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Abstract. In this paper we consider the Gröbner bases of Grassman algebra and
their application to the algebraic geometry. Geometrical statements of construc-
tive type should be given in the coordinate-free form.

1. Introduction

We consider theorems of elementary geometry. It is well known that it is pos-
sible to prove algebraic geometry task using computer algebra methods, such as
Wu’s method and method of commutative Gröbner bases [?], [?], [?]. Some kind of
theorems can be proven using the method of anticommutative Gröbner bases.

Primarily, let us describe objects and tasks which will be regarded. We consider
geometrical theorems in m - dimensional space Rm, where m ∈ N0.
Let {A1, A2, A3, . . . , An} ∈ Rm be points of the task. We treat these points as
vectors drawn from origin 0. All our theorems deal with statements of constructive
type in the coordinate-free form. Data of a theorem contains a finite number of
points A1, . . . , An and finite number of k1, . . . , kl - dimensional subspaces of Rm,
k1, . . . , kl ≤ m and their properties. Let be m ≥ (n− 1), because in general case n
points define a (n−1) - space, and if we consider a space with m < (n−1), we have
some limitations for initial independent points.

Then, geometrically, the outer product of two vectors A and B is the bivector
corresponding to the parallelogram obtained by sweeping vector A along vector B.
The parallelogram obtained by sweeping B along A differs from the parallelogram
obtained by sweeping A along B only in orientation. Let us consider the algebra
generated by points A1, A2, A3, . . . , An with an outer product A ∧B, which is asso-
ciative and anticommutative: A ∧ B = −B ∧ A. This algebra is called Grassman
algebra. It can be proven easily, that the monomial is equal to zero, if it involves a
variable in the power of two or more. Dimension of this algebra is equal to 2n (the
number of all non-zero monomials).
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In Grassman algebra some geometrical statements may be formulated in these
terms as polynomials.

Let the theorem consists of a number of hypotheses of the constructive type
H1, . . . , Hs and a conclusion of the constructive type Conc. Then, these geometrical
statements correspond to polynomials h1, . . . , hs ∈ Gr and conc ∈ Gr.

In commutative Gröbner bases method we have to introduce a coordinate system
(e1, . . . , eq), then all statements of constructive type are projected to the coordinate
subspace Rq ⊆ Rm:

Π : Rm −→ Rq

Π : Hi −→ H̄i, i = 1, . . . , s

where H̄i is the statement in the space Rq. All points A1, . . . , An are also mapped
to the coordinate space:

Π : Ai −→ Āi(x
i
1, . . . , x

i
q), i = 1, . . . , n

and for each point Āj in the space Rq, j = 1, . . . , s in general case of coordinate

system we have to introduce q new variables xj
i , i = 1, . . . , q. So, we will have

s · q variables for the task. Moreover, if q < (n − 1) ≤ m we have an additional
limitation for points A1, . . . , An of the task, but we do not have this limitation in
the coordinate-free method.

We can also formulate statements of our task in terms of noncommutative free
algebra F = 〈X1, . . . , Xn〉. Let

〈X1X2 + X2X1, . . . , Xn−1Xn + XnXn−1〉 = IAnt C F

be a two-side ideal in free algebra F . We will call this ideal an ideal of relations
of anticommutativity. And let

FAnt = 〈X1, . . . , Xn| X1X2 + X2X1, . . . , Xn−1Xn + XnXn−1〉
be a free algebra with generators X1, . . . , Xn and relations of anticommutativity on
the generators. This algebra is isomorphic to the factor-algebra FAnt ' F/IAnt.

So, we can formulate our statements in terms of algebra FAnt. So, we get H1, . . . , Hs ∈
FAnt and Conc ∈ FAnt.

And some kind of theorems can be proven both in FAnt using noncommutative
Gröbner bases method and in terms of Gr using anticommutative Gröbner bases
method. But in this paper we are going to show, thatin general noncommutative
Gröbner bases in FAnt are not equivalent to anticommutative Gröbner bases in Gr.
And we have to use anticommutative Gröbner bases in Gr, but not noncommutative
Gröbner bases in FAnt to prove the theorems.

2. Statements of the constructive type in a coordinate-free form

In Chou’s collection of examples [?] of the two-dimensional geometrical tasks
there are some geometrical statements of constructive type, which can be written as
polynomials of their coordinates. And the first question is: which of these statements
can be rewritten in coordinate free form?
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It is easy to check that we get the following:

(1) the three points A1, A2, A3 are collinear iff (A1 − A2) ∧ (A1 − A3) = 0;
(2) the lines A1A2 and A3A4 are parallel iff (A1 − A2) ∧ (A3 − A4) = 0;
(3) the point A3 divides the interval [A1; A2] in the ratio n : m iff m(A3−A1) =

n(A2 − A3) = 0.

Then, the second question is: which statements of an m - dimensional space can
be written as polynomials in Grassman algebra? And the third is: what kind of
polynomials of Grassman algebra may be treated as statements of algebraic geom-
etry?

Only the homogeneous polynomials can have geometrical sense in Grassman alge-
bra. Then the third question transforms into question: what kind of homogeneous
polynomials can be treated as statements of algebraic geometry?

