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Parallelism is one of the key performance sources in modern computer systems. When heuristics-based
automatic parallelization fails to improve performance, a cumbersome and error-prone manual transformation
is often required. As a solution, we propose an interactive visual approach building on the polyhedral model
that visualizes exact dependences and parallelism; decomposes and replays a complex automatically-computed
transformation step by step; and allows for directly manipulating the visual representation as a means of
transforming the program with immediate feedback. User studies suggest that our visualization is understood
by experts and non-experts alike, and that it may favor an exploratory approach.
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1 INTRODUCTION

Large-scale adoption of heterogeneous parallel architectures requires efficient solutions to ex-
ploit the available parallelism from applications. Despite significant effort in simplifying parallel
programming through new languages, high-level language extensions, frameworks and libraries,
manual parallelization may still be required although often ruled out as time consuming and error-
prone. Thus, programmers mostly rely on automatic optimization tools, such as those based on
the polyhedral model, to improve program performance. The polyhedral model [21] has been the
cornerstone of loop-level program transformation in the last two decades [3, 8, 20]. It features exact
iteration-wise dependence analysis and optimization for both parallelism and locality. However,
automatic polyhedral compilation is based on imprecise heuristics [8, 11]. Polyhedral compilers
give user some (limited) control over the optimization process, which requires understanding their
internal operation anyway. Furthermore, they are applicable globally and do not allow for finer-
grain control, e.g., affecting only one loop nest. Visual interfaces for configuring the polyhedral
compiler [39] partially mitigate these issues by making polyhedral compiler blocks discoverable,
but still require a deep understanding of internal operation of a compiler.

Semi-automatic approaches provide the user with a set of predefined program transformations,
typically exposed as compiler directives [22, 31, 56]. They shift the expertise requirements from
heuristics to loop-level code transformations. They also require program transformation to be
performed from scratch (as polyhedrally-transformed code is barely readable) while offering little

Conference Extension: Visualization was presented at VL/HCC 2014 [58]; preliminary evaluation at IMPACT workshop in
2015 [57]. In this paper, we introduce (1) the mapping between graphical manipulations and program transformations; (2)
the animated replay of transformation sequences; (3) a study of visualization relevance compared to code.
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support in identifying illegal or profitable transformations. Recently, we proposed the Chlore
algorithm that identifies a sequence of transformation directives equivalent to an automatically
computed transformation, decoupled from a polyhedral compiler [2]. However, sequences of
directives are often long, and effects of individual transformations are unclear.

In this paper, we go further than transformation primitives by presenting an interactive visual
program transformation toolsuite, Clint. It is a result of interdisciplinary work between optimiza-
tion and human-computer interaction (HCI). We demonstrate how the geometrical nature of the
polyhedral model can be leveraged to design efficient visualization and interactions.

Beyond static visualization, Clint features a step-by-step animated replay of Chlore-identified
transformations with immediate feedback on their effects. It also allows the user to directly
manipulate [46] the visual representation to modify these sequences or to transform programs
manually while ensuring transformation legality and final code generation. Following a user-centric
approach, we conducted user studies to asses the visualization and interactions.

While visualization-based interactive program restructuring is applicable to different program
representations, Clint relies on the polyhedral model in order to operate on individual loop iterations.
We extensively detail the design methodology and evaluation process so as to allow its application
to different program manipulation tasks as well as replication of our studies.

2 PROGRAM TRANSFORMATION IN THE POLYHEDRAL MODEL

The polyhedral model is an algebraic representation of “sufficiently regular” imperative programs
that encodes dynamic executions of statements inside loop nests [21]. It is used within several
production compilers such as GCC [41], LLVM [25] and IBM XL [10], as well as in research
compilers [37]. Programs parts that can be represented are loop-based kernels with static control
and affine memory accesses, referred to as SCoPs. They feature loop bounds, conditions and
array subscripts that are affine forms of outer loop counters and runtime constants referred to
as parameters. SCoPs cover a large range of compute-intensive mathematical programs where
loop-level optimization is critical [52]. Moreover, the model can be extended beyond SCoPs [7].

The key aspect of the polyhedral model is to encode individual executions of each statement, called
statement instances. Geometrically, affine loop bounds define a polyhedron in a multidimensional
space, hence the name of the model.

2.1 Workflow in the Polyhedral Model

Contrary to conventional optimizers, polyhedral tools do not operate on syntactic forms. Instead,
they transform or raise the code into a union of relations, then analyze and alter these relations,
and finally generate the restructured code. The following provides more detail on these steps.

2.1.1 Raising. Transforming a program into a polyhedral representation is a matter of defining
iteration domains of a statement and its access relations. Statement instances are identified by a
vector of values of surrounding loop counters. An iteration domain of a statement is a set of all
such vectors. For the sake of notation generality, sets are considered as degenerate relations with
zero-dimensional input space. For example, the polynomial multiply kernel shown in Fig. 1a has
one statement S whose domain is written in set-constructor notation as

Ds(N)={(i, )T |0<i<NAO<j<N}

Access relations map statement instances to accessed array elements. Scalars are treated as
zero-dimensional arrays. Union of such relations allows for encoding access to different arrays. For
statement S in the same example, this access union is

As(N) ={(i,))T - (arr,a)T |(arr=zra; =i+j)U(arr =xAa; =i)U(arr =y Aag = j)}.
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#pragma omp parallel for private(t2)

for (i = 0; i < N; i++) for (t1 = 0; t1 <= 2xN-2; tl1++)
for (j = 0; j < N; j++) for (t2 = max(@, t1-N+1); t2 <= min(t1, N-1); t2++)
S: z[i+j] += x[1i] * y[j]1; S: z[t1] += x[t2] * y[t1-t2];
(a) Original (b) Transformed and Parallelized

Fig. 1. Polynomial Multiply computation kernel.

where arr corresponds to the name of accessed array and a; corresponds to its only dimension.

2.1.2  Program Transformation and Schedules. Changing the relative execution order of statement
instances transforms the program. We can define a scheduling relation to map iteration domain
points to logical execution dates. If these dates are multidimensional, statement instances are exe-
cuted following the lexicographical order of their dates. Scheduling relations are expressive enough
to encode a complex composition of program transformations including, e.g., loop interchange,
fusion, fission, skewing, tiling, index-set-splitting, etc. [22].

For example, loop tiling [30] for the polynomial multiply can be expressed by the schedule

Os(N) = {(i, )T — (t1, ta, ts3, ta)T | (3281 < t3 < 3241 +31) A (328, < t4 < 320, +31) Atz = i Aty = j},

where 32 is the tile size. Note that t3 and t4 are defined explicitly by equalities while t; and ¢, are
defined implicitly by bounding inequalities, which correspond to integer division.

Schedule relations can be constructed manually or using high-level frameworks [2, 22, 31].
Automatic optimizers directly construct a scheduling relation with certain properties, including
minimal reuse distances, tilability and inner/outer parallelism [8, 9]. However, they may fail to
improve performance when achieving different properties requires contradictory transformations,
for example exploiting spatial locality may be detrimental for parallelism [45].

2.1.3  Encoding Lexical Order. Throughout this paper, we use the so called (2d + 1) structure
of scheduling relations. It introduces (d + 1) auxiliary dimensions to the scheduling relation [31]
to represent lexical order. They are referred to as f-dimensions [22], as opposed to « dimensions
that represent the execution order of the d loops. Zero-based contiguous constant values of f;
enforce the relative order between different objects (loops or statements) at depth i. They express
code motion transformations such as loop fusion and fission. For example, the (2d + 1) form of the
identity scheduling relation for polynomial multiply is

Os(N) = {(i, )T = (Br. a1, for a2, f3)T | pr=0Aay =i APy =0Aay =jAPs=0}.

Given that f-dimensions are constant, they can be concisely rewritten as a vector ﬁ =(0,0,0)T.
p-vectors uniquely identify statements since no two statements can have the same lexical position.
Prefixes of f-vectors (f-prefixes) uniquely identify loops, with their length corresponding to the
nesting depth. Statements that share d loops, have identical S-prefixes of length d.

