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Abstract—Compiler high-level automatic optimization and
parallelization techniques are well suited for some classes of
simulation or signal processing applications, however they usually
don’t take into account domain-specific knowledge nor the
possibility to change or to remove some computations to achieve
“good enough” results. Differently, production simulation and
signal processing codes have adaptive capabilities: they are
designed to compute precise results only where it matters if
the complete problem is not tractable or if computation time
must be short. In this paper, we present a new way to provide
adaptive capabilities to compute-intensive codes automatically.
It relies on domain-specific knowledge provided through special
pragmas by the programmer in the input code and on polyhedral
compilation techniques to continuously regenerate at runtime a
code that performs heavy computations only where it matters.
We present experimental results on several applications where
our strategy enables significant computation savings and speedup
while maintaining a good precision, with a minimal effort from
the programmer.

I. INTRODUCTION

A large range of compute-intensive applications are calcu-
lating approximate results. This is especially true for simula-
tion codes which are based on inherently imperfect models
that try to emulate as precisely as possible a real world
object or phenomenon. This is also true for signal processing
applications which are limited by the precision of, e.g., input
sensors or processing algorithms. Some other applications may
also compute approximate results for functional reasons, e.g.,
to meet a deadline such as in real-time video decoding, or
because the precise result is not tractable or valuable such
as late earthquake prediction, or simply because the user
needs a rough result to drive further precise investigations
such as in geophysics. For such applications, “ideal” naı̈ve
computation kernels, that would be convenient with an infinite
computation power, are often designed at first for algorithmic
tuning and debugging purposes. Then they are optimized to
a “production” version exploiting possible approximations to
scale to the actual problem size or to meet the deadline.
Translating an ideal code to a production code is complex,
time consuming, leads to less maintainable codes and must be
redone when a major change in the initial strategy arises. In
this paper, we present a new compiler technique that automates
the conversion from an ideal code to a version that exploits
approximations dynamically, by adjusting computations with
respect to the current state of the program. It aims at improving

both developer’s productivity and approximation’s quality.
State-of-the-art automatic optimization and parallelization

compiler techniques heavily rely on the polyhedral model

to manipulate computation-intensive kernels to aggressively
restructure them at the iteration level [1], [2], [3]. They are
usually based on exact, or over-approximated, data dependence
analysis to ensure that the optimization preserves the original
program semantics. Relaxed semantics models are possible,
e.g., to support commutativity to enable vectorization [4],
however all input code iterations are to be executed in the
optimized code. On the other hand, more aggressive techniques
to automatically compute approximations have been designed,
e.g., by ignoring some dependencies to enable paralleliza-
tion [5], by providing alternative implementations of some
code parts [6], or by skipping computations [7], [8]. In
our work, we investigate a new way, called Adaptive Code

Refinement (ACR), inspired by Adaptive Mesh Refinement [9],
a classical numerical analysis technique providing the ability
to dynamically tune a computational grid to achieve precise
computation only where it matters. We achieve this goal by
exploiting domain-specific information provided by the user, a
dynamic optimization strategy and state-of-the-art polyhedral
code generation techniques.

Our strategy is supported by high-level information pro-
vided by the user and a static-dynamic code generation
approach. First, we designed a set of pragmas to provide
the user with the means to express both static and dynamic
approximation-related information. It allows the user to focus
only on an “ideal” version of the computational kernels.
Those kernels can actually compile and run while ignoring
the pragmas, but they may only produce results in a reason-
able amount of time for small problems. The pragma set is
quickly described in Section II. Next, ACR uses polyhedral
code generation techniques to generate a code to compute
approximate results according to static information, with the
ability to regenerate itself according to the evolution of the
computed values and to pre-defined approximation strategies.
In a nutshell, ACR decomposes the computation space into a
grid and monitors specific values at the grid level. Depending
on their evolution, it will tune the computation precision onto
each grid cell to ensure complex computation is done only
where and when it matters. According to this monitoring, it
will (1) generate an optimized version of the code specific to
the current situation, (2) compile it dynamically and (3) switch



the execution to the new optimized code when it is ready.
Specific threads are devoted to monitoring and code generation
to minimize overhead. The continuous monitoring and code
generation process enables strong computation savings while
limiting accuracy loss. The process is depicted in Section III.

In Section IV we present a case study on an Eulerian
fluid simulation implementation which belongs to a class of
applications that are naturally well suited for our technique.
Experimental results on this case study and other benchmarks
from simulation and iterative algorithms are detailed in Sec-
tion V. The study shows empirical evidence that ACR allows
significant time and computation savings while maintaining
accuracy with minimal efforts from the programmer, even
compared to a hand-tuned version. Related work is presented
in section VI.

