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ABSTRACT

The polyhedral model is a powerful framework to reason about
high level loop transformations. Yet the lack of scalablpathms
and tools has deterred actors from both academia and igduastr
put this model to practical use. Indeed, for fundamental mer:
ity reasons, its applicability has long been limited to dieernels.
Recent developments broke some generally accepted ideas ab
these limitations. In particular, new algorithms made isgible to
compute the target code for full SPEC benchmarks while thitec
generation step was expected not to be scalable.

Instancewise array dependence analysis computes a firiée; i
sional representation of the (statically unbounded) sedllofly-

1. INTRODUCTION

The power of an automatic optimizer or parallelizer grealty
pends on its capacity to decide whether two portions of tbgiam
execution may be interchanged or run in parallel. Such kadgé
is related to the difficult task afependence analysighich aims at
precisely disambiguating memory references.

A number of works proposed data dependence tests and abstrac
tions, with various motivations such as computational ,cpsé-
cision or application domain (see Section 2 for details aseful
references). Several empirical studies have been corditctmm-
pare those tests [29, 18, 30, 31]. The generally acceptedi=ion
is: “it is more interesting to use simple tests (like tBanerjee-

namic dependences. This problem has always been consideredest[40] or I-test[22]), and simple abstractions (lik&irection Vec-

non-scalable and/or an overkill with respect to less exgivesand
faster dependence tests. On the contrary, this articleptegxper-
imental evidence of its applicability to full SPEC CPU20Ghbh-
marks. To make this possible, we revisit the characteomnatf

data dependences, considering relations between timendiores
of the transformed space. Beyond algorithmic benefits, rihts-
rally leads to a novel way of reasoning about violated depenés
across arbitrary transformation sequences. Reasoningt aim

lated dependences relieves the compiler designer fromutmber-
some task of implementing specific legality checks for eacpls

transformation. It also allows, in the case of invalid trfansa-

tions, to precisely determine the violated dependencasded to
be corrected. Identifying these violations can in turn éaauto-
matic correction schemes to fix an illegal transformatiogqusace
with minimal changes.
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tors[39]), because they capture most data dependence infamati
at a low computational cost”. The present paper contragtssmich
generally accepted ideas and with the traditional use @f depen-
dence analysis.

First we recall how, using an exact instancewise analysite-a
pendence between two statements does not necessarily hidmape
application of an optimizing/parallelizing transfornati Indeed,
the comparison of data dependence tests in above-mentibued
ies is quite biased: it only evaluates the ability to provelisprove
dependences between statements, and not to preciselyhiet w
iterations of those statements are in dependence. Theoceseén
data dependence analysis is to build or to check useful foans
mations. To prove or disprove dependences between statemen
is quite rough since optimization/parallelization mayeoftre pos-
sible even if there exists data dependences. On the conirary
stancewise analyses and abstractions give the right pedevel
to decide wether or not to apply a loop transformation. Empir
cal studies of dependence tests/analyses which ignorempact
on transformations are not powerful enough for advancedpdem
design.

Second we show that beyond dependence analysis, an illegal
transformation is not necessarily a dead-end. We will show h
to exactly determine the violated dependences that neeel torb
rected. Identifying these violations can in turn enableomattic
correction schemes to fix an illegal transformation segaemith
minimal changes.

Third, we provide empirical evidence of the scalability ofex-
act instancewise dependence analysis. We present algarition-
tributions which allowed to present the first experimentdidation
of instancewise analysis on full SPEC CPU2000 benchmarks.

The paper is organized as follows: Section 2 revisits the vas
amount of related works to motivate our approach; Sectioivésg
an original characterization of instancewise dependertbes de-
scribes the key algorithmic improvements for scalabil@gction 4
details the computation of sets of violated dependencesafiven



transformation sequence, then presents a fast and acdegate

ity test based on the affine form of the Farkas lemma; Section 5
presents experimental results; and Section 6 exploresateatial

of automatic correction approaches on a realistic example.

2. RELATED WORKS

Many tests have been designed for dependence checking be
tween different statements or between different execatufnthe
same statement. It has been extensively shown that thisepnob
amounts to detecting whether or not a system of equationatas
integer solution inside a region @ [4].

Most of the dependence tests try to find efficiently a reliahfe
proximative but conservative (they overestimate data ddgeces)
solutions. The GCD-test [3] has been the very first practscal
lution, it is still present in many implementations as a fakeck
with low computational cost. This test assumes that if theagr
est common divisor of the coefficients of an equation divittes
constant term, then a solution exists. A generalized GGbDHas
been proposed to handle multi-dimensional array refeefde
The Banerjee test uses the intermediate value theorempwmues
a dependence: it computes the upper and lower bounds of @ equ
tion and checks if the constant part lies in that range [40he T
A-test is an extension to this test that handles multi-dinosas
array references [22]. Some other important solutions aanabi-
nation of GCD and Banerjee tests called I-test [22],Aktest [18]
that gives an exact solution when there is at most one variabl
the subscript functions, and the Power-test which usesdhedt-
Motzkin variable elimination method [36] to prove or dispecde-
pendences [41]. Beside their approximative nature, thepert
dence tests suffer from many other major limitations. Thesimo
stringent one is their inability to precisely handle conditionals,
loops with parametric bounds, triangular loops (a loop labde-
pends on an outer loop counter), coupled subscripts (twWerdift
array subscripts refer the same loop counter), or paramstid-
scripts.

