
A Parallel Vlasov solver using a

Wavelet based Adaptive Mesh Refinement

Matthieu Haefele, Guillaume Latu and Michael Gutnic
INRIA CALVI project (http://math.u-strasbg.fr/calvi)

LSIIT, UMR CNRS 7005 & IRMA, UMR CNRS 7501
Université Louis Pasteur, 7 rue Descartes Strasbourg, France
{haefele | latu}@lsiit.u-strasbg.fr, gutnic@math.u-strasbg.fr

Reference: Paper accepted in the 7th Workshop on High Performance

Scientific and Engineering Computing (ICPP-HPSEC-05).

Abstract

We are interested in solving the Vlasov equation

used to describe collective effects in plasmas. This non-

linear partial differential equation coupled with Maxwell

equation describes the time evolution of the particle dis-

tribution in phase space. The numerical solution of

the full three-dimensional Vlasov-Maxwell system rep-

resents a considerable challenge due to the huge size

of the problem. A numerical method based on wavelet

transform enables to compute the distribution function

on an adaptive mesh from a regular discretization of

the phase space. In this paper, we evaluate the costs

of this recently developed adaptive scheme applied on a

reduced one-dimensional model, and its parallelization.

We got a fine grain parallel application that achieves a

good scalability up to 64 processors on a shared memory

architecture.

1 INTRODUCTION

In the quest for a new source of energy, understand-
ing plasma behavior is one of the most challenging
problems to overcome. Plasma can be considered as
the fourth state of matter and exists at huge tempera-
ture conditions (104 K or more). These conditions are
reached in different facilities, in particular in tokamak
reactors. A kinetic description is used to model such
phenomenon. The plasma is governed by the Vlasov
equation coupled with Poisson or Maxwell equations
to evaluate the self-consistent fields generated by the
particles. Vlasov equation

∂f

∂t
+ ~v .∇xf + (E + ~v × B) .∇vf = 0, (1)

characterizes the evolution of particle distribution in
time and space according to the electro-magnetic fields
E(~x, t) and B(~x, t). The distribution function f(~x,~v, t)
represents the particle density at a time t and a point
(~x,~v) in phase space. In phase space, a point is charac-
terized by a position vector ~x and a velocity vector ~v.
To describe numerous cases, one need (~x,~v) ∈ R

d ×R
d

with d = 3.

Finding an approximation of this non-linear partial
differential equation enables the simulation of new ac-
celerator and tokamak designs to validate them before
building the devices. For a more fundamental purpose,
finding such an approximate solution makes it possi-
ble for physicists to represent the behavior of different
physical parameter sets.

Two major kinds of numerical methods exist to find
an approximate solution of the Vlasov equation. The
Particle In Cell method (PIC) [1] follows a large num-
ber of particles (≃ 109) initially distributed randomly
in phase space, whereas the semi-langrangian method
approximates the particle distribution function on a
uniform mesh of the phase space [10]. Although mathe-
maticians have already studied wavelet transforms and
adaptive numerical scheme, coupling wavelets and non-
linear partial differential equations approximation rep-
resents a great deal of interest. The wavelet decom-
position gives a sparse representation and a natural
criterion to perform local grid refinements. The paral-
lelization of such method [9, 5] is interesting in order to
deal with applications that manipulate large data with
possibly many dimensions. The present work focuses
on the parallelization of an adaptive semi-lagrangian
code which considers a single physical dimension. This
work corresponds to a first step in the design of a new

parallel Vlasov solver.
These current researches are performed in an in-

terdisciplinary approach within the INRIA CALVI
project: physics and mathematics with Nancy 1 Uni-
versity, mathematics and computer science with Stras-
bourg 1 University.

The section 2 focuses on the numerical scheme. Sec-
tion 3 describes sequential algorithms of the simulator,
their costs and the data structures we used. Section 4
depicts the parallelization. Section 5 deals with per-
formance analysis and is followed by the results and a
conclusion in section 6 and 7.

