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ABSTRACT
The polyhedral model is a powerful framework to reason about
high level loop transformations. Yet the lack of scalable algorithms
and tools has deterred actors from both academia and industry to
put this model to practical use. Indeed, for fundamental complex-
ity reasons, its applicability has long been limited to simple kernels.
Recent developments broke some generally accepted ideas about
these limitations. In particular, new algorithms made it possible to
compute the target code for full SPEC benchmarks while this code
generation step was expected not to be scalable.

Instancewise array dependence analysis computes a finite, inten-
sional representation of the (statically unbounded) set ofall dy-
namic dependences. This problem has always been considered
non-scalable and/or an overkill with respect to less expressive and
faster dependence tests. On the contrary, this article presents exper-
imental evidence of its applicability to full SPEC CPU2000 bench-
marks. To make this possible, we revisit the characterization of
data dependences, considering relations between time dimensions
of the transformed space. Beyond algorithmic benefits, thisnatu-
rally leads to a novel way of reasoning about violated dependences
across arbitrary transformation sequences. Reasoning about vio-
lated dependences relieves the compiler designer from the cumber-
some task of implementing specific legality checks for each single
transformation. It also allows, in the case of invalid transforma-
tions, to precisely determine the violated dependences that need to
be corrected. Identifying these violations can in turn enable auto-
matic correction schemes to fix an illegal transformation sequence
with minimal changes.
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1. INTRODUCTION
The power of an automatic optimizer or parallelizer greatlyde-

pends on its capacity to decide whether two portions of the program
execution may be interchanged or run in parallel. Such knowledge
is related to the difficult task ofdependence analysiswhich aims at
precisely disambiguating memory references.

A number of works proposed data dependence tests and abstrac-
tions, with various motivations such as computational cost, pre-
cision or application domain (see Section 2 for details and useful
references). Several empirical studies have been conducted to com-
pare those tests [29, 18, 30, 31]. The generally accepted conclusion
is: “it is more interesting to use simple tests (like theBanerjee-
test[40] or I-test[22]), and simple abstractions (likeDirection Vec-
tors [39]), because they capture most data dependence information
at a low computational cost”. The present paper contrasts with such
generally accepted ideas and with the traditional use of data depen-
dence analysis.

First we recall how, using an exact instancewise analysis, ade-
pendence between two statements does not necessarily hamper the
application of an optimizing/parallelizing transformation. Indeed,
the comparison of data dependence tests in above-mentionedstud-
ies is quite biased: it only evaluates the ability to prove ordisprove
dependences between statements, and not to precisely tell which
iterations of those statements are in dependence. The essence of
data dependence analysis is to build or to check useful transfor-
mations. To prove or disprove dependences between statements
is quite rough since optimization/parallelization may often be pos-
sible even if there exists data dependences. On the contrary, in-
stancewise analyses and abstractions give the right precision level
to decide wether or not to apply a loop transformation. Empiri-
cal studies of dependence tests/analyses which ignore the impact
on transformations are not powerful enough for advanced compiler
design.

Second we show that beyond dependence analysis, an illegal
transformation is not necessarily a dead-end. We will show how
to exactly determine the violated dependences that need to be cor-
rected. Identifying these violations can in turn enable automatic
correction schemes to fix an illegal transformation sequence with
minimal changes.

Third, we provide empirical evidence of the scalability of an ex-
act instancewise dependence analysis. We present algorithmic con-
tributions which allowed to present the first experimental validation
of instancewise analysis on full SPEC CPU2000 benchmarks.

The paper is organized as follows: Section 2 revisits the vast
amount of related works to motivate our approach; Section 3 gives
an original characterization of instancewise dependences, then de-
scribes the key algorithmic improvements for scalability;Section 4
details the computation of sets of violated dependences after a given



transformation sequence, then presents a fast and accuratelegal-
ity test based on the affine form of the Farkas lemma; Section 5
presents experimental results; and Section 6 explores the potential
of automatic correction approaches on a realistic example.

2. RELATED WORKS
Many tests have been designed for dependence checking be-

tween different statements or between different executions of the
same statement. It has been extensively shown that this problem
amounts to detecting whether or not a system of equations hasan
integer solution inside a region ofZ

n [4].
Most of the dependence tests try to find efficiently a reliable, ap-

proximative but conservative (they overestimate data dependences)
solutions. The GCD-test [3] has been the very first practicalso-
lution, it is still present in many implementations as a firstcheck
with low computational cost. This test assumes that if the great-
est common divisor of the coefficients of an equation dividesthe
constant term, then a solution exists. A generalized GCD-test has
been proposed to handle multi-dimensional array references [4].
The Banerjee test uses the intermediate value theorem to disprove
a dependence: it computes the upper and lower bounds of an equa-
tion and checks if the constant part lies in that range [40]. The
λ-test is an extension to this test that handles multi-dimensional
array references [22]. Some other important solutions are acombi-
nation of GCD and Banerjee tests called I-test [22], the∆-test [18]
that gives an exact solution when there is at most one variable in
the subscript functions, and the Power-test which uses the Fourier-
Motzkin variable elimination method [36] to prove or disprove de-
pendences [41]. Beside their approximative nature, these depen-
dence tests suffer from many other major limitations. The most
stringent one is their inability to precisely handleif conditionals,
loops with parametric bounds, triangular loops (a loop bound de-
pends on an outer loop counter), coupled subscripts (two different
array subscripts refer the same loop counter), or parametric sub-
scripts.