2.1.4  Program Analysis and Parallelism. They key power of the polyhedral model is its ability to
compute exact instance-wise dependences [19]. Two statement instances are dependent if they
access the same array element and at least one of them writes to it. For a program transformation to
preserve original program semantics, it is sufficient that pairs of dependent instances are executed in
the same order as before the transformation [32]. A dependence relation maps statement instances
(dependence sources) to the instances that must be executed after them (dependence sinks). If a
transformation inverses the execution order of dependent instances or assigns them the same
logical execution time, the dependence becomes violated and the transformation is illegal. The
polyhedral model provides means to verify the legality of a scheduling relation [4, 19, 43, 48].
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Groups of instances, including loops, that do not transitively depend on each other may be
executed in an arbitrary order, including in parallel. Loop-level parallelism is expressed by attaching
a “parallel” mark to an a dimension, which requires code generator to issue a parallel loop.

2.1.5 Code Generation. After a scheduling relation is defined, code generation is a matter of
building a program that scans the iteration domain with respect to the schedule [1]. Modern
code generators rely on generalized change of basis that combines the iteration domain and the
scheduling relation and puts scheduling dimensions in the foremost positions before creating
loops from all dimensions. Several efficient algorithms and tools exist for that purpose including
CL00G [3], CodeGen+ [13] and ppcg [26]. For example, given the schedule 75’ = {(i, j)T — (¢1,t2)7 |
t1 =i+ jAt2 = j} that implements loop skewing for the polynomial multiply kernel and a parallel
mark for dimension t1, CLooG may generate the code in Fig. 1b.

2.2 Transformation Directives

Even though polyhedral and syntactic approaches can be combined in an automatic tool [45], the
polyhedral optimizer does not operate in syntactic terms and provides only little control over its
parameters through compiler flags. Recently, Bagneres et.al. proposed the Clay transformation set
that expresses a large number of syntactic loop transformations as structured changes to scheduling
relations and rely on fS-prefixes to identify targets [2]. They also proposed the Chlore algorithm
that identifies a sequence of Clay primitives that would transform any given scheduling relation
into another scheduling relation.

For example, the aforementioned loop skewing transformation is expressed as a dimension
substitution: SKEW(p, i, k): VOs : ﬁs,l..dimﬁ = P, ®dimj > Qimj + K - @;. Any occurrence of the
output dimension agiy,  is replaced by a linear combination of itself with another output dimension
;. Thus, the schedule 7;’ from the previous section is obtained from the identity schedule by
Skew((f1)T = (0)T,i = 2,k = 1) where B, identifies the outer i loop. Loop RESHAPE is similar to
SKEW except that it uses a linear combination of the input rather than output dimensions.

Transformations of the lexical order are encoded as modifications of f-vectors. For example,
fusmg two subsequent loops is expressed as FUSENEXT(p) Vs : ﬁs 1. dimj-1 = P1..dimj-1 A

IBS dimp = pdlmp +1, ,BSI dim p-1 < PS 1..dim > ,BS dimp < ﬂS dim p + max,.z Br= ﬁ;BT,dimﬁ’ where
dim p encodes fusion depth. This transformations assigns equal f§ values up to given depth, which
corresponds to fusion, and updates the remaining ones to maintain uniqueness and contiguity.

Clay transformations are applicable to unions of scheduling relations such that the entire
union (but not necessarily individual relations) is left-total and injective. Internally, Clay operates
on a matrix representation of systems of linear inequalities and supports arbitrarily complex
transformations as long as the properties of an union are preserved. Chlore algorithm builds on
matrix decompositions to identify sequences of Clay primitives that transform one set of matrices
into another set. More information and full specification of transformations is available in [2].

Although Clay and Chlore enable interaction with a polyhedral engine using syntactic terms,
they face several challenges in application. (1) Target selection—f-prefixes are required for each
transformation, yet they are not easily accessible in the source code. (2) Target consistency—the
generated code may have a different structure than the original code, for example due to loop
separation [3], resulting in a mismatch between f-vectors and loop nesting. (3) Effect separation—
even if Chlore produces a sequence of primitive transformations, it is difficult to evaluate (potentially
negative) effects of individual transformation by reading the polyhedrally transformed code.

We address these challenges with Clint, a new interactive tool based on a graphical representation
of SCoPs which: simplifies target selection to directly choosing a visualization of a transformation
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target; maintains target consistency by matching the visualization to the original (often simpler)
code; and replays primitive “steps” of transformation to separate their effects, supporting further
interactive modification.

3 DIRECTLY MANIPULATING POLYHEDRAL VISUALIZATIONS

To reduce the burden of code editing and transformation primitive application, we propose Clint,
an interactive loop-level transformation assistant based on the polyhedral model. It leverages the
geometric nature of the model by presenting SCoPs in a directly manipulable [46] visualization that
combines scatter plots of iteration domains and node-link diagrams of instance-wise dependences.
This approach is similar to the one commonly used in the polyhedral compilation community
to illustrate iteration domains. Clint goes beyond these static views by allowing program trans-
formation to be initiated directly from the visualization, and provides an animation-based visual
explanation of an automatically computed program transformation. Animated transitions corre-
spond to program transformations that, when applied, would change the program to obtain the
final visualization. The user can replicate the action by directly manipulating the visualization
similarly to the transition or in a more elaborate way. The set of interactive manipulations builds
on the geometry-related vocabulary of classical loop transformations, such as skewing or shifting,
which is expected to give the user supplementary intuition on the transformation effects and to
support exploration and learning.

The design of Clint is motivated by the need for (1) a single and consistent visual interface to bridge
the gap between dependence analysis and subsequent program transformation; (2) an efficient way
to explore multiple alternative loop transformations without rewriting the code; (3) explaining the
code modifications yielded by an automatic optimization. Although built around the complete Clay
transformation set [2], it can be extended to support different transformations as long as effects
of any transformation can be undone by (a sequence of) other transformations. Clint seamlessly
combines loop transformations to support reasoning about execution order and dependences rather
than loop bounds and branch conditions. The interactive visual approach reduces parallelism
extraction to visual pattern recognition [50] and code transformation to geometrical manipulations,
giving even non-expert programmers a way to manage the complexity of the underlying model [38].
Finally, it brings insight into the code-level effects of the polyhedral optimization by decomposing
a complex program transformation into primitive steps and providing a step-by-step visual replay,
independent of how an automatic optimizer operates internally.

3.1 Structure of the Visualization

Clint visualizes scheduled iteration domains, e.g., statement instances mapped by the scheduling
relation to the new coordinates in logical time space, see Fig. 2, for an example of a simple code
and its corresponding visualization. The main graphical elements are as follows.

Points and Polygons. Our visualization consists of polygons containing points on the integer lattice.
Each point represents a statement instance, positioned using values of « dimensions. Points are
linked together by arrows that depict instance-wise data flow between them. The polygon delimits
the loop bounds in the iteration space and is computed as a convex hull of the points it includes. The
space itself is displayed as a coordinate system where axes correspond to loop iteration variables.

Color Coding. Statements are color coded to ensure matching between code and visual represen-
tations. A transformation, such as peeling or index-set-splitting, may result in sets of instances
of the same statement being executed in different loop nests. We refer to this case as multiple
occurrences of the statement. Different occurrences of the statement share the same color coding.
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Fig. 2. Performing a skew transformation to parallelize polynomial multiplication loop by deforming the
polygon. The code is automatically transformed from its original form (left) to the skewed one (right).

Coordinate Systems. Each coordinate system is at most two-dimensional. The horizontal axis
represents the outer loop, and the vertical axis represents the inner loop. Statement occurrences
enclosed in both loops are displayed in the same coordinate system, with optional slight displace-
ment to discern them (see Fig. 4). Statement occurrences that share only the outer loop are placed
into different coordinate systems, vertically aligned so that they visually share the horizontal axis.
We refer to this structure as pile (see Fig. 8b). Finally, statement occurrences not sharing loops are
displayed as a sequence of piles (see Fig. 8a), arranged to follow the lexical order.

