Semi-Automatic Generation of Adaptive Codes

Maxime Schmitt
Univ. of Strasbourg and Inria
Strasbourg, France
max.schmitt@math.unistra.fr

César Sabater
Univ. Nacional de Rosario
Rosario, Argentina
csabater89@gmail.com

Cédric Bastoul
Univ. of Strasbourg and Inria
Strasbourg, France
cedric.bastoul@Qunistra.fr

Figure 1: Fluid simulation snapshot (left), corresponding monitored state grid (center), generated computation volume (right)

ABSTRACT

Compiler automatic optimization and parallelization tech-
niques are well suited for some classes of simulation or sig-
nal processing applications, however they usually don’t take
into account domain-specific knowledge nor the possibility
to change or to remove some computations to achieve “good
enough” results. Quite differently, production simulation
and signal processing codes have adaptive capabilities: they
are designed to compute precise results only where it matters
if the complete problem is not tractable or if computation
time must be short. In this paper, we present a new way to
provide adaptive capabilities to compute-intensive codes au-
tomatically. It relies on domain-specific knowledge provided
through special pragmas by the programmer in the input
code and on polyhedral compilation techniques to contin-
uously regenerate at runtime a code that performs heavy
computations only where it matters at every moment. We
present a case study on a fluid simulation application where
our strategy enables significant computation savings and
speedup in the optimized portion of the application while
maintaining a good precision, with a minimal effort from
the programmer.

IMPACT 2017

Seventh International Workshop on Polyhedral Compilation Techniques
Jan, 2017, Stockholm, Sweden

In conjunction with HIPEAC 2017.

http://impact.gforge.inria.fr /impact2017

1. INTRODUCTION

A large range of compute-intensive applications are calcu-
lating approximate results. This is especially true for simu-
lation codes which are based on inherently imperfect mod-
els that try to emulate as precisely as possible a real world
object or phenomenon. This is also true for signal process-
ing applications which are limited by the precision of, e.g.,
input sensors or processing algorithms. Some other applica-
tions may also compute approximate results for functional
reasons, e.g., to meet a deadline such as in real-time video
decoding, or because the precise result is not tractable or
valuable such as late earthquake prediction, or simply be-
cause the user needs a rough result to drive further precise
investigations such as in geophysics. For such applications,
“ideal” naive computation kernels, that would be convenient
with an infinite computation power, are often designed at
first for algorithmic tuning and debugging purposes. Then
they are optimized to a “production” version exploiting pos-
sible approximations to scale to the actual problem size or to
meet the deadline. Translating an ideal code to a production
code is complex, time consuming, leads to less maintainable
codes and must be redone when a major change in the ini-
tial strategy arises. In this paper, we present a new compiler
technique that automates the conversion from an ideal code
to a version that exploits approximations dynamically, by
adjusting computations with respect to the current state of
the program (Fig. 1). It aims at improving both developer’s
productivity and approximation’s quality.

State-of-the-art automatic optimization and paralleliza-
tion compiler techniques heavily rely on the polyhedral model
to manipulate computation-intensive kernels to aggressively
restructure them at the iteration level [7, 4, 11]. They are
usually based on exact, or over-approximated, data depen-

dence analysis to ensure that the optimization preserves the
original program semantics. Relaxed semantics models are
possible, e.g., to support commutativity to enable vectoriza-
tion [9], however all input code iterations are to be executed
in the optimized code. On the other hand, more aggressive
techniques to automatically compute approximations have
been designed, e.g., by ignoring some dependences to enable
parallelization [6], by providing alternative implementations
of some code parts [1], or by skipping computations [14,
12]. In our work, we investigate a new way, called Adap-
tive Code Refinement (ACR), inspired by Adaptive Mesh
Refinement [3], a classical numerical analysis technique pro-
viding the ability to dynamically tune a computational grid
to achieve precise computation only where it matters. We
achieve this goal by exploiting high-level information pro-
vided by the user, a dynamic optimization strategy and
state-of-the-art polyhedral code generation techniques.

