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ABSTRACT
Due to the missing of a good orchestration of loop transformations,
existing optimizing compilers for deploying neural networks on
GPU either parallelize reductions ine!ectively or miss the fusion
opportunities with other operators. Neural network models thus
exhibit sub-optimal performance on GPU. We present a practical
approach called P!"!#$%! for the e!ective parallelization of reduc-
tions in neural networks on GPU. P!"!#$%! "rst leverages loop
coalescing to #atten the loop dimensions of reductions, converting
all reduction operators into canonical forms eligible for the poly-
hedral model. Next, P!"!#$%! uses polyhedral transformations
to reduce the data movements caused by unfused reductions and
perform multi-block hardware binding not considered by many
compilers. Finally, P!"!#$%! embeds a highly optimized routine
implemented using GPU atomic instructions, further improving
the performance of neural network models while guaranteeing
the correctness of parallel reductions. The experimental results
demonstrate the e!ectiveness of our approach: for single operators
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our code obtains a mean speedup of 33.7→, 3.5→, 5.4→ and 9.6→
over cuDNN, CUB, TVM and Ansor, for sub-graphs our approach
outperforms cuDNN, TVM and Ansor by 9.5→, 2.6→ and 2.7→, and
for end-to-end workloads, a tensor compiler integrated with our
approach outperforms them by 122.5%, 19.3% and 15.2%.
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1 INTRODUCTION
Deep learning (DL) applications demand for extraordinary comput-
ing power. As NVIDIA GPU nowadays still dominates the market
for DL accelerators, e!ectively deploying DL models on GPU is an
important research topic [9, 54]. A DL model is composed of many
operators, among which the most compute-intensive ones are con-
volution and matrix multiplication. Existing methods [6, 9, 23, 54]
are e!ective to improve the execution performance of DL models
by deeply optimizing such compute-intensive operators.
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There also exist many operators like Softmax, ReLU, Batch Nor-
malization, etc., that are less compute-intensive compared to convo-
lution and matrix multiplication but also important to the execution
performance of a DL workload. The overall execution performance
of a DL workload can be sub-optimal if such operators cannot
be e!ectively optimized. The commonness of these operators is
that they all involve reduction, which applies a binary operator to
each element of an input vector and reduces the vector to a single
value. Parallelizing reductions is thus important for DL workloads.
Unfortunately, many optimizing compilers either parallelize this
speci"c computation pattern ine!ectively [9, 47, 54, 64] or lose the
optimization opportunities for operator fusion [15, 23].

Research on parallel reductions on GPU has a long history. The
investigation of Harris [27] explained in detail how parallel reduc-
tions can be performed on GPU. More recent work [20, 22, 49]
further enhanced and generalized the approach of Harris. However,
these methods did not consider the challenges faced by parallelizing
reductions in DL workloads, and few of them are integrated into
optimizing compilers for DL applications. Parallel reductions in DL
workloads are handled using either of the following two ways.

First, compilation techniques for DL models [9, 47, 54] use lan-
guage constructs and loop transformations to parallelize reductions.
They fuse multiple network layers and decompose the fusion results
by abstracting away the architectural features of GPU. However,
a fused operator is ine!ectively decomposed when nested reduc-
tions over multiple variables that possess several smaller reduced
dimensions are involved: while decomposing only one of these
small nested reduced dimensions to a single GPU block results in a
waste of hardware resources, dispatching multiple of them to more
than one blocks (though not supported by these approaches) has to
sacri"ce the parallelism of other fully parallelizable dimensions.

The second approach for parallel reductions is making use of
CUDA libraries like Thrust [5], cuDNN [11] and CUB [41]. Di!erent
from the aforementioned approaches, these highly tuned libraries
are written by GPU experts and can enable multi-block parallelism
for reductions. Yet these libraries do not scale with the diverse data
types or tensor shapes, as will be demonstrated in our experiments.
Some optimizing compilers like XLA [23] and Diesel [15] map a
reduction to these CUDA routines, but their implementation is not
compatible with pro"table loop transformations and misses the
fusion opportunities with other operators. The resulting data move-
ment across thememory hierarchy of GPU cancels out the performance
improvement brought by CUDA libraries.

In this paper, we present P!"!#$%!, a practical approach to
PArallelize NeurAl network Models E!ectively on GPU by imple-
menting Reductions Atomically. To deal with nested reductions
over multiple variables that take place frequently in DL, P!"!#$%!
carefully implements loop coalescing [45] in an intelligent way: it
neither designs custom schedule primitives [53] nor models the
transformation as a black-box optimization [7, 54, 58]; instead, it
isolates this transformation as a pre-processing step from the poly-
hedral schedulers [7, 16] and uses loop coalescing to normalize
nested reductions in DL workloads into three canonical forms. Such
a handling of reductions brings the "rst insight to existing optimiz-
ing compilers: it simpli"es the scheduling algorithms, which are
used by P!"!#$%! and many other polyhedral compilers [54, 64],

by avoiding the need to introduce complicated constraints to en-
able/disable this undesired transformation [59]. Importantly, as this
pre-processing step is implemented on top of the HalideIR [47], it
can be easily implemented in Tensor Comprehensions (TC) [54]
and TVM [9] that also (at least originally) use HalideIR.

Next, P!"!#$%! performs polyhedral loop fusion and tiling on
the canonical reductions and binds the transformed loop nests
to GPU hardware. While these standard transformations are not
new, performing them on the three canonical forms contributes
the second insight to the compiler community by bringing about
two bene"ts. (1) The canonical forms #atten multiple small reduced
dimensions into larger one, allowing a compiler to decompose the
larger reduced dimension across multiple thread blocks, which was
not considered by TVM [9]. (2) As each canonical form decreases
the number of nested loop dimensions, the numbers of tile sizes and
block/thread con"gurations are also reduced, which can tighten
the tuning space of an autotuner [65] for DL compilers.

Finally, P!"!#$%! embeds highly tuned routines to appropri-
ate positions of its generated code by making use of GPU atomic
instructions [22, 37], allowing P!"!#$%! to scale with complex sce-
narios. Traditionally, a reduction can be fused with its dependent
operators through loop fusion, which is implemented during the
polyhedral transformations of P!"!#$%!, but two independent
reductions cannot be merged because the polyhedral model exploit
fusion based on dependences between two operators and there exist
no dependences between them. We make it possible to fuse two
independent reductions in our code generator by carefully selecting
the identical hardware con"guration in the highly tuned routines,
increasing the fusion possibilities of reductions in DL workloads.
Besides, we provide the code templates in this paper, which other
developers can easily integrate to their systems. This is the third
insight o!ered by P!"!#$%! to the compilation techniques.

In the experiments, we "rst demonstrate that P!"!#$%! can
outperform cuDNN [11], CUB [41], TVM [9] and Ansor [65] by
33.7→, 3.5→, 5.4→ and 9.6→, respectively, for single operators. We
then use sub-graphs to show the compound e!ect of libraries and
loop transformations, resulting in an average speedup of 9.5→, 2.6→
and 2.7→ over cuDNN, TVM and Ansor. The results of end-to-end
workloads are "nally reported, with a mean improvement of 122.5%,
19.3% and 15.2% achieved by a tensor compiler that has been inte-
grated with P!"!#$%! over MindSpore [32] backed by cuDNN and
cuBLAS [40], TVM and Ansor.

In summary, this work makes the following contributions.

• P!"!#$%! canonicalizes reductions in DL not considered be-
fore [9, 64], making it possible to e!ectively decompose var-
ious reductions and fully harness GPU hardware resources.

• P!"!#$%! implements a good orchestration of loop trans-
formations for reductions, avoiding the need to introduce
complex constraints in polyhedral schedulers [59] and de-
creasing the tuning space size of DL reductions [9, 65].

• P!"!#$%! exhibits a much better scalability to data types
and tensor shapes than many CUDA libraries [11, 41], ren-
dering a compiler applicable to various reduction scenarios.

• P!"!#$%! enables fusion of independent reductions, further
improving the fusion possibilities and validating that there
still exists space for optimizing reductions.
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The paper is organizes as follows. Section 2 introduces the back-
ground. Section 3 explains dimension #attening. Section 4 presents
loop fusion and tiling. Section 5 describes the library implementa-
tion, followed by the potentials and limitations discussed in Sec-
tion 6, experimental results reported in Section 7 and related work
compared in Section 8. Section 9 concludes the paper.

2 BACKGROUND AND OVERVIEW
We consider reduction of associative and commutative operators.
These computational properties authorize the parallel execution
of this operator by reorganizing the computational order between
the input numerical elements. Figure 1 depicts two variants of
the parallel summation using a binary tree structure when given
a list of (blue) inputs with size n. These implementations reduce
the frequency to compute the (red) partial results from n ↓ 2 to
log2 n ↓ 1 when given a set of (blue) inputs with size n. As the
summations of the (red) partial results along the same horizontal
level are independent, parallel executions can be performed using
n/2 parallel processors. This makes GPU suitable for this task with
the growth of input size, but the parallelization of reductions on
GPU is non-trivial.

4 1 6 3 2 5 7 1

5 9 7 8

14 15

29

(a) Interleaved addressing.

4 1 6 3 2 5 7 1

6 6 13 4

19 10

29

(b) Sequential addressing.

Figure 1: The tree-based parallel reductions.

2.1 Parallel Reductions on GPU
The research on parallel reduction on GPU [27] revealed the opti-
mization criteria. For example, sequential addressing (Figure 1b) can
outperform interleaved addressing (Figure 1a) due to the absence
of bank con#icts on shared memory. A careful craft of the code is
also necessary to avoid the thread idleness while data loading from
global memory. As this optimization is usually performed by hand,
manually tuned libraries [5, 11, 41] are still competitive candidates
for parallel reduction on GPU.

GPU abstracts the streaming multiprocessors (SMs) as blocks
and the CUDA cores as threads. The maximal number of the allo-
catable threads within a block is limited. Parallel reduction can be
executed within a block by dispatching one or more loop iterations
to each thread, but one should decompose a reduction into multiple
parallel blocks with the growth of the input data size for improving
performance. However, GPU does not provide global synchroniza-
tion across blocks; decomposing a reduction across multiple blocks
is thus non-trivial. Existing solutions break down a reduction into
multiple GPU kernels [27], which is impractical for DLmodels since
multiple kernels should be generated for one reduction operator.

The manual routines [5, 11, 41] are also incompatible with prof-
itable loop transformations, especially (1) loop coalescing [45] that
is performance-critical for DL reduction as will be demonstrated in
this work, and (2) loop fusion [38], which can be used to create more

intermediate variables that can be allocated on shared memory [62].
Optimizing parallel DL reduction using vendor libraries alone thus
misses many opportunities to bene"t from faster shared memory.
A promising but also very challenging solution is to combine the
high-performance implementations with compilation approaches
capable of managing various loop transformations systematically.

2.2 Polyhedral Parallel Reductions
Hardware binding and loop transformations can be implemented
using the polyhedral model [17]. It performs loop fusion using
heuristics that are integrated into the scheduling algorithms [7, 59],
which in turn compute a combination of auxiliary loop transfor-
mations bene"cial to loop fusion by solving integer linear pro-
gramming (ILP) problems. An ILP problem is established using
dependences between statement instances; the scheduling algo-
rithms and the fusion heuristics can thus guarantee the validity of
the modeled transformations. The loop transformations can also be
managed using the polyhedral representation [25], on top of which
hardware binding can be conducted.

Parallel reduction in the polyhedral model is handled by relaxing
the induced reduction dependences between loop iterations [14, 49,
51, 56]. This allows the model to perform loop tiling [33] using a
given fusion con"guration. More speci"cally, a tiling transforma-
tion groups the iterations of a loop nest into smaller active working
sets, with outer parallel dimensions (tile loops) iterating between
these working sets and inner parallel dimensions (point loops)
within a working set. Hardware binding is achieved by relating tile
loops to GPU blocks and point loops to GPU threads.