We use f-vectors internally to arrange polygons and coordinate systems. Statements with
identical S-prefixes of length d share a coordinate system if d is the depth of the inner loop, and a
pile if d is the depth of the outer loop. Consequently, coordinate systems and piles are uniquely
identified by a f-prefix.

Execution Order. Statement instances are executed bottom to top, then left to right, crossing
the bounds of coordinate systems in both cases. Multiple instances sharing a loop iteration are
executed in the order of increasing displacement. Arrows point at the instance executed second.

Tiling. Tiled domains are displayed as polygons with wide lines inside to delimit tile shapes.
All dimensions that are implicitly defined (see Section 2.1.2) are considered as tile loops and serve
to build the tile shapes creating scatterplots with nested axes [28]. Tiling makes execution order
two-level: entire tiles are executed following the previously described order; instances inside each
tile are executed bottom to top, then left to right without crossing tile boundaries.

Multiple Projections. The overall visualization is a set of two-dimensional projections, where
loops that are not matched to the axes are ignored. As the goal of Clint is program transformation,
we only display projections on the schedule a-dimensions, which coincide with iteration domain
dimensions before transformation. For a single statement occurrence, they may be ordered in a
scatterplot matrix as in Fig. 5a. The points are displayed with different intensity of shade depending
on how many multidimensional instances were projected on this point. We motivate the choice of
2D projections vs 3D visualization by easier direct manipulation with a standard 2D input device
(e.g., mouse) [5, 14] and consistency of the visualization for even higher dimensionality.

Dependences and Parallelism. Dependences between points in the same coordinate system are
shown as arrows pointing from source to sink. By default, only direct (i.e., non transitively-covered)
dependences are shown. When hovering a point, all its dependences are visualized. Dependences
between vertically or horizontally adjacent coordinate systems are aggregated into large dots
(Fig. 7b). Finally, dependences between points in distant coordinate systems are only visualized
when either their source or sink is being manipulated to avoid visual cluttering. Arrows and dots
turn red if the dependence is violated. Transformation legality check is performed parametrically. If
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legality violation exists for values of parameters other than currently selected, the polygon contour
turns red instead of arrows.

Generally, parallel dependence arrows imply some parallelism is present in the loops - e.g., if
they are orthogonal to an axis, the loop corresponding to an axis features DoALL parallelism. Clint
highlights “parallel” axes in green to simplify parallelism identification (see Fig. 2).

Parametric Domains. Domains whose bounds involve parametric expressions are visualized for a
fixed value of the parameters. By default, all parameters are assigned identical values computed
as follows. Clint computes the dependence distance sets from dependence relations by subtracting
the relation’s range from its domain. It then takes the maximum non-parametric absolute value
across all dimensions. Finally, it takes a minimum of this value and a predefined constant. We
selected this constant as 6 from our preliminary studies, observing that it is sufficient to represent
the majority of dependence patterns in our test suite. The user can dynamically modify values of
individual parameters and the visualization will be automatically updated.

3.2 Directly Manipulable Visual Objects

Since program transformations in the polyhedral model correspond to changes of the statement
instance order, they can be performed on the visual representation of that order. In Clint, the
execution dates are mapped to point positions. Therefore, moving points corresponds to program
transformations. Visual marks such as points and polygons afford direct manipulation, i.e., they
can be dragged and dropped directly to the desired position.

Because many of the visual elements are mapped from the underlying SCoP properties, manip-
ulation should be structured so as to maintain those properties. For example, point coordinates
should remain integer to properly map to counted for loops. Furthermore, the polyhedral model
represents parametric iteration domains—having constant yet unknown sizes—making it technically
impossible to schedule each instance separately. Therefore, we only enable structured point manip-
ulation that can be mapped to similarly structured program transformations as expressed in, e.g.,
Clay framework. Visually, we use polygons and coordinate systems as manipulation substrates [34]
that mediate interaction with groups of points while ensuring structure preservation.

We refer to polygons and coordinate system as point containers. They can be seen as persistent
selection of the points manipulable together and sharing a common property: representing instances
of the same statement or being enclosed in the same loops. Polygons and coordinate systems also
allow to reify the conventional target selection and make it a first-class interactive object [6]. The
user no longer needs an explicit (and sometimes cumbersome) selection step, by either clicking or
lassoing the objects with cursor, before starting the manipulation.

3.3 Mapping Interactions to Loop Transformations

As motivated above, we center the manipulation around polygons. We augment the polygon with
handles at its corners and borders, similarly to a conventional graphical editor. They appear when
the polygon is hovered and support many transformations without using any instruments or modes.

We rely on structured scheduling relation modifications of Clay framework, most of which
were inspired by well-known “classical” loop transformations [52]. Some of them map directly to
Clint visualization (e.g., SHIFT), while others do not (e.g., INTERCHANGE) or, even worse, can be
mapped in a misleading way (SKEw). Therefore, instead of trying to map Clay transformations,
we rather follow an interaction-centered approach by mapping the possible graphical actions to
sequences of Clay transformations. Fig. 3 lists the graphical actions and the corresponding program
transformations. The action parameters correspond to the attributes of the object being manipulated
or properties of the manipulation.
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Action Parameters Transformations Before/After
Drag polygon ﬁ x,y,dx,dy 1 SHIFT(E, x, dx)
within CS 2. SHIFT(ﬂ, Y, dy)

Drag polygon ﬁ XY, p 1. REORDER(f ..y, put last), B < maxg ﬁg -1
between CS 2. DISTRIBUTE(f1. .y)), fy—1..y = (By—1 + 1,07
3. repeat 1,2 until dimension x y y
4. REORDER(f; . x, put after pyx), fx «— px +1 X o9
5. FUSENEXT(f1..x), Bx..x+1 < (Bx—1, maxg ﬁ£+1 +1) y y
6. repeat 4,5 until dimension y €3
7. REORDER(f1 ..y put last) &9 x 0o X
Drag corners ﬁ x, y, dx, dy, 1. RESHAPE(B, y,x, ldx/sy]) y y
from center sx, sy 2. ResHAPE(f, x, y, | dy/sx]) x 1680
use skew when possible
Drag corners E, x, dx, sx 1. INTERCHANGE(E, x,y) if |dx/sx| mod 2 = 1 Y Y
(2 ©00
towards center (y axis used if 2. REVERSE(f1. x)if 1 < |dx/sx] mod 4 < 2
K ©oox o X
dy > dx) 3. REVERSE(f1..y) if [dx/sx| mod 4 > 2
Drag border x, dx, sx 1. DENSIFY(E) y y
2. REVERSE(f) if dx < 0 I X X
3. GRAIN(f, |dx/sx])
Click on rect- ,E X, Y, tx, ty 1. INTERCHANGE(f1 . .y+2, Y, y+1) if y implicitly defined
angular selec- 2. LINEARIZE(f1..y+1) if y + 1 implicitly defined
tion of points 3. LINEARIZE(f . x ) if x implicitly defined
4. STRIPMINE(fS1. x, tX)
5. STRIPMINE(f1. . y+1, 1Y)
6. INTERCHANGE(f1. .y, Y,y + 1)
Select points  f, j, 1. Vi, INDEXSETSPLIT(S, f;) if f = © y y
and move selection shape CoLLaprsg(p) otherwise. W'
X _ X
{filx.y) = 0}

Fig. 3. Mapping between interactive polygon manipulations and Clay transformations. ﬁidentifies the
statement occurrence corresponding to the polygon; p identifies the -prefix of the coordinate system; x and
y are loop depths corresponding to the horizontal and vertical axes, respectively; dx and dy are cursor offsets
from its position when the manipulation started; sx and sy are sizes of the polygon; tx and ty are sizes of the
selection. Offsets and sizes are expressed in coordinate system units, i.e., iterations.

For example, dragging a polygon along one of the axes directly corresponds to the SHIFT
transformation. However, dragging it to a different coordinate system corresponds to a complex
sequence of Clay directives that perform code motion (see “Drag polygon between CS” in Fig. 3).
Transformations that result in an identical schedule are omitted, for example, no REORDER is applied
before DisTRIBUTE if the statement occurrence is already the last in the loop.