2 NUMERICAL SCHEME

In the present work, we consider a reduced model
for only one physical dimension (d = 1), correspond-
ing to x and v such as (x, v) ∈ R

2. Moreover, the self
consistent magnetic field is neglected because v is con-
sidered to be small in this particular case. The reduced
1D Vlasov-Poisson system then reads:

∂f

∂t
+ v .

∂f

∂x
+ E(x, t) .

∂f

∂v
= 0 , (2)

dE

dx
=

1

ε0

ρ(x, t) =
q

ε0

∫
f(x, v, t)dv , (3)

where ρ is the charge density, q the charge of a particle
and ε0 the vacuum permittivity.

Equations (2) and (3) are solved successively at each
time step. Equation (3) gives the self-consistent elec-
trostatic field E(x, t) generated by particles. It is eval-
uated with two integral computations of f . Our work
focuses on the resolution of equation (2) using an adap-
tive backward semi-lagrangian method.

The principle of the semi-lagrangian method is to
compute the value of the distribution function f on
a grid of the phase space using the property that f

is constant along particular phase space curves called
characteristics (Fig. 1).

Origin

v

x

f t
x1,v1

f t−dt
x0,v0

f t∗

x0,v1

f t
x1,v1

= f t∗

x0,v1
= f t−dt

x0,v0

E
(x

0
).
d
t

v1.dt

Figure 1. Charac-
teristic curve and
backward advection
in time

x x

v Backward v-advection v Interpolation at f t∗

x1,v

f t
x1,v1

E
(x

1
).
d
t

f t∗

x1,v

f t∗

x1,va

f t∗

x1,vb

f t∗

x1,vd

f t∗

x1,vc

Grid at t Grid at t∗

Figure 2. Semi-
lagrangian method

For each grid points at time t, characteristics are
followed backward in time. Then, value of f at a given

grid point is interpolated at the reached point (origin
of the characteristic) using values of f in the neigh-
bourhood at the previous time step t − dt.

In fact, a time splitting procedure [2] is used. One
simulation time step is then split into two steps: a dis-
placement in v-direction, followed by a displacement
in x-direction. First, the semi-lagrangian procedure is
used to compute an intermediate distribution function
f t

∗

: at constant x, each grid point is shifted with quan-
tity E(x, t).dt in the v-direction. After this backward
v-advection, the value at the reached point is evalu-
ated by using points in its neighbourhood and a 1D
interpolation (Fig. 1 and 2). Then, a similar backward
advection is done with quantity v.dt in the x-direction
followed by a 1D interpolation.

The major drawback of Vlasov methods using uni-
form meshes is that memory consumption and com-
putation cost increase drastically when the number of
dimensions d, and grid size increase. An adaptive al-
gorithm was developed to address this problem. Adap-
tivity is then performed by using a wavelet frame-
work [3, 4]. The main idea is to represent the dis-
tribution function at different levels of resolution j

(with j = 0, . . . , Lmax) using a wavelet decomposi-
tion. The function is then represented by a coarse mesh
(j = 0) and a set of details for each level of refinement
(j = 1, . . . , Lmax). In short, these details characterize
the information loss induced by the coarse represen-
tation of the distribution function at level j = 0. In
our interpolets framework, the detail is equal to the
difference between the real value of the distribution
function and an interpolated value. The latter is given
at a point at level j by the Lagrange polynomial built
from values at coarser level j − 1 (Fig. 3). Therefore,
we have a natural criterion of compression since the
detail is small where the function is regular. Compres-
sion of the wavelet decomposition is then performed by
removing grid points with detail smaller than a given
threshold ǫ.

Interpolated value

Interpolating polynomial

Points of level (j−1)/(j)

Values used for interpolation

detail

xi

f(xi)

Figure 3. Computation of a detail in a 1D
wavelet decomposition at level j

This adaptive framework needs two more steps in
the numerical scheme. At each time-splitting step t,
a set of points At is built from the wavelet decompo-

sition Ct−dt obtained after compression (we will refer
to this step as the prediction step). The distribution
function Ft is then computed on this sparse structure
At using the backward semi-lagrangian method. Then
the wavelet decomposition of the new distribution func-
tion Ft is computed and compressed providing the new
adaptive grid Ct. Note that the wavelet transform algo-
rithm requires a well formed tree of wavelet coefficients
on which the distribution value is known (Fig. 4) that
will be taken into account after the prediction step. In
our case, the 2D wavelet decomposition is the tensor
product of two 1D decompositions in x and v. More
details on this numerical scheme can be found in [6].

