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Abstract. In this paper we consider the application of the noncommutative
Gröbner bases method for proving theorems in algebraic geometry. Geometrical
statements of constructive type should be given in the coordinate-free form.

1. Coordinate-free representation of points and statements

We consider theorems of elementary geometry (two-dimensional and three-dimensional).
Let A1, A2, A3, . . . , An be points in a finite-dimensional space. We treat these points
as vectors drawn from the origin 0. Then, geometrically, the outer product of two
vectors A and B is a bivector corresponding to the parallelogram obtained by sweep-
ing the vector A along the vector B. The parallelogram obtained by sweeping B
along A differs from the parallelogram obtained by sweeping A along B only in the
orientation.

Consider the Grassman algebra generated by points A1, A2, A3, . . . , An, i.e., the
free algebra with an external product A ∧ B, which is associative and anticommu-
tative: A ∧ B = −B ∧ A.

Consider a finite-dimensional space and task-space embedded in this space. For
example, in the case of a two-dimensional task we consider a plane in the enveloping
space.

2. Grassman algebra

It is known that the Grassman algebra is an associative free algebra with a finite
set of relations corresponding to the anticommutativity of multiplication on the
generators:

Gr = 〈A1, . . . , An‖Ai ∧ Aj = −Aj ∧ Ai∀i, j ∈ {1, . . . , n}〉 .

The conditions of anticommutativity Ai ∧ Aj = −Aj ∧ Ai∀i, j ∈ {1 . . . n} on the
generators allow us to permute the neighboring factors in any product Ai1∧· · ·∧Aik .
As a result, the product changes the sign.

So, any of these products in the Grassman algebra is equal up to the sign either
to zero or to a product of generators with strictly increasing indices. It follows that
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any element of the Grassman algebra can be represented as a linear combination of
such products

X =
∑

(i1,...,ik), i1<i2<···<ik

α(i1,...,ik)Ai1 ∧ · · · ∧ Aik

Then, the dimension of the Grassman algebra is equal to 2n, where n is the number
of the generators. Thus, all ideals of this algebra are finite dimensional and have
finite Gröbner bases.

3. Statements of the constructive type

In Chou’s collection of examples [2] of two-dimensional geometrical tasks, there
are a number of statements of the constructive type, which can be written in the
coordinate-free form.

The following assertions can be written as some relations in the Grassman algebra:

(1) three points A1, A2, A3 are collinear iff (A1 − A2) ∧ (A1 − A3) = 0;
(2) the lines A1A2 and A3A4 are parallel iff (A1 − A2) ∧ (A3 − A4) = 0;
(3) a point A3 divides an interval [A1; A2] in the ratio n : m iff m(A3 − A1) =

n(A2 − A3) = 0.

Moreover, some additional relations can be added to this list.

(1) two points A1 and A2 are equal iff A1 − A2 = 0;
(2) two bivectors A1 ∧ A2 and B1 ∧ B2 are collinear iff αA1 ∧ A2 = βB1 ∧ B2;
(3) a point P lies on a plane {A1, A2, A3} iff (A1−P )∧ (A2−P )∧ (A3−P ) = 0.

etc.

4. Noncommutative Gröbner bases

Let us consider an associative noncommutative free algebra with unit 1 over the
field F with generators a1, . . . , ak. Each element of this algebra can be represented
in the form

∑
(j1,...,jl)

k(j1,...,jl)aj1 . . . ajl
. Introducing an order on the generators

and an admissible order on the monomials, we can define the leading monomials

lm(u) = k
(j1,...,jlu )
u aj1 . . . ajlu

and lm(v) = k
(i1,...,ilv )
v ai1 . . . ailv

for any polynomials

u =
∑

(j1,...,jlu ) k
(j1,...,jlu )
u aj1 . . . ajlu

and v =
∑

(i1,...,ilv ) k
(i1,...,ilv )
v ai1 . . . ailv

.