On the opposite, a few methods allow to find an exact solution t
the dependence problem, but at a higher computational ddes.
Omega-test is an extension to the Fourier-Motzkin variatitai-
nation method to find integral solutions [32]. On one hanaeoa
variable is eliminated, the original system has an integéust®n
only if the new system has an integer solution (if this is het¢ase
there is no solution). On the other hand, if an integer potigte in
a space computed from the new system, then there existsegreimnt
point in the original system (if this is the case, there is latgmn).
The PIP-test uses a parametric version of the dual-simpkthoal
with Gomory cuts to find an integral solution [15]. These twsts
not only give an exact answer, they are also able to deal with-c
plex loop structures and (affine) array subscripts. The tefeis
more precise than the Omega-test when dealing with parametr
codes (when one or more integer symbolic constant are fjesen
for instance, in the following pseudo-code:

for(i=0; i<=N, i++) {
Ali]

}

= o,

= ... Ni+100] ...;

the Omega-test will state that there is a dependence betiveéno
statements while the PIP-test will precise that the depeselenly
exists if N is greater or equal to 100. Both tests have worst-case
exponential complexities but work quite well in practicesh®wn

by Pugh for the Omega-test [32]. Other costly exact teststexi

in the literature [28, 12] but are often not able to handle plax
control in spite of their cost.

We do not advocate for the use of any of these tests, but rther
the computation ofnstancewisedependence information as pre-
cisely as possible, i.e., for intensionally describing statically
unbounded set of all pairs of dependent statement itegtaatled
instances Dependence tests are statementwise decision problems
‘associated with the existence of a pair of dependent instamdile
instancewise dependence analysis provides additionainmation
that can enable finer program transformations, like affirreedal-
ing [23, 16, 25, 19]. The intensional characterization aftamce-
wise dependences can take the form of multidpendence ab-
stractions depending on the precision of the analysis and on the
requirements of the user. The simplest and least precisdsone
calleddependence level# specifies for a given loop nest which
loop carry the dependence. It has been introduced in the Alhel
Kennedy parallelization algorithm [1]. Thdirection vectorss a
more precise abstraction where thth element approximates the
value of all thei-th elements of thelistance vectorgwhich shows
the difference of the loop counters of two dependent ingsndt
has been introduced by Lamport [23] and formalized by WS [
and is clearly the most widely used representation. The prest
cise abstraction is thdependence polyhedrd@0] which is able
to determine exactly the set of statement instances in diepee
relation. The choice of a given dependence abstractionuisalr
for further study: choosing an imprecise one can resultackihg
out interesting transformations. For instance, let us icemshe
following example:

for(i=0; i<=N i++)
for(j=0; j<=N j++)

S AT = AjITTT + AT -1

There are three dependences in this loop nest (a readvaiter-
dependence fronS,i, j) to (S;i, j +1), another read-after-write de-
pendence froniS,i, j) to (S j,i) and a write-after-read frons, j, i)

to (S, j)). Dependence levels are 2, 1 and 1: each loop carries at
least one dependence and no parallelism can be found. Dimect
vectors are(0,1), (+,—), (+,—): the second coefficients 1 and
— hamper any parallelism detection. Using dependence peolyhe
dra, parallelism may be found: the Feautrier algorithm sstg
the affine schedul8(i, j) = 2i + j — 3 (all instances with the same
schedule may be run in parallel), see [38]. In the rest of plais
per, we compute the most precise representation of depeesten
dependence polyhedra.

3. POLYHEDRAL DEPENDENCES

A thorough tool to perform dependence analysis on loop riests
the polytope model. The dependence analysis is then deermed e
We use the notations of the URUK framework [9] briefly resddte
Section 3.1; under the invariants of this framework, it isgible to
apply any transformation at a given point without worryirtgpat
its validity. We therefore lift the tedious constraint ofseming the
legality of a transformation before being able to apply inlyafter
a full transformation sequence has been applied do we cang ab
the correctness of the sequence as a whole.

3.1 Normalized Polyhedral Representation

This section is a quick overview of our polyhedral framewdtk
is based on a normalized representation of programs ansiforan
mations, derived from the models introduced by Pugh andtFieau
[33, 16].



We will use the following vocabulary and notations. The sop
of all program manipulations is a sequence of loop nests eati
stant strides and affine bounds. It includes non-rectanguntm-
perfectly nested loops, and conditionals with boolean esgions
of affine inequalities. Loop nests fulfilling these hypotesre
amenable to a representation in the polyhedral model. We cal
Static Control Part(SCoP) anymaximal syntactic program seg-
mentsatisfying these constraints. All variables that are iiarr
within a SCoP are calledlobal parameters For each statement
within a SCoP, the representation separates three attghcharac-
terized by parametric matrices: the iteration domain, dteedule,
and the access functions. Even though transformationstitames
applied to loops or full procedures, they are individualbpked to
each statement for a maximal flexibility.

Given a statemergwithin a SCoP, letS be the depth o§, leti
be theiteration vectorof S, i.e., the vector of loop indices to which
Shbelongs (the dimension dfis d5), and letg be the vector ofly
global parametersind the scalar component. Titeration domain
of Sis defined by

{i1D%(ilg)" > 0},

whereDS is the matrix ofn affine constraints on the execution of
statemens; DS hasn rows anddS+ dq + 1 columns. Each iteration
i of a statemer®is called arinstance and is denoted b{S i). The
scheduleof Sis an affine function mapping iterations o multi-
dimensional time-stamps. This function is encoded by aim@r?
of 2d5 + 1 rows anddS + dg + 1 columns. By definition, the exe-
cution order of all iterations of all statements is the lexjaphic
order on multi-dimensional time-stamps of the schedulethede
statements.

Each reference in a statemeSis of the form(X, f(iS)) whereX
is an array and is the subscript function. When it is affine, this
function is defined by

f(i%) = (Acci|Accy) iS,

where Acgis a matrix with as many lines as array dimensionX,in
resp. Acg for the global parameters and the scalar component. We
also consider more general non-affine references with coatbee
approximations.

Polyhedral compilation usually distinguishes three stepse
first has to represent an input program in the formalism, @gen
ply a transformation to this representation, and finallyeyate the
target (syntactic) code. This paper focuses on computisiguice-
wise dependence information effectively to improve theliappil-
ity and expressiveness of the transformation step.