Polymorphic Actions. The coordinate system can be automatically extended to fit the polygon
being dragged. We leverage the equivalence property of transformation to stop automatic extension.
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Shifting past the largest bound does not change the relative execution order. In such cases, the
polygon goes outside the coordinate system, which is shrunk to fit only the remaining polygons.

Parametric Transformations. Transforming a parametrically-bounded domain may result in
parametric transformations. In particular, we look for a parametric bound closest to the mouse
cursor at the end of manipulation. For example, the amount of SHIFT is computed with respect to
the closest bound of the polygon other than the one being shifted. Alternatively, the conditions for
INDEXSETSPLIT are (first) computed as affine expressions of the closest bound. If there is no such
expression, they are computed without using parameters.

Skew and Reshape. By default, the graphical action of skewing corresponds to the RESHAPE
transformation, and not the SKEw transformation. The latter transforms the loop with respect
to the current expression for the other loop rather than to the original iterator. This makes SKEwW
transformation combine badly: if the x loop is skewed by y to become (x +y), it becomes impossible
to skew y by x as it does not appear independently of y anymore. The graphical intuition behind
loop skewing does not hold for combinations of skews. However, when a RESHAPE is identical to
SkEw, Clint will perform a SKEW since it is one of the well-known classical transformations!.

Targeting Individual Statements. Many Clay transformations operate on S-prefixes, that is loops
rather than statements. We circumvent this by distributing away the target statement, applying the
desired transformation to a loop nest with only this statement, and then fusing everything back.

Manipulating Multiple Statements. If multiple polygons are selected within a coordinate system,
transformations are applied to all of them in inverse lexicographical order of their respective
B-vectors. Inversion prevents transformations from modifying f-vectors used to target subsequent
transformations. If a user manipulates a pile (or a coordinate system), the action is propagated to
all the polygons it contains, making the pile an implicit selector for the polygons it contains.

Manipulating Groups of Points. Individual points or groups thereof can be manipulated by turning
them into a polygon first. Selecting a group of points and dragging it away from existing polygon
separates it into two parts, mapping to the INDEXSETSPLIT transformation. It creates a new
statement occurrence that can be manipulated separately. Dropping this polygon on top of another
polygon that represents a different occurrence of the same statement is mapped to the CoLLAPSE
transformation. In cases of selections that are not adjacent to borders and/or not convex, multiple
INDEXSETSPLIT transformations are performed. Each of the two resulting parts may correspond to
multiple occurrences of the statement, but is visualized and manipulated as a whole.

Cross-Projection Selections. When multiple projections are used, the selection of statement in-
stance points is combined from different projections. The overall multidimensional selection is an
intersection of constraints imposed by each separate two-dimensional selection. Empty selection
in a projection is thus equivalent to selecting everything.

Decoupling Visualization from Code. In Clint, we keep the visualization consistent with the
original program structure unless the user manually modifies the code. This allows for manipulating
multiple statement occurrences together, for example in case of shifting one statement with respect
to another inside the loop, which may result in loop separation as in Fig. 4.

n fact, we created RESHAPE transformation in Clay to address the skew combination problem. It was the last missing
transformation that enabled completeness of the set.
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X X for ( =0; j <N; +j)
B[11[j+1] += A[@]1[j];
#pragma omp parallel for private(j)
for (i = 0; i <N; ++i)
for (3 =0; j<N; +3) {
ALi+1][j+1] += 0.5 x A[i+11[j];
BLi+11[j+1] += A[i1[j1;
}
for (3 =0; j <N; +J)
AINI[3+1] += 0.5 * A[NI[]1;

for (i = 0; i <N; ++i)
for (3 =0; j<N; +3) {
ALi+11[§+1] += 0.5 * ALi+1][j];
BLi+11[j+1] += A[i1[j];
3

o = N W

Fig. 4. Manipulation for sHIFT Transformation: the darker polygon is dragged right so that dependence arrows
become vertical without spanning between different iterations on i. The visualization is then decoupled from
the code structure, and both statements can still be manipulated as if they were not split between two loops.

Transformation Legality Feed-Forward. Clint graphical interactions are structured so that it is
possible to identify the transformation before it is completed. For example, dragging a corner of
a polygon away from its center corresponds to a RESHAPE, the dragging direction and distance
define transformation parameters. Since they are typically expressed in units of iteration steps
through division, we can use ceil instead of normal rounding to obtain the parameters earlier.
Hence Clint can perform a transformation before the end of corresponding user interaction. This
allows to provide feed-forward about the transformation, i.e., its effects (in particular dependence
violation) are visualized during the interaction, guiding the user in their choice. In addition, this
approach allows Clint to hint the user about the state of the visualization if they finish manipulation
immediately using a grayed-out preview shape (see Fig. 8).

3.4 Mapping Loop Transformations to Animated Transitions

Clint visualization enables the illustration of step-by-step execution of a Clay transformation script,
either constructed manually or translated from a compiler-computed schedule using Chlore [2].
Instead of providing a one-to-one mapping between individual transformations and animated
transitions, we take a generalized approach based on the structure of transformations. They can be
divided based on the scheduling relation dimensions they affect: (1) only «, (2) only § or (3) both «
and f. The first group contains all transformations except FUSENEXT, DISTRIBUTE and REORDER,
which belong to the second group, and STRIPMINE, LINEARIZE, INDEXSETSPLIT and COLLAPSE, which
belong to the third group. This classification allows us to limit the animation scope. Transformations
that do not modify f-dimensions may only affect points inside one container while points cannot
be moved between containers. Furthermore, only the projections on iterators involved in the
transformation should be updated. Transformations that only modify -dimensions affect entire
containers without modifying the point positioning inside them.

Within-Container Transformations. Transformations of the first group are animated by simulta-
neously moving individual points to their new positions. During the transition, polygonal shapes
are updated to match the convex hull of the respective points. Thus SHIFT transformation moves
all points simultaneously in one direction and corresponds to visual displacement, while RESHAPE
transformation moves rows (or columns) of points at different lengths and results in shape skewing.

Multiple Projections. Several transformations operate on two dimensions, for example RESHAPE
and INTERCHANGE. For these cases, we consider the projection on both of these dimensions as the
main one, and the projections on one of the dimensions as auxiliary ones. In the main projection,
the one-to-one point transition remains applicable. On the other hand, in the auxiliary ones,
points may be created or deleted. For example, an auxiliary projection retains the rectangular
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Fig. 5. Clint displays multiple projections for deep loop nests.

shape after a RESHAPE but becomes larger as some points are projected onto new coordinates (see
Fig. 5). Clint handles this by introducing a temporary third axis, orthogonal to the screen plane.
This axis corresponds to the dimension present in the transformation, but not in the projection.
Points and arrows are then re-projected on three dimensions. Extra objects become visible only
during the animated transition and create a pseudo-3D effect. After the transition, the third axis
is deleted while the projected points remain in place (see Fig. 5b). This technique is analogous to
ScatterDice [18], but without axis switching.

Between-Container Transformations. As transformations of the second group affect entire poly-
gons only, we can translate them into motion of polygons. If all polygons of a container are moved,
the entire container is moved instead. Target containers are identified using f-prefixes.

Container Creation and Deletion. Transformations of the third group may result in containers
being created or deleted. However, without points, a polygon would correspond to statement
occurrence that has no instances and thus is never executed. Therefore, it must be impossible to
create empty containers. The only way to create a container in Clint is by splitting an existing
container into multiple parts. This exactly corresponds to the INDEXSETSPLIT transformation if
the container is a polygon. It also maps to the DISTRIBUTE transformation when the container is a
coordinate system or a pile. Conversely, CoLLAPSE and FUSENEXT transformations correspond to
visually joining two containers.