So, we can formulate the following statements:

(1) (k + 2) points A1, . . . , Ak+2, k + 2 ≤ n ≤ m + 1 belong to the same k -
dimensional subspace Rk of Rm: (A1 − Ak+2) ∧ · · · ∧ (Ak+1 − Ak+2) = 0 or
in other words point Aik+2

belongs to k - subspace defined by the points
Ai1 , . . . , Aik+1

:

(Ai1 − Aik+2
) ∧ · · · ∧ (Aik+1

− Aik+2
) = 0

where {i1, . . . , ik+2} = {1, . . . , k + 2} as non-ordered sets
(2) two k - dimensional spaces are parallel S1‖S2 ⊂ Rm, this means that ∀ (k+1)

points A1, . . . , Ak+1 ∈ S1 and any 2 points B1, B2 ∈ S2:

(A1 − Ak+1) ∧ · · · ∧ (Ak − Ak+1) ∧ (B1 −B2) = 0

(3) (k + 2) points A1, . . . , Ak+2, k + 2 ≤ n ≤ m + 1 belong to the same k -
dimensional subspace Rk of Rm and the proportion is known:
α1(A1 − Ak+2) + · · ·+ αk+1(Ak+1 − Ak+2) = 0, where α1, . . . , αk+1 ∈ R

(4) as the generalization of the previous expressions, that there is a linear de-
pendency among a finite number of k -vectors∑

(i1,...,ik)∈Rk

α(i1,...,ik)Ai1 ∧ · · · ∧ Aik = 0

For example, the statement ”two points are equal” (A − B = 0) , meaning that
two points belong to the same 0 - dimensional subspace is a particular case of this
kind of statements.

Thus, all homogeneous polynomials may be treated as some statements of alge-
braic geometry.

The outer product of vectors and its properties do not allow formulate conditions
concerning angles and circles, thus we are not able to do this in terms of Grassman
algebra or in terms of FAnt with operation ∧.
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3. Gröbner bases in Grassman algebra

Let Gr be Grassman algebra of the variables x1, . . . , xn over the field K = R. This
is the associative anticommutative algebra, which consists of Grassman polynomials∑

(i1,...,ik) αi1,...,ikxi1 ∧ · · · ∧xik . For all homogeneous polynomials f, g ∈ Gr of degree

deg(f) = deg(g) = 1 we have f ∧ g = −g ∧ f and f ∧ f = 0. The maximal degree
of monomials in Gr is equal to n and the dimension of this algebra equals 2n.

So, we have

Gr = 〈x1, x2, . . . , xn, x1 ∧ x2, . . . , xn−1 ∧ xn, . . . , x1 ∧ · · · ∧ xn〉.
Definition. Unsigned monomial in Gr is the combination u = xi1 ∧ · · · ∧ xik =

xu1
1 ∧ · · · ∧ xun

n with 1 ≤ i1 < · · · < ik ≤ n, where i1, . . . , ik are the indexes of a
variable with non-zero power in the product, and uj ∈ {0, 1}, j = 1, . . . , n

By analogy with the commutative case, where the monomials can be treated as
points in Zn, unsigned monomials of Gr can be treated as points
(u1, . . . , un) ∈ {0, 1}n with non-zero members on the places i1, . . . , ik for u = xi1 ∧
· · · ∧ xik = xu1

1 ∧ · · · ∧ xun
n .

Example. For Gr = 〈x1, x2, x3, x4〉 and u = x1 ∧ x4 we have i1 = 1, i2 = 4,
(u1, u2, u3, u4) = (1, 0, 0, 1) ∈ {0, 1}4.

Definition. Term is product of coefficient and unsigned monomial t = α·u ∈ Gr,
α ∈ K.

We can also regard signed monomials m as a product of unsigned monomial u
and sign of the monomial (−1)σm . Then m = (−1)σm · u will be a particular case of
term. And any term can be regarded as product of signed monomial and a positive
coefficient α > 0: t = α ·m, where m = (−1)σu, and u is the unsigned monomial.

Each polynomial p ∈ Gr can be represented as a finite sum of terms:

p =

dp∑
j=1

tj,p.

Definition. Product of two terms t1 and t2, where t1 = α · xa1
1 ∧ · · · ∧ xan

n

with multidegree (a1, . . . , an) ∈ {0, 1}n with non-zero components on the places
1 ≤ i1 < · · · < ik ≤ n and t2 = β·xb1

1 ∧· · ·∧xbn
n with multidegree (b1, . . . , bn) ∈ {0, 1}n

with non-zero components on the places 1 ≤ j1 < · · · < jl ≤ n, be the term t = t1∧t2

t =

{
0, if ((a1, . . . , an)

∧
(b1, . . . , bn)) 6= (0, . . . , 0)

(α · β) · (−1)σ · xc1
1 ∧ · · · ∧ xcn

n , if ((a1, . . . , an)
∧

(b1, . . . , bn)) = (0, . . . , 0)

where (c1, . . . , cn) ∈ {0, 1}n is a vector with non-zero elements on the places
1 ≤ h1 < · · · < hs ≤ n, s = k + l and as non-ordered set {h1, . . . , hs} is equivalent
the union of two non-ordered sets {i1, . . . , ik} ∪ {j1, . . . , jl}, so that (c1 ∧ · · · ∧ cn) =
(a1∧· · ·∧an)

∨
(b1,∧ · · ·∧ bn). And σ is the sign of alternating (i1, . . . , ik, j1, . . . , jl).