Our strategy is supported by high-level information pro-
vided by the user and a static-dynamic code generation ap-
proach. First, we designed a set of pragmas to provide the
user with the means to express both static and dynamic
approximation-related information. It allows the user to fo-
cus only on an “ideal” version of the computational kernels.
Those kernels can actually compile and run while ignoring
the pragmas, but they may only produce results in a reason-
able amount of time for small problems. The pragma set is
quickly described in Section 2. Next, ACR uses polyhedral
code generation techniques to generate a code to compute
approximate results according to static information, with
the ability to regenerate itself according to the evolution
of the computed values and to pre-defined approximation
strategies. In a nutshell, ACR decomposes the computation
space into a grid and monitors specific values at the grid
level. Depending on their evolution, it will tune the compu-
tation volume onto each grid cell to ensure complex compu-
tation is done only where and when it matters. According
to this monitoring, it will (1) generate an optimized version
of the code specific to the current situation, (2) compile it
dynamically and (3) switch the execution to the new opti-
mized code when it is ready. Specific threads are devoted
to monitoring and code generation for a minimum overhead.
The continuous monitoring and code generation process en-
ables strong computation savings while limiting accuracy
loss. The complete process is depicted in Section 3.

We present a case study and an evaluation of ACR on an
Eulerian fluid simulation implementation in Section 4. The
study shows empirical evidence that ACR allows significant
time and computation savings while maintaining accuracy
with minimal efforts from the programmer, even compared
to a hand-tuned version.

2. ACRPRAGMA SET

ACR offers a set of high-level pragmas that allow the user
to provide high-level, domain-specific approximation infor-
mation. The ACR optimizing algorithm will exploit them
to compute quality approximate results automatically. ACR
pragmas are language extensions to be inserted before a com-
putational loop to compute approximations using either al-
ternative implementations to those provided inside the loop
or a reduced number of computations in some areas of the
computation space. The pragma set is divided into four
constructs:

1. The monitor construct specifies which data has to be

monitored for the dynamic optimization strategy and
how the monitoring is summarized for a complete cell.
Its format is:
#pragma acr monitor(data[f(?)],summaryl, filter])
where data is the data array to monitor (using the ac-
cess function f(7) of the iteration vector 7), summary
specifies how monitored values should be summarized
into one value at the cell level (using predefined poli-
cies, e.g., mean, max, min, etc.) and filter is an optional
function that may be used to preprocess values being
monitored (e.g., to classify them into categories): the
actual value used to drive the dynamic optimization
strategy will be filter(data).

2. The grid construct defines the granularity of the dy-
namic approximation strategy: the data space is de-
composed into cells of a size equal to the specified grid
value. The monitoring as well as the approximation
strategy will be done at the cell-level granularity. Its
format is:

#pragma acr grid(size)
where size is a constant number: if the computation
space is 2-dimensional, the cell size will be size X size.

3. The strategy construct specifies in which conditions
which alternatives should be used for each cell. They
may be either static (specifying areas of the compu-
tation space where to apply a given alternative) or
dynamic (specifying which alternative to use in a cell
depending on the monitored value or its evolution in
that cell). The case study presented in the remain-
der of the paper uses a set of direct links between a
dynamic monitor value and alternative computations.
Its format is:

#pragma acr strategy direct(value, alternative)
where value is a value that can be reported by a mon-
itor for a grid cell and alternative is the alternative to
apply to a cell if the monitor reports that value for
that cell.

An example of static strategy has the following format:
#pragma acr strategy zone(area, alternative)
where area is a part of the computation space ex-
pressed using set notations (e.g., {i | 0<=i<=3} to ex-
press the part of the space where i is between 0 and 3)
and alternative is the name of an alternative defined
with the alternative construct. Many other strate-
gies are possible, however describing the complete set
is out of the scope of this paper.

4. The alternative construct defines an alternative com-
putation to the default one provided in the code. Its
format is:

#pragma acr alternative name (type, effect)
where name is the strategy name, type specifies the
strategy type, i.e. either parameter to keep the origi-
nal code but with new parameter values to be defined
in the effect field, or code to provide an alternative
code block in the effect field.

Figure 2 depicts how this pragma set may be used to specify
approximate computation on a simplified version of a part
of our case study, detailed in Section 4.