However, such approaches cause a waste of hardware resources
when parallelizing only one small reduced dimension of nested
reductions over multiple variables, which take place frequently in
DL. While not yet studied, decomposing multiple small reduced
dimensions of such cases are often achievable by sacri"cing the
parallelism of other fully parallelizable dimensions, because GPU of-
fers at most 3D parallelism. Hence, a loop transformation, i.e., loop
coalescing [45], that reduces the dimensionality of the loop nests
where nested reductions over multiple variables happen should be
used. Unfortunately, as loop coalescing is harmful to the simpli"ca-
tion criterion of many existing polyhedral schedulers [7, 16], it is
an undesired transformation, though it can be produced in some
rare cases by introducing complicated scheduling constraints [59].
As such, modeling loop coalescing as a black-box transformation
using the polyhedral schedulers is non-trivial.

Even loop coalescing can be produced by a polyhedral scheduler
and a fattened reduced dimension can be dispatched to multiple
blocks, polyhedral parallel reduction still has to address the global
synchronization between them. This issue, however, is ine!ectively
addressed by privatizing the partial results [14], missing the oppor-
tunity to harness the low-level atomic instructions. An alternative
to the privatization strategy and code generation of the polyhedral
approaches is to wrap highly tuned routines, like what TC [54] did
by wrapping CUB [41], but this approach is restricted to innermost
loops, which is not su$cient for the diverse DL reduction scenarios.
Moreover, the ine!ective handling of partial tiles [35] with irregular
number of loop iterations produced by loop tiling in TC also leads
to inferior performance in practice.
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2.3 Overview of Our Approach
P!"!#$%! borrows the domain-speci"c language (DSL) of TVM
to rewrite a fused sub-graph as tensor expressions. A sub-graph is
generated by the graph engine of AKG [63], which can import a deep
neural network expressed using popular DL frameworks [1, 44].

P!"!#$%! "rst performs loop coalescing [45], which #attens the
loop nest of a reduction operator into a two-dimensional (2D) loop
nest or a single (1D) loop. This allows us to focus on 1D or 2D reduc-
tions, covering all types of DL reductions. Isolating loop coalescing
as pre-processing simpli"es the polyhedral scheduling by avoiding
the need for complicated scheduling constraints [59], but it comes
at the price of losing the expressiveness for loop interchange [2] in
the later. We will well address this side e!ect in Section 3.1.

The #attened input code is lowered to the polyhedral representa-
tion [25], on top of which the isl scheduler [59] is used to perform
loop fusion and tiling, possibly with the combination of auxiliary
loop transformations. The reduction dependences are ignored when
performing hardware binding, which allows for the decomposition
of a reduced dimension across multiple thread blocks.

To generate a single kernel, we use atomic instructions to write
back each result of a block to global memory. We introduce our li-
brary implementation to an appropriate position within each block,
which tunes the parallel execution of a reduction by considering
the optimizations not expressible in polyhedral compilation. We
"nally generalize the approach for more complex reduction cases.

3 DIMENSION FLATTENING
A DL model solves complex problems using abundant data of mul-
tiple dimensions. The data of a DL model is expressed as tensors
or multi-dimensional arrays, the operations of which are usually
encompassed by deeply nested loops. For instance, an image classi"-
cation model usually takes 4D tensors as input and performs opera-
tions on these input tensors. The enclosing loop nest of each tensor
operator is composed of at least four dimensions. As such, nested
reductions over multiple variables may happen in tensor reduction
operators, which encourages us to considermore complicated reduc-
tion patterns than those covered by existing approaches [11, 27, 37].

Nested reductions over multiple variables also complicate the
polyhedral scheduling algorithms and thus discourage many loop
transformations. We introduce a dimension #attening optimization
as a pre-processing step to generalize the various DL reduction
patterns. To achieve this purpose, we re"ne loop coalescing [45], a
loop transformation that combines nested loops into a single loop.

3.1 Loop Coalescing
We "rst assume there exists only one reduction operator in a sub-
graph, and will discuss the handling of multiple reduction operators
in Section 5.3. A reduction operator only induces dependences
along the reduced loop dimensions, allowing us to characterize
each loop of a reduction operator as either reduced or parallel.
We #atten a reduction operator’s loop nest to a 1D loop when
reductions are performed over all loop variables; otherwise, we
combine all reduced dimensions into one reduced loop and all
parallel dimensions to another, resulting in a 2D loop nest.

Loop coalescing is always valid because it only changes the loop
structure but not the order of computation [24] by specializing

the code using a di!erent way to reduce the control overhead. It
can be applied without further modi"cations when #attening all
reduced dimensions in Figure 2a into a 1D reduced loop; it can also
be performed safely when both parallel dimensions and reduced
dimensions are continuously nested, as shown in Figure 2b and 2c.

Yet one cannot directly #atten the pattern shown in Figure 2d
but has to resort to an interchange transformation [2] to make
the pattern align with either of those shown in Figure 2b and 2c.
It is always valid to transform the interleaved pattern shown in
Figure 2d into Figure 2b or Figure 2c, since the permutation always
happens between a parallel dimension and a reduced loop without
violating any dependences.

Loop interchange may be harmful to memory coalescing, an opti-
mization featured by GPU to compensate long access overhead by
combining multiple memory requests from parallel threads to adja-
cent locations into a single memory transaction. Fortunately, data
layout is easy to reason about in a DSL: tensor transpositions can
be introduced by reshaping tensors to guarantee that the permuted
loop dimensions always scan consecutive memory addresses. Up-
dating data layout before dimension #attening is important because
the polyhedral model will not be able to perform loop interchange
between the #attened dimensions, overcoming the weakness of the
isolation of loop coalescing from the polyhedral model. P!"!#$%!
maximizes the opportunity to bene"t from memory coalescing,
though long access latency may still be unavoidable in some corner
cases where con#icting demands caused by reshaping di!erent ten-
sors take place. We did not observe such cases in our experiments.

r1

r2

r3

r4

(a)

r1

p2

r3

r4

(b)

r1

r2

p3

p4

(c)

p1

r2

p3

r4

(d)

p1

p2

r3

r4

e1

e2

e3

e4

· · ·

e1

e2

e3

e4

m elmwise ops

(e)

Figure 2: The loop nested patterns: (a) Reductions over all
loop dimensions; (b) and (c) Both the (red) parallel dimen-
sions and the (blue) reduced dimensions are continuous; (d)
The parallel dimensions and the reduced dimensions are in-
terleaved; (e) When coupled with elementwise operators. r ,
p and e are short for reduction, parallel and elementwise, re-
spectively. Blue arrows denote dependence propagation.

As a result, loop coalescing can always transform these nested
patterns into one of the canonical forms shown in Figure 3. We use
R to represent the reduction statement. The nested pattern shown
in Figure 2a can be #attened into the form shown in Figure 3a,
which we refer to as all-reduce. The patterns shown in Figure 2b
and 2c can be transformed into the code shown in Figure 3b and 3c,
respectively, and we use x-reduce and y-reduce to represent these
versions.

reduced for j=0 to N
R(j1, · · · , jr );

(a) all-reduce.

parallel for i=0 to M
reduced for j=0 to N
R(i1, · · · , ip , j1, · · · , jr );

(b) x-reduce.

reduced for j=0 to N
parallel for i=0 to M
R(j1, · · · , jr , i1, · · · , ip );

(c) y-reduce.

Figure 3: The canonical forms after dimension !attening.
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The parameters of the codes can be determined using



M =
p∏
x=1

sx = s1 → · · · → sp, N =
r∏
ω=1

tω = t1 → · · · → tr ;

ia =
⌊
i
/ p∏
x=a+1

sx
⌋
mod sa : (1 ↔ a < p), ip = i mod sp ;

jb =

⌊
j

/
r∏

ω=b+1
tω

⌋
mod tb : (1 ↔ b < r ), jr = j mod tr ;

(1)

where p and r represent the numbers of parallel and reduced loop
dimensions, respectively, and each sx (1 ↔ x ↔ p) or tω (1 ↔ ω ↔ r )
is used to denote the number of parallel or reduced loop iterations.
We allow at most one sx and one tω to be symbolic constants such
thatM and N can be written as a$ne expressions. In addition, we
have to recover the original subscripts of the reduction statement R
from the coalesced loop dimensions. The last two sets of Formula (1)
are meant to perform this recovery.

We use Figure 4a to illustrate the e!ect of loop coalescing. The
(underlined) reduced dimensions are separated by a parallel dimen-
sionw , which triggers the loop interchange of our pre-processing
steps. The reduced dimensions then become continuous and are #at-
tened into an y-reduce form shown in Figure 4b. The loop extents
and the tensor subscripts are also updated according to Formula (1).

for h=0 to 40
for w=0 to 20
for x=0 to 10
for y=0 to 5
E(h,w,x,y);

for h=0 to 40
for w=0 to 20
for x=0 to 10
for y=0 to 5
R(h,w,x,y);

(a)

for h=0 to 40
for w=0 to 20
for x=0 to 10
for y=0 to 5
E(h,w,x,y);

for i=0 to 20
for j=0 to 40*10*5
R(i,(j/(10*5))%40,
(j/5)%10,j%5);

(b)

parallel for i=0 to 20
parallel for j=0 to 40*10*5
E(i,(j/(10*5))%40,
(j/5)%10,j%5);

parallel for i=0 to 20
reduced for j=0 to 40*10*5
R(i,(j/(10*5))%40,
(j/5)%10,j%5);

(c)

Figure 4: An example to illustrate the e"ect of dimension
!attening. (a) The original code; (b) Flatten the reduction op-
erator; (c) Propagate reductions to the elementwise operator.

Reasoning about reduction dependences using polyhedral com-
pilation [14, 49, 51, 56] is impossible here, because the compilation
#ow has not yet been lowered to the polyhedral representation.
Instead, a reduced dimension in DL models can be inferred using
DSL [9, 54], and the bounds of a loop are always (symbolic) con-
stants. They together make it possible to automate loop coalescing.

3.2 Reduction Propagation
Loop coalescing invalidates the originally possible fusion between
a reduction operator and its preceding elementwise operators. Fig-
ure 2e depicts a reduction operator preceded by m elementwise
operators. Due to the perfect dimension matching between the
loop nests, these operators can be fused, but loop coalescing loses
this property by changing the reduction loop nest into an x-reduce
form.

A reduction is not allowed to be followed by elementwise opera-
tors in a sub-graph, since loop tiling (Section 4.2) will prevent the
fusion between them. Such a requirement can be feedback to the
high-level graph compiler [63] to re"ne its rules, whichmanages the
interaction between a tensor optimizer and a graph compiler [23].

To make the fusion with these preceding elementwise opera-
tors still possible, we also coalesce each elementwise operator in

Figure 2e. An elementwise operator never induces dependences;
we can thus assume that each elementwise dimension is parallel.
One may obtain a 1D parallel loop if he/she combines the enclos-
ing loops of an elementwise operator, which does not match the
x-reduce pattern.

We propagate the reduction dependences to each elementwise
operator and use the blue arrows to represent such a propagation.
Each pair of e3 and e4 dimensions of an elementwise operator will
thus be considered as reduced, and our compiler can apply the
same coalescing strategy to each of them elementwise operators. A
more intuitive example is shown in Figure 4c, where an elementwise
operator (the "rst loop nest) is coalesced according to its succeeding
reduction operator (the second loop nest).

4 POLYHEDRAL TRANSFORMATIONS
The polyhedral model requires a$ne loop and tensor subscript ex-
pressions [17] for a given program. Our pre-processing steps make
the three canonical reduction forms eligible for polyhedral compi-
lation. First, the loop parameters M and N are a$ne expressions
due to the constraints on sx and tω . Second, each tensor subscript
inferred using Formula (1) only involves multiplications, integer
divisions and the modulo arithmetic, which can also be perfectly
modeled in polyhedral compilation. One can easily lower the output
of Section 3 into the polyhedral representation [25].