Points needed in the structure to compute the detail on point

j=2

j=1

j=0

Level

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 4. Tree structure of wavelet coeffi-
cients

3 SEQUENTIAL ANALYSIS

3.1 Algorithms and Complexities

A first sequential simulator, implementing this
adaptive numerical scheme was developed. Let assume
that the discretization is a Nx×Nv grid, where Nx and
Nv are taken equal to N for the sake of simplicity.

This algorithm allows to advect effectively only a
percentage p of the whole uniform discretization of the
phase space. For small values of p (p ≪ 1), we re-
duce the total computation cost by advecting only p N2

points instead of N2 [6]. Nevertheless, the management
of wavelet coefficients for each advection represents an
overhead.

Figure 5 shows the global algorithm of the simulator.
For one time step t, we will present key points of the
different steps and their associated complexities. We
will refer to: Av

t∗
(and Ax

t
) as the set of points where

we want to compute the wavelet coefficients for the
splitting in v (respectively for the splitting in x), Cv

t∗

(and Cx
t
) as the set of wavelet coefficients, F v

t∗
(and F x

t
)

as the set of points where the distribution function f

is known.

The prediction step (3A.1) considers each wavelet
coefficients of the set Cx

t−dt
generated at previous time

step to create a list of advected points Av
t∗ (translated

at constant x) where we want to compute the wavelet
coefficient at time t∗. Automatically, eight points are

1. Read input parameters;
2. Compute initial conditions: electrostatic field,

wavelet decomposition of the distribution function;
3. For all time steps t required;

3A. Splitting in v-direction;
3A.1 Prediction step in v-direction.;(Cx

t−dt
→ Av

t∗)
3A.2 Make a well formed tree;(Av

t∗ → Av
t∗)

3A.3 Inverse wavelet transform and (Cx

t−dt
)

backward advection in v-direction.;(Av
t∗ → F v

t∗)
3A.4 Adaptive wavelet transform;(F v

t∗
→ Cv

t∗
)

3B. Splitting in x-direction;
3B.1 Prediction step in x-direction.;(Cv

t∗ → Ax
t)

3B.2 Make a well formed tree;(Ax
t
→ Ax

t
)

3B.3 Inverse wavelet transform and (Cv
t∗)

backward advection in x-direction.;(Ax
t
→ F x

t
)

3B.4 Adaptive wavelet transform;(F x
t
→ Cx

t
)

3C. Compute the field with the wavelet coefficients;
End for

Figure 5. Global algorithm of the simulator

added around each translated point in order to capture
new physical phenomena that could appear locally.

The following step (3A.2) adds points to Av
t∗

in order
to have a usable data structure for the next adaptive
wavelet transform step (3A.4). Indeed, a well formed
tree of wavelet coefficients will be needed (see Fig. 4).
For each point at a given level j, several points are
added in its neighbourhood at level j and j − 1. The
position and the number of these higher level points
are determined by a specific filter which characterizes
the used wavelet.

The step (3A.3) reconstructs the whole distribution
function at previous time step t − dt using wavelet co-
efficients Cx

t−dt
. The principle of the algorithm is a

traversal of each level from the coarsest to the finest
in order to compute iteratively the values of the distri-
bution. The complexity of this algorithm in memory
accesses and in computation is several times N2.
This algorithm was transformed to get a block decom-
position in order to benefit from cache memory effects.
The blocks we consider, consist in a set of rows or
columns of the phase space (see section 4 for more de-
tails on block decomposition). This method induces
an overhead due to redundancy in the computation of
points located at the boundaries of the blocks. Nev-
ertheless, this method is interesting because the block
size could be chosen to fit in the cache memory. Then,
wavelet coefficients are read only a few times, so the
number of effective memory accesses decreases thanks