II. ACR PRAGMA SET

ACR offers a set of high-level pragmas that allow the
user to provide high-level, domain-specific approximation in-
formation. The ACR optimizing algorithm will exploit them
to automatically compute quality approximate results. ACR
pragmas are language extensions to be inserted before a
computational loop to compute approximations using either
alternative implementations to those provided inside the loop
or a reduced number of computations in some areas of
the computation space. The pragma set is divided into four
constructs:

1. The monitor construct specifies the data to monitor for
the dynamic optimization strategy and how the monitoring is
summarized for a complete cell. Its format is:
#pragma acr monitor(data[f(!ı)],summary[, filter])

where data is the data array to monitor (using the access
function f(!ı) of the iteration vector !ı), summary specifies
how monitored values should be summarized into one value
at the cell level (using predefined policies, e.g., mean, max,
min, etc.) and filter is an optional function that may be used
to preprocess values being monitored (e.g., to classify them
into categories): the actual value used to drive the dynamic
optimization strategy will be filter(data).

2. The grid construct defines the granularity of the dy-
namic approximation strategy: the data space is decom-
posed into cells of a size equal to the specified grid value.
The monitoring as well as the approximation strategy will be
done at the cell-level granularity. Its format is:
#pragma acr grid(size)

where size is a constant number: if the computation space is
2-dimensional, the cell size will be size× size.

3. The strategy construct specifies in which conditions
which alternatives should be used for each cell. They may be
either static (specifying areas of the computation space where
to apply a given alternative) or dynamic (specifying which
alternative to use in a cell depending on the monitored value
or its evolution in that cell). Its format is:
#pragma acr strategy direct(value, alternative)

where value is a value that can be reported by a monitor for a
grid cell during execution and alternative is the alternative to

apply to a cell if the monitor reports that value for that cell.
An example of a static (compile time defined) strategy is:
#pragma acr strategy zone(area, alternative)

where area is a part of the computation space expressed using
set notations (e.g., {i | 0<=i<=3} to express the part of the
space where i is between 0 and 3) and alternative is the name
of an alternative defined with the alternative construct.
Many other strategies are possible, however describing the
complete set is out of the scope of this paper. All the
benchmarks presented in Section V use a dynamic strategy
with a set of direct links between dynamic monitored values
and alternative computations.

4. The alternative construct defines an alternative
computation to the one provided in the code. Its format is:
#pragma acr alternative name(type, effect)

where name is a user-defined strategy name and type specifies
the strategy type as follow:

1) parameter to keep the original code but with a new
parameter values to be defined in the effect field,

2) code to provide an alternative code block to be defined
in the effect field

3) zero compute to cut out the computation entirely
4) interface compute to only maintain computation at the

grid cell interface.

Fig. 1 shows an example on how this pragma set may
be used to specify approximate computation on a simplified
version of a loop of our case study, detailed in Section IV.

/ / Loop i t e r a t i n g o ve r f r a m e s o f t h e f l u i d s i m u l a t i o n
whi le ( t r u e ) {

. . .
/ / l i n s o l v e k e r n e l
#pragma a c r g r i d ( 1 0 )
#pragma a c r m o n i t o r ( d e n s i t y [ i ] [ j ] , max , f i l t e r )
#pragma a c r a l t e r n a t i v e low ( p a r a m e t e r , MAX = 1)
#pragma a c r a l t e r n a t i v e medium ( p a r a m e t e r , MAX = 4)
#pragma a c r a l t e r n a t i v e h igh ( p a r a m e t e r , MAX = 8)
#pragma a c r s t r a t e g y d i r e c t ( 1 , low )
#pragma a c r s t r a t e g y d i r e c t ( 2 , medium )
#pragma a c r s t r a t e g y d i r e c t ( 3 , h igh )
f o r ( k = 0 ; k < MAX; k ++)

f o r ( i = 1 ; i <= N; i ++)
f o r ( j = 1 ; j <= N; j ++)

l i n s o l v e c o m p u t a t i o n ( k , i , j ) ;
. . .

}

Fig. 1: Pseudo-code depicting the application of ACR to the
lin_solve kernel of the fluid simulation case study. Here,
the filter function returns in which range a given density
value is: near zero (1), medium (2) or high (3). The monitor
value for a cell corresponds to the maximum of all ranges
in the cell. This range is used to apply a different alternative
computation for each cell. In this example, the loop k will
iterate more or less depending on that range.

III. ADAPTIVE CODE REFINEMENT

Computational loops annotated with user-provided ACR
pragmas are candidates for approximate computation using
our approach. In such kernels, the rigid data-dependence
model used by compilers is explicitly relaxed and alternative



computation can be used to make the computation faster,
according to the user-defined strategy. This strategy may be
static, i.e., independent of the computed values in specific
areas of the computation space, or dynamic, i.e. dependent
on the monitored values in parts of the computation space
where no static strategy applies. ACR makes a strong use of
state-of-the-art polyhedral compilation techniques to generate
efficient codes computing approximations with good precision.
In particular we represent the computation space and its
cells as polyhedra in the same way polyhedral compilers
represent iteration domains [1], [2], [3], but we rely on a
less restrictive representation. The background details on the
polyhedral model, and our application domain are detailed
in Sections III-A. The ACR optimizing algorithm is based
on three main components. First it continuously evaluates a
“state grid” of the data space according to the user-defined
strategy as detailed in Section III-B. Second, it generates an
optimized code according to the state grid, as explained in
Section III-D. Finally, a runtime ensures the best version of the
code for both performance and accuracy is used. It is discussed
in Section III-E.