Since we consider a free algebra over a field, we can normalize these polynomials
so that the leading coefficients become equal to unit. So, we assume that lm(u) =
aj1 . . . ajlu

and lm(v) = ai1 . . . ailv
.

Now, we can consider all compositions of two monomials lm(u) and lm(v).
Two monomials have a composition f(u, v), iff the end of the first monomial is

equal to the beginning of the second one, namely, in our case there exists an integer
m > 0 and a set of indices p1, . . . , pm such that lm(u) = aj1 . . . ajlu−m

ap1 . . . apm and
lm(v) = ap1 . . . apmaim+1 . . . ailv

.
Then, the composition is equal to

f(u, v) = aj1 . . . ajlu−m
ap1 . . . apmaim+1 . . . ailv

= lm(u)v1 = u1 lm(v),
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where v1 = aim+1 . . . ailv
and u1 = aj1 . . . ajlu−m

.
Since any monomial can be represented as a finite noncommutative product of the

generators, there exist at most a finite set of compositions for each pair of monomials.
Having obtained all compositions of leading monomials of two polynomials, one can
write a finite number of noncommutative S -polynomials, which can be constructed
as S(u, v) = u1v − uv1.

A monomial x = as1 . . . asn is divisible by a monomial y = at1 . . . atm iff the
monomial y is the substring of the monomial x so that x = yleftyyright.

A polynomial p1 with the unit leading coefficient is reducible with respect to a
polynomial p2 with the unit leading coefficient iff the leading monomial lm(p1) is
divided by the leading monomial lm(p2) so that lm(p1) = α lm(p2)β, where α and β
are some monomials. The result of reduction is the polynomial p′

1 = p1 − αp2β.
Noncommutative Gröbner bases of an ideal I are determined by analogy with the

commutative case, as a complete system of relations, which generate this ideal.
The Buchberger algorithm is the same, however, the definitions of division, re-

duction and S -polynomial are changed.

5. Example of a theorem

Example 1. (Gauss’ line).
Let A1, A2, B1, B2 be arbitrary points. Construct the complete quadrilateral

A1A2B1B2 and diagonals A1A2, B1B2, A1B2 and B1A2. Let A1A2 intersect B1B2

at A3, A1B2 intersect B1A2 at B3. Let M1 be the midpoint of A1B1, M2 be the
midpoint of A2B2 and M3 be the midpoint of A3B3. Then, the points M1, M2 and
M3 lie on one straight line.

Now, we can formulate the following statements of the constructive type for this
theorem:

(1) col(A1, A2, A3): (A1 − A2) ∧ (A1 − A3) = 0
(2) col(B1, B2, A3): (B1 − B2) ∧ (B1 − A3) = 0
(3) col(B1, A2, B3): (B1 − A2) ∧ (B1 − B3) = 0
(4) col(A1, B2, B3): (A1 − B2) ∧ (A1 − B3) = 0
(5) midp(A1, B1, M1): (M1 − A1) = (B1 − M1) = 0.
(6) midp(A2, B2, M2): (M2 − A2) = (B2 − M2) = 0.
(7) midp(A1, B1, M1): (M3 − A3) = (B3 − M3) = 0.

The conclusion is the following: col(M1, M2, M3): (M1 − M2) ∧ (M1 − M3) = 0

6. Description of Gröbner Bases method for the proof of the
theorems which are true universally (commutative and

anticommutative case)

Some geometrical theorems can be formulated in these terms. To prove these the-
orems, the theory of noncommutative Gröbner bases can be applied. The system of
polynomials corresponding to the hypotheses of the theorem and anticommutativity
relations for the generators of the Grassman algebra are considered as generators of
an ideal in a free associative algebra. The assertion of the theorem (written as a
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polynomial in this algebra) is valid if it belongs to this ideal. This is equivalent to
zero reducibility of this polynomial.

Implementation of the algorithm for obtaining noncommutative Gröbner bases in
the ring of noncommutative polynomials with integer coefficients are being devel-
oped.