// Loop iterating over frames of the fluid simulation
while (true) {

// lin_solve kernel

#pragma acr grid (10)

#pragma acr monitor (density [i][j], max, filter)
#pragma acr alternative low(parameter, MAX = 1)
#pragma acr alternative medium(parameter, MAX = 4)
#pragma acr alternative high(parameter, MAX = 8)
#pragma acr strategy direct (1, low)

#pragma acr strategy direct (2, medium)

#pragma acr strategy direct (3, high)

for (k = 0; k < MAX; k++) {

for (i = 1; i <=N; i+4) {
for (j = 1; j <=N; j++) {
lin_solve_computation (k, i, j);
}
}

}

}

Figure 2: Pseudo-code depicting the application of
ACR to the lin_solve kernel of the fluid simulation
case study. Here, the filter function returns in which
range a given density value is: near zero (1), medium (2)
or high (3). The monitor value for a cell corresponds to the
maximum of all ranges in the cell. This range is used to
apply a different alternative computation for each cell. In
this example, the loop k will iterate more or less depending
on that range.

3. ADAPTIVE CODE REFINEMENT

The application domain of ACR corresponds to compu-
tational kernels such that the possible values of each loop
iterator can be modeled by a set of affine constraints on that
loop iterator, outer loop iterators and fixed parameters. A
simple and useful case corresponds to loops such that the
loop stride is a known constant and the loop bounds are
linear functions of the outer loop counters and fixed param-
eters. Hence the application domain is code that can be
raised to a polyhedral representation [7] with more general
loop bodies where any kind of data access is possible and
data dependent conditions are also allowed. However, ACR
makes a strong use of polyhedral compilation techniques. In
particular we represent the computation space and its cells
as polyhedra in the same way polyhedral compilers represent
iteration domains [7, 4, 11]. For instance, the computation
space of the 1in_solve loop in Figure 2 is:

k 0< kK <MAX
Slin,solve = 1 1 S 7 S N
J 1< j <N

To manipulate polyhedra, we rely on isl [16] to achieve,
e.g., polyhedral unions and differences and on CLooG [2] to
generate a code to scan them.

Computational loops annotated with user-provided ACR
pragmas are candidates for approximate computation using
our approach. In such kernels, the rigid data-dependence
model used by compilers is explicitly relaxed and alternative
computation can be used to make the computation faster,
according to the user-defined strategy. This strategy may be
static, i.e., independent of the computed values in specific
areas of the computation space, or dynamic, i.e. dependent
on the monitored values in parts of the computation space
where no static strategy applies. The ACR optimizing algo-
rithm is based on three main components. First it continu-

ously evaluates a “state grid” of the data space according to
the user-defined strategy as detailed in Section 3.1. Second,
a dedicated thread generates an optimized code according
to the state grid, this process is explained in Section 3.2.
Finally, a runtime ensures the best version of the code for
both performance and accuracy is used. It is discussed in
Section 3.3.

3.1 State Grid

ACR needs a way to gather information about the compu-
tation at runtime to identify different approximation regions,
i.e., the parts of the computation space where the approx-
imation strategy should be different. This task should be
simple enough to avoid adding significant computation over-
head with regard to the time saved by the optimized code.
To achieve that, a uniform grid is embedded into the data
space to represent different zones of the simulation, accord-
ing to the grid pragma. Every cell in the grid represents
an (hyper-)square shaped portion of the data space. The
dimension of the grid may affect the accuracy and the effi-
ciency of the generated code in contradictory ways, hence a
good tradeoff is preferable.

The information stored in the grid, or its evolution during
execution, should allow to decide about the desired accuracy
in the corresponding portion of the computation space. The
grid is refreshed by a specific thread according to the user-
provided monitoring specification. Moreover, to avoid too
frequent changes in the grid (which would translate to code
generations that may be obsolete when they become avail-
able), we did study different post-processing policies (evalu-
ated on our case study in Section 4.3):

Raw (no post-processing): the grid reflects exactly the ap-
proximation strategy which should be applied accord-
ing to ACR pragmas, with the risk that some regions
oscillate rapidly between various approximation strate-
gies, not leaving enough time to generate optimized
codes between two changes.

