WHY-45KV05C-2/2/ba67a076220d0acba3173d425d3c4acf
http://en.wikipedia.org/wiki/Bit_plane
http://en.wikipedia.org/wiki/Bucket_sort

[65] Wikipedia, b-tree. http://en.wikipedia.org/wiki/B-tree.

[66] Wikipedia, dynamic arrays. http://en.wikipedia.org/wiki/Dynamic_
array.

[67] Wikipedia, hash table. http://en.wikipedia.org/wiki/Hash_table.

63

http://en.wikipedia.org/wiki/B-tree
http://en.wikipedia.org/wiki/Dynamic_array
http://en.wikipedia.org/wiki/Dynamic_array
http://en.wikipedia.org/wiki/Hash_table

	1 Introduction
	1.1 Multiscale and adaptive approaches
	1.2 Some wavelet applications
	1.2.1 Image compression
	1.2.2 Video encoding, signal processing
	1.2.3 Application to PDEs

	1.3 Objectives
	1.4 Pitfalls
	1.4.1 Efficient data structures
	1.4.2 Designing correct algorithms
	1.4.3 Optimizing program performance

	2 Algorithmic and performance issues
	2.1 Computer architecture
	2.1.1 Memory hierarchy
	2.1.2 Cache matters
	2.1.3 Data access: spatial locality, temporal locality
	2.1.4 Pointers, indirections
	2.1.5 Data layout and algorithms that favor locality

	2.2 Computational complexity
	2.2.1 Asymptotic analysis
	2.2.2 Renewal of the subject

	3 Data structures for multiresolution
	3.1 Multidimensional array
	3.1.1 Memory Layout of 2D arrays and matrices
	3.1.2 Matrix-multiply example

	3.2 Dynamic array
	3.3 Hash table
	3.3.1 Principle
	3.3.2 Hash functions
	3.3.3 Drawbacks
	3.3.4 Traversal of a sparse array

	3.4 Tree
	3.4.1 Definition
	3.4.2 Implementation
	3.4.3 Binary tree
	3.4.4 Optimization of the tree structure

	3.5 Wavelet trees in image processing
	3.5.1 Introduction to the EZW scheme
	3.5.2 EZW Algorithm
	3.5.3 Entropy coding

	4 Some wavelet algorithms
	4.1 Haar
	4.1.1 Notations
	4.1.2 Storage issue

	4.2 Forward Wavelet transform
	4.3 Inverse wavelet transform
	4.4 Thresholding

	5 Applications
	5.1 Lifting overview
	5.2 Implementation of a 2D wavelet transform
	5.3 Adaptive remeshing in 2D
	5.4 Sparse data structures
	5.5 Implementation of adaptive transform
	5.6 Performance of sparse datatype in adaptive transform
	5.7 Related works and discussion

	6 Conclusion