3.5 Clint Interface

Clint combines three editable and synchronized representations (see Fig. 5a): (1) the interactive
visualization; (2) a navigable and editable transformation history view based on Clay scripts; and
(3) the source code editor. A consistent color scheme is used between the views to match code
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statements to the visualization. Transformation directives corresponding to graphical actions are
immediately appended to the history view. The user can then navigate through the history by
selecting an entry, which will update the visualization to the corresponding previous state, or
edit it directly using Clay syntax. As the target code tends to become complex and unreadable
after several manipulations, the user has the option to keep the original code visible instead of the
transformed one. Finally, when the code is edited, the visualization is updated, thus making Clint a
dynamic visualizer for polyhedral code.

4 USE SCENARIOS

Clint can be used as a stand-alone program transformation tool or in conjunction with an automatic
optimizer. In the first case, the user must decide on the transformation to perform. In the second case,
Clint proposes a sequence of primitive transformations equivalent to the automatically computed
one, letting the user complement or modify it independently from the optimizer. In both cases,
the user may reason in terms of an instance-wise dependence graph rather than in terms of loop
transformations or parameters of the optimization algorithm.

Our approach does not impose a particular transformation heuristic. Instead, we suggest to build
intuition by visualizing (optimized) programs that perform well and identifying visual patterns.
For an optimization expert, these patterns may eventually lead to a novel heuristic. We provide
two end-to-end illustrative examples, in which we attempt to make dependence arrows short to
improve reuse and orthogonal to axes to exploit parallelism.

4.1 Assisted Semi-Automatic Transformation

Clint can be used as a tool for applying loop-level transformations that provides instant legality
feedback and generates transformed code automatically. Let us continue with the polynomial
multiplication kernel example, see Fig. 1a, to demonstrate how a long sequence of transformations
can be applied. Default representation of the kernel, with parameters set to 4, is shown in Fig. 6a.
The loop j features parallelism and is marked accordingly. Inner parallelism is often less desirable
as it would incur barrier synchronization cost on every iteration of the outer loops. Therefore,
observing that dependence arrows are diagonal, the user may decide to make them orthogonal
to the i loop to make it parallel. They can do so by dragging the top right handle of the polygon
right, Fig. 6a. However, such transformation is illegal as indicated by the red arrows that point in
the direction opposite to the j access. This dependence violation can be removed by switching the
direction of arrows, which is achieved by dragging the top right handle left to rotate the polygon
around its center, Fig. 6b. The combined transformation sequence is now legal yet potentially
inefficient: different iterations of parallel loop i execute different numbers of statement instances.
Observing the symmetry of the polygon, the user selects a triangular-shaped group of points on
the right, Fig. 6c, and drags it to the empty space on the left, Fig. 6d, until the balanced, rectangular
shape is reconstructed, Fig. 6e. The final transformation corresponds to loop skewing, followed by
two loop reversals and shifts, then by index-set splitting, and finally by shifting. However, at no
time during transformation, the user must be aware of particular loop transformations, their legality
or the transformed code. They can operate on an instantiation of the instance-wise dependence
graph as opposed to directive-based approaches where, even with visualization, they would have
to find the transformation directive that would result in a desired visual shape.

4.2 Understanding, Improving and Rectifying Automatic Transformation

Manual program transformation, even with efficient support tools, may require sufficient effort from
the programmer. Fully automated program optimizers are designed to yield decent performance in
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Fig. 6. Users can directly manipulate the visual representation of SCoPs and have the transformed program
generated automatically. Dragging the corner from the center performs loop skewing, to the center—reversal;
selecting the points and dragging them performs index-set splitting followed by loop shifting. Dependence
arrows orthogonal to axes enable parallel execution.

most cases. However, they are based on imprecise heuristics, which may fail to improve performance
or even degrade it. Polyhedral optimizers are essentially source-to-source black boxes offering little
control over the optimization process. Clint relies on Chlore [2] to find a sequence of primitive
directives equivalent to the automatically computed optimization and let the user replay and modify
it, independently of the optimization algorithm. The user does not have to know or understand the
internal operation of the optimizer and its configuration.

Consider the Multi-Resolution Analysis Kernel code, available in doitgen benchmark of the
PolyBench/C 4.2 suite [42] and presented in Fig. 7a. A sequential version of this kernel runs in 0.83s
on our test machine.? We applied Pluto® polyhedral compiler [11] to extract parallelism from this
code. We also requested Pluto to tile the transformed code, which is likely to improve performance
thanks to data locality and expose wavefront parallelism. A simplified version of the resulting code
is presented in Fig. 7c. It indeed contains tiled and parallelized loops. Yet this code executes in 0.91s,
a 10% slowdown compared to the sequential version (untiled parallel version executes in 50.1s,
a 62X slowdown). Without any further suggestion from Pluto, the user may either stick with a
non-transformed sequential version or with a non-efficient parallel one. The code was transformed
so aggressively that the user is unlikely to attempt code modifications or even understanding the
transformation that was applied.

Comparing Clint visualizations before, Fig. 7b, and after, Fig. 8a, transformation suggests loop
fission took place, which can also be inferred from the generated code. Step-by-step replay confirms
this and also demonstrates loop tiling followed by skewing. It also shows that inner loops were
parallelized, which is known to result in large barrier synchronization overheads. A fat dot between
coordinate systems indicates there is some reuse between loops, but it is unclear whether Pluto
performed fission to ensure legality of skewing and tiling or because of its fusion heuristic. To
discover that, the user may undo the fission by fusing the loops back together, Fig. 8a. While
they drag the polygon, legality feedforward appears in a shape of gray arrows that indicate that
transformation would be legal and would preserve parallelism. Motivated by the success and
observing the remaining reuse, the user may decide to fuse the remaining loop as well. This
transformation would be illegal as indicated by red arrows appearing as the polygon is being
dragged. The users can still finish the manipulation, and then use a conventional “undo” command.

24x Intel Xeon E5-2630 (Sandy Bridge, 6 cores, 15MB L3 cache), 64 GB RAM, running CentOS Linux 7.2.1511, compiled
with GCC 4.9.3 with -03 -march=native flags, benchmark size LARGE, NQ= 140, NR= 150, NP= 160. Average of 12 runs is
reported, kernel execution time only, using high-resolution CPU timers.

3Pluto 0.11.4 with --parallel --tile, as available on https://github.com/bondhugula/pluto/releases/tag/0.11.4
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for (r = 0; r < NR; r++) for (t1=0;t1<=NR-1;t1++)
for (g = 0; q < NQ; g++) { for (t2=0;t2<=NQ-1;t2++) {
for (p = @; p < NP; p++) { lbp=0;
sumlp]l = 0.0; ubp=floord (NP-1,32);
for (s = 0; s < NP; s++) #pragma omp parallel for \
sum[p]l += A[r1[qlls] % C4[s1lpl; private(lbv,ubv,t5,t6,t7)
3 for (t4=1bp;td<=ubp;td++) {
for (p = @; p < NP; p++) lbv=32%t4;
ALr1Cqllpl = sumlpl; ubv=min(NP-1,32xt4+31);
3 for (t5=1bv;t5<=ubv;t5++)

sum[t5] = 0.0;
(a) Original Kernel }
#pragma omp parallel for \
private (lbv,ubv,t5,t6,t7)
s for (t4=1bp;t4<=ubp;td++)
for (t5=0;t5<=floord(NP-1,32);t5++)

i for (t6=32%t5;

3 t6<=min(NP-1,32%xt5+31);t6++) {
2 lbv=32%t4;

1 ubv=min(NP-1,32%xt4+31);

0 for (t7=1bv;t7<=ubv;t7++)

sum[t7] += A[t11[t2]1[t6] *
012345 op

C4[t61[t71;
Py }
#pragma omp parallel for \
[ private(lbv,ubv,t5,t6,t7)
> > for (t4=1bp;t4<=ubp;t4++) {
012345 p 012345 p lbv=32*t4;

ubv=min(NP-1,32xt4+31);
for (t5=1lbv;t5<=ubv;t5++)
A[Lt1][t2][t5] = sum[t5];

(b) Visual Representation

(c) Pluto-transformed Kernel — 3

Fig. 7. Multi-resolution Analysis Kernel adapted from [42].