Versioning : grid cells are updated when a higher preci-
sion is needed whereas precision downgrade is ignored.
When the difference between the current grid and the
raw grid is more than a given threshold, we restart
with the raw grid. Hence some grid cells are set to
an over-approximation with respect to ACR pragmas,
with the risk of a less efficient computation. However
this policy reduces the need for a new code compila-
tion because we allow some cells to use higher precision
temporarily.

Stencil : each grid cell is evaluated not only according to
the monitored values in that cell, but also according
to neighboring cells. For instance if a grid cell is set
to low precision but is surrounded by high-precision
cells, it is switched to high-precision as well to an-
ticipate a probable change. Here again, some grid
cells over-approximate the computation with respect
to ACR pragmas, with the risk of a less efficient com-
putation.

Once the grid is filled with the information gathered, and
post-processed if requested, the regions are constructed by
joining grid cells with similar approximation strategy. Tech-
nically, each grid cell is represented as a polyhedron and the
region is constructed by aggregating cells with polyhedral

unions thanks to isl. Figure 1 shows a snapshot of a fluid
simulation and the corresponding grid state: each shade of
grey corresponds to a region where a similar approximation
strategy should be applied.

3.2 Dynamic Code Generation

Once a state grid has been computed to reflect the current
mapping of approximation strategies onto different regions
of the computation space, the next step is to generate on
the fly an optimized code to replace the current one (if the
current state grid actually differs from the previous one) to
implement the approximation.

Our solution is to translate this problem to a code gen-
eration in the polyhedral model task. Tools like CLooG [2]
are able to generate an efficient code from a polyhedral rep-
resentation made of two set of objects: iteration domains
which describe the set of statement instances to execute, and
scheduling relations which describe the relative order of the
statement instances. After aggregating grid cells with simi-
lar approximation strategies together using polyhedral union
operations, each region is modeled as a union of convex poly-
hedra. Those regions are then mapped back to the compu-
tation space by considering the iteration subspace that up-
dates those regions. We associate each subspace with the
corresponding computation that reflects the approximation
strategy, i.e., a block of code or some new constraints such
as parameter values (as in our example in Figure 2). Those
subspaces form the input iteration domains of the code gen-
eration problem. Then, to ensure the approximated compu-
tations are processed in a similar order than the original one
to preserve accuracy, we enforce the lexicographic ordering
of the original computation space dimensions as the input
scheduling relations of the code generation problem. Then
CLooG is able to generate a code with extremely optimized
control overhead to, e.g., avoid costly tests at the innermost
level of the computational loop to choose the right approx-
imation strategy, which could not be possible with a static
approach.

Once CLooG has generated an approximation code, it is
compiled and loaded dynamically to the computation pro-
cess. Figure 1(right) provides a view of the computation
space executed by the generated code according to the state
grid in the center and the high-level user information from
Figure 2. The automatically generated code has the follow-
ing properties: (1) it has no costly internal tests to decide
about the optimization strategy, (2) it makes more com-
putation only where it is necessary and (3) the remaining
computations are done with respect to the initial ordering
to preserve accuracy.

3.3 Runtime

The ACR runtime is decoupled into five threads to exploit
multicore architectures and to reduce the technique’s over-
head: (1) the computation thread is responsible for the main
computation itself, (2) the monitoring thread computes the
state grid, (3) the CLooG thread provides a code generation
service: it waits for polyhedral code generation requests and
generates the corresponding C codes with low control over-
head!, (4) the compilation thread provides a compilation ser-
vice: it waits for C code compilation requests and generates

1Several server threads may coexist to process several re-
quests concurently.

the corresponding object codes, finally (5) the coordinator
thread creates and manages all the other threads.

The runtime operates as summarized in Fig. 3. At the
beginning of the computation, no optimized code is avail-
able. Hence, the computation thread executes the original
code for the first iteration and updates the internal data
structures. The monitoring thread constantly watches the
monitored data as specified by ACR pragmas. When nec-
essary, it updates the state grid and signals the coordinator
thread. When the coordinator thread is signaled about the
availability of a new state grid, it builds a code generation
request to get an optimized code corresponding to the cur-
rent situation. Then it sends it to the CLooG thread. When
the CLooG thread answers, the coordinator thread sends a
compilation request to the compilation thread, who answers
with an object code. In the meantime, the computation
thread continues the iterations with its current code. When
the coordinator thread receives a new compiled optimized
code, it checks whether the code generated still fits the cur-
rent state of the grid or not. If yes, it updates the code
of the computation thread for the next kernel call. If not,
it ignores it, updates its request for an optimized code and
lets the computation thread continue with the original code.
The same happens if the state grid evolves while an old,
not convenient anymore, optimized code is being used by
the computation thread: the computation code is switched
back to the original.