Example. If t1 = 5 ·x1 ∧x4 and t2 = 3 ·x2, we have (a1, a2, a3, a4) = (1, 0, 0, 1) ∈
{0, 1}n, (b1, b2, b3, b4) = (0, 1, 0, 0) ∈ {0, 1}n, i1 = 1, i2 = 4 and j1 = 2. So,
deg(t1) = k = 2 and deg(t2) = l = 1, (a1, a2, a3, a4)

∧
(b1, b2, b3, b4) = (0, 0, 0, 0), σ =

sign(1, 4, 2) = 1 and (c1, c2, c3, c4) = (1, 1, 0, 1). Thus t = t1 ∧ t2 = −15 ·x1 ∧x2 ∧x4.
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Definition. Signed monomial a = (−1)σa ·xa1
1 ∧ · · ·∧xan

n with non-zero members
on the places 1 ≤ i1 < · · · < ik ≤ n is divisible by signed monomial
b = (−1)σb · xb1

1 ∧ · · · ∧ xbn
n with non-zero members on the places 1 ≤ j1 < · · · <

jl ≤ n, iff for two vectors (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n there are inequality
(a1, . . . , an) ≥ (b1, . . . , bn). This means that ∀i ∈ {1, . . . , n} ai ≥ bi. And so
a = (−1)σuu ∧ b, where u is unsigned monomial with multi-degree (u1, . . . , un) =
(a1 − b1, . . . , an − bn) with non-zero members on the places 1 ≤ h1 < · · · < hs ≤ n.
and σu is the sign of alternating (h1, . . . , hs, j1, . . . , jl). Then, left divisor of the
monomial a by the monomial b is signed monomial m = (−1)σu · u.

Definition. Term ta = αa · ua is divisible by term tb = αb · ub, where ua, ub

are unsigned monomials, iff αb 6= 0 and signed monomial ma = 1 · ua is divisible
by signed monomial mb = 1 · ub. This means, that there is an unsigned monomial
u, so that ma = (−1)σlu ∧mb. Then term tl = α · u, α = (αa/αb) · (−1)σl so that
ta = tl∧tb. We say that tl is left divisor of ta. It can be seen, that the right divisor of
ta shall be tr = (−1)σrα · u, where σr is the sign of alternating (j1, . . . , jl, h1, . . . , hs)
and ta = tb ∧ tr.

By definition, it is easy to construct algorithm to find left divisor of term ta
divided by the term tb: tl = LeftDivisor(term ta, term tb) and right divisor of term
ta divided by the term tb: tr = RightDivisor( term ta, term tb).

As in ring of commutative polynomials k[x1, . . . , xn], we consider
ideals in Gr and Gröbner bases of the ideals.
Definition. Set I C Gr is an ideal in Gr iff:

(1) 0 ∈ I
(2) ∀f ∈ Gr ∀g ∈ I, then f ∧ g ∈ Gr and g ∧ f ∈ Gr
(3) ∀f, g ∈ I, then (f + g) ∈ I

Definition. Admissible monomial order ≺ on Gr is the order on terms with the
properties:

(1) ≺ is linear
(2) if t1 6= 0, t2 6= 0 and t1 ≺ t2 then ∀ t3, t4 so that t3 ∧ t1 ∧ t4 6= 0 and

t3 ∧ t2 ∧ t4 6= 0 then t3 ∧ t1 ∧ t4 ≺ t3 ∧ t2 ∧ t4
(3) if t 6= 0, then 0 ≺ t
(4) each non-empty subset of monomials has its minimal element

By analogy with the commutative case, after setting order on all terms in Gr,
for each polynomial Gr 3 p =

∑
(i1,...,in) α(i1,...,in)x

i1
1 ∧ · · · ∧ xin

n we can define the

leader term lterm(p) = α · u, where u is an unsigned monomial, and define leader
monomial lm(p) = u and leader coefficient lcoeff(p) = α.

By knowing the leader term in polynomial, we can introduce the result of division
of one polynomial by the second.

Definition. Let p1, p2 ∈ Gr and we say, that the polynomial p1 is right divided
by the polynomial p2 if there exist polynomials q, r ∈ Gr so that:

p1 = q ∧ p2 + r, and deg(r) ≺ deg(p2)



6 IRINA J. TCHOUPAEVA

and q will be called left divisor and polynomial r will be the reminder of division
polynomial p1 by the polynomial p2.

We can introduce the right division algorithm in Gr as a particular case of the
following algorithm of obtaining the representation p1 = a1 ∧ p2 + · · ·+ ak ∧ pk + r,
where as set {p2, . . . , pk} we take the only one polynomial p2.

Theorem. For polynomials p, p1, . . . pk ∈ Gr an algorithm of obtaining represen-
tation p = a1 ∧ p1 + · · ·+ ak ∧ pk + r can be introduced, where ai, r ∈ Gr and r = 0
or r is a linear combination of monomials, which are not divisible by any monomials
lm(p1), . . . , lm(pk).

Algorithm:

Input: p1, . . . , pk, p ∈ Gr
Output: a1, . . . , ak, r ∈ Gr
begin

a1 := 0; . . . ak := 0; r := 0
q := p;
while q 6= 0 do

i := 1;
IsDividing := false;
while i ≤ k and IsDividing = false do

if lterm(pi) divides lterm(q) then
t := LeftDivisor(lterm(q), lterm(pi));
ai := ai + t;
q := q − t ∧ pi;

else
i := i + 1;

endif
endwhile
if IsDividing = false then

r := r + lterm(q);
q := q − lterm(q);

endif
endwhile

end
Proof. Termination of the algorithm: we have finite number of polynomial

{p1, . . . , pk} for enumerating, each polynomial has the finite number of terms and at
each step in while-loop we have reduction of polynomial q by degree. And it is easy
to check, that on the each step the relation p = a1 ∧ p1 + · · ·+ ak ∧ pk + r holds.