to the cache use. Thus, the complexity in memory
readings is reduced to Θ(#Cx

t−dt
), whereas in compu-

tation we keep the complexity Θ(N2).
For each computed block, the semi-lagrangian princi-
ple is applied: every points P in Av

t∗ are translated
backward in the v-direction to find the origin of the
characteristic O. As the distribution values at P and
O are identical, P is set to the value of O which is
interpolated using the whole distribution function at
t − dt. The computed values are then stored in F v

t∗ .
Complexity in writing is in Θ(#Av

t∗
).

The next step (3A.4) considers traversals from finest
level Lmax down to the level 0 for all points in F v

t∗
.

For each point of level j, the detail is evaluated by
convolving the wavelet filter with a small set of points
of level j − 1. Details greater than ǫ are stored in
Cv

t∗ . Complexity in computation and memory accesses
is Θ(#F v

t∗
), i.e. the number of details computed at

time t∗ for the splitting in v-direction.

The splitting in x-direction (step 3B) is almost iden-
tical to the previous splitting. The only difference con-
sists in translating points in the other dimension.

In the final step (3C), we integrate the distribution
function F x

t over v-dimension, to evaluate for each x

the charge density ρ (Equation 3). To reduce the com-
putation cost, wavelet coefficients are used to derive
this integration directly. This specific algorithm im-
plies level traversals of Cx

t
, starting from the finest

points to the coarsest ones. The electrical field is then
obtained by computing numerically the integral of ρ.
The complexity in memory accesses and computation
for this step is in Θ(#Cx

t + N).

3.2 Data Structures

In the past, the code used hash-tables [5, 9] to keep
the wavelet coefficients. There was one hash-table for
all points belonging to the same level of refinement.
This storing method had several advantages like its low
cost in memory consumption. Except for prediction
step, traversals of entire level are needed in all steps of
each splitting, which is easy to process by browsing a
single hash-table. Moreover, in prediction steps 3A.1
and 3B.1, random accesses in writing could be gener-
ated in creating advected points. These accesses are
cheap in hash-tables.

Nevertheless, considering our algorithms, we note
drawbacks for these data structures. In each algorithm
of the splitting, for one given point at level j we often
have to read or write points in its neighbourhood at
level j − 1 or j + 1 (because of the wavelet representa-
tion). As points of different levels are stored in differ-
ent hash-tables, a local region in the phase-space can

be spread out in memory when the number of points
becomes large. So we do not benefit from spatial lo-
cality that cache memory could offer. Finally, it would
be efficient to access quickly to values of coarse points,
that are the most read data of the program.

Hash-tables were replaced with a sparse data struc-
ture that has better properties in term of averaged ac-
cess time (in reading and writing) for the algorithms we
use. We choose to have a dense storage of the coarser
levels from level 0 to Lthreshold−1 in a two-dimensional
array, that we call coarse matrix. The finest levels from
Lthreshold to Lmax are contained in blocks, that we call
fine blocks. An additional table of pointer indirections
is used to access points in these fine blocks. This table
represents an overhead in term of memory consump-
tion. Moreover, coarse matrix and fine blocks will con-
tain frequently zero values ; so, the management of the
sparsity is not optimal. But the cost to read or write a
coarse element in the sparse structure consists in just
one memory access. And it costs two memory accesses
to read an element in fine blocks due to the indirec-
tion. The writing of such an element needs in average
more than two accesses, because the first time a fine
block is written, the indirection pointer must be set to
reference an allocated memory block.

This sparse structure with one level of indirection
enables both to take into account the sparsity and to
have a fast access to one element. For small or large
number of points, the traversal algorithm always bene-
fits from spatial locality. So, traversals of points of level
j are effective even if points of level j + 1 or j − 1, lo-
cated in the neighbourhood, are used. By representing
the coarse matrix, and the table of indirection point-
ers with 2D arrays, the parallelization will lead to map
parts of these arrays onto processors.