The runtime is optimized in several ways to ensure a
convenient optimized code is available for the computation
thread as soon as possible. First, the coordinator thread re-
quests two different compiled codes for the same C input: a
non-optimized one which may be generated and used quickly
(we use TCC, the Tiny C Compiler for this) and a very opti-
mized code that may be available later and that will replace
the non-optimized one (we used GCC with aggressive opti-
mization options for this). Second, the coordinator thread
is using a cache of generated codes to immediately use an
already generated code for a known state grid. Finally, the
coordinator accepts over-approximations instead of switch-
ing back to the original code: what is needed is that the
optimized code performs the same or more complex com-
putations than the levels specified in the current grid, for
every grid slot. In that way we can say that the computa-
tions done are “safe” and they do at least what was specified
by the domain-specific information.

4: Provide C code 6: Provide object code

Compilation thread(s) I'

5: Request
compilation

3: Request
code generation

Coordinator thread

7: Provide new
function

Computation thread

Updates

2: Provide grid
state

Monitoring thread

1: Monitor

Data structures

Figure 3: ACR runtime thread interaction diagram.

4. CASE STUDY: FLUID SIMULATION

The Adaptive Code Refinement approach has been im-
plemented in a prototype and applied to a fluid simulation
application to evaluate its effectiveness®. This application,
called Eulerian fluid simulation, has the characteristic of be-
ing a grid based simulation. A snapshot of such simulation
is shown in Fig. 1(left). Particle-based simulations and grid-
based simulations are the most effective ways of simulating
the behavior of fluids. Grid-based methods respond to the
so-called Eulerian approach, where fluids are represented by
fixed points in the space with information about the fluid in
time and they are updated at every time step of the simula-
tion. Grid based techniques often suffer from mass loss and
are slower than particle based methods, but they usually
have higher accuracy and better tracking of smooth fluid
surfaces. They form a very suitable family of codes to apply
ACR, because on one hand the simulation is an approxima-
tion of a physical phenomenon and on the other hand the
processing is done on a highly regular computation space
where each element requires complex computations.

4.1 Exploiting Domain-Specific Knowledge

In fluid simulation, the state of a fluid is typically rep-
resented by a velocity vector and a density value for every
point in the space. The density in a given point represents
the amount of fluid concentrated and the velocity vector rep-
resents the direction and intensity of the flow in that point.
The evolution of the simulation is described by the Navier
Stokes equations. The simulation steps can be decomposed
in Advection, Diffusion and External Forces influence. Ad-
vection is the phenomena that describes how velocity moves
the fluid and other objects in the space along with the flow.
Diffusion describes the resistance of a fluid to flow because
of its viscosity. The influence of External Forces describe
local or body forces applied to a specific region or all the
fluid like a fan blowing air, gravity, etc. Density is carrying
the pertinent information for efficient monitoring: precise
computations should be done in regions where this value is
high and conversely. This domain-specific knowledge is en-
coded for ACR through the monitor pragma to maximize
the accuracy of the approximation.

4.2 Applying ACR

To apply ACR to the simulation, the grid state is filled
according to the density values. The value of a grid cell is
the level of the maximum density point in that cell. The
specific target of the optimization by approximation is the
portion of the simulation code dedicated to the diffusion
phase. Diffusion computations corresponds to a significant
part of the total computations of the simulation.