Example. For example, using the lex order in which
A1 < A2 < A3 < B1 < B2 < B3 < M1 < M2 < M3

p = 1 ·M3 ∧M2 − 1 ·M3 ∧M1 + 1 ·M2 ∧M1

p1 = 2 ·M1 − 1 ·B1 − 1 · A1

p2 = 2 ·M2 − 1 ·B2 − 1 · A2
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The outcome of the above algorithm is

a1 = −1
2
M3 + 1

2
M2

a2 = 1
2
M3 − 1

4
B1 − 1

4
A1

r = 1
2
M3 ∧B2 − 1

2
M3 ∧B1 + 1

2
M3 ∧ A2 − 1

2
M3 ∧ A1+

+1
4
B2 ∧B1 − 1

4
B1 ∧ A2 + 1

4
B2 ∧ A1 + 1

4
A2 ∧ A1

So, we have a representation p = a1 ∧ p1 + a2 ∧ p2 + r.
Definition. Gröbner basis in Gr of the ideal I is a set of polynomials g1, . . . , gs ∈

I C Gr that

〈lterm(g1), . . . , lterm(gs)〉 = 〈lterm(I)〉
by analogy with the commutative case. Gr is finite dimensional algebra, so any

ideal I C Gr is the finite dimensional, therefore any ideal has a finite Gröbner basis
in Gr.

Theorem. If G = {g1, . . . gs} is Gröbner basis of I C Gr and f ∈ Gr is any
polynomial, then ∃!r ∈ Gr such that

(1) any monomial of r is not divisible by any monomial from lm(g1), . . . lm(gs)
(2) ∃g ∈ I so that f = g + r

Definition. For each f, g ∈ Gr we can define S-polynomial in Gr as a polynomial:

S(f, g) = LeftDivisor(m, lterm(f)) ∧ f − LeftDivisor(m, lterm(g)) ∧ g

where m is signed monomial so that m = tfl ∧ lterm(f) = tgl ∧ lterm(g) is the left
least common multiple of the monomials lterm(f) and lterm(g).

Proposition. Let a and b be terms in Gr, a = α · xa1
1 ∧ · · · ∧ xan

n and b =
β · xb1

1 ∧ · · · ∧ xbn
n and α, β 6= 0, (a1, . . . , an), (b1, . . . , bn) ∈ {0, 1}n. Then we can find

the least common multiple m as a term m = (−1)σγ · xm1
1 ∧ · · · ∧ xmn

n , where vector
(m1, . . . ,mn) = (a1, . . . , an)

∨
(b1, . . . , bn) and coefficient γ = lcm(α, β).

Proof. At first, a and b divide m, and second, there is no term m1 so that m1 is
divisible both by a and by b with the property m1 ≺ m.

Buchberger algorithm for finding Gröbner bases in Grassman algebra is very sim-
ilar to that of the commutative case. For the detailed information see [?],[?]. But
in our case we have another algorithm for finding the least common multiple of two
terms and of calculating divisor of the term in the NForm function.

It follows from the theorem, that for polynomial p and set of polynomials D =
{h1, . . . , hs} there exists a representation:

p =
s∑

k=1

ak ∧ hk + r

where r may be found by the algorithm. So, we will call r =NForm(p, D) the result
of reduction of the polynomial p by the set D.

Algorithm:

Input: h1, . . . , hs,∈ Gr
Output: a Gröbner basis for ideal G = {g1, . . . , gy} ⊂ 〈H〉, where H = {h1, . . . , hs}
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begin
G := H
do

G′ := G
for each pair p 6= q ∈ G′

S := NForm(S(p, q), G′)
if S 6= 0

G := G ∪ {S}
endif

while G = G′

end
Example. Ideal generated by h1, . . . h7:

h1 := 1 · A3 ∧ A2 − 1 · A3 ∧ A1 + 1 · A2 ∧ A1

h2 := 1 ·B2 ∧B1 − 1 ·B2 ∧ A3 + 1 ·B1 ∧ A3

h3 := 1 ·B3 ∧B2 − 1 ·B3 ∧ A1 + 1 ·B2 ∧ A1

h4 := 1 ·B3 ∧B1 − 1 ·B3 ∧ A2 − 1 ·B1 ∧ A2

h5 := 2 ·M1 − 1 ·B1 − 1 · A1

h6 := 2 ·M2 − 1 ·B2 − 1 · A2

h7 := 2 ·M3 − 1 ·B3 − 1 · A3

has the following the Gröbner basis with respect to lex monomial order and
A1 < A2 < A3 < B1 < B2 < B3 < M1 < M2 < M3 order on variables:

1 : 1 ∗M3− 1/2 ∗B3− 1/2 ∗ A3
2 : 1 ∗M2− 1/2 ∗B2− 1/2 ∗ A2
3 : 1 ∗M1− 1/2 ∗B1− 1/2 ∗ A1
4 : 1 ∗B2 ∧B3− 1 ∗ A1 ∧B3 + 1 ∗ A1 ∧B2
5 : 1 ∗B1 ∧B3 + 1 ∗ A1 ∧B3− 1 ∗ A3 ∧B1 + 1 ∗ A1 ∧ A3
6 : 1 ∗ A1 ∧ A3 ∧B3
7 : 1 ∗ A2 ∧B3 + 1 ∗ A1 ∧B3− 1 ∗ A3 ∧B1− 1 ∗ A2 ∧B1 + 1 ∗ A1 ∧ A3
8 : 1 ∗B1 ∧B2 + 1 ∗ A1 ∧B2− 1 ∗ A2 ∧B1 + 1 ∗ A1 ∧ A2
9 : 1 ∗ A3 ∧B2 + 1 ∗ A1 ∧B2− 1 ∗ A3 ∧B1− 1 ∗ A2 ∧B1 + 1 ∗ A1 ∧ A2

10 : 1 ∗ A1 ∧ A2 ∧B2
11 : 1 ∗ A1 ∧ A3 ∧B1
12 : 1 ∗ A1 ∧ A2 ∧B1
13 : 1 ∗ A2 ∧ A3− 1 ∗ A1 ∧ A3 + 1 ∗ A1 ∧ A2

and polynomial f = 1 ·M1 ∧M1 − 1 ·M1 ∧M3 − 1 ·M2 ∧M1 + 1 ·M2 ∧M3 belong
to this ideal, and it is easy to verify that r = 0 for this polynomial.