On the opposite, a few methods allow to find an exact solution to
the dependence problem, but at a higher computational cost.The
Omega-test is an extension to the Fourier-Motzkin variableelimi-
nation method to find integral solutions [32]. On one hand, once a
variable is eliminated, the original system has an integer solution
only if the new system has an integer solution (if this is not the case
there is no solution). On the other hand, if an integer point exists in
a space computed from the new system, then there exists an integer
point in the original system (if this is the case, there is a solution).
The PIP-test uses a parametric version of the dual-simplex method
with Gomory cuts to find an integral solution [15]. These two tests
not only give an exact answer, they are also able to deal with com-
plex loop structures and (affine) array subscripts. The PIP-test is
more precise than the Omega-test when dealing with parametric
codes (when one or more integer symbolic constant are present),
for instance, in the following pseudo-code:

for(i=0; i<=N; i++) {
A[i] = ...;
... = ... A[i+100] ...;

}

the Omega-test will state that there is a dependence betweenthe two
statements while the PIP-test will precise that the dependence only
exists if N is greater or equal to 100. Both tests have worst-case
exponential complexities but work quite well in practice asshown
by Pugh for the Omega-test [32]. Other costly exact tests exist

in the literature [28, 12] but are often not able to handle complex
control in spite of their cost.

We do not advocate for the use of any of these tests, but ratherfor
the computation ofinstancewisedependence information as pre-
cisely as possible, i.e., for intensionally describing thestatically
unbounded set of all pairs of dependent statement iterations, called
instances. Dependence tests are statementwise decision problems
associated with the existence of a pair of dependent instances, while
instancewise dependence analysis provides additional information
that can enable finer program transformations, like affine schedul-
ing [23, 16, 25, 19]. The intensional characterization of instance-
wise dependences can take the form of multipledependence ab-
stractions, depending on the precision of the analysis and on the
requirements of the user. The simplest and least precise oneis
calleddependence levels, it specifies for a given loop nest which
loop carry the dependence. It has been introduced in the Allen and
Kennedy parallelization algorithm [1]. Thedirection vectorsis a
more precise abstraction where thei-th element approximates the
value of all thei-th elements of thedistance vectors(which shows
the difference of the loop counters of two dependent instances). It
has been introduced by Lamport [23] and formalized by Wolfe [39]
and is clearly the most widely used representation. The mostpre-
cise abstraction is thedependence polyhedron[20] which is able
to determine exactly the set of statement instances in dependence
relation. The choice of a given dependence abstraction is crucial
for further study: choosing an imprecise one can result in blacking
out interesting transformations. For instance, let us consider the
following example:

for(i=0; i<=N; i++)
for(j=0; j<=N; j++)

S A[i][j] = A[j][i] + A[i][j-1];

There are three dependences in this loop nest (a read-after-write
dependence from〈S, i, j〉 to 〈S, i, j +1〉, another read-after-write de-
pendence from〈S, i, j〉 to 〈S, j , i〉 and a write-after-read from〈S, j , i〉
to 〈S, i, j〉). Dependence levels are 2, 1 and 1: each loop carries at
least one dependence and no parallelism can be found. Direction
vectors are(0,1), (+,−), (+,−): the second coefficients 1 and
− hamper any parallelism detection. Using dependence polyhe-
dra, parallelism may be found: the Feautrier algorithm suggests
the affine scheduleθ(i, j) = 2i + j −3 (all instances with the same
schedule may be run in parallel), see [38]. In the rest of thispa-
per, we compute the most precise representation of dependences:
dependence polyhedra.

3. POLYHEDRAL DEPENDENCES
A thorough tool to perform dependence analysis on loop nestsis

the polytope model. The dependence analysis is then deemed exact.
We use the notations of the URUK framework [9] briefly restated in
Section 3.1; under the invariants of this framework, it is possible to
apply any transformation at a given point without worrying about
its validity. We therefore lift the tedious constraint of ensuring the
legality of a transformation before being able to apply it. Only after
a full transformation sequence has been applied do we care about
the correctness of the sequence as a whole.

3.1 Normalized Polyhedral Representation
This section is a quick overview of our polyhedral framework. It

is based on a normalized representation of programs and transfor-
mations, derived from the models introduced by Pugh and Feautrier
[33, 16].



We will use the following vocabulary and notations. The scope
of all program manipulations is a sequence of loop nests withcon-
stant strides and affine bounds. It includes non-rectangular, non-
perfectly nested loops, and conditionals with boolean expressions
of affine inequalities. Loop nests fulfilling these hypotheses are
amenable to a representation in the polyhedral model. We call
Static Control Part(SCoP) anymaximal syntactic program seg-
mentsatisfying these constraints. All variables that are invariant
within a SCoP are calledglobal parameters. For each statement
within a SCoP, the representation separates three attributes, charac-
terized by parametric matrices: the iteration domain, the schedule,
and the access functions. Even though transformations can still be
applied to loops or full procedures, they are individually applied to
each statement for a maximal flexibility.

Given a statementSwithin a SCoP, letdS be the depth ofS, let i
be theiteration vectorof S, i.e., the vector of loop indices to which
S belongs (the dimension ofi is dS), and letg be the vector ofdg
global parametersand the scalar component. Theiteration domain
of S is defined by

{

i | DS(i|g
)t
≥ 0
}

,

whereDS is the matrix ofn affine constraints on the execution of
statementS; DS hasn rows anddS+dg+1 columns. Each iteration
i of a statementS is called aninstance, and is denoted by〈S, i〉. The
scheduleof S is an affine function mapping iterations ofSto multi-
dimensional time-stamps. This function is encoded by a matrix ΘS

of 2dS+ 1 rows anddS+ dg + 1 columns. By definition, the exe-
cution order of all iterations of all statements is the lexicographic
order on multi-dimensional time-stamps of the schedules ofthese
statements.

Each reference in a statementS is of the form〈X, f (iS)〉 whereX
is an array andf is the subscript function. When it is affine, this
function is defined by

f (iS) =
(

Acci |Accg
)

iS,

where Acci is a matrix with as many lines as array dimensions inX,
resp. Accg for the global parameters and the scalar component. We
also consider more general non-affine references with conservative
approximations.

Polyhedral compilation usually distinguishes three steps: one
first has to represent an input program in the formalism, thenap-
ply a transformation to this representation, and finally generate the
target (syntactic) code. This paper focuses on computing instance-
wise dependence information effectively to improve the applicabil-
ity and expressiveness of the transformation step.