The diffusion phase is computed with a numerical itera-
tive method to obtain a solution. The numerical algorithm
gets better solutions as more iterations it does. The original
code is programmed to do a fixed amount of iterations in the
whole space. To do diffusion, the iterations of the numeri-
cal method are done one by one in the complete simulation
space. That is because the particles need to know about the
solution of its neighbors to compute the next approximation
of its own solution. We have used the ACR approach to
make the numerical algorithm perform less iterations while
maintaining dependencies as much as possible on areas with

ZNote: ACR will be demonstrated at the workshop.

little amount of fluid or no fluid at all. We have chosen to
have 3 levels of complexity for the regions: the optimized
algorithm will do the first basic iterations over the entire it-
eration step, then the other iterations over a more restricted
region where there is more than a negligible amount of fluid,
and will end doing more iterations only where there is a con-
siderable amount of fluid that needs extra iterations to reach
a good enough solution. A simplified excerpt of the corre-
sponding code with the ACR pragmas is shown in Figure 2.

4.3 Experimental Results

ACR was evaluated against a single threaded implementa-
tion of a 2D eulerian fluid simulation described by Stam [15]
of 400 by 400 particles. We compared the approximate com-
putation code relying on ACR with various grid updating
policies (detailed in Section 3.1) against the original code as
well as a hand-tuned version that mimics the ACR strategy
without dynamically generated code. We observe both per-
formance, computation savings and accuracy over a range
of simulation iterations. During simulation, fluid is injected
regularly in the iteration space together with a directional
force to make it acquire velocity. The test cases have differ-
ent types of regions with similar appropriate approximation
policy and they evolve over time.

The experimental setup is a quad-core Intel Core 2 Quad
Q6600 system with 4 GB of memory. All codes are compiled
using GCC 6.2.1 with -03 -march=native option (which
builds the best performing original and hand-tuned versions).
In addition to GCC, the compilation thread of the ACR run-
time also uses TCC (Tiny C Compiler) 0.9.26 to minimize
the dynamic compilation time. The grid parameter is set
to 40 (10 x 10 cells), providing a good trade-off between
polyhedral generation time and cell size.

Overall execution time is reported in Figure 4 at differ-
ent steps of the simulation, for the original code, a manu-
ally optimized version and the original code optimized using
ACR with three different state grid post-processing strate-
gies. The manually optimized code corresponds to a version
with the same approximation strategy as ACR, including the
same computation of the grid state and the selection of the
most appropriate alternative implementation for each grid
cell at runtime. However its code is purely static and the
alternative selection is done by a switch integrated in the
original iteration space which is entirely visited, hence with
a high control overhead. In contrast, ACR is generating an
optimized code specifically for the current state of the grid
state, hence with a minimal control overhead. Performance
results after 1000 simulation steps show a speedup of 2.85
for the optimized kernel for ACR with raw state grid update
strategy (resp. 2.82 for versioning and 2.04 for stencil)
with respect to the original code and 1.82 (resp. 1.81 and
1.31) with respect to the manually optimized code. The ver-
sioning policy achieves equivalent performance and better
precision compared to the raw policy: it requires 3% more
computations but saves 43% code compilations on average.

It is worth noticing that the performance improvement
is only due to the approximation strategy: the generated
computation thread is sequential and no other polyhedral
optimization has been applied. ACR is complementary to
existing optimization techniques and will be composed with
them in future work. The present paper only evaluates the
benefits of “pure” ACR.

120

T
Original ——
Hand tune
Stencil =

fl01,56

Raw
100 |- Versioning ==X

80

59,60

60

Kernel time (s)

135,07

40

20

2.1

°
[1585

100 500
Simulation steps

(a) Execution time for the ACR optimized kernel alone

300

T
Original ——
Raw
250 | Versioning E5=3
200
g 8
= ©
5 150 =8
= ~ &8
8 —[N Qo
£ 0
= 4
g 56
100

50

1000 2000
Simulation steps

(b) Execution time for the whole application

Figure 4: Execution time for the optimized kernel and the complete fluid simulation application. Original is the original
application; Hand tuned is a manually written version that mimics ACR without dynamically generated code; Stencil, Raw
and Versioning are ACR versions with corresponding state grid post-processing policies (detailed in Section 3.1).

Computation savings of the diffusion part for a complete
simulation step (where it is used 3 times) with respect to the
original code are shown in Figure 5. Our metric for compu-
tation savings is the difference of the number of iterations
of the original code (corresponding to the number of calls to
the 1in_solve_computation() in the pseudo-code in Fig. 2,
ie,3x MAX x N x N, with M AX set to the same value as
the high precision ACR alternative) and the number of itera-
tions actually executed by the computation thread. Results
show very significant computation savings compared to the
number of computations of the original diffusion, ranging
from 73 to 89%.