4. Noncommutative Gröbner bases in free algebra and relations of
anticommutativity

The concept of noncommutative Gröbner bases was studied in works [?],[?],[?],
[?].
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Let us consider an associative noncommutative free algebra with unit 1 over the
field k: F = k〈X1, . . . , Xn〉. Each element of this algebra can be represented as
finite sum in the form ∑

(j1,...,jl)

α(j1,...,jl)Xj1 . . . Xjl
.

Introducing an order on the generators Xi1 < · · · < Xin , where {i1, . . . , in} =
{1, . . . , n} as non-ordered sets, and the admissible order on the monomials, for any
polynomials

u =
∑

(j1,...,jlu )

α(j1,...,jlu )
u Xj1 . . . Xjlu

and

v =
∑

(i1,...,ilv )

α(i1,...,ilv )
v Xi1 . . . Xilv

.

we can define the leading monomials

lm(u) = α(j1,...,jlu )
u Xj1 . . . Xjlu

and

lm(v) = α(i1,...,ilv )
v Xi1 . . . Xilv

Since we have considered a free algebra over a field, we can normalize these poly-
nomials having the leading coefficients become equal to unit. So, we assume that
lm(u) = Xj1 . . . Xjlu

and lm(v) = Xi1 . . . Xilv
.

Definition. We consider all compositions of two monomials lm(u) and lm(v).Two
monomials have a composition f(u, v), iff the end of the first monomial is equal to
the beginning of the second one, namely, in our case there are an integer m > 0
and a set of indexes p1, . . . , pm such that lm(u) = Xj1 . . . Xjlu−m

Xp1 . . . Xpm and
lm(v) = Xp1 . . . XpmXim+1 . . . Xilv

. Then, the composition is equal to

f(u, v) = Xj1 . . . Xjlu−m
Xp1 . . . XpmXim+1 . . . Xilv

= lm(u)v1 = u1 lm(v),

where v1 = Xim+1 . . . Xilv
and u1 = Xj1 . . . Xjlu−m

.
Since any monomial can be represented as a finite noncommutative product of the

generators, there is at most a finite set of compositions for each pair of monomials.
Example. Let F = R〈X1, X2, X3, X4〉 be free algebra over R, M1 = X1X4X3X4

and M2 = X4X3X4X1 be monomials in F . We can construct the set of all compo-
sition of monomials M1 and M2: {fi(M1, M2)} and find sets {(vi

1, u
i
1)} of left and

right multiples:
M1 : X1 X4 X3 X4

M2 : X4 X3 X4 X1

Here we have the first composition f1(M1, M2) = X1X4X3X4X3X4X1, v1
1 = X3X4X1,

u1 = X1X4X3. For the second composition we can construct the relation:

M1 : X1 X4 X3 X4

M2 : X4 X3 X4 X1
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And we obtain f2(M1, M2) = X1X4X3X4X1, v2
1 = X1 and u2

1 = X1. As we can see,
the set of composition {f(M1, M2)} is not equal to the set {f(M2, M1)}. So, in this
case we have only one composition f1(M2, M1):

M1 : X1 X4 X3 X4

M2 : X4 X3 X4 X1

Here we have f1(M2, M1) = X4X3X4X1X4X3X4, v1
1 = X4X3X4 and u1

1 = X4X3X4.
Definition. Having obtained all compositions of leading monomials of two poly-

nomials, one can write a finite number of noncommutative S - polynomials, which
can be constructed as

S(u, v) = u1v − uv1.

Note, that this definition depends on the order of polynomials, hence {Si(u, v)} 6=
{Sj(v, u)}.

Definition. The monomial x = Xs1 . . . Xsn is divisible by the monomial y =
Xt1 . . . Xtm iff the monomial y is the substring of the monomial x so that

x = yleft y yright.

Example. In F = R〈X1, X2, X3, X4〉 monomial M1 = X1X3X4X3 is divisible by
the monomial M2 = X3X4, and yleft = X1 yright = X3.

Definition. Polynomial p1 with the unit leading coefficient is reducible by a
polynomial p2 with the unit leading coefficient iff the leading monomial lm(p1) is
divisible by the leading monomial lm(p2) so that lm(p1) = α lm(p2)β, where α and
β are some monomials.

Definition. The result of reduction shall be the polynomial

p′1 = p1 − αp2β.

Noncommutative Gröbner bases of an ideal I are determined by analogy with the
commutative case, as a complete system of relations, which generate this ideal. But
it this case Gröbner basis may be infinite.