In the commutative case, we have the same idea, but for the description of hy-
potheses and conclusions we use the equations for the coordinates of the points.

7. Calculation of Gröbner Bases on a systems with identities.
Equivalence of identities on a whole set and relations on bases

elements

In the general case, a polynomial identity is not equivalent to a system of equation
on generators. However, in our case, the anticommutativity of homogeneous linear
polynomials is equivalent to anticommutativity relations on the generators. There
is a finite number of such relations.

For example, the property A∧B = −B∧A for all homogeneous linear polynomials
A, B ∈ Gr is equivalent to the finite set of relations on the generators Ai ∧ Aj =
−Aj ∧ Ai∀i, j ∈ {1, . . . , n}.

The conditions of anticommutativity can also be written as A ∧ A = 0 for all
homogeneous linear polynomials A from the Grassman algebra. However, in this
case the finite system of relations on the generators Ai ∧ Ai = 0, i ∈ {1, . . . , n} is
not equivalent to the previous statement.

8. Description of the implemented algorithm

The algorithm for computing the anticommutative Gröbner bases with integer
coefficients has been implemented.

The main algorithm in the program is the following:

(1) Input the number of the variables and hypotheses.
(2) Input the name of the variables in the increasing order.
(3) Input the hypotheses and the conclusion.
(4) Convert all the statements into the internal format.
(5) Add the conditions of anticommutativity to the system.
(6) Calculate the noncommutative Gröbner basis of the system.
(7) Calculate the normal form of the conclusion of the theorem with respect to

the Gröbner basis.
(8) If the result is equal to zero, then the theorem is true universally, otherwise

the theorem is not true universally.

The kernel of the program processes the general case of noncommutative Gröbner
bases; however, the current interface is oriented to proving a specific class of geo-
metrical theorems which can be formulated in terms of statements (1)–(3) in the
Grassman algebra.

In CAS Maple V, functions which are able to make similar calculations are not
revealed.
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The program is written in Php 4.0 and uses possibilities of the web interface. Php
4.0 is a platform-free programming language. On the one hand, there is a possibility
to include HTML-code into the texts of the programs for simple testing; on the other
hand, this language enables us to use its resources as an object-oriented language.

9. An example of calculation of anticommutative Gröbner bases by
the program

As an example, consider the operation of the program on the theorem on the
Gauss line formulated above.

Determine the noncommutative Gröbner basis and the normal form of the con-
clusion of the theorem for the reverse lexicographical order on the monomials under
the condition A1 < A2 < A3 < B1 < B2 < B3 < M1 < M2 < M3.

The hypotheses of the theorem are

P [0] : 1 ∗ A2 ∧ A3 − 1 ∗ A1 ∧ A3 − 1 ∗ A2 ∧ A1 + 1 ∗ A1 ∧ A1

P [1] : 1 ∗ B2 ∧ B1 − 1 ∗ B1 ∧ B1 − 1 ∗ B2 ∧ A3 + 1 ∗ B1 ∧ A3

P [2] : 1 ∗ B2 ∧ B3 − 1 ∗ A1 ∧ B3 − 1 ∗ B2 ∧ A1 + 1 ∗ A1 ∧ A3

P [3] : 1 ∗ B1 ∧ B3 − 1 ∗ A2 ∧ B3 − 1 ∗ B1 ∧ B1 + 1 ∗ A2 ∧ B1

P [4] : 2 ∗ M1 − 1 ∗ B1 − 1 ∗ A1

P [5] : 2 ∗ M2 − 1 ∗ B2 − 1 ∗ A2

P [6] : 2 ∗ M3 − 1 ∗ B3 − 1 ∗ A3

The conclusion of the theorem is

1 ∗ M1 ∧ M1 − 1 ∗ M1 ∧ M3 − 1 ∗ M2 ∧ M1 + 1 ∗ M2 ∧ M3
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After adding the relations of anticommutativity on the generators of the Grassman
algebra to the hypotheses of the theorem, the system of polynomials becomes