Iterations | 100 200 500 1000 | 2000
% saved comput. | 89.45 | 88.05 | 82.72 | 77.60 | 73.61

Figure 5: Saved computations with ACR - raw policy

Accuracy results are shown in Figure 6. We measured the
difference in density for every particle in fixed snapshots of
both simulations, with the original application as reference.
We measured both the mean and maximum difference of ev-
ery particle. Values of the density fluid vary between 0 and
20. We observe that even after 1000 iterations and removing
77% of the computations, the mean difference for all parti-
cles is only a fraction of the maximum density value. The
stencil policy shows the best precision property at the price
of efficiency as shown in Fig. 4. Moreover, the maximum
measured deviation is below 0.05 while in the application,
two particles may be displayed using different colors only
if they do not belong to the same plateau, each separated
by 0.08 and starting at 0. Hence, those results show ACR
has a limited impact on the simulation despite its aggressive
computation savings.

The results show considerable computation savings and
performance improvement while preserving a good accuracy.
The speedup is comparable to reported results using loop
perforation technique [14] which also skips computations,
but for complete iterations. However, building on domain-

Grid update policy Raw
Average deviation | 0.0017
Maximum deviation | 0.0484

Versioning | Stencil
0.0011 0.0003
0.0464 0.0247

Figure 6: Precision results for ACR after 1000 iterations
(density values range from 0 to 20)

specific knowledge and on dynamic monitoring instead of
a static training makes ACR more accurate and adaptable
to different simulations. The dynamic polyhedral code gen-
eration approach also clearly outperforms a manual opti-
mization, which is actually a quite complex code while ACR
preserves the original program.

Compiler Techniques The idea of relaxing data de-
pendences and skipping computation to trade accuracy for
performance has been studied in the past in various ways.
Loop perforation [8, 14] is a static technique which removes
complete loop iterations selected with respect to a train-
ing phase. Contrary to loop perforation, ACR is a dynamic
approach which may remove only selected parts of a given
loop execution and is designed to produce more accurate
results with end-user guidance. Our work shares the con-
cept of high-level information including alternative imple-
mentations provided through pragmas with Green [1], how-
ever Green is based on an offline training to select the fi-
nal code while ACR is continuously recomputing the best
code. EnerJ [13] uses the type system to specify approxi-
mate variables to save energy. SAGE [12] is a GPU-oriented
technique skipping or simplifying processing with respect to
performance impact while we primarily focus on accuracy.
HELIX-UP [6] ignores some dependences to enable code par-
allelization, which is complementary to our approach.

Numerical Analysis Techniques ACR has been in-
spired by numerical analysis techniques, in particular Adap-
tive Mesh Refinement [3] which can maintain the consis-
tency of a solution for a bounded error in the minimum
possible amount of time in simulation problems. [10] ex-
tends the use of a multiscale analysis for grid adaptation
to incorporate locally varying time stepping. Space filling

curves are also used to transform multidimensional data for
better parallelization of multiscale adaptation methods [5].
The differences between our approach and these works is
the manipulation of the simulation space since they modify
the shape of the simulation space at runtime. Its underlying
iteration structure is a hierarchical grid which incorporates
and looses points during the simulation. On the opposite,
the ACR approach keeps the original iteration space intact
while the generated code that achieves the computation may
change dynamically.

S. CONCLUSION

In this paper, we introduced Adaptive Code Refinement
(ACR), a new compiler technique to improve performance
at the price of accuracy. Starting from a reference program
and high-level approximation information provided by the
user, it generates automatically a program that continuously
adapts the optimization strategy to the most appropriate
one in regions of the computation space. ACR provides a
unique set of features to offer performance, accuracy and
flexibility. Performance is provided by building on state-of-
the-art polyhedral code generation techniques to generate
an optimized code and by exploiting multicore architecture
with several specialized threads to minimize the runtime
overhead. Accuracy is preserved as much as possible by
relying on a dynamic strategy that achieves precise compu-
tation only when and where it matters and by preserving the
original computation ordering. Finally, flexibility is achieved
through a simple yet powerful set of pragmas to drive the ap-
proximation strategy, allowing the user to focus on a simple
ideal computation kernel while the approximation is man-
aged by the ACR system.