4.1 Loop Fusion
Loop fusion is applied by respecting each dependence, minimizing
the producer-consumer relations between the DL operators and
thereby maximizing the temporal locality. Loop tiling and hardware
binding can then be performed based on a loop fusion con"guration.
We enforce outer parallelism in the isl scheduler, which always
permutes a parallel loop to an outer position when possible. In
other words, our isl scheduler transforms the loop nest of a y-
reduce case shown in Figure 3c into the nested pattern shown in
Figure 3b. It makes it possible to always bind a parallel loop to the
outer dimension of GPU blocks and a reduced loop to the inner,
minimizing the overhead of global synchronizations.

4.2 Loop Tiling and Hardware Binding
Given a fusion con"guration, the polyhedral model applies loop
tiling to the composed 2D loop nests or 1D loops. Each y-reduce
case is converted into x-reduce by the isl scheduler, and all-reduce
can be viewed as a special case of that shown in Figure 3b withM
set as 0. We thus use the x-reduce pattern to illustrate how loop
tiling and hardware binding are performed. Loop tiling is valid
if two smaller blocks of a loop nest’s iterations produced by this
transformation can be executed without mutual dependences [33].
This prerequisite for the validity of loop tiling is also guaranteed by
the schedulers of isl. Loop tiling transforms an x-reduce reduction
that has been fusedwith elementwise operators into the code shown
in Figure 5a. We use ib ,jb to represent the tile loops and it ,jt for
point loops.

Loop tiling is performed to align with the multi-level parallelism
of GPU hardware. As shown on the left of Figure 5b is the hierarchy
of the tiled loop nest; on the right is the 2D GPU blocks and threads.
The curved arrows represent the binding relations between loop
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dimensions and block/thread indexes. The ib and it loops can be
mapped to their counterparts safely, since they both are parallel.
Due to the reduction dependences, the jb and jt loops, however,
are originally not allowed to distribute across multiple blocks or
threads. Considering the associativity of a reduction, we ignore the
reduction dependences, whichwill be recovered later, and transform
jb and jt loops into parallel. These two dimensions can now be
decomposed into multiple blocks, as the dashed arrows show.

/* Tile sizes are 32 → 4. */
parallel for ib =0 to M/32
reduced for jb =0 to N/4
parallel for it =0 to 32
reduced for jt =0 to 4
m elmwise stmts;
// marked reduce stmt
R(i1, · · · , ip , j1, · · · , jr );

(a) The tiled code.

parallel

parallel

reduced

reduced

ib

jb

it

jt

blockIdx.ω

blockIdx.x

threadIdx.ω

threadIdx.x

(b) Hardware binding.

Figure 5: Loop tiling and hardware binding of x-reduce.

The binding strategy is implemented by manipulating the in-
ternal representation [25] using its rich set of node types, which
was also employed by existing polyhedral tools [54, 58]. We go
one step further by mapping the reduced loop dimensions to the
inner dimensions (blockIdx.x /threadIdx.x ) of the block/thread pa-
rameters. We enforce this binding strategy for two reasons. First,
binding a reduced tile loop to the inner block dimension minimizes
the amount of the global synchronizations across multiple blocks.
Second, such a binding strategy bene"ts for memory coalescing
thanks to our memory access pattern discussed in Section 3.1.

4.3 Orchestration E"ects of Transformations
The combination of loop fusion and tiling follows the traditional
way used by many existing polyhedral compilers [7, 54, 58], but
loop coalescing is no longer computed by the polyhedral schedulers.
Instead, performing loop coalescing in an isolated way makes it
possible to obtain the three canonical forms in Figure 3, which eases
the hardware binding in Section 4.2 without sacri"cing the paral-
lelism of other fully parallelizable dimensions. Without these three
canonical forms, the dimenisonality of tunable loop dimensions
can vary greatly, and an autotuner [65] has to search a much larger
space of tile sizes and thread/block con"gurations.

5 CODE GENERATION AND OPTIMIZATION
To resume the ignored reduction dependences, we attach a special
mark to each reduction statement, as the comment before the re-
duction statement R shown in Figure 5a. The attachment of such a
mark is also done by manipulating the internal representation [25].
This mark delivers a request to the code generator, which will deal
with a reduction statement using a special scheme.

5.1 Code Generation
Code generation in polyhedral compilation is trivial for element-
wise operators. The code generator substitutes each tensor index
variable with a tiled expression, which is instanced using the built-
in blockIdx/threadIdx variables according to the mapping relations
for hardware binding. The generation of reduction statements is a

bit more complicated. For the sake of simplicity, we take the parallel
summation operator (reduce_sum) as an example to illustrate the
code generation of reductions, which is shown in Figure 6.

4 1 6 3 2 5 7 1 2 3 6 1 8 3 7 4

t0 t1 t2 t3 t0 t1 t2 t3

6 6 13 4 10 6 13 5

library library

29 34

atomic instruction

63 grid

block0 block1 data on global memory

data on shared memory

data in registers

single-block
library

implemation
using [27].

Part 1

Part 2

Part 3

Figure 6: Parallel reductions using atomic instructions.

We suppose that reduce_sum is performed over 16 (blue) data
elements. We also assume that two (dashed red) blocks are used
to execute this reduction, each of which is con"gured using four
(orange) threads, t0 to t3. This con"guration results in the execution
of multiple reductions within each thread. The top curved lines
represent the relations between additional data elements and the
threads. In our example, each thread produces a local summation of
two input elements. This constitutes the "rst execution part (Part
1 ), which automatically implements the “"rst add during global
load” optimization, i.e., the sequential addressing optimization in
Figure 1b, of the kernel decomposition approach [27]. Part 1 also
maximizes the opportunity to enable sequential addressing and al-
low for the fusion of a faster parallel reduction with other operators,
which was not considered by highly tuned libraries [11, 27, 41].

Part 1 computes a (green) local summation using a thread that
requires further reductions. These local summations cannot be gen-
erated by the polyhedral model since no corresponding statement
exists in the internal representation. We introduce an invocation of
a parallel reduction routine, Part 2 , with both sequential addressing
and loop unrolling exploited by [27] considered, reducing the local
summations of each thread to a (red) partial result for each block.
Part 2 guarantees the high performance of the generated code,
addressing the ine!ectiveness of stand-alone compile-time trans-
formations [14, 66]. The maximum allocatable number of threads
per block is limited, but we dispatch more computations to one
thread in Part 1 and execute the local reduction of a thread in
parallel with others’, minimizing the number of blocks involved.

A reduction over all (red) partial results is "nally added auto-
matically following the library invocation. We use Part 3 to rep-
resent this "nal reduction and leverage the low-level GPU atomic
instructions to guarantee the global synchronization. Using atomic
instructions always generates a single kernel, but it enforces the
sequential updates from the (red) partial results to the "nal (blue)
summation. We thus always try to minimize the number of blocks,
which is mitigated by Part 1 , to guarantee the high performance.
The bene"ts of using atomic instructions include the avoidance of
multiple kernels [27] and the much better performance over the
code generated by isl [57].
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The above orchestration generates the code depicted in Figure 7.
We show the code as a template for di!erent kinds of reductions,
with various data types fully supported. OP can be instanced using
an associative and commutative binary operator. The supported
binary operators in our implementation include summation (+),
product (→),min, max, logical AND (&&) and logical OR (||). T is used
to represent the type of the input data, which can be one of double,
"oat32, "oat16, bool, long long int and int, covering all reduction
scenarios we have seen so far in the domain of deep neural networks.
One can easily complement other reduction and/or data types when
necessary, to which our approach is still applicable.
__global__ void reduce(int len, T *input, T *output, int num, OP op){
T local_sum=0;
__shared__ T shared_buf[4];
__shared__ T block_sum[1];
/* Part 1 , automatically generated using polyhedral compilation. */
for(int k=0; k< num; k++)
if(threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*num<len)
op(local_sum,input[threadIdx.x+k*blockDim.x
+blockIdx.x*blockDim.x*num]);

__synchthreads();
/* Part 2 , automatic invocation of library routines. */
Parallel_Reduce<T,OP,4,all>(op,&block_sum[0],shared_buf,local_sum);
__synchthreads();
/* Part 3 , automatic global sychronization using atomics. */
if(threadIdx.x==0)
Atomic_Return<T,OP>(block_sum[0],&output[0],op);

}

Figure 7: Automatically generated kernel for reduce_sum.

Parallel_Reduce and Atomic_Return are the interfaces to our li-
brary and low-level atomic instructions, which will be instanced
using a data type T and a reduction operator OP. The third argu-
ment of Parallel_Reduce represents the number of threads within
each reduced block, and the last argument indicates the reduction
pattern (Figure 3) handled by this function.

A further optimization can be applied to the loop of Part 1 ,
which can rewrite the loop as
for(int k=threadIdx.x+blockIdx.x*blockDim.x*num;k<len;k+=blockDim.x)
op(local_sum,input[k]);

and remove the if conditional within the kernel. In addition, a
larger stride of blockDim.x*gridDim.x can also be used to maximize
the opportunity to optimize global memory coalescing. Generating
loops with non-unitary strides using polyhedral compilation is
straightforward, but the internal representation of the polyhedral
model has to be lowered toHalideIR [47] to emit CUDAkernel in our
DL compiler, which currently does not support such a functionality.

One may notice that __synchthreads() has also been introduced
at the correct positions in the code to perform synchronizations.
The variables that should be allocated on the shared memory have
also been declared with the __shared__ attribute. Like existing poly-
hedral compilers for GPU [54, 58], the generation of thread synchro-
nizations and the memory promotion to shared memory are both
implemented by manipulating the polyhedral representation [25],
which is also used to determine which variables are local to a
single block and promote it to shared memory/registers. Thread
synchronizations can be introduced as long as a Parallel_Reduce

or Atomic_Return invocation is generated.

5.2 Generalizing the Library
We now generalize our approach for an irregular input sizen. Specif-
ically, we divide the input elements into two groups, with one of size

2k and the other consisted of the remaining. k should be selected
such that 2k is equal to the greatest power of two among those
smaller than n. We then perform a local reduction over the input
data to reduce the number of elements to 2k . An irregular input
size is thus transformed into a form eligible for our library, with
a!ordable if conditionals used during the added local reductions.

While this optimization is designed for parallel execution within
a single block, i.e., for Part 2 of Figure 6, it can also be used to opti-
mize irregular input sizes across multiple blocks. As we explained in
Section 4.2, the polyhedral model performs loop tiling to "t for the
GPU memory hierarchy. One cannot always "nd tile sizes that can
divide the input sizes of a reduction operator. Partial tiles, usually
with an irregular number of loop iterations, are encountered when
tile sizes cannot divide the input sizes. Existing approaches like
TC [54] fail to bene"t from the CUB library [41] in such cases.

Another di$culty is the limited set of data types supported by
atomic instructions of GPU devices with compute capability 8.x
and higher. They only support data types of 2 bytes, 4 bytes and 8
bytes [42], making Part 3 not suitable to handle logical AND/OR.
Fortunately, data of the bool type (1 byte) can always be processed
e$ciently, no matter when accessed from memories or used by
computation. The maximum representable value of this type also
implies that the input size will not be too large. As a result, a single
block is su$cient to handle reductions of this type.

5.3 Handling Multiple Reductions
We now discuss the handling of multiple reductions. As explained in
Section 3, P!"!#$%! only allows the fusion of a reduction with its
preceding elementwise operators. An ideal scenario that takes place
frequently in DL applications is composed of multiple independent
reduction operators, which may share one or multiple elementwise
operators. One can still fuse multiple reduction operators when
the numbers of their enclosing loop nests are identical and they
are performing reductions along the same set of loop dimensions.
P!"!#$%! is still applicable in this case by embedding one library
invocation for each reduction. Figure 8 is an example of such cases,
where all templated objects haven been instantiated.