It is well known that arbitrarily complex sequences of loop trans-
formations can be captured in one single transformation step of the
polyhedral model. This was best illustrated by affine scheduling
[21] and partitioning [25] algorithms. Yet to ease the composition
of program transformations on the polyhedral representation, we
further split the representation of the schedule into smaller matrix
and vector blocks satisfying strong normalization rules:

ΘS =























0 · · · 0 0 · · · 0 βS
0
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1,1 · · · AS

1,dS ΓS
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0
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0 · · · 0 0 · · · 0 βS
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,

whereAS is a square matrix mapping iterations vectors to odd time
dimensions (time dimension start at depth 0), where theΓS matrix

allows to shift the schedule with respect to global parameters, and
whereβS scatters the statements in the multidimensional time in
mapping every statement to a specific vector of even time dimen-
sions. Such encodings with 2dS+ 1 dimensions were previously
proposed by Feautrier, then by Kelly and Pugh [21]. The URUK
framework adds a few additional normalization rules, formally de-
fined in [17]; these rules have been left out of this quick overview
since they were not directly useful to the dependence analysis itself.

3.2 Instancewise Polyhedral Dependences
The purpose of this paper is to compute the exact dependence in-

formation between every pair of instances, i.e., every pairof state-
ment iterations. Considering a pair of statementsSandT of where
at least one is a write, there is a dependence from an instance〈S, iS〉
of Sto an instance〈iT ,T〉 of T (or 〈T, iT〉 depends on〈S, iS〉) if and
only if the following instancewiseconditions are met:

Execution condition: both instances belong to the corresponding
statement iteration domain:DS

i iS≥ 0 and DT
i iT ≥ 0,

Conflict condition: both instances refer the same memory loca-
tion:

(

AccS
i |AccS

g
)

iS =
(

AccT
i |AccT

g
)

iT , and

Causality condition: the instance〈S, iS〉 is executed before〈T, iT〉
in the original execution:ΘSiS≪ ΘT iT ,

where≪ denotes the lexicographic order on vectors.
As reminded in Section 3.1, the schedule (the multidimensional

time-stamp) at which an instance is executed is determined,for
statement S, by the 2dS+ 1 vector given byΘSiS. Relative order
between instances is given by the relative lexicographic order of
their schedule vectors.

Consider the original polyhedral representation of a program, be-
fore any transformation has been applied. For a given statementS,
matrix AS is the identity,ΓS is 0 and vectorβS captures the syntac-
tic position ofS in the original code. In this configuration, the three
aforementioned conditions correspond to the classical definition of
polyhedral dependences [13, 32].

A dependence is said to be loop independent if the causality
condition ΘSiS ≪ ΘT iT is resolved sequentially on one of theβ
components of the schedule. A dependence is said to be loop car-
ried at loop depthp if the causality condition is resolved by the
(

AccS
i |AccS

g
)

component of the schedule at depthp:
Loop-carried dependence at depthp:

βS
0..p−1 = βT

0..p−1,
(

(AS|ΓS)iS
)

0..p−1 =
(

(AT |ΓT)iT
)

0..p−1,

and
(

(AS|ΓS)iS
)

p <
(

(AT |ΓT)iT
)

p.

Loop-independent dependence at depthp:

βS
0..p−1 = βT

0..p−1,
(

(AS|ΓS)iS
)

0..p−1 =
(

(AT |ΓT)iT
)

0..p−1 andβS
p < βT

p .

The purpose of dependence analysis is to compute a directed de-
pendence multi-graph DGp for each possible dependence levelp.
Unlike traditional reduced dependence graphs, an arcST in DGp
is labeled by a dependence polyhedron capturing the set of pairs
of iteration vectors (iS, iT ) at the desired dependence level. These
pairs of belong to the Cartesian product space PS,T of dimension
(dS+ dg + 1) + (dT + dg + 1) and meet the instancewise depen-
dence conditions. Since the global parameters are invariant across
the whole SCoP, we can remove redundant parameter dimensions
and project this space into the equally expressive one of dimension
dS+dT +dg +1. We will indistinctly useiS to represent an itera-
tion vector for statementS in either the original space of dimension



dS+ dg + 1 or in one of the two aforementioned Cartesian prod-
uct spaces. It will be clear from the context which one shouldbe
assumed.

3.3 Fast Dependence Analysis
The decomposition of schedule matrices into theA, β and Γ

components allows to break down the Cartesian product spaceinto
smaller blocks (the• symbol denotesall rows):

DS
i = DS

•,1..dS DS
g = DS

•,dS+1..dS+dg+1

AccS
i = AccS

•,1..dS AccS
g = AccS

•,dS+1..dS+dg+1

For conciseness reasons, we will use the terminologydepen-
dence of depth−p rather than loop-independent dependence of
depth p, and the terminologydependence of depth prather than
loop-carried dependence of depthp. Then, for a dependence from
S to T of depth levelp, we have

βS
0..|p|−1 = βT

0..|p|−1.

If p < 0, the causality condition is enforced by

βS
|p| < βT

|p|

otherwise it is enforced by:
(

AS
•,p|Γ•,p

)

iS <

(

AT
•,p|Γ•,p

)

iT .

In the dependence graph, there will be an arc fromS to T iff
for the considered depth, the beta relations are enforced and if the
dependence polyhedron of Figure 2 (ifp≤ 0) or Figure 1 (ifp> 0)
is not empty. All dependence polyhedra for a pair of statements and
a given pair of access functions are disjoint by construction.