The final manually retouched version runs in 0.67s with a (modest) 25% speedup. Without
step-by-step replay and direct manipulation, it would be hard to experiment with different fusion
structures using a general trial-and-error strategy.

Although loop fusion is often implemented as a separate optimization problem in polyhedral
optimizers, it is no easier to control externally. Clint allows users to understand and directly modify
the fusion/fission structure, instead of reasoning about how a particular heuristic would behave.

5 ASSESSING THE USABILITY OF CLINT

Particular use cases of the previous section illustrate well the potential benefits of the tool in specific
cases, but they do not help evaluating and understanding its overall usability in more general cases
and with different users. Therefore, as it is commonly done in Human-Computer Interaction, we
conducted a series of user studies considering more abstract tasks that assess the usability of Clint.

5.1 Understanding the Visualization

Although similar visualizations have been already used for descriptive or pedagogical purposes,
there is no empirical evidence of their appropriateness for conveying program structures. We
designed an experiment to assess the suitability of our visual representation. In particular, we
test whether both experts in the polyhedral model and non-expert programmers can establish a
bidirectional mapping between Clint visualization and code.
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Fig. 8. Using visual representation to re-adjust automatically computed transformation with immediate
feed-forward on semantics preservation. Dependences violated by the intended transformation turn red,
lines within shapes depict tiles. Shaded shapes are positions before manipulation.

5.1.1 Protocol.

Participants. We recruited 16 participants (aged 18-53) from our organizations. All of them had
experience in programming using imperative languages with C-like syntax and basic understanding
of the polyhedral model and its limitations. Six participants reported to have manually constructed
similar visualizations from scratch and were therefore considered Experts. Because participants
were asked to construct visualizations following given rules, previous exposure to these rules is a
more relevant criterion of expertise than familiarity with the polyhedral model.

Procedure. Our experiment is a [3 X 2] mixed design having two factors:

e Task: mapping direction (between participants)
— Visualization to Code (VC) — writing a code snippet corresponding to a given visual-
ization using a C-like language featuring loops and branches with affine conditions;
— Code to Visualization (CV) — drawing an iteration domain visualization given the
corresponding code.
e DrFrFicULTY: problems may be (within participants)
— Simple — two-dimensional with constant bounds;
- Medium — multi-dimensional with constant bounds;
- Hard — two-dimensional with mutually-dependent bounds and branches.

We divided participants in two groups with equal number of experts. Group 1 performed the
VC task, group 2 performed the CV task. This between participant factor allowed us to present the
same problems to all participants while avoiding learning effect. Both tasks were performed on
paper with squared graph support for the CV task. Participants were instructed about visualization
and performed two practice tasks before the session. They were asked to work as accurately as
possible without time limit and were allowed to withdraw from a task. Expected solutions were
shown at the end of the experiment. Each session lasted about 20 minutes.
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Fig. 9. (a) Completion Times increase with task difficulty but less so for Experts. Results are similar between
Experts and Non-Experts. Error bars are 95% confidence intervals. (b) overall Error Rate is low. Experts are
more successful but fail at simpler tasks; Non-Experts may abandon.

Data Collection. For each trial, we measured Completion Time, Error and Abandon rates. The
errors were split in two categories: Parameter Errors, when the shape of the resulting polyhedron
was drawn correctly, but linear sizes or position were wrong; Shape Errors, when the shape of the
polyhedron was incorrect. Codes describing the same iteration domain were considered equivalent
(e.g,i <= 4and i < 5). Upon completion, participants filled out a demographics questionnaire.

Data Processing and Analysis. We performed log-transformation of the Completion Time to com-
pensate for the positive skew of its distribution, resulting in asymmetric confidence intervals. Due
to concerns over the limits of null hypothesis significance testing in various research fields [15, 17],
our analyses are based on estimation [16]. We report symmetric effect sizes on means —es =
2(my — my)/(my + my) where m;, m, are means— and 95% confidence intervals (CIs).

5.1.2  Results. We did not observe significant order effect on the Error Rate or Completion Time,
meaning that there were neither learning nor fatigue effect along the experiment.

Completion Time. We discarded 7 trials in which participants produced erroneous code. Task did
not strongly affect the Completion Time: VC took 182s (95%CI = [127s, 262s]) on average while CV
took 215s (95%CI = [156s,296s]) on average, resulting in an effect size of 16.3% (95%CI = [-39.2, 50.9]).
Despite Experts being familiar with similar representations, we observed no interaction between
expertise and Task. Experts performed 56.7% (95%CI = [26.8,98.8]) faster than Non-Experts for Hard
tasks. Both performed similarly on Easy and Medium tasks. In general, Completion Time is more
consistent across Non-Expert participants than across Expert participants (Fig. 9a). These results
suggest that our representation is suitable for both Experts and Non-Experts if the complexity of
the task remains limited. They also confirm our assessment of task difficulty.

Errors and Abandons. Participants performed the tasks with very low error rates, 8.3% (95%CI =
[-3.6%,20.3%]) for VC tasks and 4.2% (95%CI = [-4.5%, 12.8%]) for CV. Non-Experts proposed wrong
code for Hard VC tasks, equally split between Parameter and Shape Errors. Experts made Parameter
Errors for some Medium tasks. We observed only two withdrawals during a trial, both from non-
experts on a Hard task, one in VC and CV, and after more than 500s (Fig. 9b). Overall, such low
error rates make it difficult to conclude on the causes of the errors, but suggest that both experts
and non-experts users can reliably map Clint visual representation to the code and vice versa.
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5.2 Interactive Manipulation

After assessing the visualization approach, we focused on interactive program transformation with
Clint. We conducted a preliminary usability study with users already familiar with the visualization.
In order to separate the effect of direct manipulation from individual differences in expertise,
participants were not allowed to use any automatic parallelizing compiler that would help experts
to achieve better performance. We also decided not to use Clay syntax directly as it is little-known
and was designed as an intermediate representation for graphical manipulation. Noone attempted
to use other diretive-based tools.

5.2.1 Protocol.

Participants. We recruited 8 participants (aged 23-47) by direct email to the participants of the
previous study. Since they all were familiar with Clint, our expertise criterion does not apply.

Apparatus. The study was conducted with a prototype of Clint running on a 15” MacBook Pro.
Participants were interacting with the laptop keyboard and a standard Apple mouse.

Procedure. The task consisted in transforming a program part so that the maximum number
of loops becomes parallelizable. Participants had to transform the program, but not to include
parallelism-specific constructs, e.g., OpenMP pragmas, in order to avoid bias from individual
expertise differences. The experiment has a [3 X 3] within-subject design with two factors:

e Tecun1QUE used in the trial: Code — writing code in an editor of user’s choice, no visual-
ization available; Viz — direct manipulation, no code visible; Choice — full interface, with
direct manipulation and source code editing.

e Drrricurty of the task: Easy — two-dimensional case with at most two transformations;
Medium — two- or three-dimensional case with rectangular bounds and at most three
transformations; Hard — two- or three-dimensional case with mutually-dependent bounds
and at least two transformations.

Trials were grouped in three blocks by Tecunigue. The Code and Viz blocks were presented
first. Their order was counterbalanced across participants. Choice was always presented last in
order to assess participants’ preference in using code editing or direct manipulation after having
used both. In each block, participants were presented with one task of each difficulty level in
random order. Tasks were randomly picked into different blocks across participants. They were
drawn from real-world program examples and polyhedral benchmarks. Trials were not limited
in time and participants were asked to explicitly end the trial by pushing an on-screen button.
Prior to the experiment, participants were instructed about source code transformations and the
corresponding direct manipulation techniques. They also practiced 4 trials of medium difficulty
for each technique before the experiment and were allowed to perform two “recall” practice trials
before each TecuniQuE block. Each session lasted about 60 minutes. The study was completed by a
demographics questionnaire.

Data Collection. For each trial, we measured:

o the overall trial Completion Time;

o First Change Time, the amount of time from the start to the first change in the program
structure (code edited or visualization manipulated);

e Success Rate, the ratio between the number of loops made parallel by transformation and
the total number of possibly parallel loops.