However, one cannot obtain a single kernel when di!erent sets of
reduced dimensions of multiple independent reduction operators do
not match exactly. This happens when given a sub-graph composed
of multiple dependent reduction operators due to the failure of
fusion between them. Our solution is to feedback to the upstream
graph engine of AKG [63] to decompose such a sub-graph into
smaller ones such that the prerequisite of our approach can be
satis"ed, and our approach can work as normal. In summary, our
library is implemented in more than 1,000 lines of CUDA C++ code,
with various data types, diverse reduction scenarios and di!erent
interfaces all supported. Debugging and testing of the approach
cost roughly one month.

6 DISCUSSIONS
We now discuss the potentials and limitations of P!"!#$%!.

6.1 Generality and Potentials
As explained before, the data of DL reductions is usually organized
in a deeper nested manner than the available hardware parallelism
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__global__ void reduce(float *input0, float *input1, float *input2,
float *output0, float *output1){

float local_sum=0; float local_max=-3.40282e+38f;
__shared__ float shared_buf[128]; __shared__ float block_sum[1];
__shared__ float block_max[1];
/* Fuse the addition operator with reduce_sum. */
for(int k=0; k< 8; k++)
if(threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*8<1024){
float agg_local = input0[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*8]
+ input1[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*8];

Sum(local_sum, agg_local);
}

__synchthreads();
Parallel_Reduce<float,Sum,128,all>(Sum,&block_sum[0],shared_buf,local_sum);
__synchthreads();
if(threadIdx.x==0)
output0[0] = block_sum[0];

__synchthreads();
/* Fuse two reductions through identical hardware configuration. */
for(int k=0; k< 17; k++)
if(threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*17 < 2176)
Max(local_max, input2[threadIdx.x+k*blockDim.x+blockIdx.x*blockDim.x*17]);

__synchthreads();
Parallel_Reduce<float,Max,128,all>(Max,&block_max[0],shared_buf,local_max);
__synchthreads();
if(threadIdx.x==0)
output1[0] = block_max[0];

}

Figure 8: A code example of a fused operator that is com-
posed of one addition and two reductions. It #rst sums
input0 and input1, both of which are 1D tensors of size 1024,
and outputs output0 through a reduce_sum. Another 1D ten-
sor input2 of size 2176 is reduced (reduced_max) to output2.

dimensions but the data size along each loop is relatively smaller,
resulting in the ine!ective use of GPU threads. On the one hand,
dimension #attening can be used to address this issue but it misses
the fusion opportunities. On the other hand, performing loop fusion
without the help of loop coalescing fails to maximize the utilization
of hardware resources. Existing techniques thus cannot model the
con#icting demands between GPU hardware parallelism enabled by
loop coalescing and the optimization ofmemory hierarchy exploited
by loop fusion, though each of them was commonly used before.
P!"!#$%! resolves this trade-o! for DL reductions by orchestrating
these techniques systematically to achieve their best composition.

We use the functionality of isl to compute new schedules and
perform fusion and tiling, but we carefully manipulate the internal
representation of isl to realize the appropriate hardware binding.
Dimension #attening and library embedding are implemented by
ourselves. Note that loop tiling and coalescing are expressible using
a#ne relations [4, 34] in the polyhedral model, but the state-of-
practice polyhedral scheduling algorithms [7, 16, 59] are only able
to compute a#ne functions that do not expand or collapse loop
nest dimensions. Loop transformations like tiling and fusion falling
into this category are thus performed in an isolated manner. For
instance, Pluto [7] and PPCG [58] focus on enabling tiling "rst and
then apply the transformation as a post scheduling pass. P!"!#$%!
is the "rst work that uses loop coalescing as pre-processing before
scheduling for DL reductions. Also note that the idea presented in
this paper was not restricted to polyhedral compilation: as loop
tiling for reductions and their fusion with elementwise operators
after our preparation are always legal, one can easily integrate our
approach into other tensor compilers like TVM.

We did not set a threshold on the number of fused operators.
Instead, the criterion to make fusion decisions is determined by

available hardware resources. The reduction operators are given
with the higher priority when faster memory are (close to) satura-
tion in the case of aggressive fusion.

Our approach harnesses the domain-speci"c properties of DL
applications, but it is not only applicable to deep neural networks.
All optimizations related to the domain-speci"c properties of DL
models can be turned o! to generalize the approach to more applica-
tion domains. We always deal with Figure 3a using one GPU, since
DL reductions usually possess smaller data sizes than those of high-
performance computing, which rarely exceed the handling power
of a single GPU. For Figure 3b and Figure 3c, we evenly decompose
the parallel for loop to multiple GPUs and let each generate one
kernel to avoid synchronizations between them.

P!"!#$%! is also applicable to matrix multiplication, since it
can also be considered as a reduction operator. Nonetheless, we do
not encourage to optimize matrix multiplication using P!"!#$%!
in most cases, since many DL compilers have more sophisticated
optimization strategies for such operators by fully incorporating
with speci"c hardware support.

For example, AKG has its speci"c strategy to optimize matrix
multiplication or map it to tensor cores using the same approach
presented in [6]. We compare the performance of P!"!#$%! and
the speci"c handling of matrix multiplication in AKG in Table 1.
The performance of P!"!#$%! is lower than the special handling
backed by tensor cores. However, P!"!#$%! can also surpass the
later by 2.71→when the reduced dimension is very large and parallel
dimensions are small (a strange shape that rarely but probably
happen in practice), where the atomic instructions are not the
performance bottleneck.

Table 1: Performance comparison of matrix multiplication
when optimized using P!"!#$%! and tensor cores in AKG.
We report execution time in microseconds.

MNK shape K-dim con"g P!"!#$%! tensor cores matching percent
128 → 32 → 64 2 blocks 24.044 4.381 18.22%
128 → 32 → 1024 16 blocks 21.378 57.882 270.75%
1024 → 512 → 1024 16 blocks 183.18 78.623 42.92%

6.2 Limitations
P!"!#$%! currently su!ers from some limitations. First, using
atomic instructions probably results in the non-determinism is-
sue. Addressing this problem using compilation techniques [39, 43]
is possible, but these methods may miss the speci"c features of
atomic instructions. We believe the recent hardware scheme for de-
terministic atomic bu!ering [12] is the best solution. Using atomic
instructions prevents P!"!#$%! from being extend to associative
but non-communicative reductions, but it is the price to pay for
using such hardware primitives. Second, mapping to the templated
routines during code generation still needs manual con"gurations,
making P!"!#$%! not fully automated. We believe automating the
generation of these routines is possible but calls for much e!ort
due to the diversity of di!erent fused scenarios. Similar innermost
optimization can also be automated, like the automatic generation
of the innermost kernel for general matrix multiplication [52]. We
leave addressing these two limitations as our future work.
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7 EXPERIMENTAL RESULTS
P!"!#$%! is implemented in AKG [64] that takes as input a DL
model and generates CUDA code for GPU, with a templated C++
interface to isl-0.21 [57] used for polyhedral transformations. The
code repository is available at https://gitee.com/mindspore/akg.
AKG was used for NPUs but it can also generate CUDA code. A
DL model is "rst converted into sub-graphs, each of which is trans-
formed into tensor computations by the DSL of TVM. P!"!#$%!
lowers a tensor program to generate CUDA code for an NVIDIA
Tesla V100 GPU. The CUDA code is compiled using the nvcc com-
piler version 10.1 with the -O3 #ag enabled for each program.

We conduct experiments on single operators, sub-graphs and
end-to-endworkloads. The CUDA code generated by TVM (v0.6) [9],
Ansor [65], cuDNN (v7.6.4) and CUB (v1.8) [11] are considered for
comparison. A single operator is written using the DSL of TVM,
which can be taken as input by P!"!#$%!, TVM and Ansor. The
code variants and the GPU hardware con"gurations are optimized
using the auto-tuners of each approach, with both the optimal tile
sizes and the GPU grid/block parameters fully tuned. We pass the
appropriate arguments to the interfaces of cuDNN and CUB such
that they can be used in the experiment. The geometric mean of
10 executions is reported to minimize the e!ect of performance
noise. The optimal tile sizes used for each code evaluated in the
experiments are fully tuned by their own auto-tuners.

7.1 Results of Single Operators
We use three reduction operators including reduce_sum (summa-
tion), reduce_max (maximum) and reduce_and (logical AND) to
evaluate the scalability. The results of reduce_mul (product), re-
duce_min (minimum) and reduce_or (logical OR), follow similar
trends as the three operators considered here, respectively; we will
thus not show their results. We consider two factors, input tensor
con"gurations and data types, in this experiment. The data types
used in this evaluation include "oat32, "oat16, int and bool. The
results of the double and long long int are similar to those of "oat32
and int. The original tensor shape con"gurations are listed below
the bar charts of reduce_sum, and the #attened shape con"gura-
tions are shown below each plot of reduce_max with each reduced
dimension underlined. Figure 9 and 10 show the comparison of
the execution times. We use the #attened shape con"gurations for
explanation.

When given "oat32 and int types, TVM performs poorly with
larger input sizes, especially in the all-reduce scenarios, due to its
ine!ective hardware binding strategy. As it can also work with
dimension #attening introduced in Section 3, TVM performs better
under x- and y-reduce shape con"gurations but still falls behind
P!"!#$%! due to the improper use of GPU blocks.

P!"!#$%! outperforms TVM slightly when given "oat16 data,
because we did not perform reductions over toomany elements. The
maximum representable value of IEEE 754 half-precision #oating-
point numbers is 65504. A greater size of "oat16 numbers may lead
to an over#ow error of the partial or "nal reduction results. Consid-
ering the insu$cient numbers of input elements, we did not span
the reduction to multiple blocks. The performance improvement
comes from our library. Similarly, one cannot specify a much larger
shape con"guration to reduce_and, which takes as input bool data.

In summary, P!"!#$%! obtains a mean speedup of 5.4→ over TVM.
Note that reductions over "oat16 values are not supported by TVM,
which has to "rst convert the input into "oat32 and then transform
the result back to "oat16 to allow for the comparison.

We also report the execution times (the violet bars) of P!"!#&
$%! with only the multi-block functionality disabled. This version
performs similarly to P!"!#$%! when given smaller shape con"g-
urations, but it su!ers from severe degradation under larger and/or
complex shape con"gurations where the block-level parallelism is
crucial to performance improvement. The performance di!erence
between this version and TVM is due to the di!erent tuned tile sizes.
The purpose of this experiment is to isolate the e!ects of Part 2
and 3 , which have to be used together for correctness. We did not
evaluate the e!ect of Part 1 , since it has been studied in [18, 27].

Ansor advanced TVM by automatically generating schedule
templates using a sampling strategy, but it did not optimize TVM’s
single-block parallelism. Due to the randomness of the sampling
strategy, its performance follows the similar trend as TVM’s by
sometimes outperforming and sometimes falling behind the later.
Ansor’s tuner searches towards a direction which it supposes can
"nd a better schedule, but it quits with a failure information thrown
out under the last y-reduce con"guration, where its tuner cannot
"nd better solutions. P!"!#$%! outperforms Ansor by 9.6→.

cuDNN exhibits the worst scalability among all approaches to
both factors we considered. First, it seems that cuDNN does not
support reduction operators over integer numbers, since it throws
out a Bad_Parameter error when handling reductions of integer
numbers. The execution times of the int type are thus missing
in Figure 9 and 10. Second, when given #oating-point numbers,
cuDNN scales well under the all-reduce cases, but its performance
declines severely under an x- or y-reduce con"guration.

It is hard to exactly explain the reasons why cuDNN su!ers from
such degradation, since its algorithmic implementation is not pub-
licly accessible. Based on a pro"ling analysis, we guess the possible
reasons may be as follows. First, it is likely that cuDNN dose not
perform loop coalescing, which results in the ine!ective hardware
binding between parallel/reduced dimensions and GPU blocks in
the case of nested reductions over multiple variables. Second, it
seems like an identical 3D thread con"guration «8,16,1» within
each block is used by default by this library, though multiple blocks
are allowed. Finally, it might not consider the pattern shown in Fig-
ure 2d when given a tensor shape con"guration. Conversely, these
optimization strategies have all been integrated into our approach,
leading to a mean speedup of 33.7→ over cuDNN.