DS
i 0 DS
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i DT
g ≥ 0
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i −AccT
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−AS
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•,1..p−1 −ΓS

•,1..p−1 +ΓT
•,1..p−1 = 0

−AS
•,p AT

•,p −ΓS
•,p +ΓT

•,p ≥ 1















Figure 1: Dependence at depthp > 0
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Figure 2: Dependence at depthp≤ 0

This decomposition dramatically reduces the cost of computing
the polyhedron of all pairs of dependence instances spawnedby
statementsS andT at a given depthp. Indeed, a simple lookup
on β vectors can quickly eliminate costly polyhedral operations
when the prerequisite onβ prefixes of dimensionp−1 is not met:
βS

1..p−1 = βT
1..p−1. For a dependence at depthp≤ 0 the constraint

system is the same except for the last row, as explained previously.
Special cases arise when examining scalar references or arrays

indexed by nonlinear access functions. The latter are conservatively
dealt with as scalars by not adding access constraints from the de-
pendence polyhedron. In such conservative cases, all source and
sink statements are considered to access the same memory location

and are bound to respect the causality order after transformation.
There exist of course finer approximation schemes, but sincealgo-
rithmic complexity is higher, their practical applicability to large
programs remains unknown [10, 42, 5].

Let l be the first index such thatβS
l < βT

l ; the only possible loop
independent dependence is of depth−l . The reader may notice
the great similarities between dependence polyhedra on consecu-
tive dependence levels. Exploiting these similarities allowed us to
design an efficient algorithm that traverses the dependencelevels in
increasing absolute value order (0, 1,−1, ...,l , −l ). At depth level
0, all but the causality constraints are combined in the dependence
polyhedron which is added to the dependence graph DG0 and saved
into a cache. At depth level 1, the polyhedron is recovered from the
cache of depth 0 and intersected with the constraint

(

AS
•,1|Γ•,1

)

iS <

(

AT
•,1|Γ•,1

)

iT .

The result, if non-empty, is added to DG1. At depth level−1, the
polyhedron is recovered from the cache of depth 0 and intersected
with the constraint

(

AS
•,1|Γ•,1

)

iS =
(

AT
•,1|Γ•,1

)

iT .

If the resulting polyhedron is empty, adding more constraints is
useless and translates immediately into a short-circuit ofthe com-
putations. On the other hand, if the result is not empty, it isadded to
the cache for later reuse. This short-circuiting strategy combined to
the fact that constraints can be added one at a time greatly reduces
the overall computation time in the context of costly polyhedral
operations that have exponential complexity.

We have shown how to efficiently compute a dependence poly-
hedron for a given pair of statements on a given pair of accesses to
the same array. Technically, the polyhedral operations involved can
be implemented with the PolyLib [26], a state-of-the-art library to
operate on parameterizedZ-polyhedra.

3.4 Transitively-Covered Dependences
In general, the full dependence graph contains redundant infor-

mation associated with transitively covered dependences.This in-
curs computational overhead in subsequent optimization, schedul-
ing or legality checking phases.

The standard technique to eliminate redundant informationcon-
sists in removing all memory-based dependences by converting
the SCoP to (dynamic) single assignment. This transformation
amounts to array renaming and expansion (a generalization of ar-
ray privatization), using the array data-flow analysis technique pro-
posed by Feautrier [13, 15]. This method only considers flow de-
pendences and computes for each statement and each reference it
readsthe last producer of the value read. The algorithm walks the
code backwards, calling the PIP library [14] to incrementally build
the result. The solution is a quasi affine selection tree (generaliza-
tion of a “last write tree” [27]) implementing the case distinctions
for pertinent values of the target statement’s iterators and invari-
ant parameters associated with distinct producers (or distinct affine
forms). As a dependence graph compression, the major drawback
of this approach is the need to operate on a single-assignment pro-
gram, hence to resort to complex array contraction and storage
mapping optimization techniques to ultimately reduce the memory
footprint [24, 34].

Our method does not require conversion to single assignment
form. Instead, for each target instance, we do identify the last
source of a (dynamic) dependence targetting this precise instance,
in order to remove transitively covered dependences, but wecon-
sider all dependences including the memory based anti (write-after-



read) and output (write-after-write) ones. The result is a simplified
dependence graph for each depth level, bearing the exact simplified
dependence relation. Consider a dependence fromSto T of depthp
on a given memory locationx. The key to our approach is to deter-
mine, which are all the possible statements that can be interleaved
between the time of execution of a source iteration and the time of
execution of its corresponding target iteration(s) (possibly many).
We consider a candidate covering statementC thatwrites to x and
reason in the Cartesian product of the three former spaces, which
in turn may be collapsed into the smaller space PS,C,T of dimension
dS+dC +dT +dg +1. C must satisfy the following conditions:

• it must be the target of a dependence of depthp from S;

• it must be the source of a dependence of depthp to T.

The layout of the covering polyhedron corresponds to Figure3 if
p > 0 or to Figure 4 ifp≤ 0.
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Figure 3: Covering polyhedron at depthp > 0
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Figure 4: Covering polyhedron at depthp≤ 0

Due to the transitivity of the equality and inequality relations,
access and schedule relations betweenSandT can be omitted, con-
tributing to lowering the computational cost of the covering polyhe-
dron. The constraint onβ have been overlooked, they are nonethe-
less the first step in the selection of a candidate covering statement
C: for a dependence of depthp≤ 0 the necessary constraint onβ is
βS

0..p−1 = βC
0..p−1 = βT

0..p−1 andβS
p < βC

p < βT
p . For a dependence of

depthp > 0, the constraint reduces toβS
0..p−1 = βC

0..p−1 = βT
0..p−1.

Consider the example in Figure 5 where three statements assign
array X with affine access functions. Suppose there is an output
dependence fromS to T at depth 1. It is not trivial to see, on
the syntactic code, thatC may actually cover part of this depen-
dence. However, a quick look at theβ vectors,βS = (0,0,0)t ,
βT = (0,0,1)t , βC = (0,1)t , show they satisfy the necessary con-
straint for p = 1. ShouldC really shadow a subset of the depen-
dence polyhedron is determined by the non-emptiness of the con-
straint set of Figure 3.

for(i=M; i<=N; i++) {
for(j=P; j<=Q; j++) {

S X[f(i,j)] = ...;
T X[g(i,j)] = ...;

}
C X[h(i)] = ...;
}

Figure 5: Covering statement example

Once a covering polyhedron has been computed and deemed not
empty, it is necessary to relate it to the points in PS,T that it shad-
ows. The shadowed polyhedron is the projection of the covering
polyhedron on PS,T. The projection being a standard PolyLib oper-
ation, we will not get into further details here. The last step is then
to remove the shadowed polyhedron from the original dependence
polyhedron. Once again this is a standard PolyLib operationthat
may however return a non-convex list of convex polyhedra.