By removing hash-tables from the application, the
execution time of simulations has been reduced for all
our physical test cases. For large grids that implies
between 1 200 000 and 3 000 000 points, the execution
time is divided in average by a factor three on the ma-
chine described in subsection 5.1.

4 PARALLEL ALGORITHM

A profiling of the application (see Table 1 for one
processor) indicates that all steps of the simulator con-
sume significant processor time. Even if the backward
advection step with the inverse wavelet transform con-
centrates 58% of execution time, we have to consider
the parallelization of all steps to get an eventually
scalable program. Algorithms of this simulator could
potentially exploit medium-grain and fine-grain paral-
lelism. Inside each procedure, a domain decomposition

of the phase space and of sparse data structures could
provide independent computation. Nevertheless, to
work on a given subdomain, the wavelet based method
implies a large use of coarsest level points. These points
are as far from each other in phase space as their level
is coarse. So, most of our algorithms have memory ac-
cess patterns that cover almost the whole phase space.
Moreover, our procedures involve numerous and com-
plex data shape dependencies between data values, and
the grain of parallelism is then not coarse. For these
reasons, a good approach for parallelization is a pro-
gramming model that does not need explicit commu-
nication. We choose to develop the parallel solution
within the OpenMP programming paradigm [8]. So,
the target parallel machine is a shared memory archi-
tecture.

4.1 Partitioning

Parallel computations over a large number of
wavelet coefficients presents an interesting challenge.
A critical issue concerns the management for the de-
tails of the last two or three finest levels. For costly
test cases with a large number of details, they in-
duce over 90% of the memory acesses and computa-
tion costs. Our data structure is designed in order to
take into account the sparsity of these details: no fine
block is allocated in region where details are under the
fixed threshold ǫ. And a traversal of the whole phase
space skips regions where no fine block is allocated.
At run-time, we do consider that there is exactly one
thread per used processor, which does computations
on column-wise blocks of the phase space (sets of x-
columns). As most of our algorithms need a traver-
sal of the whole phase space, the same parallelization
strategy is often applied. To perform a traversal of the
phase space (x, v) ∈ R

2, the loop in variable x is paral-
lelized. Spatial locality is then maximized because el-
ements are accessed in sequential order for the loop in
variable v. Performing such a parallelization comes to
decompose the phase space domain into several blocks
whose largest dimension is N (Fig. 6). For the mo-
ment, the for-loop in x is distributed with a uniform
block-cyclic data distribution onto the processors. We
expect to refine that data and computation distribu-
tion in the near future to enhance the load imbalance.
Some procedures need a traversal of the phase space
one level of refinement after the other. In this case,
the parallelized x-loop is nested inside a j-loop, and
a synchronization between every processors is required
at each iteration of j.

By parallelizing the x-loop, the prediction step
(3A.1, 3B.1) distributes column-wise blocks of the

phase space to the threads. Threads translate and add
points in a sparse data structure Av

t∗ (or Ax
t). Even-

tually two threads could try to add a point at a same
location where fine block is not allocated in the indi-
rection table. The use of OpenMP lock primitives is
needed to prevent these threads to set the indirection
pointer simultaneously with two different fine blocks.
A level by level traversal is required for the construc-
tion of the well formed tree. Thus, the data locality on
the processor is improved because outputs generated
by the previous prediction step are used again.
For the backward advection steps (3A.3, 3B.3), the
explicit block algorithm already described were paral-
lelized. Data written locally on processors in the pre-
vious step may be used again here. For the splitting
in v-direction, step (3A.3) implies a parallelization in
variable x which preserves data locality for points in
Av

t∗ . But for the splitting in x-direction, step (3B.3)
has to be associated with a parallel for-loop in variable
v. Indeed, values needed by the interpolation have to
be on the same processor because of data dependencies
with other points on the same v-row. So, there is an
implicit transposition (done automatically thanks to
shared memory) of the distributed data Ax

t
. Finally,

results of the interpolation are written in the F v
t∗

(or
F x

t) data structure in parallel. These writings could be
done concurrently because each processor writes values
inside its own block.
Adaptive wavelet transform (3A.4, 3B.4) and field com-
putation (3C) require level by level traversals. These
traversals are performed as described above.