We also collect the data of CUB [41]. CUB does not support
reductions over "oat16 data. We thus report the results of this type
by performing the same type conversion approach as what we
did to TVM, i.e., "rst converting the input data type into "oat32
and then changing the result back to "oat16. CUB falls behind our
approach due to the overhead of data type conversion, though it
performs similarly to P!"!#$%! when given "oat32 or int data.

CUB also has many restrictions. Similar to cuDNN, CUB cannot
handle the non-continuous reduction dimensions like Figure 2d.
We feed the #attened shape con"gurations to this library. In addi-
tion, it can only take as input reduction operators whose reduced
dimensions are along the inner loops, which requires an auxiliary
transpose operator to permute the reduced dimensions to inner
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Figure 9: Execution times of a single reduction operator under di"erent data types (reduce_sum x axis: original shape con#g-
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positions when given a y-reduce case. This auxiliary transpose
operator introduces performance penalty, which is represented by
the upper part of each stacked (red) bar under the y-reduce con-
"gurations, and the execution time of CUB is always longer than
that of P!"!#$%! under ω-reduce inputs. On average, P!"!#$%!
surpasses CUB by 3.5→ and outperforms the latter by 2.1→ when
the performance penalty of a transpose operator is not considered.

7.2 Results of Sub-graphs
We collect 12 sub-graphs obtained from the high-level graph en-
gine [63] and compare the performance with TVM, Ansor and
cuDNN. Table 2 summarizes these sub-graphs, with each input
con"guration denoted by the data type followed the tensor shape
in a bracket and reduced dimensions underlined. A sub-graph is
composed of two to six elementwise and reduction operators, and
each of its branches is terminated by a reduction operator. These
sub-graphs can be taken as input by TVM [9], Ansor [65] and our
approach. Figure 11 shows the execution times of each approach.
The result of cuDNN is missing in some cases due to the failure of
supporting type casting operators and shape reshaping operators.
This illustrates that cuDNN is rarely scaling with divergent ele-
mentwise operators. P!"!#$%! produces an average 9.5→ speedup

over cuDNN due to the optimization on reductions and the saved
memory access latency thanks to loop fusion.

Table 2: Summary of Sub-graphs. f for float; cast16 converts
an f 32 tensor into f 16 and cast32 performs the reverse pro-
cess; r_sum represents the reduce_sum operator.

no. input con"g. op1 op2 op3 op4 op5 op6
1 f 32 [64,2] cast16 cast32 cast16 r_sum - -
2 f 32 [1280,21128] cast16 r_sum - - - -
3 f 16 [64,768] cast32 r_sum - - - -
4 f 32 [1280,21128] mul r_sum - - - -
5 f 32 [1280] neg mul r_sum - - -
6 f 32 [3072] mul mul r_sum - - -
7 f 32 [64,128,768] add mul _sum - - -
8 f 32 [64,128,768] add mul r_sum add mul r_sum
9 f 32 [8192,768] r_sum r_sum - - - -
10 f 16 [64,128,12,64] reshape cast32 r_sum - - -
11 f 16 [64,128,768] reshape cast32 r_sum - - -
12 f 16 [64,20] reshape r_sum - - - -
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Figure 11: Execution times of sub-graphs (y axis: log scaled
execution time in µs; lower is better).

The manual fusion of TVM also bene"ts from the faster local
memories of GPU and obtains comparable performance to that of
P!"!#$%! under all-reduce cases like sub-graphs 5 and 12, but it
underperforms when the bene"t of multi-block parallelism (sub-
graphs 4, 6, 10 and 11) or reduction propagation (sub-graphs 1, 2, 3
and 7) is signi"cant. In addition, the interaction with the upstream
graph engine allows for the aggressive fusion of reduction operators
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(sub-graphs 8 and 9) where the two reductions on di!erent branches
do not depend on each other but perform reductions along the
same set of loop dimensions. Such information is committed to the
upstream graph engine [63], which will then combine these two
reductions. This scenario is not considered by TVM. Our approach
brings about a mean speedup of 2.6→ over TVM.

Ansor’s performance is inferiorwhen the reduced dimensions are
relatively smaller (sub-graphs 1, 2, 5 and 12) or superior to TVM in
other cases (sub-graphs 4 and 6). This approach fails to handle sub-
graphs 8 and 9. P!"!#$%! outperforms Ansor by 2.7→ on average.
The performance gap between P!"!#$%! and these baselines may
be further widened when given larger shape con"gurations.

The dark gray bars represent the execution times of P!"!#$%!
with loop fusion disabled. The bene"t of loop fusion is lightweight
when given an all-reduce case and the number of operators is small
(sub-graph 12). This version also performs similarly to P!"!#$%!
for sub-graph 9, because the fusion between two independent re-
duction operators is exploited by the graph engine, which is enabled
in both versions. The e!ect of loop fusion is notable in other cases.

7.3 Results of End-to-end Workloads
P!"!#$%! was integrated into AKG, which performs a large num-
ber of domain-speci"c optimizations for convolutions and (batched)
matrix multiplications, without which the deployment of a DL
model onto GPU would be impossible. We "rst compare the ex-
ecution times of the codes generated by AKG with and without
our approach, which is used to illustrate how much improvement
P!"!#$%! can bring about to a tensor compiler.

We next compare the performance with MindSpore [32], TVM
andAnsor.MindSpore is a DL framework backed by cuDNN/cuBLAS.
The purpose is to demonstrate that P!"!#$%! can help AKG exceed
other approaches. The optimizations for convolutions, (batched) ma-
trix multiplications, etc. are also enabled by TVM and cuBLAS [40].
We consider BERT [13], Wide&Deep [10], VGG-16 [50], MobileNet-
v3 [31], Transformer-large [55] and GPT-3 [8] in this experiment,
with each expressed using MindSpore. The model con"gurations
can be retrieved from the model zoo of MindSpore at https://gitee.
com/mindspore/models.

BERT [13] is composed of 110→ 106 parameters and used for nat-
ural language processing. It is also one of the models in MLPerf [48].
The dataset of this model is composed of 4000 words and we use
mixed precision to experiment the workload. Wide&Deep [10] is a
model for recommendation system and click predication area. Its
dataset is extracted from [26] which include 9.56 GB data. VGG [50]
is also extracted from MLPerf [48] and used for large-scale image
recognition. MobileNet [31] takes as input images from the same set
of dataset of VGG and performs a combination of hardware-aware
network architecture search. Transformer-large [55] is designed
for natural language processing, which we instantiate using the
WMT English-to-German translation task, with mixed-precision
enabled. Similarly, GPT-3 [8] is an auto-regressive language model
created by OpenAI, for which we use the openwebtext dataset. Each
end-to-end workload is expressed using the MindSpore framework.
Note that the data of the GPT-3 model is collected on an NVIDIA
Tesla A100 GPU due to the limited time, and this hardware is used
by each code version of this model in this experiment.

Table 3 reports execution time in milliseconds. The rightmost
column records the number of operators fused by DL reductions
that enabled by P!"!#$%!. The preceding column of the rightmost
reports the improvement (21.2% on average) of P!"!#$%! over
AKG. Our approach always improves the performance of AKG due
to the compound e!ect of faster parallel reductions and loop fusion.
The pro"ling results shown in Figure 9, Figure 10 and Figure 11
also apply to these end-to-end workloads. The next preceding three
columns list the improvements of AKG integrated with our ap-
proach over MindSpore backed by CUDA libraries, TVM and Ansor,
respectively. The libraries perform worst because cuDNN/cuBLAS
does not consider fusion across network layers. Integrating P!"!#&
$%! into AKG produces a mean improvement of 122.5% over the
library routines. AKG itself is usually competitive to or falls behind
TVM and Ansor, but its performance exceeds the later two by 19.3%
and 15.2% on average thanks to our approach.

Table 3: Results of end-to-end workloads.

Workloads MindSpore TVMAnsor AKG P!"!#$%! Improvement over number of
fused opsMindSpore TVM Ansor AKG

BERT 352.2 138.0 120.3 124.0 111.0 +217% +24% +8% +12% 304
Wide&Deep 22.4 12.5 12.8 12.6 11.0 +104% +14% +16% +15% 74

VGG 70.4 65.7 66.3 67.6 64.2 +10% +2% +3% +5% 39
MobileNet 151.4 133.0 129.4 136.8 131.5 +15% +1% -2% +4% 52
Transformer 157.8 132.4 126.5 136.8 79.2 +99% +67% +60% +73% 746

GPT-3 483.0 133.9 131.3 146.2 123.7 +290% +8% +6% +18% 409
average +122.5% +19.3% +15.2% +21.2%

Note that the performance improvements are over the optimized
code generated by AKG, which has highly optimized matrix mul-
tiplication and convolution operators that consume most (usually
50%-90% or more) of the execution time of an end-to-end work-
load. As such, the performance improvements of P!"!#$%! seem
modest for VGG and MobileNet. Let us assume this portion be
90%, and this part does not contribute to the improvements of
P!"!#$%! over AKG, because they both parallelize these operators.
Suppose the remaining 10% be composed of only reduction oper-
ators. The theoretical speedup brought by P!"!#$%! over AKG
is 1

0.9+ lim
x↑↗

(0.1/x ) =
1
0.9 = 1.11, where we presume the speedup

achieved by P!"!#$%! for reductions is x . In practice, the portion
of reduction operators may be smaller because there also exist many
other kinds of operators. Hence, the results on these two workloads
are not insigni"cant. For other workloads, P!"!#$%! can achieve
favorable improvements (up to 1.73→ for Transformer-large).

7.4 Compilation Overhead
We now discuss the compilation overhead of our approach. We col-
lect the compilation time for each single operator. The results show
that P!"!#$%! does not introduce too heavy overhead (1.6-2.1→
slower) compared to TVM, the compilation time of which for each
single reduction operator is ranging from 0.35 to 0.45 seconds. Such
a lightweight cost does not aggravate the compilation overhead
when experimenting with sub-graphs and end-to-end networks.
One of the reasons of this lightweight compilation overhead is the
isolation of loop coalescing from the polyhedral model. Besides,
reduction propagation guarantees the matching between the loop
dimensions of a reduction operator and elementwise operators,
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simplifying the polyhedral fusion heuristic and thus mitigating the
polyhedral scheduling time.

8 RELATEDWORK
Vendor libraries [5, 11, 41] are a common approach to parallelize
reductions on GPU. We showed in our experiments that a carefully
designed implementation by considering multiple metrics described
in Section 5.1 can achieve better performance than cuDNN and
CUB for many scenarios. Unlike our solution, other approaches rely
on kernel decomposition [27] to optimize the parallel reductions
on GPU, which is impractical for DL reductions as discussed in
Section 2.

Cooperative groups (CGs) [28] are used to group threads and can
synchronize block-level reductions. We used CGs in the early stages
of P!"!#$%!. CGs achieved competitive execution performance
to atomic instructions in many cases, but we "nally use the cur-
rent approach due to two reasons. First, handling reductions using
CGs provides is less #exible than our current solution: one has to
always guarantee the perfect matching between the con"gurations
of thread blocks, threads and SMs; an error indicating “too many
blocks in cooperative launch” is otherwise thrown. Our current
solution does not have such a limitation. Second, CGs also restrict
the number of launched thread blocks within an SM, which makes
the performance of CGs’ generated code inferior to our current
solution when handling reductions with larger input data sizes. We
summarize some of such cases in Table 4.