The Buchberger algorithm is the same, however, the definitions of division, re-
duction and S - polynomial are different. And result of division of one monomial
by another is not unequivocally defined. Thus, as a result of yleft we choose the
shortest element of all possible elements in our algorithm, for definiteness. So, we
can rewrite the Buchberger algorithm in this case with correction:

Algorithm:

Input: H1, . . . , Hs,∈ F
Output: a Gröbner basis for ideal G = {g1, . . . , gy} ⊂ 〈H〉, where H = {h1, . . . , hs},

if there exists finite Gröbner basis for this ideal
begin

G := H
do

G′ := G
for each pair p 6= q ∈ G′
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S̄ := {Si(p, q)} ∪ {Sj(q, p)}
foreach S ∈ S̄

S ∈ S̄
S := NForm(S(p, q), G′)
if S 6= 0

G := G ∪ {S}
endif

endforeach
while G = G′

end
Theorem. Let IAnt = 〈XiXj + XjXi ∀i < j 〉 be two-side ideal in F of rela-

tions of anticommutativity. Let be F/IAnt the factor algebra and free algebra with
relations of anticommutativity

FAnt = 〈X1, . . . , Xn| X1X2 + X2X1, . . . , Xn−1Xn + XnXn−1〉
This algebra is isomorphic to the factor-algebra FAnt ' F/IAnt.

Proof. Taking natural mapping

γ : FAnt −→ F/IAnt

γ : p −→ {p + IAnt}
and verifying algebra operations on classes of equivalence in F/IAnt and correspond-
ing elements in FAnt we have the isomorphism.

For applying noncommutative Gröbner bases method we consider FAnt and oper-
ations on this algebra. But before processing of the theorem
T = {[H1, . . . , Hs]; Conc} we modify set of hypotheses into T′ = {[H1, . . . , Hs, XiXj+
XjXi ∀i < j]; Conc} and apply our algorithm to T′.

5. Noncommutative Gröbner bases for the anticommutative algebra

At the beginning, we tried to apply noncommutative Gröbner bases method to
prove this kind of geometrical theorem. But we discovered that some generally true
theorems, which can be represented as set of statements of constructive type, can
not be proven using this technique. However, they can be proven in the technique of
anticommutative Gröbner bases in Gr. In the [?] the authors regarded correspond-
ing properties in the free algebra F = 〈X1, . . . , Xn〉 and algebra of commutative
polynomials k[x1, . . . , xn]. By analogy, we regard the corresponding properties of F
and Gr = Gr(A1, . . . , An) with the anticommutative product ∧.

Let I C Gr be an ideal in Gr and γ be a natural mapping

γ : F 7→ Gr

taking Xi to Ai for all 1 ≤ i ≤ n. Then define J ⊂ F as the set J = γ−1(I). And
we obtain

F/J ' Gr/I.

We can define also a map

δ : Gr 7→ F, Ai1 ∧ · · · ∧ Aik 7→ Xi1 . . . Xik , if i1 ≤ · · · ≤ ik
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Taking as the initial representative of class γ−1(f) for f ∈ I ⊂ Gr the element
δ(f), it is easy to prove that J/IAnt ' I, by verifying all operations.

And if I C Gr is generated by the polynomials h1, . . . , hs, and relations of anti-
commutativity {XiXj + XjXi ∀i < j} ⊂ F and

J̄ = 〈δ(h1), . . . , δ(hs), XiXj + XjXi ∀i < j 〉 C F

then

F/J̄ ' (F/IAnt)/〈δ(h1) . . . δ(hs)〉 ' FAnt/〈δ(h1) . . . δ(hs)〉 ' Gr/I.

It can be verified also by checking operations on the corresponging elements.
And we can calculate a noncommutative Gröbner basis for J̄ . So, if we have

hypotheses H1, . . . , Hs ∈ F and conclusion Cons ∈ F and try to verify if Conc
belongs to the ideal J̄ , by calculate normal form of the conclusion NForm(Conc, J̄)
we have

NForm(Conc, 〈H1, . . . , Hs, XiXj + XjXi ∀i < j 〉) = 0 in F
⇓

NForm(γ(Conc), 〈γ(H1), . . . , γ(Hs)〉) = 0 in Gr

but

NForm(conc, 〈h1, . . . , hs〉) = 0 in Gr
6⇓

NForm(δ(conc), 〈δ(h1), . . . , δ(hs), XiXj + XjXi ∀i < j 〉) = 0 in F

Because, conception of division in F and in Gr are not the same and m1 divide m2

in Gr do not imply that M1 = δ(m1) divides M2 = δ(m2) in F . Thus, if there exists
a reduction

p1 →p2 p′1 6⇒ P1 = δ(p1) →δ(p2) P ′
1

where lm(p1) = m1, lm(p2) = m2, lm(δ(p1)) = M1 and lm(δ(p2)) = M2.
Example. Let be m2 = xz, and m1 = xyz. In Grassman algebra m2 divides m1

and m1 = (−1) · y m2. But in F we obtain M2 = XZ, M1 = XY Z and M2 is not
substring of M1, that means that M2 does not divide M1 in F . In class of equivalence
of M1 in F/〈XiXj + XjXi, ∀i < j 〉 there exists an element Y ZX which has the
substring M2, however we can not apply techniques of noncommutative Gröbner
bases to our case.

6. Gröbner bases method applied to the coordinate-free geometry

To prove this kind of theorems, which are formulated in the coordinate-free form,
the theory of anticommutative Gröbner bases may be applied. The system of poly-
nomials corresponding to the hypotheses of the theorem are considered as generators
of an ideal in Grassman algebra.

Let the theorem consist of a number of hypotheses of the constructive type
H1, . . . , Hs and a conclusion of the constructive type Conc. Then, these geomet-
rical statements correspond to polynomials h1, . . . , hs ∈ Gr and conc ∈ Gr.
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Grassman algebra is generated by points of our theorem A1, . . . , An,
Gr = Gr(A1, . . . , An). Geometrical statements (hypotheses of the theorem) are
formulated as polynomials in Gr:

h1(A1, . . . , An) = 0
...

hs(A1, . . . , An) = 0

Let be G = {g1, . . . , gq} ⊂ I C Gr the finite Gröbner basis of the ideal I. We can
find it using the previous algorithm.