Finally, special care must be taken when dealing with conser-
vative dependence approximations associated with non-affine array
subscripts. Our current implementation preserves every transitively
covered dependence arc when the source or target of this arc is a
non-affine reference. More precise methods have been proposed
but their practical evaluation is left for future work [42, 5].

4. TRANSFORMATION LEGALITY
In general, loop optimizers apply legality checks before trans-

forming the program. More precisely, every loop transformation is
associated with specific legality conditions, and sometimes specific
static analyses [2]. For instance, the unimodular transformations on
one side, and the loop fusion/fission on the other side, require dis-
tinct legality checking code. This traditional approach has several
drawbacks:

• it is almost impossible to define complex loop transforma-
tions with a global impact on the loop nest, since their legal-
ity conditions would be difficult to formally define [21];

• hence complex transformations must be decomposed into se-
quences of primitive ones, a fragile and combinatorial taskin
general [9];

• each individual transformation must be checked, leading to
compile-time overhead and additional fragility, since a sin-
gle conservative approximation for one of these checks may
invalidate the whole sequence [17];

• in terms of compiler engineering, more effort is needed to
scatter and specialize legality checking code in the loop trans-
formation infrastructure [2].

In addition, the ability to check transformations after they have
been applied enables new ways to drive an optimization process: if
the compiler can reason about violated dependences, some funda-
mental decision flaws of syntactic compilers disappearby convert-
ing early decisions into delayed corrections of illegal transforma-
tions. For example, a typical ill-formed optimization problem like
“is there a loop peeling step that would enable fusion of two given
loops ?” would simply be converted into the extraction of themini-
mal set of iterations that violate the fusion, followed by the natural
peeling transformation to correct this violation.



In the context of these fundamental and compiler engineering
motivations, this section explains how instancewise dependence in-
formation can be used to delay legality checksafter the application
of complex transformations or long transformation sequences.

4.1 Characterization of Violated Dependences
After transforming the SCoP, the question arises whether the re-

sulting program still executes correct code. Our approach consists
in saving dependence graphs at each depth, before applying any
transformation, then to apply a given transformation sequence, and
eventually to run a legality check at the very end of the sequence.

We shall denote thetransformedmatrices, polyhedra, statements
and depth by the same letters as before with the addition of aprime
symbol. For instance, a transformed statement S’ with transformed
schedule componentsAS′ , βS′ andΓS′ corresponds to original state-
ment S with schedule componentsAS, βS andΓS. Again we con-
sider a dependence fromSto T in the original code and we want to
determine if it has been preserved in the transformed program. For
the moment we shall consider transformations that only modify the
schedule. For such schedule transformations, the mappingS→ S′

is a bijection. Whether or not this translates into statement duplica-
tion in the resulting code is determined by the code generator [35,
6].

The violated dependences analyzer computes the iterationsof the
Cartesian product space PS′,T′

(which is isomorphic to PS,T) that
were in a dependence relation in the original program andwhose
order has been reversed by the transformation. These iterations,
should they exist, do not preserve the causality of the original pro-
gram. By reasoning in the transformed space, it is straightforward
to see that the set of iterations that violate the causality condition is
the intersection of a dependence polyhedron with the constraint set
ΘS′ iS

′
≥ ΘT ′

iT
′
. This in turn translates into the same case distinc-

tion as in Section 3.2. Considering a dependence polyhedronfrom
Sto T at depthp denoted byδS→T

p , we are looking for the exact set
of iterations ofδS→T

p such that there is a dependence fromT ′ to S′

at transformed depthp′. This gives rise to the case distinction of
Figure 6 if p′ > 0, and of Figure 7 ifp′ ≤ 0. Note that for the case
p′ ≤ 0, the violated dependence is actually the set of iterationsthat
arepotentiallyin violation. The additional constraintβS′

|p′| > βT ′

|p′| is
also needed.
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Figure 6: Violated dependence at depthp′ > 0
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)

Figure 7: Violated dependence candidates at depthp′ ≤ 0

A violated dependence polyhedron, as defined in Figure 6, will
be referred to asδvio

S′→T ′

p′ . The prerequisites onβ′
1..|p′|−1 are the

same as in Section 3.2 since we are essentially solving thesame
problem in the transformed space. Our algorithm performs the
same incremental constraint intersection as before, and the same
caching mechanism is used to speed up computations. At each

depth p, the resulting non empty polyhedra will be gathered into
a violated dependence graph, denoted by VDGp′ . Beyond char-
acterizing illegal transformation sequences, it is possible to reason
about these graphs of violated dependences and effectivelyderive
more flexible optimization algorithms. Further details will come
later in the paper.

Finally, to avoid enforcing unnecessary constraints in reductions
or scans [2], it is also possible to consider fundamental properties
such as commutativity and associativity, to further refine the vio-
lated dependence graph.

4.2 Tracking Domain Transformations
So far we have only considered schedule transformations which

consist in reordering the iterations of statements according to affine
parametric scheduling functions. These transformations encom-
pass fusion, fission, shifting, loop reversal, interchange, skewing
and unimodular transformations. It is also important to note that
the dependence analysis supportsnon-unimodularbut alsonon-
invertible schedule transformations (i.e. for which theA matrix
is singular). However, some transformations cannot be expressed
as schedule transformations only and special care must be taken
for these. Strip-mining, which is an ingredient of loop tiling [39],
consists of expanding the dimension of statement and addingnew
constraints to the expanded domain matrix. Peeling and index-set
splitting, on the other hand, break a domain into disjoint parts,
each having its own different schedule [9]. It is then necessary
to duplicate the statements in our formalism, each new statement
bearing its own domain constraint. Note that, whatever the length
of the final generated code, peeling and index-set splittingare the
only transformationsthat create new statements. (Loop unrolling
is treated as strip-mining with a specific code generation flag [37],
it does not impact the size of the polyhedral representation.) The
intrinsic complexity of the transformation will be handledby the
code generator, for which we previously demonstrated good scala-
bility properties [37].