Table 4: Input sizes of reduce_sum (float32) for which the
performance of CGs falls behind that of P!"!#$%!. Execu-
tion time is reported in milliseconds.

shape con"guration cooperative groups P!"!#$%! improvement over
cooperative groupsw/o atomic w. atomic

(16226304) 93.70 1530.80 78.04 20.07%
(1024,131072) 626.46 624.51 601.17 4.21%
(131072,1024) 657.45 607.85 609.96 7.79%
(1048576,512) 2534.8 2446.8 2424.6 4.55%

Compilation approaches exploit the combined e!ect of reduc-
tions and other operators; they usually boil down to three stages.
Some of them [20, 66] focused on the detection of reduction de-
pendences, some studied the scheduling of reductions [14], and
some [49, 51, 56] used the associativity and commutativity of a
reduction to study its parallelism. None of these techniques con-
sider the domain-speci"c properties of DL models or the GPU
atomic instructions. Whether Reduction Drawing [49] uses atomic
instructions was not explicitly described. It seems their work still
uses kernel decomposition [27] when multiple thread blocks are
involved. The comprehensive study [14] on much earlier parallel
reductions showed that most of much earlier methods su!ered from
similar limitations to the compilation approaches discussed here.

Recent compilation frameworks [3, 46, 54] for deep neural net-
works take into account the domain-speci"c knowledge of DL mod-
els. TC [54] is also integrated with CUB [41] to enhance the per-
formance of the generated code. However, the reduction scenarios
covered by TC is a subset of those handled by our approach. The im-
perfect handling of partial tiles in TC also makes their performance
inferior to our technique. Futhark is an optimizing compiler for a

functional, array programming language. Similar to P!"!#$%!, it
studies parallel reduction for GPU by supporting fusion between
an elementwise-like producer and reduction consumer [30] and
also between independent reductions [29]. Its parallelization strate-
gies [36] for the latter two canonical forms in Figure 3 can be
evaluated by a tensor compiler’s autotuner, which helps P!"!#&
$%! select the best-performing grid/block con"gurations. However,
Futhark requires an expensive transposition operation when deal-
ing with the ω-reduce scenarios, which are well addressed in this
work.

Compilation approaches can also simplify the algorithmic com-
plexity of reductions [19] by reusing the intermediate results com-
puted during reductions. This idea is adopted by AlphaZ [61] and
extended to handle dependent reductions [60]. P!"!#$%! di!ers
from these approaches by making use of the commutativity of re-
ductions and GPU hardware resources rather than optimizing the
algorithmic complexity. In particular, P!"!#$%! is also applicable
to dependent reductions by performing reductions using a single
thread block. Each additional statement that introduces a backward
dependence to the reduction statements is executed by one block.

Language speci#cations and extensions excel at providing
domain-speci"c knowledge to compilers. Representative DSLs in-
clude Halide [47] for image processing and TVM [9] for DL models.
Halide’s extension [53] allows for the refactoring of reductions, with
the transformations still managed by hand. Another work [21] that
supports Halide generalizes various types of operators including
reductions and integrates its compilation #ow with cuBLAS [40],
but no specialized libraries for reductions were considered. Atomic
instructions was also integrated into high-level kernel synthesis
frameworks [22], with loop transformations not considered. As our
work demonstrated, exploiting the reuse of intermediate variables
created by loop fusion is essential to improve the performance.

9 CONCLUSION
We studied parallel reductions on GPU and proposed a combined
library and polyhedral approach to optimize such programs for
deep neural networks. By fully considering the domain-speci"c
properties of DL models, we implemented loop coalescing as a pre-
processing optimization and propagated the reduction dependences.
These preparations allow us to focus on three canonical forms of
reductions, which are then delivered to the polyhedral model for
exploiting loop fusion and tiling. With the well-designed hardware
binding strategy in polyhedral compilation, the code generator
is able to automatically produce high-performance programs by
wrapping a highly tuned library and embedding low-level atomic
instructions. The results demonstrated that a careful orchestration
of well-known techniques can achieve better performance than the
state of the art. We will address the automatic generation of the
highly optimized routine and determinism issues in the future.

ACKNOWLEDGMENTS
We feel thankful for the constructive comments of the anonymous
reviewers that improve the quality of this paper. Jie Zhao’s work is
partially supported by the National Natural Science Foundation of
China under Grant No. U20A20226.

462



P!"!#$%!: Parallelizing Reductions on GPU using Atomic Instructions for DL Models PACT ’22, October 10–12, 2022, Chicago, IL, USA

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je!rey

Dean, Matthieu Devin, Sanjay Ghemawat, Geo!rey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 265–283. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi

[2] Randy Allen and Ken Kennedy. 1987. Automatic Translation of FORTRAN
Programs to Vector Form. ACM Trans. Program. Lang. Syst. 9, 4 (Oct. 1987),
491–542. https://doi.org/10.1145/29873.29875

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A Polyhedral Compiler for Expressing Fast and
Portable Code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 193–205. https://doi.org/10.1109/CGO.2019.8661197

[4] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. 2016.
Opening Polyhedral Compiler’s Black Box. In Proceedings of the 2016 International
Symposium on Code Generation and Optimization (Barcelona, Spain) (CGO’16).
Association for Computing Machinery, New York, NY, USA, 128–138. https:
//doi.org/10.1145/2854038.2854048

[5] Nathan Bell and Jared Hoberock. 2012. Thrust: A Productivity-Oriented Library
for CUDA. In GPU Computing Gems Jade Edition, Wen mei W. Hwu (Ed.). Morgan
Kaufmann, Boston, 359–371. https://doi.org/10.1016/B978-0-12-385963-1.00026-
5

[6] Somashekaracharya G. Bhaskaracharya, Julien Demouth, and Vinod Grover. 2020.
Automatic Kernel Generation for Volta Tensor Cores. arXiv:2006.12645 [cs.PL]

[7] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. 2008. A
Practical Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceedings
of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Tucson, AZ, USA) (PLDI ’08). ACM, New York, NY, USA, 101–
113. https://doi.org/10.1145/1375581.1375595

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, ArvindNeelakantan, Pranav Shyam, Girish Sastry, AmandaAskell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Je!rey Wu, Clemens Winter, Chris Hesse,
Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot Learners. In Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901. https://proceedings.
neurips.cc/paper/2020/"le/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 578–
594. https://www.usenix.org/conference/osdi18/presentation/chen

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the
1st Workshop on Deep Learning for Recommender Systems (Boston, MA, USA)
(DLRS 2016). Association for Computing Machinery, New York, NY, USA, 7–10.
https://doi.org/10.1145/2988450.2988454

[11] Sharan Chetlur, Cli! Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: E$cient Primitives
for Deep Learning. arXiv:1410.0759 [cs.NE]

[12] Yuan Hsi Chou, Christopher Ng, Shaylin Cattell, Jeremy Intan, Matthew D. Sin-
clair, Joseph Devietti, Timothy G. Rogers, and Tor M. Aamodt. 2020. Deterministic
Atomic Bu!ering. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-53). 981–995. https://doi.org/10.1109/MICRO50266.
2020.00083

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171–4186. https://doi.org/10.18653/v1/N19-1423

[14] Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. 2015. Polly’s
Polyhedral Scheduling in the Presence of Reductions. In 5th International Work-
shop on Polyhedral Compilation Techniques (Amsterdam, The Netherlands) (IM-
PACT 2015). 11 pages.

[15] Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagob-
alane, and Vinod Grover. 2018. Diesel: DSL for Linear Algebra and Neural Net
Computations on GPUs. In Proceedings of the 2nd ACM SIGPLAN International

Workshop on Machine Learning and Programming Languages (Philadelphia, PA,
USA) (MAPL 2018). ACM, New York, NY, USA, 42–51. https://doi.org/10.1145/
3211346.3211354

[16] Paul Feautrier. 1992. Some e$cient solutions to the a$ne scheduling problem.
Part II. Multidimensional time. International journal of parallel programming 21,
6 (1992), 389–420.

[17] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. Springer US,
Boston, MA, 1581–1592. https://doi.org/10.1007/978-0-387-09766-4_502

[18] Anil Gaihre, Zhenlin Wu, Fan Yao, and Hang Liu. 2019. XBFS: EXploring Run-
time Optimizations for Breadth-First Search on GPUs. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed Computing
(Phoenix, AZ, USA) (HPDC’19). Association for Computing Machinery, New York,
NY, USA, 121–131. https://doi.org/10.1145/3307681.3326606

[19] Gautam and Sanjay Rajopadhye. 2006. Simplifying Reductions. In Conference
Record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (Charleston, South Carolina, USA) (POPL’06). Association for
Computing Machinery, New York, NY, USA, 30–41. https://doi.org/10.1145/
1111037.1111041

[20] Philip Ginsbach and Michael F. P. O’Boyle. 2017. Discovery and exploitation of
general reductions: A constraint based approach. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 269–280. https://doi.
org/10.1109/CGO.2017.7863746

[21] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe
Dubach, and Michael F. P. O’Boyle. 2018. Automatic Matching of Legacy Code to
Heterogeneous APIs: An Idiomatic Approach. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming Languages
and Operating Systems (Williamsburg, VA, USA) (ASPLOS’18). Association for
Computing Machinery, New York, NY, USA, 139–153. https://doi.org/10.1145/
3173162.3173182

[22] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon Hammond,
Onur Mutlu, and Wen-mei Hwu. 2019. Automatic Generation of Warp-Level
Primitives and Atomic Instructions for Fast and Portable Parallel Reduction
on GPUs. In 2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 73–84. https://doi.org/10.1109/CGO.2019.8661187

[23] Google. 2017. XLA: Optimizing Compiler for Machine Learning. https://www.
tensor#ow.org/xla

[24] Tobias Grosser. 2014. A Decoupled Approach to High-level Loop Optimization: Tile
shapes, Polyhedral Building Blocks and Low-level Compilers. Ph.D. Dissertation.
Université Pierre et Marie Curie-Paris VI.

[25] Tobias Grosser, Sven Verdoolaege, and Albert Cohen. 2015. Polyhedral AST
Generation Is More Than Scanning Polyhedra. ACM Trans. Program. Lang. Syst.
37, 4, Article 12 (July 2015), 50 pages. https://doi.org/10.1145/2743016

[26] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine Based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Arti$cial Intelligence
(Melbourne, Australia) (IJCAI’17). AAAI Press, 1725–1731.

[27] Mark Harris. 2007. Optimizing parallel reduction in CUDA. Nvidia developer
technology 2, 4 (2007), 1–39.

[28] Mark Harris and Kyrylo Perelygin. 2017. Cooperative Groups: Flexible CUDA
Thread Programming. https://developer.nvidia.com/blog/cooperative-groups

[29] Troels Henriksen, Ken Friis Larsen, and Cosmin E. Oancea. 2016. Design and
GPGPU Performance of Futhark’s Redomap Construct. In Proceedings of the 3rd
ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers
for Array Programming (Santa Barbara, CA, USA) (ARRAY 2016). Association
for Computing Machinery, New York, NY, USA, 17–24. https://doi.org/10.1145/
2935323.2935326

[30] Troels Henriksen and Cosmin Eugen Oancea. 2013. A T2 Graph-Reduction
Approach to Fusion. In Proceedings of the 2nd ACM SIGPLAN Workshop on Func-
tional High-Performance Computing (Boston, Massachusetts, USA) (FHPC’13).
Association for Computing Machinery, New York, NY, USA, 47–58. https:
//doi.org/10.1145/2502323.2502328

[31] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen,
Mingxing Tan, Grace Chu, Vijay Vasudevan, Yukun Zhu, Ruoming Pang, Hartwig
Adam, and Quoc Le. 2019. Searching for MobileNetV3. In 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV). 1314–1324. https://doi.org/10.
1109/ICCV.2019.00140

[32] Huawei. 2020. MindSpore. https://www.mindspore.cn/en
[33] François Irigoin and Rémi Triolet. 1988. Supernode Partitioning. In Proc. of

the 15th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages
(San Diego, California, USA) (POPL’88). ACM, New York, NY, USA, 319–329.
https://doi.org/10.1145/73560.73588

[34] Wayne Kelly and William Pugh. 1995. A Unifying Framework for Iteration Re-
ordering Transformations. Technical Report. USA.