We recorded both the final state and all intermediary transformations to the program. During
the analysis, we performed a log-transform of the Completion Time and First Change Time.
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Fig. 10. (a) Success Rate is higher with Viz, except for Hard tasks. (b) Completion Time is lower with Viz,
especially in successful trials. (c) Ratio First Change Time / Completion Time; the change in trend between
Code and Viz may be due to users adopting an exploratory strategy. Error bars are 95% Cls.

5.2.2  Results and Discussion. Because this experiment was conducted with a small sample, we
mostly report results graphically in order to illustrate general trends. We did not observe any
ordering effect of Tecun1QUE or DrrrFicurLty on Completion Time and Success Rate.

Accuracy and Efficiency. Fig. 10a suggests, despite large variability, that participants were in
general more successful in transforming the program with direct manipulation than with code
editing. Effect sizes reach 40% and 44% for Easy and Medium tasks. However, for Hard tasks, the
success rates are identical. This suggests that finding a multi-step transformation is a key difficulty.

Fig 10b suggests that, for successful trials, participants performed the transformation consistently
faster in Viz condition. The difference in variability between Code and Viz suggests that direct
manipulation compensates for individual expertise differences. Similar Completion Times for failed
trials can be explained, after analyzing the transformations, by participants “abandoning” the trial
if their first attempt did not expose parallelism and submitting a non-parallelizable version.

Strategy and Exploration. Participants at least tried to perform a transformation in 76% cases
with Code and 94% with Viz, suggesting that visualization engages participants by changing the
perception of task difficulty. We computed the ratio First Change Time/Completion Time as a
measure of “engagement” (Fig. 10c). It increases with difficulty for Code, but drastically decreases
for Viz, suggesting that participants were more likely to adopt an exploratory trial-and-error
strategy supported by the interactive visualization as opposed to code. In Choice condition, the
ratio remains stable, as participants spent time choosing which representation to use.

Choice between Code Editing and Direct Manipulation. In the Choice condition, only 3 participants
interacted with the code. They made edits during the first 30s and then switched to the visualization.
After the experiment, they explained to have modified the code for the sake of analysis, e.g., to see
whether a dependence was triggered by a particular access they temporarily removed.

We observed that most participants were examining the code, but not selecting it. This observation
suggests that, although they see the limitations of code representation, participants may need it to
relate to the conventional program editing that better corresponds to their expertise.

5.3 Preference for Code or Visualization

Our last experiment investigates the use of textual and visual representations for SCoPs. We
relied on eye tracking technology in order to precisely measure visual attention between code and
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visualization when both were available. We expect that, given sufficient training, users will prefer
visualization to code analysis if there is a meaningful task-relevant mapping between the two.
This experiment required a pair of small program analysis tasks such that either code or visual-
ization support each of them better, but never both. Participants had to answer a binary question,
with positive or negative formulation to avoid bias. The study was structured as the previous one.

5.3.1 Protocol.

Participants. We recruited 12 participants (aged 21-34, mean=27) through mailing lists. They did
not participate in previous studies and had a self-reported experience in programming of 5 to 15
years. All had normal uncorrected vision.

Apparatus. The experimental setup consisted of a 15” MacBook Pro with 2880 x 1800 screen at
220 ppi connected to the SMI-ETG v1 eye-tracking system?. The participant was seated 70 cm away
from the screen, which resulted in gaze position accuracy of 27.7px in screen space. The tracking
system outputs a 30 FPS video stream from its frontal camera. We placed bright-colored tokens on
the screen corners to locate it in the video and compensate for perspective distortion. These tokens
were tracked by a custom OpenCV-based script that generated gaze position in screen coordinates
through linear interpolation with perspective correction.

We ensured that the sizes of both representations are identical across conditions, with the content
centered in each of them. Unused space was filled with neutral gray to avoid distraction. When
visible, multiple representations were 60 px away (2X resolution) to identify gaze into one of them.

Procedure. The study is a [3 X 3 X 2] within-participants experiment with 4 repetitions per
participant and the following factors:

e RepreEsENTATION used in the trial, one of visual representation (Viz), source code (Code) or
both simultaneously (Choice);

e Drrricurty of the question, one of Easy, a loop nest with constant conditions, Medium, a
loop nest with at least 3 non-constant conditions, or Hard, a loop nest with a branch inside
and at least 5 non-constant conditions;

e a binary QuEestion asked to the user, either concerns the textual form of loop bounds
(Bounds) or a statement instance being executed or not inside a loop (Execution).

Bounds questions were targeted at Code, where the answer is immediately visible, while Execution
questions were targeted at Viz. We refer to these conditions as matching questions, and to other
conditions as mismatching questions. In total, we collected data for 12-3 -3 -2 - 4 = 864 trials.

Trials were first blocked by RepresenTaTION and then by repetition. RepresEnTATION blocks are
ordered identically to the previous study. Each of them comprises 4 repetition blocks, each of which
has 6 trials with different Questions and Dirricurties in a randomized order. RepreEseENTATION blocks
were preceded by a practice session with 4 trials of Medium difficulty. After each trial in Choice
condition, participants were asked about their preferred representation for this question.

Blocks featuring only Code or Viz were conducted without eye tracking. Participants were
wearing the eye-tracking glasses for the third block, after we performed a 3-point calibration with
30px tokens and checked if the glasses did not affect their vision by performing a read-aloud test.

Participants started the trial by clicking the “start” button and ended it by clicking the answer
button. They could abandon the trial after at least 15s to avoid immediate abandons for Hard tasks
with mismatching questions. Software provided the correct answer after each trial. One session
lasted 50 minutes on average and was complemented by a demographic questionnaire.

4http://www.eyetracking-glasses.com/
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Fig. 11. (a) mismatching questions required up to 4x more time. (b) Medium and Hard questions with
mismatching representation result in more incorrect answers. Completion Times and Correctness Ratios for
CHolck are close to those for matching representation. Dots are means, error bars are 95% Cls, vertical density
plots show underlying distributions.

Data Collection and Processing. We collected the following data:

Completion Time of the trial;

Correctness of the answer;

Preference between RepresenTaTIONS for the last block;
Gaze from the eye-tracking glasses for the last block.

Given gaze position in screen coordinates, we identified the widget in the focus of attention as
one out of three: Code Widget, Viz Widget or Question Widget. Outside any of the widget areas,
the gaze was considered Off Screen. We randomly sampled 10 frames from each video and verified
manually that the script provides exact classification.

Completion Time was log-transformed to compensate the positive skew of its distribution.

5.3.2  Results and Discussion.

Ordering effects. We observed a slight decrease in Completion Time between first blocks, effect
size —13.6% (95%CI = [-37.7,6.1]), but large variability does not allow to conclude on the presence
of a learning effect. Correctness did not vary substantially between blocks.

Completion Time. Mismatching questions required substantially more time to complete the trial
than matching questions, except for Easy tasks as shown in Fig. 11a. With Code, participants spent
14% (95%CI = [—22,40]) more time on Easy Execution questions, and respectively 132% (95%CI =
[108, 146]) and 134% (95%CI = [111, 147]) more time on Medium and Hard Execution questions than
on the Bounds questions of the same difficulty. Similarly, with Viz representation, they answered
Execution questions 9% (95%CI = [-20,49]), 40% (95%CI = [1,102]) , and 57% (95%CI = [10, 129]) faster
for increasing Dirricurtis. This result supports the definition of mismatching question suggesting
that a representation not adapted for the question slows participants down. The smaller increase
of Completion Time with Viz compared to Code suggests that Viz representations allows to reason
about mismatching questions easier than Code.