The ability to seamlessly integrate non-invertible transformations
and domain transformations in our delayed dependence checking
approach is a strong contribution to compiler robustness and scal-
ability. The solution is to carry locally, along with each statement,
a history of domain transformations in the order they have been
applied. For illustration purposes, we will consider a dependence
δS→T

p from Sto T, some unspecified schedule transformations, and
the following domain transformations interleaved among the sched-
ule transformations:

• S is strip-mined along first time dimension by a factor of 4;
its domain is extended by the inequalities associated with the
striped iteration blocks ( domain matrix SMS decomposed
into SMS

i and SMS
g as in Sec. 3.2);

• T is split according to the partitioning conditionsCond and
¬Cond into T ′

1 andT ′
2 respectively.

The mappingT → T ′ becomes a one-to-many mapping in the wake
of domain transformations. When checking legality for dependence
δS→T

p at depth 0, the analyzer first replays the domain transforma-
tions encoded in the history, then saves the result in cache before
starting to add any schedule constraint. This opportunity of de-
coupling the domain transformations from the schedule transfor-
mations is a strong property of the URUK framework [17]. Strip-
mining is an exception: it couples domain and schedule transfor-
mations. It is always legal, but the only way to make it compo-
sitional with other schedule transformations is to apply itto time
dimensionsof the transformed space [17]. The domain constraints



created by a strip-mine then bear the current schedule information
at the time of the strip-mine.

Back to our example, we show the construction of violated de-

pendence polyhedraδvio
S′→T ′

1
p′ andδvio

S′→T ′
2

p′ only for depthT ′
1 and

p′ > 0 in Figure 8 (the matrixT ′
2 can be obtained in negatingCond

in T ′
1). 1

4.3 Fast Legality Check
The previous characterization allows to compute exact setsof vi-

olated dependences. This is an overkill for legality checking. This
section describes a fast dependence test that may be appliedaf-
ter the application of arbitrarily complex program transformations.
This test can also be used to quickly filter out satisfied dependences
when computing violated dependence polyhedra.

In practice, the problem of Figure 6 can be checked efficiently
without using costly polyhedral operations. Consider a transformed
dependency depthp′ > 0. The left-hand side of the inequality in
the last row represents the violation amount on depthp′, i.e., the
amount of time by whichS′ is late with respect toT ′ in the trans-
formed schedule; we shall denote it by∆S′→T ′

p′ . The problem is to

determine whether or not,∆S′→T ′

p′ can be positive onPp′−1, the vio-
lated dependence candidates polyhedron at depthp′−1 defined by
the two first rows of Figure 6. This is solved by application ofthe
affine form of the Farkas Lemma [16, 36].

LEMMA 1 (AFFINE FORM OFFARKAS LEMMA ). LetD be a
nonempty polyhedron defined by the inequalities Ax + b ≥ 0. Any
affine function f(x) is nonnegative everywhere inD iff it is a posi-
tive affine combination:

f (x) = λ0 +
n

∑
k=1

λk(Akx+bk), with λ0 ≥ 0 and∀k,λk ≥ 0.

Coefficientsλk are called Farkas multipliers.

The existence of a set of positive Farkas multipliers, for a given
constraints polyhedron, guarantees the function is positive on this
polyhedron. In our case,−∆S′→T ′

p′ −1 must be positive onPp′−1.
This translates into finding a set ofrational positive solutions in a
system of equalities. This problem is not parametric anymore and
may be solved by (non-integral) linear programming in polynomial
time. If no such solution can be found, there are violated depen-
dences that we characterize exactly thanks to Figure 6. On the
other hand, if a solution is found, there are no violated dependences
at depthp′ for δS→T

p . The problem must then be characterized at

depthp′ + 1 wherePp′ = Pp′−1∩
{

∆S′→T ′

p′ = 0
}

. This does not

translate into a costly polyhedral intersection: it is sufficient to add
the pair of inequality constraints corresponding to−∆S′→T ′

p′ = 0 to
the Farkas system at depthp′+1. Notice this test is associated with
a rational relaxation of the integral constraints onD. This may, in
rare cases, lead to a conservative result.2

Consider the following example:

1To improve readability, we drew a column of zeroes in the original
dependence polyhedron to witness the dimension expansion asso-
ciated with the strip-mine transformation. However, some of the
rows have non-zero elements, for instance the part corresponding
to AS. In the actual implementation, the column is, of course, not
filled with zeroes.
2To guarantee an exact result in all cases, the integer hull ofthe
constraints must be computed beforehand, but this is a combinato-
rial task.

for (i=0; i<=N; i++)
S A[i+1] = A[i];

Reversing this loop corresponds to settingAS′ = (−1). It is obvi-
ously illegal. Let us verify this through our fast legality check. The
dependence polyhedron is

δ =
{

i ≥ 0, i ≤ N, i′ ≥ 1, i′ ≤ i +1, i′ ≥ i +1
}

.

After reversal−∆S′→T ′

1 −1≥ 0 is written i − i′−1≥ 0. Through
the Farkas lemma, a necessary and sufficient condition is

i− i′−1 = λ0 +λ1i +λ2(N− i)+λ3(i
′−1)

+λ4(i
′− i−1)+λ5(i− i′ +1).

Identifying the coefficients of thei, i′, N and constant terms yields
the following system:















−1 = λ0−λ3−λ4 +λ5
1 = λ1−λ2−λ4 +λ5

−1 = λ3 +λ4−λ5
0 = λ2

The reader may check that this system has no non-negative solu-
tion.