P [0] : 1 ∗ A2 ∧ A3 − 1 ∗ A1 ∧ A3 − 1 ∗ A2 ∧ A1 + 1 ∗ A1 ∧ A1

P [1] : 1 ∗ B2 ∧ B1 − 1 ∗ B1 ∧ B1 − 1 ∗ B2 ∧ A3 + 1 ∗ B1 ∧ A3

P [2] : 1 ∗ B2 ∧ B3 − 1 ∗ A1 ∧ B3 − 1 ∗ B2 ∧ A1 + 1 ∗ A1 ∧ A3

P [3] : 1 ∗ B1 ∧ B3 − 1 ∗ A2 ∧ B3 − 1 ∗ B1 ∧ B1 + 1 ∗ A2 ∧ B1

P [4] : 2 ∗ M1 − 1 ∗ B1 − 1 ∗ A1

P [5] : 2 ∗ M2 − 1 ∗ B2 − 1 ∗ A2

P [6] : 2 ∗ M3 − 1 ∗ B3 − 1 ∗ A3

P [7] : 1 ∗ A1 ∧ A1

P [8] : 1 ∗ A1 ∧ A2 + 1 ∗ A2 ∧ A1

P [9] : 1 ∗ A1 ∧ A3 + 1 ∗ A3 ∧ A1

P [10] : 1 ∗ A1 ∧ B1 + 1 ∗ B1 ∧ A1

P [11] : 1 ∗ A1 ∧ B2 + 1 ∗ B2 ∧ A1

P [12] : 1 ∗ A1 ∧ B3 + 1 ∗ B3 ∧ A1

P [13] : 1 ∗ A1 ∧ M1 + 1 ∗ M1 ∧ A1

P [14] : 1 ∗ A1 ∧ M2 + 1 ∗ M2 ∧ A1

P [15] : 1 ∗ A1 ∧ M3 + 1 ∗ M3 ∧ A1

P [16] : 1 ∗ A2 ∧ A2

P [17] : 1 ∗ A2 ∧ A3 + 1 ∗ A3 ∧ A2

P [18] : 1 ∗ A2 ∧ B1 + 1 ∗ B1 ∧ A2

P [19] : 1 ∗ A2 ∧ B2 + 1 ∗ B2 ∧ A2

P [20] : 1 ∗ A2 ∧ B3 + 1 ∗ B3 ∧ A2

P [21] : 1 ∗ A2 ∧ M1 + 1 ∗ M1 ∧ A2

P [22] : 1 ∗ A2 ∧ M2 + 1 ∗ M2 ∧ A2

P [23] : 1 ∗ A2 ∧ M3 + 1 ∗ M3 ∧ A2

P [24] : 1 ∗ A3 ∧ A3
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P [25] : 1 ∗ A3 ∧ B1 + 1 ∗ B1 ∧ A3