A. Background

The application domain of ACR corresponds to computa-
tional loop-based kernels such that the possible values of each
loop iterator can be modeled by a set of affine constraints on
that loop iterator, outer loop iterators and fixed parameters.
A simple and useful case corresponds to loops such that the
loop stride is a known constant and the loop bounds are linear
functions of the outer loop counters and fixed parameters.

The corresponding class of applications is a superset of the
polyhedral model [1] which fuels modern loop optimizers such
as in GCC [10] or LLVM [11]. The polyhedral model is an
algebraic representation of programs, complementary to, e.g.,
abstract syntax trees. It allows to achieve precise analyses
of the code and to apply aggressive loop transformations.
For a code to be raised to a polyhedral representation, all
loop bounds, branch conditions and subscript functions must
be affine expressions of outer loop iterators and constant
parameters. Despite these constraints, many computational
loops in scientific applications may be modeled through this
representation either directly [12] or relying on existing model
extensions [13], [14]. In our work, we consider only restric-
tions on the kernel loop bounds and on the subscript function
of the monitored data as provided in the monitor construct
(see Section II). Hence, we are able to deal with more general
loop bodies than the strict polyhedral model, where any kind
of data access is possible and data dependent conditions are
allowed as well.

The key polyhedral model property we are exploiting is the
ability to represent the iteration domain of a multidimensional
loop through a system of linear inequalities. This system
defines a polyhedron in a multidimensional space where each
integer point corresponds to an iteration of the loop. E.g., the

computation space of the lin_solve loop in Fig. 1 is:
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Representing iteration spaces in this way, it is quite easy to
specify subsets of that space (inserting additional constraints),
to compose them (applying polyhedral unions) or to decom-
pose them (splitting the polyhedra into unions of polyhedra)
them depending on our algorithm. To manipulate polyhedra,
we rely on isl [15] to achieve, e.g., polyhedral unions and
differences and on CLooG [16] to generate back a code from
a polyhedral representation.

Another key polyhedral model concept we are using is
scheduling. It specifies the relative ordering of the iterations
with linear constraints. Scheduling is a polyhedral relation
from the iteration space to a multidimensional time space.
In the final code, the iterations are ordered with respect
to the lexicographic ordering of their time dimension (the
first dimension is the most significant, the next one is less
significant and so on, like hours, minutes, seconds, etc.). For
instance, the ordering of the iterations of the lin_solve

loop in Fig. 1 is:
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This scheduling corresponds to the identity with respect to the
initial code: the ith time dimension is equal to the ith loop
iterator, hence the iterations should be executed in the same
order as in the initial loop. In this work, we rely on polyhedral
scheduling to guarantee the remaining or simplified iterations
are executed in the same order with respect to the original code
to minimize result deviation. We use CLooG [16] to generate
a code that respects a scheduling specification.

B. Monitoring Data

ACR needs a way to gather information about the computa-
tion at runtime to identify different approximation regions, i.e.,
the parts of the computation space where the approximation
strategy should be different. This task should be simple enough
to avoid adding significant computation overhead with regard
to the time saved by the optimized code. To achieve that, a
uniform grid is embedded into the data space to represent dif-
ferent zones of the simulation, according to the grid pragma.
Every cell in the grid represents an (hyper-)square shaped
portion of the data space. The dimension of the grid may
affect the accuracy and the efficiency of the generated code in
contradictory ways, hence a good tradeoff is preferable.

The information stored in the grid, or its evolution during
execution, should allow to decide about the desired accuracy
in the corresponding portion of the computation space. The
grid is refreshed by a specific thread according to the user-
provided monitoring specification. Moreover, to avoid too
frequent changes in the grid (which would translate to code
generations that may be obsolete when they become available),



we did study different post-processing policies (evaluated on
our case study in Section V):

Raw (no post-processing): the grid reflects exactly the
approximation strategy which should be applied according to
ACR pragmas, with the risk that some regions oscillate rapidly
between various approximation strategies, not leaving enough
time to generate optimized codes between two changes.

Versioning: grid cells are updated when a higher precision
is needed whereas precision downgrade is ignored. When the
difference between the current grid and the raw grid is more
than a given threshold, we restart with the raw grid. Hence
some grid cells are set to a more precise alternative with
respect to ACR pragmas, with the risk of a less efficient
computation. However this policy reduces the need for a new
code compilation because we allow some cells to use higher
precision temporarily.