5. SCALABILITY
Our dependence analysis is implemented within the modern in-

frastructure of Open64 and PathScale EKOPath [8]. This compiler
family provides key interprocedural analyses and pre-optimization
phases such as inlining, interprocedural constant propagation, loop
normalization, integer comparison normalization, dead-code and
goto elimination, as well as induction variable substitution. Our
tool extracts large and representative SCoPs for SPEC fp bench-
marks: on average, 88% of the statements belong to a SCoP con-
taining at least one loop. See [17] for detailed static and dynamic
SCoP coverage.

In this section, we exercise this implementation on 6 full SPEC
CPU2000 fp benchmarks. These codes were selected because of
their large SCoPs, within the set of 8 benchmarks that our tool
could handle without instabilities (largely due to the underlying
Open64 platform). In the most challenging examples, the biggest
SCoP almost contains the whole program after inlining.

Figure 9 summarizes our experimental results. To maximally
stress the analyzer, we performed aggressive inlining to favor the
formation of the largest possible SCoPs. These statistics are often
associated with aggregated SCoPs from multiple functions whose
names and line numbers are listed in the second and third columns.
#Params gives the number of global parameters, and #Refs gives
the total number of array references (read and write) in the SCoP.
The next two blocks of columns summarize the properties of the
dependence graph, first considering all dependences, second after
elimination of transitively covered dependences: #Matrices gives
the number of dependence matrices, #Columns give the average
number of columns in all dependence matrices (i.e., the average
dimension of dependence polyhedra, a good indication of thecom-
plexity for Presburger arithmetic), and Analysis Time corresponds
the the computation time in seconds to compute the dependence
graph on a 2.4GHz Pentium 4 (Northwood) workstation.

The selected SCoPs account for the majority of the execution
time in all benchmarks. The smaller SCoPs have been omitted
to focus the experiments on the most time-consuming ones. The
SCoPs in 168.wupwise feature non-affine array accesses due to
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Figure 8: Violated dependence at depthp′ > 0 betweenS′ and T ′
1

conservative induction variable substitutions (the actual references
are affine but Open64 could not figure it): covered dependences
could not be removed in this case.

The full instancewise dependence analysis takes up to 37.512
seconds, for the largest SCoP in 173.applu. This is an extreme case
with huge iteration spaces (more than 13 dimensions on average,
and up to 19 dimensions). This may sound quite costly, but it still
shows that the analysis is compatible with the typical execution
time of aggressive optimizers (typically more than ten seconds for
Open64 with interprocedural optimization and aggressive inlining
and loop-nest optimizations). In all other cases, it takesless than
5 seconds, despite thousands of operations onZ-polyhedra with
close to 10 dimensions on average.

These results are quite compelling since we compute very large
dependence graphs, takingall pairs of referencesinto account, with
no k-limiting heuristic on their syntactic or nesting distanceas it is
the case in classical optimization frameworks. Many implementa-
tion details can also be improved, using cheap dependence tests as
filters for full polyhedral operations, performing on-demand com-
putations on part of the dependence graph only, and improving the
polyhedral computation cache to catch a wider scope of operations.
These improvements can bring an additional order of magniture ac-
celeration, as shown in previous experiments [42].

According to these results, removing covered dependences is
slighlty more expensive. This should not be taken for a definite
result: to simplify the implementation, we used polyhedraldiffer-
ences and calls to the PolyLib (following an algorithm closer to the
one proposed by Pugh [32]), yet it is well known that an implemen-
tation base on Feautrier’s PIP would have a much lower complexity
[15, 19]. Notice removing covered dependences may sometimes in-
creasethe total number of matrices, due to domain decompositions
to represent non-convex iteration spaces.

A direct computation of the violated dependence graph takes
approximately the same amount of time as computing the depen-
dence graph itself. When verifying very complex transformation
sequences, it may at most become twice as expensive: this is the
case when optimizing the 171.swim benchmark as described in
our previous work [9] (leading to 38% speed-up with respect to
the peak SPEC performance with the best optimization flags on
Athlon64). As described in Section 4.3, if violations are only as-
sociated with a limited number of dependences, it is much more
practical to apply the fast Farkas-based dependence test and com-
pute violated dependence polyhedra only when a possible violation
is detected. This fast dependence test takes a negligible amount
of time compared to the actual operations on polyhedra sinceit
considers the same non-negativity constraints but solves (relaxed)
rational linear programming problems instead of integral ones.

Finally, we only considered analyses and transformations con-
fined within a given SCoP. These results clearly advocate forexten-
sions of the polyhedral model to irregular programs with complex
control structures (e.g.,while loops). The reader interested in tech-
niques to extend SCoP coverage (by preliminary transformations)

or in partial solutions on how to remove this scoping limitation
(procedure abstractions, irregular control structures, etc.) should
refer to [42, 5].

6. REASONING ABOUT VIOLATIONS
This section builds on graphs of violated dependences to ex-

plore transformation correction schemes. Starting from anincor-
rect transformation sequence, the goal is to reestablish the legality
of the final program while disrupting the schedule as little as possi-
ble.

The first automatic correction scheme based on instancewisede-
pendence information was proposed by Bastoul and Feautrier[7].
In the general case, they show how to adjust apartially specified
transformation to respect legality. In the specific case of data lo-
cality improvement transformations, they expose liberty degrees
which allow them to deeply modify a transformation for legality
while preserving the core locality benefits. Yet their method suf-
fers from embarrassingly large constraint systems [7] which may
not scale to the size of full SPEC benchmarks. In addition, our
correction problem is more general: we are always given afully
specified, but illegal transformation, and ought to compute amini-
mally intrusive adjustmentto the schedule matrices. Assuming the
given transformation is an upper bound to the peak performance
achievable for this application, the adjustment to make it correct
becomes an optimization problem in itself. This problem is NP-
complete in general (e.g., when considering loop fusion/fission as
a means to correct the schedule [11]). We are thus working on
correction strategies for which a minimal adjustment can bede-
rived effectively, and on sub-optimal heuristics for othercorrection
strategies.