Itis well known that arbitrarily complex sequences of locguis-
formations can be captured in one single transformation stéhe
polyhedral model. This was best illustrated by affine schiedu
[21] and partitioning [25] algorithms. Yet to ease the cosipon
of program transformations on the polyhedral represemative
further split the representation of the schedule into senatiatrix
and vector blocks satisfying strong normalization rules:

[0 0] o 0 |BS ]
S S S S
ATy Algs |11 Mg, | ©
0 0|0 0 |B?
S S S S S
7= A Agas | T2 M24, Q
s s s s :
Ads.l AdS,dS rds.l rds.dg 0
| 0 0 0 0 |B5s |

whereAS is a square matrix mapping iterations vectors to odd time
dimensions (time dimension start at depth 0), wherethenatrix

allows to shift the schedule with respect to global paramsetnd
where S scatters the statements in the multidimensional time in
mapping every statement to a specific vector of even time mime
sions. Such encodings wittd2+ 1 dimensions were previously
proposed by Feautrier, then by Kelly and Pugh [21]. The URUK
framework adds a few additional normalization rules, folignde-
fined in [17]; these rules have been left out of this quick view
since they were not directly useful to the dependence aisatgs|f.

3.2 Instancewise Polyhedral Dependences

The purpose of this paper is to compute the exact dependence i
formation between every pair of instances, i.e., every phstate-
ment iterations. Considering a pair of stateme®wsd T of where
at least one is a write, there is a dependence from an inst&nice
of Sto an instancéi’, T) of T (or (T,i") depends orS,iS)) if and
only if the followinginstancewiseonditions are met:

Execution condition: both instances belong to the corresponding
statement iteration domai®Si® >0 and D[i" >0,

Conflict condition: both instances refer the same memory loca-
tion: (Acci|Accg)i® = (Accl |Acc])iT, and

Causality condition: the instancéS., i) is executed beforéT i)
in the original execution®Si® < OTiT,

where< denotes the lexicographic order on vectors.

As reminded in Section 3.1, the schedule (the multidimeradio
time-stamp) at which an instance is executed is determifoed,
statement S, by thed® + 1 vector given byeSiS. Relative order
between instances is given by the relative lexicographiteioof
their schedule vectors.

Consider the original polyhedral representation of a paogrbe-
fore any transformation has been applied. For a given s&tes
matrix AS is the identity, Sis 0 and vectopS captures the syntac-
tic position ofSin the original code. In this configuration, the three
aforementioned conditions correspond to the classicatitiefi of
polyhedral dependences [13, 32].

A dependence is said to be loop independent if the causality
condition @5iS <« @TiT is resolved sequentially on one of the
components of the schedule. A dependence is said to be leop ca
ried at loop depthp if the causality condition is resolved by the
(AccP|Accy) component of the schedule at defth
Loop-carried dependence at depthp:

Bap—l = B-CI)-..p—lv ((As|rs)is)0,,p71 = ((AT|rT)iT)OHp—1’
and((AS\FS)iS)p < ((AT|FT)iT)p.
Loop-independent dependence at depthp:

Bg..p—l = Bg,,p—17
(AF9)i%)g oy = (ATIFDIT)

The purpose of dependence analysis is to compute a direeted d
pendence multi-graph Dgfor each possible dependence lepel
Unlike traditional reduced dependence graphs, arSdrin DGp
is labeled by a dependence polyhedron capturing the setif pa
of iteration vectorsif, iT) at the desired dependence level. These
pairs of belong to the Cartesian product spaéé Bf dimension
(dS+dg+1) + (dT +dg+ 1) and meet the instancewise depen-
dence conditions. Since the global parameters are intaa@nss
the whole SCoP, we can remove redundant parameter dimension
and project this space into the equally expressive one ofidéon
dS+dT +dg+1. We will indistinctly usei® to represent an itera-
tion vector for statemer&in either the original space of dimension

S_ T
0.p—1 andBp < Bp.



dS+dg+1 or in one of the two aforementioned Cartesian prod-
uct spaces. It will be clear from the context which one shdadd
assumed.

3.3 Fast Dependence Analysis

The decomposition of schedule matrices into fkep and I
components allows to break down the Cartesian product Spaxce
smaller blocks (the symbol denoteall rows):

DP =D3 Dg=D

S
0.1.dS g 0,dS+1.dS+dg+1

S_ pecS S_ pAecS
ACCT=ACC.; g5 ACCG=ACC)ys,1 dsidyt1

For conciseness reasons, we will use the terminoldggen-
dence of depth-p rather than loop-independent dependence of
depth p, and the terminologylependence of depth rather than
loop-carried dependence of degthThen, for a dependence from
Sto T of depth levelp, we have

S T
BO..|p\—1 = BO..|p\—l'
If p< 0, the causality condition is enforced by
S T
Bo <Py

otherwise it is enforced by:

(ASpIrep)iS< (ALplrap)i™.

In the dependence graph, there will be an arc fi®o T iff
for the considered depth, the beta relations are enforcedfahe
dependence polyhedron of Figure 2§if 0) or Figure 1 (ifp > 0)
is not empty. All dependence polyhedra for a pair of stateémend
a given pair of access functions are disjoint by constractio

D? 0 D§>0
0 o) D/ >0
Acc® | —Acc! Accg —Accg =0
5 T S T —
A1 p-1|Asrp-1| Torp1tlerp-1=0
—Aop Alp —Toptlip>1

Figure 1: Dependence at deptip > 0

DS 0 D3>0
0 D/ Dg >0
Acc® | —Acg! | Accg—Accy =0
_A-S.l..p AI,l.,p _r§,1,,p+ rILp =0

Figure 2: Dependence at deptlp <0

This decomposition dramatically reduces the cost of comgut
the polyhedron of all pairs of dependence instances spawged
statementS andT at a given depthp. Indeed, a simple lookup
on (3 vectors can quickly eliminate costly polyhedral operagion
when the prerequisite o prefixes of dimensiomp — 1 is not met:

B p_1 = B{ p 1. Fora dependence at degth< O the constraint
system is the same except for the last row, as explainedquslyi

Special cases arise when examining scalar referencesaysarr
indexed by nonlinear access functions. The latter are coatbeely
dealt with as scalars by not adding access constraints fnendé-
pendence polyhedron. In such conservative cases, all s@urd
sink statements are considered to access the same mematigihoc

and are bound to respect the causality order after transfioom
There exist of course finer approximation schemes, but sifge
rithmic complexity is higher, their practical applicalyito large
programs remains unknown [10, 42, 5].