Stencil: each grid cell is evaluated not only according to the
monitored values in that cell, but also according to neighboring
cells. For instance if a grid cell is set to low precision but
is surrounded by high-precision cells, it is switched to high-
precision as well to anticipate a probable change. Here again,
some grid cells are tagged to be more precise with respect to
ACR pragmas, with the risk of a less efficient computation.

Once the grid is filled with the information gathered, and
post-processed if requested, the regions are constructed by
joining grid cells with similar approximation strategy.

Technically, each grid cell is represented as a polyhedron
and the region is constructed by aggregating cells with poly-
hedral unions thanks to isl. Fig. 3 shows a snapshot of a
fluid simulation and the corresponding grid state: each shade
of grey corresponds to a region where a similar approximation
strategy should be applied.

C. From Data Space to Computation Space

The monitoring builds a grid of the data space where each
grid cell is linked to an alternative. In order to generate
the optimized code, we need to know which part of the
computation space contributes to each grid cell.

When the access function of the monitored data is an affine
function of the outer loop iterators and constant parameters,
which is a restriction of the monitor construct, and the
iteration space can be represented through a system of linear
inequalities as described in Section III-A, then the relation
between the computation space and the data space is an affine
relation that maps each point of the iteration domain to the data
it is accessing. Finding the computation space contributing
to some data is a matter of inverting the access function, a
classical preimage polyhedral computation [17]. For instance,
in Fig. 3 the monitored data is density[i][j]. A grid cell
will specify bounds for i and j, and the preimage will report
all the original iterations for i and j within those bounds and
k within the original bounds.

D. Code Generation

Once a state grid has been computed to reflect the current
mapping of approximation strategies onto different regions of

the computation space, the next step is to generate on the fly an
optimized code to replace the current one (if the current state
grid actually differs from the previous one) to implement the
approximation. Several approaches with different properties
are possible. The hand-tuned approach is the naı̈ve, simple
way to build an adaptive code. It respects the original iteration
ordering but suffers from a high control overhead. We describe
it in Section III-D1. The dynamic approach, further explained
in section III-D2, is capable at runtime to generate a code that
respects the original iteration ordering but with a low control
overhead. Finally, the static approach generates an adaptive
code at compile time with low control overhead but without
respecting the original iteration ordering. This version may be
used only when no inter-cell data dependency exists to avoid
high deviation of the approximation.

1) Hand-tuned Code: A trivial way to build an adaptive
code from an original loop to approximate and the monitoring
information is to insert a guard inside the computational loop
to select the strategy corresponding to the current iteration.
Because the adaptive loop itself is easy enough to be written
manually, we refer it as the hand-tuned code. Using this
strategy, only the dynamic selection has to be generated at
runtime according to the monitoring. It simply computes to
which grid cell contributes a given iteration, then it executes
the corresponding approximation strategy. The hand-tuned
code respects the original iteration ordering since it scans
the original iteration domain in the initial order. However its
control overhead is quite high since a selection test has to be
performed at the innermost loop level.

2) Dynamic Code Generation: To generate a very efficient
code with no control overhead, we translate the problem to
a code generation in the polyhedral model task. Tools like
CLooG [16] are able to generate an efficient code from a
polyhedral representation made of two set of objects: iteration

domains which describe the set of statement instances to
execute, and scheduling relations which describe the relative
order of the statement instances.

We build the iteration domains by aggregating grid cells
with similar approximation strategies together using polyhe-
dral union operations. Hence, each region is modeled as a
union of convex polyhedra. Those regions are then mapped
back to the computation space by considering the iteration sub-
space that updates those regions as detailed in Section III-C.
We associate each subspace with the corresponding compu-
tation that reflects the approximation strategy, i.e., a block
of code or some new constraints such as parameter values
(as in our example in Fig. 1). Those subspaces form the
input iteration domains of the code generation problem. Then,
to ensure the approximated computations are processed in a
similar order than the original one to preserve accuracy, we
enforce the lexicographic ordering of the original computation
space dimensions as the input scheduling relations of the
code generation problem. Then CLooG is able to generate a
code with extremely optimized control overhead to, e.g., avoid
costly tests at the innermost level of the computational loop
to choose the right approximation strategy, which could not



be possible with a static approach.

Once CLooG has generated an approximation code, it is
compiled and loaded dynamically to the computation process.
The automatically generated code has no costly internal tests
to decide about the optimization strategy, and the remaining
computations are done with respect to the initial ordering to
preserve accuracy. It executes the same iterations on the hand-
tuned version and in the same order, but without any internal
test to drive the computation. The cost to get such a code is a
polyhedral code generation at runtime because it is necessary
to get the grid state to generate a code that matches the current
situation. In Sec. V, we show that the performance benefits of
the generated code is much greater than its generation cost.