To summarize, for all steps except inverse wavelet
transform: the x-loop (often nested inside the j-loop)
is parallelized, and a j-loop implies a synchronization
at each iteration.

4.2 Data Placement

OpenMP lacks the capability for data placement
among processors and threads for achieving data lo-
cality [7]. In general, the absence of such a mechanism
leads to poor cache memory reuse and costly remote
memory accesses. In our environment (described in
subsection 5.1), the strategy of first-touch page place-
ment is used. So, the thread that first references a
virtual address causes that address to be mapped to a
page on the node where the thread runs.

To control data locality, the strategy consists in hav-
ing exactly the same parallel x-loop for all steps except
inverse wavelet transform. In such case, most data
readings and writings are performed locally. Indeed,
each thread is responsible for the computations on a
fixed set of x values. An example of such a distribu-

P
2

P
4

P
1

P
2

P
3

P
1

P
0

P
0V

X

B=8 blocks on 4 processors

N/B columns

N rows.

Figure 6. Block distribution for B blocks of
x-values

tion of the phase space is sketched in Figure 6 for B = 8
blocks and 4 processors for the parallelization of the x-
loop. Thus, the associated x-columns of sparse data
structures A, F and C are initially stored by the oper-
ating system on the node where the thread runs. Dur-
ing all parallel steps, only a small percentage of read-
ings concerns data mapped on an other node. These
accesses occur mainly for points of coarsest levels in the
sparse structures and they imply crossing the bound-
ary of the local memory domain.
As said previously, we chose a block-cyclic mapping of x

values onto the threads. As complexities of most algo-
rithms are linear in the number of points in the sparse
structure, there are some blocks which generate large
computation cost and blocks implying small number of
operations. That leads necessarily to load imbalance.
On the one hand, small blocks (large B value) man-
age a load balancing automatically, because computa-
tion of costly regions is dispatched on several threads.
But small blocks induce a communication overhead, be-
cause many cache memory readings are converted into
distant memory access on other nodes. On the other
hand, big blocks (small B value) improve the spatial
locality as our algorithms often use data in a relatively
large neighbourhood, but increase the load imbalance.
We have to find a balance to obtain an optimal block
size.

4.3 Optimization

In the inverse wavelet transform step (coupled with
backward advection), the considered blocks in the al-
gorithm are either x-wise or v-wise depending on the
splitting direction. It is coded in a SPMD style and
the management of computation on the boundaries of
the block, copy of input values in a block and copy of
the results have to be done explicitly. x-wise blocks are
kept throughout the splitting in v-direction in order to
maximize data locality. For the splitting in x-direction,
the v-wise blocks lead to numerous communications be-
tween nodes with an All-To-All pattern.

For simplicity of the analysis in the next section, we

will assume the number B of blocks is identical for the
two splittings and during the entire simulation. The
parameter B plays a major role in achievable perfor-
mance. With a very few blocks, the inverse wavelet
transform will be quicker, but the load imbalance will
be degraded and the parallelism will be limited to B

processors. Depending on the cache size of the machine
and the phase space size, an optimal value for B could
be found.

5 PERFORMANCE ANALYSIS

5.1 Numerical Experiments

The performance analysis presented in this section
has been carried out on two SGI machines of 512 and
256 processors at CINES1. The SGI Origin 3800 is
a scalable shared memory multiprocessor system. In
terms of parallel computer architecture, this machine is
a cc-NUMA architecture (cache coherent Non Uniform
Memory Access). With a frequency equal to 500 MHz,
the theoretical peak performance is 1 GFLOPS per pro-
cessor if the two independent floating-point units are
busy. The level 1 instruction and data caches have a
size of 32 KB, whereas the secondary unified instruc-
tion/data cache size is 8 MB. In all tests, the number
of processors was chosen equal to the number of pro-
cessors.