Definition. Let {h1, . . . , hs} ⊂ Gr be a set of polynomials corresponding to
the hypotheses of the theorem and conc ∈ Gr be a polynomial corresponding to
the conclusion of the theorem. We say, that theorem is generally true , if for each
partial solution (A0

1, . . . , A
0
n) of the system h1 = 0, . . . , hs = 0, we have

conc(A0
1, . . . , A

0
n) = 0.

Definition. Let I C Gr be an ideal in Grassamn algebra. The radical of the
ideal be

√
I = {f ∈ Gr | ∃ m ∈ N fm 6≡ 0, fm ∈ I}.

Definition. Let Hom(Gr) be a set of all homogeneous polynomials of Gr, and
Homk(Gr) be a set of all homogeneous polynomials of Gr of degree k.

Proposition. If k is the field of coefficients of Gr(A1, . . . , An), then Gr =
R

⊕
Hom1(Gr)

⊕
· · ·

⊕
Homn(Gr).

It is easy to check.
Proposition. For each f ∈ Homk(Gr), 1 ≤ k ≤ n we have fn+1 ≡ 0.
Note, that for formulating theorems we use only homogeneous polynomials of

Grassman algebra with degree deg(f) ≥ 1.

Proposition. Let I C Gr, then
√

I = {f ∈ Gr | ∃ 1 ≤ m ≤ n fm 6≡ 0, fm ∈ I}.
From this proposition we have to check only finite number of property f ∈

I, . . . fn ∈ I for checking the property if f ∈
√

I.
The property f ∈ I is equivalent to zero reducibility of this polynomial f by G:

NForm(f, G) = 0 in Gr.

The following algorithm let us to check if f ∈
√

I in Gr:
Algorithm:

Input: I C Gr, f
Output: the answer if f ∈

√
I

begin
Calculate Gröbner basis of I: G
InRadical = 0;
for k = 1 to n do

fk = fk;
if (fk 6≡ 0) then

NF=Nform (f , G);
if (NF = 0) then
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InRadical = InRadical + 1;
endif

else
break;

endif
endfor
if (InRadical > 0) then

return f ∈
√

I
else

return f 6∈
√

I
endif

end
Thus, the idea is to take the theorem of constructive type, reformulate it as a

set of polynomials in Gr, calculate Gröbner basis of the ideal generated by these
polynomials and verify whether f ∈

√
I in Gr or not. If the result is f ∈

√
I, then

the theorem is generally true, otherwise we do not know if the theorem is generally
true. Most of generally true theorems can be verified by using this method. The
hypothesis is that if f 6∈

√
I, then the theorem is not generally true. This means

that (the theorem is generally true) ⇐⇒ ( conc ∈
√
〈h1, . . . , hs〉 ) in Gr, but this

fact needs to be proved.
In the commutative case, for the description of hypotheses and conclusions we use

the equations for the coordinates of the points, and algorithm for checking f ∈
√

I is
much complicated. But in commutative case we have the equivalence (the theorem

is generally true) ⇐⇒ ( conc ∈
√
〈h1, . . . , hs〉 ) in k[x1, . . . , xn].

7. Description of the implemented algorithm

As we can see, we can use noncommutative and anticommutative Gröbner bases
method for the geometrical theorems in coordinate-free for, but in CAS Maple V,
functions which are able to make similar calculations have yet to be revealed. Thus,
the algorithm for computing the noncommutative and anticommutative Gröbner
bases and normal form of the polynomial with rational coefficients have been im-
plemented. First, the project NCBG (NonCommutative Gröbner Bases) consists
of functions which were able to calculate noncommutative Gröbner basis in free al-
gebra with relations of anticommutativity with integer coefficients. Then, on the
basis of it K.J.Andreev implemented other project ncbg for calculating noncommu-
tative and anticommutative Gröbner bases with rational coefficients. This software
includes the interface module, which let us input data of the theorem at the internal
metalanguage as a statements of constructive type. And some theorems were proven
and analyzed by using this software.

The main algorithm in the program is the following:
Algorithm:

Input: points A1, . . . , An, order, hypothesis H1, . . . , Hs, conclusion Conc
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Output: The answer if the theorem is true in general.
begin

reformulate statements into polynomials
H1, . . . , Hs, Conc → H1, . . . , Hs, Conc
check if Conc ∈ by

√
〈H1, . . . , Hs〉

if (Conc ∈
√
〈H1, . . . , Hs〉 )

return ”The theorem is generally true”;
else

return ”We have not the answer”;
endif

end
Some theorems can be proved both in noncommutative case with relations of

anticommutativity and anticommutative case, but the other theorems can be proved
only by using anticommutative Gröbner bases theory.

The project ncbg was implemented in C++ and used the main Buchberger al-
gorithm. We are planning to improve strategy of computing Gröbner basis in the
future.

8. The dimension of the task

So, we have a comprehensive space Rm, and the task with its n points A1, . . . , An ∈
Rm and its.

Let Spk the set of statements defined that all points of the task belong to the same
k - dimensional space (for each set of points {Ai1 , . . . , Aik+2

} ⊂ {A1, . . . , An} can be
constructed a polynomial by using previous rules). We obtain Ck+2

n polynomials.
For the fixed 1 ≤ k ≤ m there are two kinds of the theorems, which we consider:

(1) hypotheses of the theorem H̄ = {H1, . . . , Hs} imply the statement, that all
points of this theorem lie in the same k - dimensional subspace Rk of Rm

(2) all other theorem

For the first class of theorem, we obtain the following:

{H1, . . . , Hs} ⇒ {Spk}
{H1, . . . , Hs} ⇒ Conc

It would be noticed, that if we have n point A1, . . . , An in the task, then for any
compatible set of hypotheses we have

{H1, . . . , Hs} ⇒ {Spn−1}

because any of n points belong to the same (n−1) - dimensional space. And it easy
to verify, by using Gröbner bases method. And we have that for ∀ T ∃ 1 ≤ k(T) ≤ m
so that {H1, . . . , Hs} ⇒ {Spk(T)}.