3) Static Code Generation: Our last code generation ap-
proach generates a code at compile time with low control
overhead, but that does not respect the original iteration order-
ing. We rely again on polyhedral manipulation techniques to
decompose the original iteration domains to disjoint parts that
contribute to different grid cells. We also rely on polyhedral
code generation techniques to generate a code corresponding
to each grid cell. The loop bounds may depend to parame-
ters that will be updated dynamically to reflect the current
approximation strategy for that grid cell. At runtime, each
grid cell code will be executed independently, hence without
respecting the initial iteration order. This may severely impact
the approximation quality but may be adapted for codes with
simple data dependences where iterations are independent.

E. Runtime

The ACR runtime for the dynamic code generation is
decoupled into five threads to exploit multicore architectures
and to reduce the technique’s overhead:

(1) the computation thread is responsible for the main
computation itself, (2) the monitoring thread computes the
state grid, (3) the CLooG thread provides a code generation
service: it waits for polyhedral code generation requests and
generates the corresponding C codes with low control over-
head (several server threads may coexist to process several
requests concurently), (4) the compilation thread provides a
compilation service: it waits for C code compilation requests
and generates the corresponding object codes, finally (5) the
coordinator thread creates and manages all the other threads.

The runtime operates as summarized in Fig. 2. At the
beginning of the computation, no optimized code is available.
Hence, the computation thread executes the original code for
the first iteration and updates the internal data structures.
The monitoring thread constantly watches the monitored data
as specified by ACR pragmas. When necessary, it updates
the state grid and signals the coordinator thread. When the
coordinator thread is signaled about the availability of a new
state grid, it builds a code generation request to get an
optimized code corresponding to the current situation. Then
it sends it to the CLooG thread. When the CLooG thread
answers, the coordinator thread sends a compilation request to
the compilation thread, who answers with an object code. In
the meantime, the computation thread continues the iterations

with its current code. When the coordinator thread receives
a new compiled optimized code, it checks whether the code
generated still fits the current state of the grid or not. If
yes, it updates the code of the computation thread for the
next kernel call. If not, it ignores it, updates its request for
an optimized code and lets the computation thread continue
with the original code. The same happens if the state grid
evolves while an unsuitable optimized code is being used by
the compute thread: the computation code is switched back to
the original.

The runtime is optimized in several ways to ensure a con-
venient optimized code is available for the computation thread
as soon as possible. First, the coordinator thread requests
two different compiled codes for the same C input: a non-
optimized one which may be generated and used quickly (we
use TCC, the Tiny C Compiler) and a very optimized code that
may be available later and that will replace the non-optimized
one (we used GCC with aggressive optimization options for
this). Second, the coordinator thread is using a cache of
generated codes to immediately use an already generated code
for a known state grid. Finally, the coordinator accepts over-
approximations instead of switching back to the original code:
what is needed is that the optimized code performs the same
or more complex computations than the levels specified in the
current grid, for every grid slot. In that way we can say that
the computations done are “safe” and they do at least what
was specified by the domain-specific information.

CLooG threadCLooG thread

Computation threadMonitoring thread

Coordinator thread

CLooG thread Compilation thread

Data structures

Updates
1: Monitor

2: Provide grid
    state

3: Request
    code generation

6: Provide object code4: Provide C code

5: Request
    compilation

7: Provide new
    function

CLooG thread(s) Compilation thread(s)

Fig. 2: ACR runtime thread interaction diagram.

When using the hand-tuned or the static approaches, the
runtime is simply the same without CLooG and compilation
threads since there is no need for runtime code generation.
Instead, the monitoring updates a selection function or a
parameter array that drives the loop execution.

IV. CASE STUDY: FLUID SIMULATION

To illustrate how Adaptive Code Refinement can be used,
we detail how it may be applied to a typical representent of its
application domain, a fluid simulation application [18]. This
program, called Eulerian fluid simulation, has the character-
istic of being a grid based simulation. A snapshot of such



Fig. 3: Snapshot of the fluid simulation on the left, the corresponding grid state on the center and the volume of total
computations (denoted by k) on the right.

simulation is shown in Fig. 3(left). Particle-based simulations
and grid-based simulations are the most effective ways of sim-
ulating the behavior of fluids. Grid-based methods respond to
the so-called Eulerian approach, where fluids are represented
by fixed points in the space with information about the fluid in
time and they are updated at every time step of the simulation.
Grid based techniques often suffer from mass loss and are
slower than particle based methods, but they usually have
higher accuracy and better tracking of smooth fluid surfaces.
They form a very suitable family of codes to apply ACR,
because on one hand the simulation is an approximation of
a physical phenomenon and on the other hand the processing
is done on a highly regular computation space where each
element requires complex computations.