Let| be the first index such th@® < B[; the only possible loop
independent dependence is of depth The reader may notice
the great similarities between dependence polyhedra osecon
tive dependence levels. Exploiting these similaritieevadld us to
design an efficient algorithm that traverses the dependerets in
increasing absolute value order (0,11, ...,I, —1). At depth level
0, all but the causality constraints are combined in the dépece
polyhedron which is added to the dependence graph &1 saved
into a cache. At depth level 1, the polyhedron is recoverehfthe
cache of depth 0 and intersected with the constraint

<A§11|F._,1) iS < (AII\r.,l) iT

The result, if non-empty, is added to DGAt depth level-1, the
polyhedron is recovered from the cache of depth 0 and intezde
with the constraint

<A§11|F._,1) iS— (AIJ\r.,l) iT.

If the resulting polyhedron is empty, adding more constsis
useless and translates immediately into a short-circuiv@fcom-
putations. On the other hand, if the resultis not empty,atided to
the cache for later reuse. This short-circuiting strategybined to
the fact that constraints can be added one at a time greallges
the overall computation time in the context of costly polgte
operations that have exponential complexity.

We have shown how to efficiently compute a dependence poly-
hedron for a given pair of statements on a given pair of aeseks
the same array. Technically, the polyhedral operationsliad can
be implemented with the PolyLib [26], a state-of-the-dvtdiry to
operate on parameteriz&dpolyhedra.

3.4 Transitively-Covered Dependences

In general, the full dependence graph contains redundémt in
mation associated with transitively covered dependenths in-
curs computational overhead in subsequent optimizaticmedul-
ing or legality checking phases.

The standard technique to eliminate redundant informatamn
sists in removing all memory-based dependences by congerti
the SCoP to (dynamic) single assignment. This transfoomati
amounts to array renaming and expansion (a generalizafian o
ray privatization), using the array data-flow analysis teéghe pro-
posed by Feautrier [13, 15]. This method only considers flew d
pendences and computes for each statement and each reférenc
readsthe last producer of the value read. The algorithm walks the
code backwards, calling the PIP library [14] to incremdmgtadild
the result. The solution is a quasi affine selection treedgsiza-
tion of a “last write tree” [27]) implementing the case digtiions
for pertinent values of the target statement’s iterators iamari-
ant parameters associated with distinct producers (andisffine
forms). As a dependence graph compression, the major dckwba
of this approach is the need to operate on a single-assigrpnen
gram, hence to resort to complex array contraction and géora
mapping optimization techniques to ultimately reduce ttesmory
footprint [24, 34].

Our method does not require conversion to single assignment
form. Instead, for each target instance, we do identify te |
source of a (dynamic) dependence targetting this preciarine,
in order to remove transitively covered dependences, butame
sider all dependences including the memory based antigafier-



read) and output (write-after-write) ones. The result isngpsified
dependence graph for each depth level, bearing the exaglifsat
dependence relation. Consider a dependence &t of depthp
on a given memory locatior The key to our approach is to deter-
mine, which are all the possible statements that can bdeatexd
between the time of execution of a source iteration and the 6f
execution of its corresponding target iteration(s) (polgsmany).
We consider a candidate covering staten@ithat writesto x and
reason in the Cartesian product of the three former spadeishw
in turn may be collapsed into the smaller spag&# of dimension
dS+d®+d" +dg+ 1. C must satisfy the following conditions:

e it must be the target of a dependence of dgpffom S;
e it must be the source of a dependence of dgptibh T.

The layout of the covering polyhedron corresponds to Fiduie
p > 0 or to Figure 4 ifp < 0.

DS 0 0 D§>0
0 DF 0 Dy >0
0 0 ) D, >0
Acc® | —Acct 0 Accg Accg =0
Acc® 0 —Acc| Accg—Accy =0
_Ail..p—l A(-:.l..p—l 0 _ril..p—l + r(o:,l..p—l =0
_Ail..p—l 0 AI,l..p—l _r§1 p— 1+rI1 p-1=0
—ASp AS, 0 e, tre,>1
0 A | AL —TCp+lap>1

Figure 3: Covering polyhedron at depthp > 0

D? 0 0 D3>0

0 DF 0 Dy >0

0 0 | b Di=0
Acc® [—Acct| 0 Accg —Accy =0
Acc® 0 [-Accl Accg Accg =0
A?l p A(-:.,1..p 0 _rol p+rol p =0
A?l p 0 AIA,l.,p ro,l..p+ roﬁl. p =0

Figure 4: Covering polyhedron at depthp <0

Due to the transitivity of the equality and inequality rédars,
access and schedule relations betw&andT can be omitted, con-
tributing to lowering the computational cost of the coverpolyhe-
dron. The constraint off have been overlooked, they are nonethe-
less the first step in the selection of a candidate coverigistent
C: for a dependence of depth< 0 the necessary constraint Bris
BS b1= BS b1= BJ.p_1 @ndR < Bg < By Fora dependence of
depthp > 0, the constraint reduces g , | =B p-1= =By p—1-

Consider the example in Figure 5 where three statemengrasg

for(i=M i<=N, i++) {
for(j=P; J<Q J++){

S Xf(i.j)] =

T } Xg(ij)1 =

C Xh(i)] =...;

}

Figure 5: Covering statement example

Once a covering polyhedron has been computed and deemed not
empty, it is necessary to relate it to the points f'Rhat it shad-
ows. The shadowed polyhedron is the projection of the cogeri
polyhedron on BT. The projection being a standard PolyLib oper-
ation, we will not get into further details here. The lastsi®then
to remove the shadowed polyhedron from the original depecele
polyhedron. Once again this is a standard PolyLib operétian
may however return a non-convex list of convex polyhedra.