From the other hand, for any 1 ≤ k ≤ m we have

{Spk} ⇒ {Spk+1}

and it can be verified by using Gröbner bases method too.
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And we have the following:

({H1, . . . , Hs} ⇒ Conc) ⇒ ({H1, . . . , Hs, Spk} ⇒ Conc)

It means that theorem is generally true in Rm, then the projection of this theorem
to the subspace Rk ⊂ Rm is also generally true in Rk, ∀1 ≤ k ≤ m.

So, we obtain, if {H1, . . . , Hs} ⇒ {Spk} and the theorem is generally true, then
this theorem is generally true in any subspaces Spk for 0 ≤ k ≤ n− 1.

Definition. Dimension of the theorem is a minimal number k: 1 ≤ k ≤ m so
that {H1, . . . , Hs} ⇒ {Spk};

For finding the dimension k(T) of the theorems we can use the following algorithm:
Algorithm:

Input: T = {H1, . . . , Hs; Conc}
Output: k(T)
begin

for i = 0 to n− 1 do
Prove ({H1, . . . , Hs} ⇒ {Spi})
if (TRUE) then

return i
endif

endfor
end
We can see, that dimension of the theorem is the property of the hypotheses. And

in the other words, dimension of the theorem in the minimum number 1 ≤ k(T) ≤
(n− 1):

{H1, . . . , Hs} ⇒ {Spk(T)}
This number k(T) exists for each theorem, because for any set of hypotheses H′

1, . . . , H′
s′

the theorem T′ = {H′
1, . . . , H′

s′ ; Spn−1} will be generally true. Note, that if

{H, . . . , Hs, Spk} ⇒ {Conc},

then

{H, . . . , Hs, Spk−1} ⇒ {Conc}.
We can consider the common property of hypotheses and conclusion of the theo-

rem as the maximum number 1 ≤ d(T) ≤ m so that

{H1, . . . , Hs, Spd(T)} ⇒ {Conc}.

Using information about dimension of the theorem, we can make some remarks
about finding additional conditions for the data, if the theorem is not generally true
in Rm. For example, if we find 1 ≤ k(T) ≤ m:

{H, . . . , Hs} ⇒ {Spk(T)}

but

{H, . . . , Hs} 6⇒ {Conc}
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we can try to find the maximum dimension d(T) of the space in which this theorem
is generally true :

{H, . . . , Hs, Spd(T)} ⇒ {Conc}.

Additional conditions Spd(T) will be restrictions for the A1, . . . , An, if 1 ≤ d(T) <
k(T). This number d(T) exists for each theorem, because for any set of hypotheses
H′

1, . . . , H′
s′ and any conclusion Conc′ the theorem T′ = {H′

1, . . . , H′
s′ , Sp0; Conc′}

will be generally true.
So, the algorithm for finding d(T) is the following:
Algorithm:

Input: T = {H1, . . . , Hs; Conc}, k(T)
Output: d(T)
begin

For i = k(T) to 1 do
Prove ({H1, . . . , Hs, Spi} ⇒ {Conc})
if (TRUE) then

return i
endif

endfor
end
Example. For example, the Gauss line theorem [?] the hypotheses imply that

all points belong to the same plane (it is easy to check). So, in this theorem we have
{H1, . . . , H7} hypotheses, and ({H1, . . . , H7} ⇒ {Sp2}). Thus k(T) = 2.

But in the Pappus theorem [?] hypotheses of 9 points do not imply this property
Sp2. Moreover, this theorem is not generally true in the spaces Rf with 9 ≥ f ≥ 3
and d(T) = 2.

If we use the coordinate method, we add the properties of the q - dimension space,
when we introduce the coordinate system (e1, . . . , eq). This is equivalent to adding
properties Spq to the hypotheses. Therefore, in coordinate-free method we have to
reformulate all hypotheses, if q < m, when we try to find the dimension of the task
and the additional conditions.

9. Advantages of the coordinate-free method

• we analyze the dimensional of the theorem k(T) and the maximum size of
the space in which the theorem is generally true d(T). We can do it also in
the coordinate case. But it is required from us much more efforts. Either
we have to take size of coordinate system q > (n − 1) or on each step of
algorithm reformulate all conditions into new coordinate system with q′ > q.
But, in coordinate-free case we can do it without such efforts

• in coordinate case we have to make the preliminary analysis by choosing the
good coordinate system to minimize number of equations. And this analyse
we have to do for each theorem before checking it automatically. But in
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coordinate-free case we have no coordinate system and do not need to make
this analyses

• in general coordinate case without preliminary analysis by choosing the good
coordinate system we have q ·n variables, but in coordinate-free case we have
only n variables, where n is the number of points in the theorem and q is the
number of coordinate orts

• it is easier to interpret Grassman polynomials as geometry expressions
• all polynomials in the Buchberger algorithm can not have degree higher

than n (where n is number of points in the task), but it is a problem in
commutative case
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To appear in Proc. Am. Math. Soc.
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[12] D. Wang, Gröbner Bases Applied to Geometric Theorem Proving and Discovering, Gröbner
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