A. Exploiting Domain-Specific Knowledge

In fluid simulation, the state of a fluid is typically rep-
resented by a velocity vector and a density value for every
point in the space. The density in a given point represents the
amount of fluid concentrated and the velocity vector represents
the direction and intensity of the flow in that point. The
evolution of the simulation is described by the Navier Stokes
equations [19]. The simulation steps can be decomposed in
Advection, Diffusion and External Forces influence. Advection
is the phenomena that describes how velocity moves the fluid
and other objects in the space along with the flow. Diffusion
describes the resistance of a fluid to flow because of its
viscosity. The influence of External Forces describe local or
body forces applied to a specific region or all the fluid like a
fan blowing air, gravity, etc. Density is carrying the pertinent
information for efficient monitoring: precise computations
should be done in regions where this value is high and
conversely. This domain-specific knowledge is encoded for
ACR through the monitor pragma to maximize the accuracy
of the approximation.

B. Applying ACR

To apply ACR to the simulation, the grid state is filled
according to the density values. The value of a grid cell is the
level of the maximum density point in that cell. The specific
target of the optimization by approximation is the portion of

the simulation code dedicated to the diffusion phase. Diffusion
computations corresponds to a significant part of the total
computations of the simulation.

The diffusion phase is computed with a numerical iterative
method to obtain a solution. The numerical algorithm gets
better solutions the more iterations it does. The original code
is programmed to do a fixed amount of iterations in the
whole space. To do diffusion, the iterations of the numerical
method are done one by one in the complete simulation space.
That is because the particles need to know about the solution
of its neighbors to compute the next approximation of its
own solution. We have used the ACR approach to make the
numerical algorithm perform less iterations while maintaining
dependencies as much as possible on areas with little amount
of fluid or no fluid at all. We have chosen to have 3 levels of
complexity for the regions: the optimized algorithm will do the
first basic iterations over the entire iteration step, then the other
iterations over a more restricted region where there is more
than a negligible amount of fluid, and will end doing more
iterations only where there is a considerable amount of fluid
that needs extra iterations to reach a good enough solution.
A simplified excerpt of the corresponding code with the ACR
pragmas is shown in Fig. 1.

V. EXPERIMENTAL RESULTS

The experimental setup is a quad-core Intel Core 2 Quad
Q6600 system with 4 GB of memory. All codes are compiled
using GCC 6.2.1 with -O3 -march=native option (which
builds the best performing original and hand-tuned versions).
In addition to GCC, the compilation thread also uses the Tiny
C Compiler 0.9.26 to minimize dynamic compilation time.

A. Eulerian Fluid Simulation

ACR [20] was evaluated against a single threaded imple-
mentation of a 2D and 3D Eulerian fluid simulation described
by Stam [18] of 400 × 400 particles. We compared the
approximate computation code relying on ACR with various
grid updating policies (detailed in Section III-B) against the
original code as well as a hand-tuned version that mimics
the ACR strategy without dynamically generated code. We
observe performance, computation savings and accuracy over
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(a) Execution time for the ACR optimized kernel alone (b) Execution time for the whole application

Fig. 4: Execution time for the optimized kernel and the complete fluid simulation application. Original is the original
application; Hand tuned is a manually written version that mimics ACR without dynamically generated code; Stencil,
Raw and Versioning are ACR versions with corresponding state grid post-processing policies (detailed in Section III-B).

a range of simulation iterations. During simulation, fluid
is injected regularly in the iteration space together with a
directional force to make it acquire velocity. The test cases
have different types of regions with similar appropriate ap-
proximation policy and they evolve over time.

Overall execution time is reported in Fig. 4 at different steps
of the simulation, for the original code, we compared a hand-
tuned version with a dynamic code generation version with
three different state grid post-processing strategies. The stati-
cally generated version is not appropriate with this benchmark
because the data dependencies requires to use the original
iteration ordering to avoid high deviation. Performance results
after 1000 simulation steps show a speedup of 2.85 for the
optimized kernel for ACR with raw state grid update strategy
(resp. 2.82 for versioning and 2.04 for stencil) with
respect to the original code and 1.82 (resp. 1.81 and 1.31) with
respect to the manually optimized code. The versioning

policy achieves equivalent performance and better precision
compared to the raw policy: it requires 3% more computations
but saves 43% code compilations on average.

It is worth noticing that the performance improvement
is only due to the approximation strategy: the generated
computation thread is sequential and no other polyhedral
optimization has been applied. ACR is complementary to
existing optimization techniques and will be composed with
them in future work. The present paper only evaluates the
benefits of “pure” ACR.

Computation savings of the diffusion part for a complete
simulation step (where it is used 3 times) with respect to the
original code are shown in Tab. I. Our metric for computa-
tion savings is the difference of the number of iterations of
the original code (corresponding to the number of calls to

the lin_solve_computation() in the pseudo-code in
Fig. 1, i.e., 3×MAX ×N ×N , with MAX set to the same
value as the high precision ACR alternative) and the number of
iterations actually executed by the computation thread. Results
show very significant computation savings compared to the
number of computations of the original diffusion, ranging from
30 to 74%.