Finally, special care must be taken when dealing with censer
vative dependence approximations associated with nomeadfiray
subscripts. Our currentimplementation preserves evangsitively
covered dependence arc when the source or target of this arc i
non-affine reference. More precise methods have been prdpos
but their practical evaluation is left for future work [42, 5

4. TRANSFORMATION LEGALITY

In general, loop optimizers apply legality checks befoens-
forming the program. More precisely, every loop transfatiorais
associated with specific legality conditions, and sometispecific
static analyses [2]. For instance, the unimodular tramsé&ions on
one side, and the loop fusion/fission on the other side, reglis-
tinct legality checking code. This traditional approacls saveral
drawbacks:

e it is almost impossible to define complex loop transforma-
tions with a global impact on the loop nest, since their legal
ity conditions would be difficult to formally define [21];

e hence complex transformations must be decomposed into se-
quences of primitive ones, a fragile and combinatorial task
general [9];

e each individual transformation must be checked, leading to
compile-time overhead and additional fragility, since i@ si
gle conservative approximation for one of these checks may
invalidate the whole sequence [17];

e in terms of compiler engineering, more effort is needed to
scatter and specialize legality checking code in the |ompstr
formation infrastructure [2].

In addition, the ability to check transformations aftentheve
been applied enables new ways to drive an optimization pedé

array X with affine access functions. Suppose there is an output the compiler can reason about violated dependences, sarda-fu

dependence fron$to T at depth 1. It is not trivial to see, on

the syntactic code, th& may actually cover part of this depen-

dence. However, a qwck look at tigevectors, BS = (0,0,0)t,

BT = (0,0,1)t, B° = (0,1)!, show they satisfy the necessary con-
straint forp = 1. ShouIdC really shadow a subset of the depen-
dence polyhedron is determined by the non-emptiness ofdhe ¢

straint set of Figure 3.

mental decision flaws of syntactic compilers disappmaconvert-
ing early decisions into delayed corrections of illegalrisforma-
tions For example, a typical ill-formed optimization problerkdi
“is there a loop peeling step that would enable fusion of tivery
loops ?” would simply be converted into the extraction of thiei-

mal set of iterations that violate the fusion, followed by tiatural
peeling transformation to correct this violation.



In the context of these fundamental and compiler engingerin
motivations, this section explains how instancewise dégece in-
formation can be used to delay legality cheekizr the application
of complex transformations or long transformation seqesnc

4.1 Characterization of Violated Dependences

After transforming the SCoP, the question arises whetterdh
sulting program still executes correct code. Our approaxisists
in saving dependence graphs at each depth, before applging a
transformation, then to apply a given transformation sagaeand
eventually to run a legality check at the very end of the seqee

We shall denote th#ansformedmatrices, polyhedra, statements
and depth by the same letters as before with the additiorpdfize
symbol. For instance, a transformed statement S’ with foansed
schedule componenss®, S andrS corresponds to original state-
ment S with schedule componer#S, BS andr'S. Again we con-
sider a dependence fro8to T in the original code and we want to
determine if it has been preserved in the transformed progFeor
the moment we shall consider transformations that only fpdde
schedule. For such schedule transformations, the magpingS
is a bijection. Whether or not this translates into staterdeplica-
tion in the resulting code is determined by the code genefat
6].

The violated dependences analyzer computes the iteratiding
Cartesian product spaceP (which is isomorphic to PT) that
were in a dependence relation in the original program whdse
order has been reversed by the transformatidrhese iterations,
should they exist, do not preserve the causality of the aigbro-
gram. By reasoning in the transformed space, it is straogivird
to see that the set of iterations that violate the causatitgition is
the intersection of a dependence polyhedron with the cainstset
oSS > @"'iT". This in turn translates into the same case distinc-
tion as in Section 3.2. Considering a dependence polyhedoomn
Sto T at depthp denoted by5; T, we are looking for the exact set

of iterations ofEEHT such that there is a dependence frofrto S

at transformed depthp/. This gives rise to the case distinction of
Figure 6 ifp’ > 0, and of Figure 7 iff < 0. Note that for the case
p’ <0, the violated dependence is actually the set of iteratiaais
arepotentiallyin violation. The additional constraiﬁﬁyl > B\Tr;l is

also needed.

5T
g 7 g 7 —
_Ao.é..p’—l Actp-1 _ro,l..g’—1+ Me1p-1=0
T T
Aw | A Fop Tep=2t

Figure 6: Violated dependence at depthp’ >0
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Figure 7: Violated dependence candidates at deptp’ <0

T

< T

p
g T g
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A violated dependence polyhedron, as defined in Figure 6, wil
be referred to aé,io?ﬁT . The prerequisites Oﬁ?l.“\[yl—l are the

same as in Section 3.2 since we are essentially solvingahe
problem in the transformed space. Our algorithm perfornes th
same incremental constraint intersection as before, amddme

depthp, the resulting non empty polyhedra will be gathered into
a violated dependence grapdenoted by VDG . Beyond char-
acterizing illegal transformation sequences, it is pdedid reason
about these graphs of violated dependences and effectiegiye
more flexible optimization algorithms. Further details lvdbme
later in the paper.

Finally, to avoid enforcing unnecessary constraints iniotidns
or scans [2], it is also possible to consider fundamentaperiies
such as commutativity and associativity, to further refine vtio-
lated dependence graph.