Choice condition shows Completion Times close to those for matching representation. For Bounds
questions, it took on average 6% (95%CI = [-27,56]), —3% (95%CI = [—40, 56]), and 7% (95%CI = [-33, 70])
more time compared to Code for increasing Dirricurties. For Execution questions, it took 5%
(95%CI = [-27,53]), —14% (95%CI = [-54,54]) and —21% (95%CI = [-63, 58]) more time than Viz for
increasing Dirricurties. These results suggest that, given two representations, participants are
likely to chose the matching one. Although they do not spend more time on average, the variability
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Fig. 12. (a) matching representations are more used for Medium and Hard tasks, but Code for Easy tasks. (b)
reported preference demonstrates similar trend. Dots are means, error bars are 95% Cls.

is larger for Choice condition. It suggests that participants only effectively use one representation,
but consider both. We illustrate this later with eye tracking data.

Correctness. The participants succeeded to answer the majority of the questions with 93% (95%CI =
[90,95]) of correct results on average as shown in Fig. 11b. Abandoned trials were considered as
incorrect answers. Overall trends are similar to Completion Time.

Given Choice, participants had a high success rate overall, except Easy Execution questions with
mean Success Rate 89.5% (95%CI = [79%, 100%]). This may be explained by choosing the mismatching
Code representation due to visible task simplicity. Due to low error rates, we did not perform any
further analyses. Only 4 trials were abandoned, all featuring mismatching questions, 3 of which
with Code. Abandons took place after 91s on average whereas the mean trial duration is 13.7s.

Representation Choice. Our analyses are built on the following metrics, defined prior to the study.

Visual Preference, VP — total duration of gaze on the Viz Widget divided by the total duration of
gaze on Viz or Code Widget. Values close to 1 indicate participant looking more at the visualization.

Representation Uncertainty, RU — the measure of attention distribution computed as RU =
2 - abs(VP — 0.5). High values mean attention was distributed evenly between representations, low
values — that only one representation was used.

We expect Completion Time to increase with Representation Uncertainty as the participant uses
two representations where one would suffice. At the same time, it may increase even more for lower
values of Representation Uncertainty and high Visual Preference for the unadapted representation.

Fig. 12a shows the Visual Preference for different conditions, the center line corresponding to
the equal distribution of visual attention. For Medium and Hard tasks, participants spent more
time on matching representations, Question effect sizes reach 66.6% (95%CI = [4.8,128.5]) and 81.2%
(95%CI = [16.7, 145.7]), respectively. For Easy tasks they relied on the Code independent of Question.

The reported Preference, depicted on Fig. 12b, shows the same tendency. The preference for Code
drops from 56% in Easy Execution tasks to 6% in Medium and Hard Execution tasks. Since we asked
which representation they found “most useful”, the difference between reported Preference and
Visual Preference suggests that participants tend to look at both representations even though they
do not find one of them useful. Nevertheless, we observed a positive correlation between reported
Preference and Visual Preference, r =0.41 (95%CI = [0.20,0.57]), suggesting that participants tend to
use more the representation they find useful.

Overall, we observed a correlation between Representation Uncertainty rate and Completion Time,
r =0.41 (95%CI = [0.19,0.58]) as well as a negative correlation between Representation Uncertainty
rate and Correctness, r =—0.27 (95%CI = [-0.47,-0.04]): the more participants’ attention was dis-
tributed between representations, the less correct answers they gave. Although the correlation
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does not imply causality, the connection between the simultaneous use of different representations
and the total trial duration suggests that one matching representation should be preferred to two.

6 RELATED WORK

Interactive Program Parallelization. Program editors supporting interactive program paralleliza-
tion date back to wide adoption of parallelism for scientific programming. We review those
specifically targeting loop-level optimizations. The ParaScope editor [33] provided dependence
analysis and interactive loop transformation for High-Performance FOorTrRAN (HPF). It reported
the dependence analysis results and allowed the user to perform various loop transformations,
including parallelization. The D Editor interacted with an distributed HPF compiler to report
optimization choices regarding data distribution and parallelization [29]. SUIF Explorer took a
different approach, collecting dynamic execution and dependence data to suggest loops (or parts
thereof thanks to program slicing [51]) for parallelization [35]. Similarly, DECO records traces of
the memory accesses along with cache hit information and uses pattern recognition algorithms to
suggest memory optimizations [47]. NaraView provides a navigable 3D visualization of loop-level
access patterns [44]. Contrary to these tools, Clint uses the polyhedral model with its instance-
wise dependence analysis and static guarantees of loop transformation legality. It also allows for
transforming the program using its visualization. Chlore-based transformation replay is not tied to
particular compiler transformations.

Semi-Automatic Polyhedral Transformations. User-assisting tools based on the polyhedral model
emerged as a means to express “classical” loop transformations [52] in the model, the Unified
Transformation Framework (UTF) stemming from the first approach [31]. URUK was proposed
to improve loop transformation composability and enable automated traversal of a transforma-
tion search space [22], delaying the legality analysis until code generation. Loop Transformation
Recipes combine loop transformations, mapping to accelerators and code generation directives
from CHILL [12] with the POET [54] language for auto-tuning specification. AlphaZ focuses on
equational programming and enables complex memory mapping and management [56]. Clay is
arguably the first complete set of directives for polyhedral program transformations [2]. Clint uses
visualization and direct manipulation to address the challenges of directive-based approaches, such
as identifying a promising transformation, targeting it at a program entity or evaluating its effects.

Visualizations for the Polyhedral Model. The literature on the polyhedral model heavily relies on
scatterplot-like visualizations of iteration domains. Polyhedral libraries include components for
visualization, including VisualPolylib [36] for Polylib and islplot [24] for isl [49]. LooPo was
arguably the first tool to visualize the polyhedral dependence analysis information during program
transformation [23]. Tulipse integrates polyhedral visualization into Eclipse IDE [53]. Clint goes
beyond static visualization by enabling direct manipulation to transform the program.

3D iteration space visualizer lets the user interactively request loop parallelization through a
visual representation [55]. Polyhedral Playground [27] augments a web-based polyhedral calculator
with domain and dependence visualizations. PUMA-V provides a set of visualizations that expose
internal operation of the R-Stream compiler [39, 40]. It allows the user to control the optimization-
related compiler options from the visualization. Clint builds on Clay as intermediate abstraction
and does not require the user to control or even understand the operation of a compiler.

7 CONCLUSION

Clint addresses the issues of directive-based approaches in the polyhedral model: target identifi-
cation is made direct without exposing polyhedral-specific concepts; transformation legality and
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effects are visible immediately during manipulation; reading polyhedrally-transformed code is no
longer necessary. It makes loop optimization accessible, interactive and independent of a particular
algorithm. Our approach enables human-machine partnership where an automatic framework
performs heuristic-driven transformation and provides feedback on demand while a user brings in
domain knowledge to tweak the transformation without modifying the heuristics. Such domain
knowledge may be unavailable to framework designers and differ between use cases.
Experiments suggest that visualizations lower the expertise necessary to perform aggressive
program restructuring and decrease the time necessary for program analysis. Semi-automatic
transformation decreases the time of program transformation. In our studies, visual semi-automatic
approach to program transformation doubled the success rate and decreased the required time by
a factor of 5 for some program structures. We also contribute to the discussion on visualization
acceptance, suggesting its perceived utility increases with the relative complexity of the task.

Limitations. As Clint was designed using a set of polyhedral test cases with small number of
statements nested in shallow loops, it may be subject to cluttering for larger program parts. Long
blocks of interdependent statements may result in a profusion of dependence arrows. Visual replay
may become distracting when multiple projections are rendered for deep loops. However, program
parts amenable to the polyhedral model are typically small yet require aggressive transformation.

Future Work. Drawing from the eye-tracking study conclusions and existing limitations, the
visual approach seems promising yet restricted for difficult cases. We plan to address those by
interleaving visual representations and code fragments and by proposing a zoomable interface with
different levels of detail. At the same time, the visualization may be beneficial for learning, which
can be supported with a smooth transition between code and visual representation.

Visual cluttering can be addressed by only displaying salient parts. They can be identified
directly by the users, or inferred from their behavior. On the other hand, a polyhedral compiler
may provide additional feedback on, e.g., dependences that prevent parallel execution. Finally,
Clint visualizations may be used conjointly with performance models and runtime evaluators, and
integrated into a larger development environment in order to account for program parallelization
all along the development process.
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