TABLE I: Saved computations with ACR - raw policy

Iterations 100 200 500 1000 2000
% saved comput. 73.45 69.05 59.72 48.73 30.61

Accuracy results are shown in Tab. II. We measured the
difference in density for every particle in fixed snapshots of
both simulations, with the original application as reference.
We measured both the mean and maximum difference of every
particle. Values of the density fluid vary between 0 and 20. We
observe that even after 1000 iterations and removing 77% of
the computations, the mean difference for all particles is only a
fraction of the maximum density value. The stencil policy
shows the best precision property at the price of efficiency as
shown in Fig. 4. Moreover, the maximum measured deviation
is below 0.05 while in the application, two particles may be
displayed using different colors only if they do not belong to
the same plateau, each separated by 0.08 and starting at 0.
Hence, those results show ACR has a limited impact on the
simulation despite its aggressive computation savings.

B. Evaluation on Multiple Applications

Conway’s Game of Life [21], belongs to the family of
cellular automata. Those automata consist of a regular grid of
cells, each having a finite number of states. The automaton



TABLE II: Precision results for ACR after 1000 iterations
(density values range from 0 to 20)

Grid update policy Raw Versioning Stencil

Average deviation 0.0017 0.0011 0.0003
Maximum deviation 0.0484 0.0464 0.0247

evolves using a set of rules in order to determine the state in
which each cell will be at the next generation. Game of Life
particular automata consists of a 2D space of cells being either
alive or dead. This automaton rules follows: if we consider as
neighbours the eight cells surrounding any individual cell, a
previously dead cell becomes alive if there were exactly three
neighbours alive at the previous generation. If the cell was
already alive, it will survive to the next generation if it has
exactly two or three alive neighbours. Otherwise the cell dies

or stays dead.
The particularity of Conway’s Game of Life is that

it does not tolerate any approximation in the computation of
the living cells however we can still optimize with smart com-
putation savings and by getting rid of useless data accesses.
Big cellular automatons contain usually a lot of “dead zones”
where none of the cells are alive. This emphases a perfect
way to save computation but we can even avoid accessing
those regions. It is indeed impossible for those dead cells
to become alive in a time that is lower than the distance
separating them from a breathing cell. We use this property
to only visit cells that can be potentially lit in the near future.
We use the dynamic version with stencil in order to activate
the neighbouring cells in advance. So only part of the domain
filled with alive cells and their neighbouring are active at a
given time. We are using the alternative zero compute in the
domain where these dead zones are present. We take advantage
of the stencil policy as it enables computation on dead regions
having active neighbour cells and anticipates their migration.

Experimental results shown in Tab. III is the result of
running the algorithm on an existing automaton simulating
a digital clock. Notice the increase in speedup over time. This
is due to the application behaviour. It does indeed require less
and less computation as the automaton evolves to form the first
minute after midday (i.e. passing from hour 0:00 to 0:01). As
this automaton is evolving, also does the grid representing its
computations.

TABLE III: Game of Life application simulating a clock

Iterations Original (s) ACR (s) Speedup Deviation
20 51.1 36.5 1.4 None
40 94.49 57.1 1.7 None
80 181.3 99.0 1.8 None

160 355.0 181.7 1.9 None

K-Means Clustering [22] partitions multiple observations
inside clusters. In order to group observations together we
need a function f(obs1, obs2) that computes the “distance”
between the two observations. The higher this value is the

less likely they are to be in the same cluster. The main
goal is to pack observations together and to minimize each
cluster sum of distance altogether. The problem is NP-hard but
there exists a heuristic named “k-means algorithm” having two
repeating steps. Supposing each cluster has a center and can
be parameter of the previous distance function. The first step
simply assigns all observations to the nearest cluster center
and the second recomputes the cluster center as the mean of
each observation position. The two steps repeat until a local
minimum is reached.

For K-Means Clustering we took advantage of the
following properties of the algorithm: at the beginning, the
algorithm solution is very volatile and objects will change
cluster really often, although after a small number of iterations
some clusters seems to have already converged to a local
minimum [23]. Thus only a small part of the objects will
continue to change from one cluster to another, in particularly
the one which are on the edge between two cluster zones.
The input for this benchmark is essentially pictures. Pixels
have the particularity that if they do switch from one cluster
to another, chances are high that pixels nearby will do the
same. For a maximum accuracy of the algorithm we used the
stencil strategy in order to activate the clustering on neighbours
pixels. We decided to skip the computation if the objects
inside the cells have settled for more than a certain number of
algorithm iterations. We implemented a version of the kernel
that only reassigns pixels to their previous cluster and used the
alternative function to specify how many times pixels have to
stay inside the same cluster to switch to the new function.