To evaluate ACR, we built a prototype and we used it
on an existing fluid simulation application. The experi-
mental results demonstrate significant performance improve-
ment with low accuracy deviation. We also showed that
ACR outperforms a manual optimization that would mimic
the same dynamic approximation but which, by construc-
tion, cannot have an optimized control flow that can only
be done by our runtime code generation.

ACR is still in its early days and many studies, improve-
ments and extensions are possible to improve it, including
ways to increase the flexibility of the grid, to make the tech-
nique even more automatic or to reduce the mechanism over-
head. However it is clearly a very promising new way to
explore for any application where approximation is either
desirable or possible.

6. REFERENCES
[1] W. Baek and T. M. Chilimbi. Green: A framework for

supporting energy-conscious programming using
controlled approximation. In PLDI’10 Proceedings of
the 2010 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 198—209,
Toronto, Canada, June 2010.

[2] C. Bastoul. Code generation in the polyhedral model
is easier than you think. In PACT’18 IEEE
International Conference on Parallel Architecture and
Compilation Techniques, pages 7-16, Juan-les-Pins,
France, Sept. 2004.

[3] M. J. Berger and P. Colella. Local adaptive mesh
refinement for shock hydrodynamics. J. Comput.
Phys., 82(1):64-84, May 1989.

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

U. Bondhugula, A. Hartono, J. Ramanujam, and

P. Sadayappan. A practical automatic polyhedral
parallelizer and locality optimizer. In PLDI’08 ACM
Conf. on Programming language design and
implementation, Tucson, USA, June 2008.

K. Brix, S. S. Melian, S. Miiller, and G. Schieffer.
Parallelisation of multiscale-based grid adaptation
using space-filling curves. ESAIM, 29:108-129, Dec.
2009.

S. Campanoni, G. Holloway, G.-Y. Wei, and D. M.
Brooks. HELIX-UP: Relaxing program semantics to
unleash parallelization. San Francisco, USA, Feb. 2015.
P. Feautrier. Some efficient solutions to the affine
scheduling problem: one dimensional time. Intl.
Journal of Parallel Programming, 21(5):313-348,
october 1992.

H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal,
and M. Rinard. Using code perforation to improve
performance, reduce energy consumption, and respond
to failures. Technical Report
MIT-CSAIL-TR-2009-042, MIT, Sept. 2009.

M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N.
Pouchet, and P. Sadayappan. When polyhedral
transformations meet SIMD code generation. In
Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, PLDI ’13, pages 127-138, Seattle,
USA, June 2013.

S. Miiller and Y. Stiriba. Fully adaptive multiscale
schemes for conservation laws employing locally
varying time stepping. J. of Scientific Computing,
30(3), 2007.

L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos.
Iterative optimization in the polyhedral model: Part
IT, multidimensional time. In ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI’08), pages 90-100, Tucson,
Arizona, June 2008. ACM Press.

M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and
S. Mahlke. Sage: Self-tuning approximation for
graphics engines. In MICRO’18 IEEE/ACM Intl.
Symp. on Microarchitecture, pages 13—24, Davis,
California, Dec. 2013.

A. Sampson, W. Dietl, E. Fortuna,

D. Gnanapragasam, L. Ceze, and D. Grossman. Enerj:
Approximate data types for safe and general
low-power computation. In PLDI’11 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 164-174, San Jose, California,
USA, June 2011.

S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann,
and M. Rinard. Managing performance vs. accuracy
trade-offs with loop perforation. In FCE’11 ACM
SIGSOFT Symposium and the 13th FEuropean
Conference on Foundations of Software Engineering,
pages 124-134, Szeged, Hungary, Sept. 2011.

J. Stam. Real-time fluid dynamics for games. In
Proceedings of the Game Developer Conference, 2003.
S. Verdoolaege. isl: An integer set library for the
polyhedral model. In Mathematical Software - ICMS
2010, Third International Congress on Mathematical
Software, pages 299-302, Kobe, Japan, Sept. 2010.