4.2 Tracking Domain Transformations

So far we have only considered schedule transformationshwhi
consist in reordering the iterations of statements acogrth affine
parametric scheduling functions. These transformatiorom-
pass fusion, fission, shifting, loop reversal, interchargkewing
and unimodular transformations. It is also important toentbtat
the dependence analysis supparts-unimodularbut alsonon-
invertible schedule transformations (i.e. for which tAematrix
is singular). However, some transformations cannot beesgad
as schedule transformations only and special care mustkea ta
for these. Strip-mining, which is an ingredient of looprtdi [39],
consists of expanding the dimension of statement and adding
constraints to the expanded domain matrix. Peeling ancisde
splitting, on the other hand, break a domain into disjointtga
each having its own different schedule [9]. It is then neapss
to duplicate the statements in our formalism, each new rstne
bearing its own domain constraint. Note that, whatever émgth
of the final generated code, peeling and index-set splitiegthe
only transformationghat create new statements. (Loop unrolling
is treated as strip-mining with a specific code generatian [8d],
it does not impact the size of the polyhedral representgtidhe
intrinsic complexity of the transformation will be handleg the
code generator, for which we previously demonstrated goaths
bility properties [37].

The ability to seamlessly integrate non-invertible transfations
and domain transformations in our delayed dependence ittieck
approach is a strong contribution to compiler robustnesssmal-
ability. The solution is to carry locally, along with eactasment,

a history of domain transformations in the order they havenbe
applied. For illustration purposes, we will consider a defEnce
6%4 from Sto T, some unspecified schedule transformations, and
the following domain transformations interleaved amoreggthed-

ule transformations:

e Sis strip-mined along first time dimension by a factor of 4;
its domain is extended by the inequalities associated Wwéh t
striped iteration blocks ( domain matrix SMiecomposed
into SM® and SM as in Sec. 3.2);

e T is split according to the partitioning conditio®,q and
—Cond into T andT; respectively.

The mappingl — T’ becomes a one-to-many mapping in the wake
of domain transformations. When checking legality for degence
6%*1' at depth 0, the analyzer first replays the domain transforma-
tions encoded in the history, then saves the result in caefmé
starting to add any schedule constraint. This opportunitgdes
coupling the domain transformations from the schedulesfan
mations is a strong property of the URUK framework [17]. Stri
mining is an exception: it couples domain and schedule foans
mations. It is always legal, but the only way to make it compo-
sitional with other schedule transformations is to applioitime

caching mechanism is used to speed up computations. At eachdimension®f the transformed space [17]. The domain constraints



created by a strip-mine then bear the current scheduleneton
at the time of the strip-mine.
Back to our example, we show the construction of violated de-

pendence polyhedr&,ioﬁ,ﬂn and&,iorSszl only for depthT, and
p’ > 0 in Figure 8 (the matris, can be obtained in negatit@jnq
inT). !

4.3 Fast Legality Check

The previous characterization allows to compute exactafetis
olated dependences. This is an overkill for legality chegkiThis
section describes a fast dependence test that may be aplied
ter the application of arbitrarily complex program transfotinas.
This test can also be used to quickly filter out satisfied dépeces
when computing violated dependence polyhedra.

In practice, the problem of Figure 6 can be checked effigientl
without using costly polyhedral operations. Consider agfarmed
dependency deptp’ > 0. The left-hand side of the inequality in
the last row represents the violation amount on dggthi.e., the
amount of time by whicl8 is late with respect td@”’ in the trans-
formed schedule; we shall denote it b@HT'. The problem is to

determine whether or naA5 "' can be positive oty 1, the vio-
lated dependence candidates polyhedron at degptl defined by
the two first rows of Figure 6. This is solved by applicatiortioé
affine form of the Farkas Lemma [16, 36].

LEMMA 1 (AFFINE FORM OFFARKAS LEMMA). LetDbea
nonempty polyhedron defined by the inequalitizstA4 > 0. Any
affine function {x) is nonnegative everywhere  iff it is a posi-
tive affine combination:

n
f(x)=Ao+ z Mc(Ax + by), with Ag > 0 andvk, Ay > 0.
K=1

Coefficients\y are called Farkas multipliers.

The existence of a set of positive Farkas multipliers, foivermy
constraints polyhedron, guarantees the function is pestn this
polyhedron. In our case,—ArSﬁT' — 1 must be positive 0Py _1.
This translates into finding a set @dtional positive solutions in a
system of equalities. This problem is not parametric anynaord
may be solved by (non-integral) linear programming in polyal
time. If no such solution can be found, there are violatededep
dences that we characterize exactly thanks to Figure 6. @n th
other hand, if a solution is found, there are no violated depaces
at depthp’ for 6§*T. The problem must then be characterized at

depthp’ +1 where?y = Py_1nN {AfjﬁT’ = O}. This does not
translate into a costly polyhedral intersection: it is suéfnt to add
the pair of inequality constraints correspondingmrSﬁT/ =0to
the Farkas system at depth+ 1. Notice this test is associated with
a rational relaxation of the integral constraints®n This may, in

rare cases, lead to a conservative reéult.
Consider the following example:

1To improve readability, we drew a column of zeroes in theiogg
dependence polyhedron to witness the dimension expansgm a
ciated with the strip-mine transformation. However, som¢he
rows have non-zero elements, for instance the part cornetipg

to AS. In the actual implementation, the column is, of course, not
filled with zeroes.

2To guarantee an exact result in all cases, the integer hutief
constraints must be computed beforehand, but this is a catwai

rial task.

for (i=0; i<=N i++)
S Ai+l] = Ali];

Reversing this loop corresponds to settm% =(-1). Itis obvi-
ously illegal. Let us verify this through our fast legalitfieck. The
dependence polyhedron is

3={i>0,i<N,i'>1i"<i+1i">i+1}.