P [26] : 1 ∗ A3 ∧ B2 + 1 ∗ B2 ∧ A3

P [27] : 1 ∗ A3 ∧ B3 + 1 ∗ B3 ∧ A3

P [28] : 1 ∗ A3 ∧ M1 + 1 ∗ M1 ∧ A3

P [29] : 1 ∗ A3 ∧ M2 + 1 ∗ M2 ∧ A3

P [30] : 1 ∗ A3 ∧ M3 + 1 ∗ M3 ∧ A3

P [31] : 1 ∗ B1 ∧ B1

P [32] : 1 ∗ B1 ∧ B2 + 1 ∗ B2 ∧ B1

P [33] : 1 ∗ B1 ∧ B3 + 1 ∗ B3 ∧ B1

P [34] : 1 ∗ B1 ∧ M1 + 1 ∗ M1 ∧ B1

P [35] : 1 ∗ B1 ∧ M2 + 1 ∗ M2 ∧ B1

P [36] : 1 ∗ B1 ∧ M3 + 1 ∗ M3 ∧ B1

P [37] : 1 ∗ B2 ∧ B2

P [38] : 1 ∗ B2 ∧ B3 + 1 ∗ B3 ∧ B2

P [39] : 1 ∗ B2 ∧ M1 + 1 ∗ M1 ∧ B2

P [40] : 1 ∗ B2 ∧ M2 + 1 ∗ M2 ∧ B2

P [41] : 1 ∗ B2 ∧ M3 + 1 ∗ M3 ∧ B2

P [42] : 1 ∗ B3 ∧ B3

P [43] : 1 ∗ B3 ∧ M1 + 1 ∗ M1 ∧ B3

P [44] : 1 ∗ B3 ∧ M2 + 1 ∗ M2 ∧ B3

P [45] : 1 ∗ B3 ∧ M3 + 1 ∗ M3 ∧ B3

P [46] : 1 ∗ M1 ∧ M1

P [47] : 1 ∗ M1 ∧ M2 + 1 ∗ M2 ∧ M1

P [48] : 1 ∗ M1 ∧ M3 + 1 ∗ M3 ∧ M1

P [49] : 1 ∗ M2 ∧ M2

P [50] : 1 ∗ M2 ∧ M3 + 1 ∗ M3 ∧ M2

P [51] : 1 ∗ M3 ∧ M3
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The noncommutative Gröbner basis of the ideal generated by relations P [0]−P [51]
is

P [0] : 1 ∗ A3 ∧ A2 − 1 ∗ A3 ∧ A1 + 1 ∗ A2 ∧ A1

P [1] : 1 ∗ B2 ∧ B1 − 1 ∗ B2 ∧ A3 + 1 ∗ B1 ∧ A3

P [2] : 1 ∗ B3 ∧ B2 − 1 ∗ B3 ∧ A1 + 1 ∗ B2 ∧ A1

P [3] : 1 ∗ B3 ∧ B1 − 1 ∗ B3 ∧ A2 − 1 ∗ B1 ∧ A2

P [4] : 2 ∗ M1 − 1 ∗ B1 − 1 ∗ A1

P [5] : 2 ∗ M2 − 1 ∗ B2 − 1 ∗ A2

P [6] : 2 ∗ M3 − 1 ∗ B3 − 1 ∗ A3

P [7] : 1 ∗ A1 ∧ A1

P [8] : 1 ∗ A1 ∧ A2 + 1 ∗ A2 ∧ A1

P [9] : 1 ∗ A1 ∧ A3 + 1 ∗ A3 ∧ A1

P [10] : 1 ∗ A1 ∧ B1 + 1 ∗ B1 ∧ A1

P [11] : 1 ∗ A1 ∧ B2 + 1 ∗ B2 ∧ A1

P [12] : 1 ∗ A1 ∧ B3 + 1 ∗ B3 ∧ A1

P [13] : 1 ∗ A2 ∧ A2

P [14] : 1 ∗ A2 ∧ A3 + 1 ∗ A3 ∧ A2

P [15] : 1 ∗ A2 ∧ B1 + 1 ∗ B1 ∧ A2

P [16] : 1 ∗ A2 ∧ B2 + 1 ∗ B2 ∧ A2

P [17] : 1 ∗ A2 ∧ B3 + 1 ∗ B3 ∧ A2

P [18] : 1 ∗ A3 ∧ A3

P [19] : 1 ∗ A3 ∧ B1 + 1 ∗ B1 ∧ A3

P [20] : 1 ∗ A3 ∧ B2 + 1 ∗ B2 ∧ A3

P [21] : 1 ∗ A3 ∧ B3 + 1 ∗ B3 ∧ A3

P [22] : 1 ∗ B1 ∧ B1

P [23] : 1 ∗ B1 ∧ B2 + 1 ∗ B2 ∧ B1

P [24] : 1 ∗ B1 ∧ B3 + 1 ∗ B3 ∧ B1

P [25] : 1 ∗ B2 ∧ B2

P [26] : 1 ∗ B2 ∧ B3 + 1 ∗ B3 ∧ B2

P [27] : 1 ∗ B3 ∧ B3

The normal form of the conclusion of the theorem with respect to the Gröbner
basis is equal to zero.