To make the problem and its motivation more concrete, we con-
sider a short example adapted from the actual optimization and
correction strategies applied on the 171.swim benchmark. The ex-
ample in Figure 10 features two loops separated by an interme-
diate assignment statement, with poor temporal locality onarray
A. Its affine schedule is fully captured byβS1 = (0,0)t , βS2 = (1),
βS3 = (2,0)t , everyA matrix being the identity matrix of the appro-
priate dimension and everyΓ matrix being 0.

An obvious scheme to improve its locality is to fuse those loops.
In our framework, this amounts to settingβS′2 to vector(0,1)t and
βS′3 to (0,2)t , leaving all other schedule matrices and vectors un-
changed. To make this transformation more concrete, we showthe
result of a naive (unoptimized) code generation in Figure 11.

The transformation is clearly illegal since the dependencefrom
〈S1,N−1〉 to 〈S2〉 has been reversed, as well as every dependence
from 〈S1, i〉 to 〈S3, i+1〉. To fix these dependences, it is sufficient to
shift the schedule ofS′2 by N−1 iterations and to shift the schedule
of S′3 by 1 iteration. However, naively shiftingS′2 makes it neces-
sary to also shiftS′3 by N− 1 (yielding a loop fission and loss of
locality). The preferred alternative is to remark that onlythe iter-
ation i = 0 of S′3 (after shifting by 1) is concerned by the violated



All Dependences w/o Covered Dependences

Function Source Lines #Params #Refs #Matrices #Columns
Analysis /
Time (s) #Matrices #Columns

Analysis /
Time (s)

168.wupwise zaxpy 11–32 5 16 62 7.5 0.008 62 7.5 0.008
zcopy 11–24 5 12 30 7.0 0.005 30 7.0 0.005

171.swim

main
+ calc1
+ calc2
+ calc3

114–119
+ 261–269
+ 315–325
+ 397–405

5 216 813 10.5 0.895 624 10.4 2.630

172.mgrid
psinv
+ resid
+ interp

149–166
+ 189–206
+ 270–314

2 191 870 8.4 0.735 962 8.4 1.894

173.applu

1st SCoP
2nd SCoP

blts
+ buts
+ jacld
+ jacu
+ rhs

553–624
+ 659–735
+ 1669–2013
+ 2088–2336
+ 2610–3068

4
2

562
1983

3507
12814

11.3
13.5

4.420
37.512

3188
10418

11.2
13.5

14.865
115.439

200.sixtrack thin6d 560–588 7 86 158 11.1 0.044 110 11.1 0.117

301.apsi

1st SCoP
2nd SCoP

dcdtz
+ dtdtz
+ dudtz
+ dvdtz
+ wcont
+ smth

1326–1354
1476–1499
1637–1688
1779–1833
1878–1889
3443–3448

1
7

275
198

4264

216
2.0
12.9

0.211
0.133

203
207

2.0
12.8

1.750
0.726

Figure 9: Scalability of instancewise dependence analysis

for (i=0; i<N; i++)
S1 A[i] = ...;
S2 A[0] = A[N-1] ...;

for (i=1; i<N; i++)
S3 B[i] = A[i-1] ...;

Figure 10: Unoptimized code

for (i=0; i<N; i++) {
S′1 A[i] = ...;

if (i==0)
S′2 A[0] = A[N-1] ...;

if (i>=1)
S′3 B[i] = A[i-1] ...;

}

Figure 11: Illegal schedule

for (i=0; i<N; i++) {
S′′1 A[i] = ...;

if (i==N-1)
S′′2 A[0] = A[N-1] ...;

if (0<i<N-1)
S′′31 B[i+1] = A[i] ...;

if (i==N-1)
S′′32 B[1] = A[0] ...;

}

Figure 12: Correction

S′′1 A[0] = ...;
for (i=1; i<N-1; i++) {

S′′1 A[i] = ...;
S′′31 B[i+1] = A[i] ...;

}
S′′1 A[N-1] = ...;
S′′2 A[0] = A[N-1] ...;
S′′32 B[1] = A[0] ...;

Figure 13: Optimized code

dependence fromS′2 and to perform a peeling ofS′3 giving rise to
S′′31

andS′′32
. In turn,S′′31

is not concerned by the violation fromS′′2
while S′′32

must still be shifted byN−1 and eventually pops out of
the loop. In the resulting code, the locality benefits of the fusion
are preserved and the legality is ensured. To make this adjustment
more concrete, the naive code generation is shown in Figure 12.
The actual optimized program is shown in Figure 13. Notice that
S′′1 is split into 3 parts by the code generation algorithm but this
corresponds to a single statement with a single schedule in our rep-
resentation. OnlyS′′31

andS′′32
represent resulting statements with

different schedules.

7. CONCLUSION
Instancewise array dependence analysis computes a finite repre-

sentation of the set of all pairs of dependent iterations of all state-
ments. This problem has always been considered non-scalable or
an overkill compared to less expressive but faster dependence tests.

We presented technical contributions to instancewise array depen-
dence analysis, and compelling experimental evidence of its scal-
ability through the first validation on full SPEC CPU2000 bench-
marks. In addition, we demonstrated how our approach allowsto
reason about violated dependences across arbitrary transformation
sequences. This relieves the compiler of the expensive and cumber-
some task of implementing specific legality checks for each single
transformation. It also allows, in the case of invalid transforma-
tions, to precisely determine the violated dependences that need to
be corrected. Identifying these violations can in turn enable auto-
matic correction schemes to fix an illegal transformation sequence
with minimal changes. This automatic correction approach is a
promising way to design future optimization frameworks, allowing
profitability heuristics to operate on simplified search spaces, de-
coupling precise legality enforcement from the most combinatorial
optimization process.
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