After reversal-A$ T — 1> 0 is writteni — i’ — 1> 0. Through
the Farkas lemma, a necessary and sufficient condition is

i—i"—1 = Ao+Azi+A2(N—i)+A3(i’ = 1)
+ (" =1 —1)+As(i —i'+1).

Identifying the coefficients of thg i’, N and constant terms yields
the following system:

-1 = A—A3—M+Asg
1 = AM—A—M+Asg
-1 = A3+M—As
0 = A2

The reader may check that this system has no non-negative sol
tion.

5. SCALABILITY

Our dependence analysis is implemented within the modern in
frastructure of Open64 and PathScale EKOPath [8]. This demp
family provides key interprocedural analyses and prerojatition
phases such as inlining, interprocedural constant prajagdoop
normalization, integer comparison normalization, deadecand
got o elimination, as well as induction variable substitutionurO
tool extracts large and representative SCoPs for SPEC fphben
marks: on average, 88% of the statements belong to a SCoP con-
taining at least one loop. See [17] for detailed static anmbdyic
SCoP coverage.

In this section, we exercise this implementation on 6 fulEEP
CPU2000 fp benchmarks. These codes were selected because of
their large SCoPs, within the set of 8 benchmarks that our too
could handle without instabilities (largely due to the urigiag
Open64 platform). In the most challenging examples, thgédsgy
SCoP almost contains the whole program after inlining.

Figure 9 summarizes our experimental results. To maximally
stress the analyzer, we performed aggressive inlining\orfthe
formation of the largest possible SCoPs. These statistecsften
associated with aggregated SCoPs from multiple functionsse
names and line numbers are listed in the second and thirdheslu
#Params gives the number of global parameters, and #Reds giv
the total number of array references (read and write) in {BefS
The next two blocks of columns summarize the properties ef th
dependence graph, first considering all dependences, dedtan
elimination of transitively covered dependences: #Masigives
the number of dependence matrices, #Columns give the averag
number of columns in all dependence matrices (i.e., theaaeer
dimension of dependence polyhedra, a good indication ofohe
plexity for Presburger arithmetic), and Analysis Time esponds
the the computation time in seconds to compute the depeadenc
graph on a 2.4GHz Pentium 4 (Northwood) workstation.

The selected SCoPs account for the majority of the execution
time in all benchmarks. The smaller SCoPs have been omitted
to focus the experiments on the most time-consuming oneg. Th
SCoPs in 168.wupwise feature non-affine array accessesodue t
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Figure 8: Violated dependence at depttp’ > 0 betweenS and T/

conservative induction variable substitutions (the datef@rences
are affine but Open64 could not figure it): covered dependence
could not be removed in this case.

The full instancewise dependence analysis takes up 137
seconds, for the largest SCoP in 173.applu. This is an ertezse
with huge iteration spaces (more than 13 dimensions on geera
and up to 19 dimensions). This may sound quite costly, builit s
shows that the analysis is compatible with the typical etienu
time of aggressive optimizers (typically more than ten selsofor
Open64 with interprocedural optimization and aggressiViaing
and loop-nest optimizations). In all other cases, it tdkes than
5 seconds despite thousands of operations Bfpolyhedra with
close to 10 dimensions on average.

These results are quite compelling since we compute vegglar
dependence graphs, takialypairs of referenceito account, with
no k-limiting heuristic on their syntactic or nesting distara=it is
the case in classical optimization frameworks. Many imm@ata-
tion details can also be improved, using cheap dependestseas
filters for full polyhedral operations, performing on-demdacom-
putations on part of the dependence graph only, and impgavie
polyhedral computation cache to catch a wider scope of tipesa
These improvements can bring an additional order of magméo-
celeration, as shown in previous experiments [42].

According to these results, removing covered dependerges i
slighlty more expensive. This should not be taken for a defini
result: to simplify the implementation, we used polyhedtidfer-
ences and calls to the PolyLib (following an algorithm clasethe
one proposed by Pugh [32]), yet itis well known that an impem
tation base on Feautrier’s PIP would have a much lower coxiiple
[15, 19]. Notice removing covered dependences may somsiime

or in partial solutions on how to remove this scoping limiat
(procedure abstractions, irregular control structures,) eshould
refer to [42, 5].

6. REASONING ABOUT VIOLATIONS

This section builds on graphs of violated dependences to ex-
plore transformation correction schemes. Starting fronminaor-
rect transformation sequence, the goal is to reestablshetality
of the final program while disrupting the schedule as litdgassi-
ble.

The first automatic correction scheme based on instanceleise
pendence information was proposed by Bastoul and Fealitlier
In the general case, they show how to adjusiaatially specified
transformation to respect legality. In the specific caseaifido-
cality improvement transformations, they expose liberegrees
which allow them to deeply modify a transformation for legal
while preserving the core locality benefits. Yet their methsoif-
fers from embarrassingly large constraint systems [7] Whity
not scale to the size of full SPEC benchmarks. In additiom, ou
correction problem is more general: we are always givenllg
specified but illegal transformation, and ought to computmni-
mally intrusive adjustmerib the schedule matrices. Assuming the
given transformation is an upper bound to the peak perfooman
achievable for this application, the adjustment to makeoitext
becomes an optimization problem in itself. This problem B-N
complete in general (e.g., when considering loop fusiasifiis as
a means to correct the schedule [11]). We are thus working on
correction strategies for which a minimal adjustment cardee
rived effectively, and on sub-optimal heuristics for otberrection

creasethe total number of matrices, due to domain decompositions strategies.

to represent non-convex iteration spaces.