[35] DaeGon Kim, Lakshminarayanan Renganarayanan, Dave Rostron, Sanjay Ra-
jopadhye, and Michelle Mills Strout. 2007. Multi-level Tiling: M for the Price
of One. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing
(Reno, Nevada) (SC’07). ACM, New York, NY, USA, Article 51, 12 pages. https:
//doi.org/10.1145/1362622.1362691

463

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1145/29873.29875
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1145/2854038.2854048
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://arxiv.org/abs/2006.12645
https://doi.org/10.1145/1375581.1375595
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://www.usenix.org/conference/osdi18/presentation/chen
https://doi.org/10.1145/2988450.2988454
https://arxiv.org/abs/1410.0759
https://doi.org/10.1109/MICRO50266.2020.00083
https://doi.org/10.1109/MICRO50266.2020.00083
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3211346.3211354
https://doi.org/10.1145/3211346.3211354
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/3307681.3326606
https://doi.org/10.1145/1111037.1111041
https://doi.org/10.1145/1111037.1111041
https://doi.org/10.1109/CGO.2017.7863746
https://doi.org/10.1109/CGO.2017.7863746
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1109/CGO.2019.8661187
https://www.tensorflow.org/xla
https://www.tensorflow.org/xla
https://doi.org/10.1145/2743016
https://developer.nvidia.com/blog/cooperative-groups
https://doi.org/10.1145/2935323.2935326
https://doi.org/10.1145/2935323.2935326
https://doi.org/10.1145/2502323.2502328
https://doi.org/10.1145/2502323.2502328
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.1109/ICCV.2019.00140
https://www.mindspore.cn/en
https://doi.org/10.1145/73560.73588
https://doi.org/10.1145/1362622.1362691
https://doi.org/10.1145/1362622.1362691


PACT ’22, October 10–12, 2022, Chicago, IL, USA J. Zhao, C. Bastoul, Y. Yi, J. Hu, W. Nie, R. Zhang, Z. Geng, C. Li, T. Tachon and Z. Gan

[36] Rasmus Wriedt Larsen and Troels Henriksen. 2017. Strategies for Regular
Segmented Reductions on GPU. In Proceedings of the 6th ACM SIGPLAN In-
ternational Workshop on Functional High-Performance Computing (Oxford, UK)
(FHPC 2017). Association for Computing Machinery, New York, NY, USA, 42–52.
https://doi.org/10.1145/3122948.3122952

[37] Justin Luitjens. 2014. Faster Parallel Reductions on Kepler. https://developer.
nvidia.com/blog/faster-parallel-reductions-kepler

[38] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. 1996. Improving Data
Locality with Loop Transformations. ACM Trans. Program. Lang. Syst. 18, 4 (July
1996), 424–453. https://doi.org/10.1145/233561.233564

[39] TimothyMerri"eld, Sepideh Roghanchi, JosephDevietti, and Jakob Eriksson. 2019.
Lazy Determinism for Faster Deterministic Multithreading. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (Providence, RI, USA) (ASPLOS ’19). Association
for Computing Machinery, New York, NY, USA, 879–891. https://doi.org/10.
1145/3297858.3304047

[40] Nvidia. 2013. cuBLAS. https://developer.nvidia.com/cublas
[41] Nvidia. 2018. CUB Documentation. https://nvlabs.github.io/cub/
[42] Nvidia. 2020. CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html
[43] Marek Olszewski, Jason Ansel, and Saman Amarasinghe. 2009. Kendo: E$cient

Deterministic Multithreading in Software. In Proceedings of the 14th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Washington, DC, USA) (ASPLOS XIV). Association for Computing Ma-
chinery, New York, NY, USA, 97–108. https://doi.org/10.1145/1508244.1508256

[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. Pytorch: An imperative style, high-performance deep learning
library. In Advances in neural information processing systems. 8026–8037.

[45] Constantine D Polychronopoulos. 1987. Loop coalescing: A Compiler Transfor-
mation for Parallel machines. In 1987 16th International Conference on Parallel
Processing (ICPP 1987). 235–242.

[46] Benoît Pradelle, Benoît Meister, Muthu Baskaran, Jonathan Springer, and Richard
Lethin. 2019. Polyhedral Optimization of TensorFlow Computation Graphs.
In Programming and Performance Visualization Tools, Abhinav Bhatele, David
Boehme, Joshua A. Levine, Allen D. Malony, and Martin Schulz (Eds.). Springer
International Publishing, Cham, 74–89.

[47] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A Language and Compiler
for Optimizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines. In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Seattle, Washington, USA) (PLDI’13). ACM,
New York, NY, USA, 519–530. https://doi.org/10.1145/2491956.2462176

[48] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin
Idgunji, Thomas B. Jablin, Je! Jiao, Tom St. John, Pankaj Kanwar, David Lee,
Je!ery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micike-
vicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan,
Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank
Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron
Zhong, Peizhao Zhang, and Yuchen Zhou. 2020. MLPerf Inference Benchmark.
arXiv:1911.02549 [cs.LG]

[49] Chandan Reddy, Michael Kruse, and Albert Cohen. 2016. Reduction Drawing:
Language Constructs and Polyhedral Compilation for Reductions on GPU. In
Proceedings of the 2016 International Conference on Parallel Architectures and
Compilation (Haifa, Israel) (PACT ’16). ACM, New York, NY, USA, 87–97. https:
//doi.org/10.1145/2967938.2967950

[50] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv:1409.1556 [cs.CV]

[51] Kevin Stock, Martin Kong, Tobias Grosser, Louis-Noël Pouchet, Fabrice Rastello,
J. Ramanujam, and P. Sadayappan. 2014. A Framework for Enhancing Data Reuse
via Associative Reordering. In Proceedings of the 35th ACM SIGPLANConference on
Programming Language Design and Implementation (Edinburgh, United Kingdom)
(PLDI’14). Association for Computing Machinery, New York, NY, USA, 65–76.
https://doi.org/10.1145/2594291.2594342

[52] Xing Su, Xiangke Liao, and Jingling Xue. 2017. Automatic generation of fast
BLAS3-GEMM: A portable compiler approach. In 2017 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). 122–133. https://doi.
org/10.1109/CGO.2017.7863734

[53] Patricia Suriana, Andrew Adams, and Shoaib Kamil. 2017. Parallel associative re-
ductions in Halide. In 2017 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 281–291. https://doi.org/10.1109/CGO.2017.7863747

[54] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary Devito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2019. The Next 700 Accelerated Layers: From Mathematical Expressions
of Network Computation Graphs to Accelerated GPU Kernels, Automatically.
ACM Trans. Archit. Code Optim. 16, 4, Article 38 (Oct. 2019), 26 pages. https:
//doi.org/10.1145/3355606

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, unde"nedukasz Kaiser, and Illia Polosukhin. 2017. Atten-
tion is All You Need. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 6000–6010.

[56] Anand Venkat, Manu Shantharam, Mary Hall, and Michelle Mills Strout. 2014.
Non-A$ne Extensions to Polyhedral Code Generation. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (Or-
lando, FL, USA) (CGO’14). Association for Computing Machinery, New York, NY,
USA, 185–194. https://doi.org/10.1145/2544137.2544141

[57] Sven Verdoolaege. 2010. Isl: An Integer Set Library for the Polyhedral Model.
In Proceedings of the Third International Congress Conference on Mathematical
Software (Kobe, Japan) (ICMS’10). Springer-Verlag, Berlin, Heidelberg, 299–302.
https://doi.org/10.1007/978-3-642-15582-6_49

[58] SvenVerdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral Parallel Code Generation for
CUDA. ACM Trans. Archit. Code Optim. 9, 4, Article 54 (Jan. 2013), 23 pages.
https://doi.org/10.1145/2400682.2400713

[59] Sven Verdoolaege and Gerda Janssens. 2017. Scheduling for PPCG. Report CW
706 (2017).

[60] Cambridge Yang, Eric Atkinson, and Michael Carbin. 2021. Simplifying Depen-
dent Reductions in the Polyhedral Model. Proc. ACM Program. Lang. 5, POPL,
Article 20 (Jan. 2021), 33 pages. https://doi.org/10.1145/3434301

[61] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and Sanjay Ra-
jopadhye. 2012. AlphaZ: A System for Design Space Exploration in the Polyhedral
Model. In Proceedings of the 2012 International Workshop on Languages and Com-
pilers for Parallel Computing (LCPC 2012). Springer, Berlin, Heidelberg, Berlin,
Heidelberg, 17–31. https://doi.org/10.1007/978-3-642-37658-0_2

[62] Jie Zhao and Peng Di. 2020. Optimizing the Memory Hierarchy by Compositing
Automatic Transformations on Computations and Data. In 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-53) (Vitural
Event, Greece). IEEE, Piscataway, NJ, USA, 427–441. https://doi.org/10.1109/
MICRO50266.2020.00044

[63] Jie Zhao, Xiong Gao, Ruijie Xia, Zhaochuang Zhang, Deshi Chen, Lei Chen,
Renwei Zhang, Zhen Geng, Bin Cheng, and Xuefeng Jin. 2022. Apollo: Auto-
matic Partition-based Operator Fusion through Layer by Layer Optimization. In
Proceedings of Machine Learning and Systems, Diana Marculescu, Yuejie Chi, and
Carole-Jean Wu (Eds.), Vol. 4. 1–19.

[64] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng,
Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. 2021.
AKG: Automatic Kernel Generation for Neural Processing Units Using Polyhedral
Transformations. In Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation (Virtual, Canada)
(PLDI 2021). Association for Computing Machinery, New York, NY, USA, 1233–
1248. https://doi.org/10.1145/3453483.3454106

[65] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, Joseph E. Gonzalez,
and Ion Stoica. 2020. Ansor: Generating High-Performance Tensor Programs
for Deep Learning. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 863–879. https://www.usenix.
org/conference/osdi20/presentation/zheng

[66] Yun Zou and Sanjay Rajopadhye. 2012. Scan Detection and Parallelization in
"Inherently Sequential" Nested Loop Programs. In Proceedings of the Tenth Inter-
national Symposium on Code Generation and Optimization (San Jose, California)
(CGO’12). Association for Computing Machinery, New York, NY, USA, 74–83.
https://doi.org/10.1145/2259016.2259027

464

https://doi.org/10.1145/3122948.3122952
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler
https://doi.org/10.1145/233561.233564
https://doi.org/10.1145/3297858.3304047
https://doi.org/10.1145/3297858.3304047
https://developer.nvidia.com/cublas
https://nvlabs.github.io/cub/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1145/1508244.1508256
https://doi.org/10.1145/2491956.2462176
https://arxiv.org/abs/1911.02549
https://doi.org/10.1145/2967938.2967950
https://doi.org/10.1145/2967938.2967950
https://arxiv.org/abs/1409.1556
https://doi.org/10.1145/2594291.2594342
https://doi.org/10.1109/CGO.2017.7863734
https://doi.org/10.1109/CGO.2017.7863734
https://doi.org/10.1109/CGO.2017.7863747
https://doi.org/10.1145/3355606
https://doi.org/10.1145/3355606
https://doi.org/10.1145/2544137.2544141
https://doi.org/10.1007/978-3-642-15582-6_49
https://doi.org/10.1145/2400682.2400713
https://doi.org/10.1145/3434301
https://doi.org/10.1007/978-3-642-37658-0_2
https://doi.org/10.1109/MICRO50266.2020.00044
https://doi.org/10.1109/MICRO50266.2020.00044
https://doi.org/10.1145/3453483.3454106
https://www.usenix.org/conference/osdi20/presentation/zheng
https://www.usenix.org/conference/osdi20/presentation/zheng
https://doi.org/10.1145/2259016.2259027


P!"!#$%!: Parallelizing Reductions on GPU using Atomic Instructions for DL Models PACT ’22, October 10–12, 2022, Chicago, IL, USA

A ARTIFACT
This is the artifact description. We o!er the description for repro-
ducing the results of single operators and sub-graphs due to the
following two considerations. First, the result of an end-to-end
workload is the sum of its sub-graphs, so we believe reproducing
the results of sub-graphs is su$cient. Second, all of the workloads
used in the paper are written using MindSpore [32], which is a DL
framework developed by Huawei. The readers may be more familiar
with TensorFlow [1], Pytorch [44] or other popular frameworks but
not MindSpore. Reproducing the results of end-to-end workloads
requires the readers "rst to practice with MindSpore and next play
with its eco-system software, e.g., its autotuner, to obtain the best
results. Hence, fully reproducing the end-to-end results may take
much longer time and heavier engineering e!ort. Of course, we
can provide the reproducing steps to those who are interested in
the end-to-end experiments, and they can let us know if they wish,
although this would be a non-trivial task.