Thus, the theorem is true universally.
In the paper [1] Wang considers the same theorem as an example of the use of the

coordinate-free technique for automatic proving of theorems. Considering the same
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order on the variables and monomials as a hypotheses of the theorem, he takes the
same relations P [0]−P [6] of the first system, but from his paper it is not clear which
system of relations he considers as relations responsible for the anticommutativity
of multiplication.

10. Equations describing the dimension of the task space

It seems that we have to add equations describing the dimension of the task
(whether the points are on the same line in the one-dimensional case, or whether
the points are on the same plane in the two-dimensional case, etc) to our systems.
It is related to the fact that we consider the enveloping space of the task.

Consider the condition that all points of the task lie on the same plane.
If the number n of points is equal to 1, 2 or 3, then all these points are on the

same plane, and we need no additional relations.
If the number of points is equal to n ≥ 4, then the condition that the points

belong to the same plane is equivalent to the condition that any four points are on
the same plane.

The relation (A1 − A0) ∧ (A2 − A0) ∧ (A3 − A0) = 0 formally means that the
vectors (A3 −A0), (A2 −A0) and (A1 −A0) are linearly dependent. This condition
can be expressed by the formula 0 = (A1 −A0)∧ (A2 −A0)∧ (A3 −A0) = A1 ∧A2 ∧
A3 − A0 ∧ A2 ∧ A3 + A0 ∧ A1 ∧ A3 − A0 ∧ A1 ∧ A2. Here we take A0 as a marked
point. Actually, as the marked point, we can take any one of these four points.

So, if the number of points n ≥ 4, the condition all these points belong to one and
the same plane if and only if the system of C4

n relations (Ai1 − Ai0) ∧ (Ai2 − Ai0) ∧
(Ai3 − Ai0) = 0 hold, where i0, i1, i2, i3 ∈ {1, . . . , n} are any distinct four points.

For example, in the theorem about the Gauss line, we can add the condition
that all nine points are on the same plane to the first system. The numbers of
the additional relations such as (X1 − X0) ∧ (X2 − X0) ∧ (X3 − X0) = 0, where
X0, X1, X2, X3 ∈ {A1, A2, A3, B1, B2, B3, M1, M2, M3} is equal to C4

9 = 9!
4!5!

= 126.
All these relations can be reduced to zero with respect to the Gröbner basis. This
means that these polynomials lie in the ideal, generated by hypotheses of the theorem
and the anticommutativity relations. Thus, this condition follows from the hypothe-
ses of the theorem and the anticommutativity relations. Using our program, we can
verify this fact automatically.

If the polynomials, describing the dimension of the task are not reducible to zero,
but the conclusion of the theorem is reducible to zero, then our task is a particular
case of another task of a higher dimension.

In the general case, we should consider the condition that all points of the task
belong to an m -dimensional space embedded in the enveloping space of a higher

dimension. So, we have to consider C
(m+2)
n polynomials such as (Ai1 − Ai0) ∧ · · · ∧

(Aim+1 − Ai0) = 0, where Ai0 is one of generators of the Grassman algebra and
i0, i1, . . . , im+1 ∈ {1, . . . , n} is an arbitrary set of m + 2 distinct indices.
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11. Advantages of the coordinate-free method

a) If the dimension of the task is m, then max degree of all hypotheses and
conclusions will be less than or equal to m

b) if the conditions of the task are satisfied, then an equation, whose degree is
higher than m, cannot be presented in the Gröbner basis (but this is possible
in the coordinate case).
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