To make the problem and its motivation more concrete, we con-

A direct computation of the violated dependence graph takes sider a short example adapted from the actual optimizatiwh a
approximately the same amount of time as computing the depen correction strategies applied on the 171.swim benchmatnle. éix-
dence graph itself. When verifying very complex transfatioma ample in Figure 10 features two loops separated by an interme
sequences, it may at most become twice as expensive: thisis t diate assignment statement, with poor temporal localityaoay
case when optimizing the 171.swim benchmark as described in A. Its affine schedule is fully captured I = (0,0)t, 3% = (1),

our previous work [9] (leading to 38% speed-up with respect t

B = (2,0)!, everyA matrix being the identity matrix of the appro-

the peak SPEC performance with the best optimization flags on priate dimension and evefymatrix being 0.

Athlon64). As described in Section 4.3, if violations ardyoas-
sociated with a limited number of dependences, it is muchemor
practical to apply the fast Farkas-based dependence téstoan-
pute violated dependence polyhedra only when a possiblatidn
is detected. This fast dependence test takes a negligibbeiram
of time compared to the actual operations on polyhedra since
considers the same non-negativity constraints but sohetaxged)
rational linear programming problems instead of integre s
Finally, we only considered analyses and transformatiams c
fined within a given SCoP. These results clearly advocatextan-
sions of the polyhedral model to irregular programs with pter
control structures (e.guhi | e loops). The reader interested in tech-
niques to extend SCoP coverage (by preliminary transfaoms)t

An obvious scheme to improve its locality is to fuse thoseto
In our framework, this amounts to settifig to vector(0,1)! and
BS: to (0,2)!, leaving all other schedule matrices and vectors un-
changed. To make this transformation more concrete, we shew
result of a naive (unoptimized) code generation in Figure 11

The transformation is clearly illegal since the dependénoe
(S1,N—1) to (S) has been reversed, as well as every dependence
from (Sy,i) to (Ss,i+1). To fix these dependences, itis sufficient to
shift the schedule d8, by N — 1 iterations and to shift the schedule
of S; by 1 iteration. However, naively shiftinf, makes it neces-
sary to also shifSS; by N — 1 (yielding a loop fission and loss of
locality). The preferred alternative is to remark that otiig iter-
ationi = 0 of S; (after shifting by 1) is concerned by the violated



All Dependences w/o Covered Dependences
) ; . Analysis / ) Analysis /
Function Source Lines #Params| #Refs || #Matrices | #Columns Time (s) #Matrices | #Columns Time (s)
168.wupwise | zaxpy 11-32 5 16 62 7.5 0.008 62 7.5 0.008
zcopy 11-24 5 12 30 7.0 0.005 30 7.0 0.005
main 114-119
) + calcl +261-269
171.swim + cale2 315 308 5| 216 813 10.5 0.895 624 10.4 2.630
+ calc3 +397-405
psinv 149-166
172.mgrid + resid +189-206 2 191 870 8.4 0.735 962 8.4 1.894
+ interp +270-314
blts 553-624
173.applu +buts + 659-735
+ jacld +1669-2013
1stSCoP | [ ROV | 1 20882330 5| 562 3507 s 4.420 3188 ne 14.865
2nd SCoP | ps +2610-3068 1983 12814 : 37.512 10418 : 115.439
200.sixtrack | thinéd 560-588 7 86 158 11.1 0.044 110 11.1 0.117
dcdiz 1326-1354
301.apsi + dtdtz 1476-1499
+ dudtz 1637-1688 4264
1st SCoP + dvdtz 1779-1833 1) 275 20 0211 203 2.0 1.750
2nd SCoP +wcont | 1878-1889 7| 198 216 12.9 0.133 207 198 0.726
+smth 3443-3448
Figure 9: Scalability of instancewise dependence analysis
o We presented technical contributions to instancewisey atepen-
s fo/i[i(]l =0, P<Ni+4) { dence analysis, and compelling experimental evidences afcial-
for (i=0: i<N i+%) it (i==0) ability through the first validation on full SPEC CPU2000 blen
s Al =...; S A0l = AIN1] .. marks. In addition, we demonstrated how our approach altows
= A N AN i s fB[(.']>:1) o reason about violated dependences across arbitrary dramtion
=1 1 1] = i- o . . . ;
S Bl = Ai-1 ...; sequences. This relieves the compiler of the expensive amber-
some task of implementing specific legality checks for eacpls

Figure 10: Unoptimized code Figure 11: lllegal schedule

for (i=0; i<N, i++) {

St Al = St A0 =... _

if (i==N-1) for (i=1; i<N-1; i+4) {
$ ALO] = AIN1] L s Al =

if (0<i<N-1) S, B+l = Ali] ...
g Bli+1] = Ali] ...;

Lt (i==N) S OANT =
S, B[1] = AlO] ...; S A0 = ANI ..
} S, B[1] = AlO] ...;

Figure 12: Correction Figure 13: Optimized code

dependence fror, and to perform a peeling &; giving rise to
$;, andSy,. In turn, Sy is not concerned by the violation fro8§
while %’2 must still be shifted bN — 1 and eventually pops out of
the loop. In the resulting code, the locality benefits of theidn
are preserved and the legality is ensured. To make this tackuns
more concrete, the naive code generation is shown in Figire 1
The actual optimized program is shown in Figure 13. Notic th
S/ is split into 3 parts by the code generation algorithm bus thi
corresponds to a single statement with a single schedulerirep-
resentation. Onl\8; andS; represent resulting statements with
different schedules.

7. CONCLUSION

Instancewise array dependence analysis computes a fipiee re
sentation of the set of all pairs of dependent iterationdlaftate-
ments. This problem has always been considered non-seadabl
an overkill compared to less expressive but faster deperdests.

transformation. It also allows, in the case of invalid trfansa-
tions, to precisely determine the violated dependenceésted to
be corrected. Identifying these violations can in turn é@ato-
matic correction schemes to fix an illegal transformatiogussce
with minimal changes. This automatic correction approacia i
promising way to design future optimization frameworks$owaing
profitability heuristics to operate on simplified searchcgs de-
coupling precise legality enforcement from the most coraturial
optimization process.
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