A.1 Preparation
We opened a repository for this artifact evaluation at https://gitee.
com/yaozhujia/panamera-artifact. To clone the artifact materials,
git should already been installed. We use the version 2.17. The
data sets and examples used in the paper can be obtained from
this repository. The mandatory hardware is an NVIDIA Tesla V100
GPU. The operating system we used is Ubuntu 16.04 LTS. One can
also try on other Linux distributions. The code was compiled by
NVIDIA CUDA Toolkit version 10.1 when we wrote the paper, but
11.1 is also acceptable. Once installed, the Pro"ler of the CUDA
Toolkit can be used to reproduce the results. Python 3.7.5 or higher
versions are required, with the package manager pip installed. The
environment is summarized in Table 5.

Table 5: Experiment environment.

Hardware An NIVDIA Tesla V100 GPU

Operating System Ubuntu 16.04.4 LTS (GNU/Linux
4.4.0-116-generic x86_64) or higher

CUDA Toolkits version 10.1 or 11.1
Python (pip installed) version 3.7.5 or higher

git version 2.7 or higher

Once the above requirements have been met, the readers can
fetch the artifact materials using
$ git clone git@gitee.com:yaozhujia/panamera-artifact.git

Listing 1: Cloning the repository of artifact materials.
In the following context, a command starting with $ can be executed
in the Unix terminal, and # denotes a comment. “/path-to-panamera-
artifact/” must be replaced by the environmental location of the
readers. For example, one can replace it using “/home/jack/Desktop”
if the user name is “jack” and he/she clones the artifact materials
into the Desktop directory of his/her computer. All materials for
reproducing the results are put into the directory named “repro-
duction”. We describe the artifact in a tool-by-tool way.

A.2 Reproducing the Results of P!"!#$%!
A.2.1 Installation. To reproduce the results of P!"!#$%!, one "rst
has to install AKG [64], into which P!"!#$%! has been integrated,
using the provided Python wheels, depending on the CUDA Toolkit
versions. For example, if the Toolkit version is 10.1, the readers can
use the following commands to install AKG.
$ cd /path-to-panamera-artifact/install/cuda10
$ pip install akg-1.2.0-cp37-cp37m-linux_x86_64.whl

Listing 2: Installing the AKG compiler.

A.2.2 Execution. One can now reproduce the results of P!"!#$%!.
The readers can change into the directory named “Panamera” and
follow the instructions of README. The commands for reproducing
the results of P!"!#$%! are as follows.
$ cd /path-to-panamera-artifact/reproduction/Panamera
# First, one can reproduce the results of single operators
# 1.1 reproduce the results of reduce_sum
$ nvprof python reduce_sum.py
# 1.2 reproduce the results of reduce_max
$ nvprof python reduce_max.py
# 1.3 reproduce the results of reduce_and
$ nvprof python reduce_and.py
# Second, one can reproduce the results of sub-graphs or !composite cases!
# 2.1 eproduce the results of composite cases
$ nvprof python test_composite_info.py -af ./composite/1.info
$ nvprof python test_composite_info.py -af ./composite/2.info
$ nvprof python test_composite_info.py -af ./composite/3.info
$ nvprof python test_composite_info.py -af ./composite/4.info
$ nvprof python test_composite_info.py -af ./composite/5.info
$ nvprof python test_composite_info.py -af ./composite/6.info
$ nvprof python test_composite_info.py -af ./composite/7.info
$ nvprof python test_composite_info.py -af ./composite/8.info
$ nvprof python test_composite_info.py -af ./composite/9.info
$ nvprof python test_composite_info.py -af ./composite/10.info
$ nvprof python test_composite_info.py -af ./composite/11.info
$ nvprof python test_composite_info.py -af ./composite/12.info

Listing 3: Commands for reproducing P!"!#$%!’s results.
Listing 3 can reproduce the results of all single operators and the
12 sub-graphs in Table 2 of the paper. For single operators, the
default data type is "oat32 and the default shape con"guration
is [1024,1024]. To change the data type, one can open, e.g., the
reduce_sum.py "le and change the parameters (line 77 for shape
and line 78 for data type) in the main function at the end of the "le.

A.2.3 Profiling Results. During the execution, AKG outputs the
results to stdout, which is similar to “gpu(0): exec = xxx ms/op”.

A.3 Reproducing the Results of TVM
A.3.1 Installation. AKG was developed based on TVM version
0.6 [9]. Hence, the TVM version 0.6 has already been installed
when installing the Python wheels "le.

A.3.2 Execution. The readers can change into the directory named
“tvm” and follow the instructions of the README "le. The com-
mands for reproducing the results of P!"!#$%! are the same as
Listing 3 except that the "rst command is replaced by
$ cd /path-to-panamera-artifact/reproduction/tvm

Listing 4: Commands for changing directory to tvm.
Changes of data types and/or shape con"gurations are the same as
the execution of P!"!#$%!.

A.3.3 Profiling Results. During the execution, AKG outputs the re-
sults to stdout, which is similar to “gpu(0): exec = xxx ms/op”. Note
that the script in the “tvm” directory has disabled the polyhedral
scheduler of AKG, which falls back to TVM version 0.6.
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A.4 Reproducing the Results of Ansor
A.4.1 Installation. To install Ansor [65], the readers can change
into the directory named “ansor” using
$ cd /path-to-panamera-artifact/reproduction/ansor

Listing 5: Commands for changing directory to ansor.
and follow the instructions of README. Ansor is the autotuner
of TVM, so one can follow the installation instructions of TVM at
https://tvm.apache.org/docs/install/index.html. In particular, Ansor
requires the TVM version has to be later than 0.8.

A.4.2 Execution. The commands for reproducing the results of
Ansor are as follows.
# First, one can reproduce the results of single operators
$ python single-op/single_op.py
# Second, one can reproduce the results of sub-graphs or !composite cases!
$ python composite-op/case1.py
$ python composite-op/case2.py
$ python composite-op/case3.py
$ python composite-op/case4.py
$ python composite-op/case5.py
$ python composite-op/case6.py
$ python composite-op/case7.py
$ python composite-op/case8(fail).py
$ python composite-op/case9(fail).py
$ python composite-op/case10.py
$ python composite-op/case11.py
$ python composite-op/case12.py

Listing 6: Commands for reproducing the results of Ansor.
For single operators, changes of data types and/or shape con"gura-
tions can be achieved by modifying the “single_op.py” "le in the
“single-op” directory. The default shape con"guration and data type
are [768, 21128] and "oat32, respectively. They can be modi"ed at
line 27 and 24 of the “single_op.py” "le, respectively.

A.4.3 Profiling Results. During the execution, Ansor outputs the
results to stdout, which looks like “Execution time of this operator:
xxx ns”. Note that the script has been rewritten using Ansor’s DSL
and the search trail has been set to 1000, which can "nd a good
code variant according to our experience.

A.5 Reproducing the Results of cuDNN
A.5.1 Installation. To reproduce the results of cuDNN reported in
the paper, one needs to install MindSpore [32] "rst. The readers
can change into the directory named “cudnn” using
$ cd /path-to-panamera-artifact/reproduction/cudnn

Listing 7: Commands for changing directory to cudnn.
and follow the instructions of the README "le. Speci"cally, the
framework can be installed from https://www.mindspore.cn/install/
en. One can select version 1.8.1, and the hardware platform should
be either GPU CUDA 10.1 or 11.1. Operation system is Linux-x86_64
by default, and Python can be the version 3.8.0. Installation mode
can choose pip.

A.5.2 Execution. Once MindSpore is installed, one can reproduce
the results of cuDNN using
$ nvprof python sample.py

Listing 8: Commands for reproducing the results of cuDNN.
Changes of data types and/or shape con"gurations can be achieved
by modifying the “input_x” parameter of the “sample.py” "le. The
default setting uses shape [768,768] and data type "oat64. The
“ReduceSum” operator at line 9 can be replaced by “ReduceMax”

and “ReduceAnd”. As cuDNN does not support fused operators, the
result of a sub-graph is the sum of multiple invocations of cuDNN
library calls, so we did not provide examples for sub-graphs.

A.5.3 Profiling Results. During the execution, MindSpore outputs
the results to stdout, indicated by the command of nvprof. Note
that a reduction operator implemented using cuDNNmay call many
times of di!erent kernels, e.g., “reduce_tensor_kernel_free” and
“op_tensor_kernel_alpha2_zero”. The result of a reduction operator
executed by cuDNN should be the sum of these kernels.

A.6 Reproducing the Results of CUB
A.6.1 Installation. The code repository of CUB is https://github.
com/NVIDIA/cub. The readers can "rst change into the directory
named “CUB” and clone CUB using
$ cd /path-to-panamera-artifact/reproduction/CUB
$ git clone https://github.com/NVIDIA/cub
$ cd cub/tree/main/examples/block

Listing 9: Commands for changing the directory to CUB.

A.6.2 Execution. The examples used to reproduce the results of
CUB are o!ered in its repository. In particular, the two CUDA
"les “example_block_reduce.cu” at https://github.com/NVIDIA/
cub/tree/main/examples/block/example_block_reduce.cu for
the all-reduce patterns and “example_device_reduce.cu” at
https://github.com/NVIDIA/cub/blob/main/examples/device/
example_device_reduce.cu for the x- and y-reduce patterns are
used in the experiments. The command to execute the fetched
CUDA C++ code of CUB can be executed using
$ nvcc -arch=sm_70 example_x_reduce.cu -I../.. -lcudart -O3

Listing 10: Commands for reproducing the results of CUB.
where “sm_70” is speci"ed for the NVIDIAV100GPU and “x” should
be replaced by block or device.
As CUB is a templated library, changing data type, operator type and
shape con"gurations requiring some manual e!orts. The readers
can use the two examples to reproduce results of reduce_sum with
data type int if they do not want to change data/operator types
or shape con"gurations. Otherwise, the readers can follow the
instructions below.
To change data type, one has to change all involved arrays in
the "le into other data types. For example, the data types of
h_in, h_reference and d_in arrays should be change into other
ones. The shape con"guration is de"ned by the num_items pa-
rameter. For “example_device_reduce.cu”, it can be manually de-
"ned at line 110. For “example_block_reduce.cu”, num_items is
implicitly de"ned (line 142) as the product of one can change
the parameters of the BLOCK_THREADS and ITEMS_PER_THREAD,
which in turn are de"ned when invoking the Test subroutine
(line 280). For example, one can invoke the Test subroutine us-
ing Test(1024,64,BLOCK_REDUCE_WARP_REDUCTIONS)() when exe-
cuting an all-reduce pattern of shape 65536. The operator type can
be changed in di!erent ways. For “example_block_reduce.cu”, one
can change Sum at line 96 into e.g., Max to reproduce the results of
reduce_max. For “example_device_reduce.cu”, the Sum at line 161
can be altered into Max or And to obtain other operator types.

A.6.3 Profiling Results. During the execution, CUB outputs the
results to stdout, which is similar to “Average kernel millis: xxx”.
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