5.2 Scalability

For a representative test case, we present efficiency
and computation time in seconds at one particular time
step whithin a simulation of 1000 time steps. The Ta-
ble 1 shows the time usage of the time step t = 540
including performances of each part of the global al-
gorithm described previously. The adaptive algorithm
starts with a distribution function of 28 × 28 points at
level j=0, with Lmax =4 levels of refinement, and with
Lthreshold set to 1. We took a small number of levels of
refinement coupled with a large grid of points at level
j = 0. Thus, the number of synchronization in several
algorithms decreases. But, sparsity is then reduced in
the data structure.

Phase space is then a 212 × 212 mesh composed of
a 29 × 29 coarse mesh and a set of fine blocks (each
fine block contains 22Lmax−2Lthreshold =64 points). For
this machine, experiments showed that a number of
blocks B = 16, B = 32 and B = 64 are efficients and
similar in performance. That induces respectively a

1Centre Informatique National de l’Enseignement Supérieur
(France).

block of 9.8 MB, 5.7 MB, and 3.6 MB intensively used
in the inverse wavelet transform step (3B.3). These
block sizes mean a good usage of L2 cache of 8 MB. In
the following results, we give execution times for B=64
because it allows us to use up to P =64 processors.

The number of details greater than the ǫ thresh-
old is 1.2×106 for the splitting inx and 1.8×106 for
the splitting in v. This explains partly the differences
in execution times between the two splittings, because
complexites grow linearly with the number of non-zero
coefficients.

The splitting in v-direction scales very well up to 64
processors with only one block per thread. Efficiency is
greater than 70% for all associated steps. Load imbal-
ance is the only reason that explains the parallel over-
head. The relatively large computation times make the
few necessary synchronizations negligible, even for 64
processors. A good cache reuse of the set of x-rows on
a single processor explains efficiencies upper than 100%
in the wavelet transform step.

Concerning the splitting in x-direction, efficiencies
for the backward advection and the wavelet transform
are not very good. For this test case and this time
step, wavelet coefficients of finest levels are gathered
in about 50% of the v-columns (see the dispersion of
wavelet coefficients on Fig. 8). This implies idle pro-
cessors and then a large load imbalance. Furthermore,
this step consumes memory bandwidth to exchange de-
tails between nodes because of the parallelization of the
v-loop and the implicit transposition.

Efficiency and computation time for the complete
test case (1000 time steps) are given in Table 1. The
application has a good scalability. With 32 processors
(respectively 64 processors), we achieve a speed-up of
25 (respectively 42). On another architecture too (IBM
NH2 16-way nodes with Power3 processors), the ap-
plication provides a sustained speed-up of 14.6 on 16
processors for the entire simulation.

6 PHYSICAL RESULTS

In order to test our adaptive scheme, we have cho-
sen the standard two-stream instability case. In this
model, two streams of charged particles encounter each
other in the physical space with opposite velocities (see
[1] page 94 for more details). When evolving in time,
a perturbation occurs that grows exponentially. In the
phase space, this perturbation corresponds to a vortex
creation at the center of the distribution function.

During the simulation of this case, the adaptivity
is performed with interpolets that conserves the den-
sity and the interpolation in the backward advection
is computed within the wavelet space. These two key

 0

 1024

 2048

 3072

 4096

 0 1024 2048 3072 4096

Figure 7. Details contained in fine blocks at
t = 540

X

V

X

V

Figure 8. Distribution function at t = 0 and
t = 540

points ensure an accurate computation of the numerical
solution. Although no analytical solution is known for
this test case, the qualitative behaviour is well known
by physicists and applied mathematicians. Our simu-
lation reproduces a correct behaviour for our physicist
colleagues of INRIA-Calvi project

Moreover, Figure 8 shows a large number of points
in the adaptive grid. So, this case is relevant to test
the parallelization of the adaptative scheme.

7 CONCLUSION

We described the parallelization at a medium-grain
level of an adaptive numerical simulator that solves the
1D Vlasov-Poisson system. Because access patterns
to sparse data are complex and very large, a shared
memory architecture was targeted for this application.
Almost every steps of the original algorithm were par-
allelized and we obtained that each computing thread
worked on a block of local data most of the time. The
scalability is quite good but strongly linked with the
sparse representation of physical phenomena. In adapt-

ing the block size for each thread, we could find a better
data distribution to reduce the load imbalance. But
a difficulty comes from the lack of facilities for data
placement with OpenMP.

Future work will also consists in enlarging the spec-
trum of numerical physical experiments. Physical phe-
nomena evolve naturally in three dimensions, so the
full 3D Vlasov-Maxwell system has to be simulated for
most realistic physical cases. One of our first objective
is to extend the described algorithm in two dimensions
to obtain a 2D adaptive Vlasov solver. An other work
will consist in coupling this 2D solver with an electro-
magnetic field solver based on Maxwell equations in-
stead of Poisson equation.

References

[1] C. Birdsall and A. Langdon. Plasma Physics via Com-

puter Simulation. Mc Graw Hill, 1985.
[2] C. Cheng and G. Knorr. The integration of the vlasov

equation in configuration space. J. Comput Phys.,
22:330, 1976.

[3] A. Cohen, S. Kaber, S. Mueller, and M. Postel. Fully
adaptive multiresolution finite volume schemes for
conservation laws. Math. Comp., 72:183–225, 2003.

[4] M. Griebel and F. Koster. Adaptive wavelet solvers for
the unsteady incompressible Navier-Stokes equations.
In Advances in Mathematical Fluid Mechanics, pages
67–118. Springer, 2000.

[5] M. Griebel and G. Zumbusch. Parallel multigrid in an
adaptive PDE solver based on hashing. In ParCo ’97,
pages 589–599. Elsevier, 1998.

[6] M. Gutnic, M. Haefele, I. Paun, and E. Sonnendrücker.
Vlasov simulations on an adaptive phase-space grid.
Comput. Phys. Commun., 164:214–219, 2004.

[7] A. Marowka, Z. Lui, and B. Chapman. OpenMP-
Oriented Applications for Distributed Shared Memory
Architectures. Concurrency and Computation: Prac-

tice and Experience, 16(4):371–384, 2004.
[8] OpenMP Architecture Review Board, OpenMP Spec-

ifications, 2004. http://www.openmp.org.
[9] M. Parashar and J. C. Browne. Systems engineer-

ing for high performance computing software: The
HDDA/DAGH infrastructure for implementation of
parallel structured adaptive mesh refinement. In IMA

Vol. 117: Structured Adaptive Mesh Refinement Grid

Methods, pages 1–18. Springer, 2000.
[10] E. Sonnendrücker, J. Roche, P. Bertrand, and

A. Ghizzo. The semi-Lagrangian method for the nu-
merical resolution of the Vlasov equation. J. Comput.

Phys., 149(2):201–220, 1999.

Time Efficiency Time Efficiency Time Efficiency Time Efficiency

Nb. processors 1 16 32 64

3A splitting in v-direction

3A.1 Prediction 0.7659 100 0.0523 92 0.0313 76 0.0172 70

3A.2 Well formed tree 1.4023 100 0.0908 96 0.0474 93 0.0289 76

3A.3 Backward Advection 5.1605 100 0.3494 92 0.1858 87 0.0954 85

3A.4 Wavelet transform 0.6782 100 0.0393 108 0.0208 102 0.0110 96

3B splitting in x-direction

3B.1 Prediction 1.1447 100 0.0786 91 0.0452 79 0.0244 73

3B.2 Well formed tree 2.4335 100 0.1595 95 0.0876 87 0.0467 81

3B.3 Backward Advection 4.9924 100 0.3746 83 0.2182 71 0.1532 51

3B.4 Wavelet transform 0.8598 100 0.0602 89 0.0382 70 0.0250 54

3C Compute Field 0.2523 100 0.0163 97 0.0107 73 0.0056 70

Execution time (step t = 540) 17.6903 100 1.2217 91 0.6862 81 0.4083 68

Execution time (entire simulation) 15539 100 1094 89 618 79 368 66

Table 1. Efficiency and computation time in seconds for the ti me step at t = 540