The algorithm is fed with three different pictures, the first
picture having 2560 × 1600 pixels representing a bird on a
branch. The second is a picture taken by a telescope from
a Nebula (3000 × 2785) and the last is a picture of a wolf
(4288 × 2848). Those images are serialized and passed as a
single entity to the algorithm. Tab. IV shows the result of
this benchmark. We can notice that with ACR the number
of iterations of the algorithm is reduced as we would expect
because we locked some pixels in place.

TABLE IV: K-Means clustering on three images

Picture Original ACR Speedup Deviation
Bird 4.18s 3.52s 1.18 0.0073

Nebula 16.08s 13.05s 1.23 0.0001
Wolf 26.93s 17.53s 1.54 0.0429

Finite-difference Time Domain (FDTD) Electro-Magnetic
Simulation [24] is intended to solve the Maxwell equations
and simulate the propagation of electric and the induced mag-
netic field in space. FDTD is a grid-based model using finite-
difference expressions to approximate the equation derivatives.
The resulting expressions are solved in two steps, first by
solving the electric field component and the next instant in
time the magnetic field component.

To optimize this application we choose to skip the electric
field computation where the magnetic field is relatively low.



We can do this because a low magnetic field does not induce
any current and thus leaves the electric field intact. To achieve
this, the ACR monitoring pragma will be pointed to the
magnetic field array and the alternative “zero compute” be
used whenever the field is low enough. The algorithm is based
on neighbour propagation of values, this is why we also used
the stencil version for this benchmark.

The simulation runs in a 2D space with an obstacle in
the middle. That will reflect the wave as it travels from the
left to the right and back, creating more waves as it spreads.
The results are shown Tab. V. This application requires high
accuracy or the divergence elevates really quickly.

TABLE V: FDTD simulation of an electro magnetic wave
bumping on an obstacle.

Iterations Application time (s) Speedup Deviation
Orig ACR

500 13.94 12.47 1.11 0.0000
1500 18.82 14.72 1.27 0.0000
3000 27.15 19.31 1.41 0.0017
5000 38.23 28.18 1.35 0.0099

C. Runtime overhead estimation

In order to evaluate the overhead of the ACR runtime we
pre-generated, for each call to the target kernel, its optimized
version with respect to precision. The simulation was then run
with the exact same setup having the ACR runtime replaced
with the pre-generated versions. This represents the best case
scenario where we already have the perfect version ready when
the kernel is called.

In Tab. VI we present the results obtained for FDTD. It
is the simulation requiring the most kernel versions hence
where the overhead is the highest. The results show a very
small overhead compared to the optimal version. The ACR 1C
column gives the time when both the ACR runtime and the
computation thread are bound to the same CPU core. Those
results support our multithreaded runtime approach that allows
the computation thread to continue with the precise version
while the code generation is done in the background.

TABLE VI: FDTD application time with the ACR runtime
enabled on 1 and 3 CPU cores compared to the precomputed
versions

Iterations Application time(s) Overhead
ACR 1C ACR 3C Opti. w.r.t. ACR 3C

500 15.47 12.47 12.20 2.2%
1500 23.22 14.72 14.13 4.2%
3000 36.69 19.31 18.42 4.8%
5000 57.09 28.18 26.88 4.8%

D. Comparison Against Loop Perforation

We compared our technique with a simplified version of
loop perforation [7]. Our simplifications removes the profiling
step of loop perforation which is highly data dependent, for a

better comparison to ACR which adapts to any input data. We
tuned loop perforation to obtain the same speedup as ACR and
compared the deviation of both approaches. Tab. VII shows
ACR has a significantly lower deviation due its dynamic nature
which selects the most pertinent iterations to approximate.

TABLE VII: Percentage of iterations saved and the data deviation com-
pared to the original at constant iteration. The deviation is computed by taking
the difference between two values belonging to the same spot of the simulation
and expressing the ratio from the initial value and this difference.

Bench Saved iterations Deviation
(Iterations) ACR Perfor ACR Perfor

2D Fluid (1000) 48.7 50.0 0.0011 1.024
3D Fluid (600) 52.2 50.0 0.0051 0.9847
FDTD (3000) 51.9 50.0 0.0000 6.1979

VI. RELATED WORK

Compiler Techniques The idea of relaxing data depen-
dences and skipping computation to trade accuracy for per-
formance has been studied in the past in various ways. Loop
perforation [25], [7] is a static technique which removes
complete loop iterations selected with respect to a training
phase. Contrary to loop perforation, ACR is a dynamic ap-
proach which may remove only selected parts of a given
loop execution and is designed to produce more accurate
results with end-user guidance. Our work shares the concept of
high-level information including alternative implementations
provided through pragmas with Green [6], however Green is
based on an offline training to select the final code while
ACR is continuously recomputing the best code. EnerJ [26]
uses the type system to specify approximate variables to save
energy. SAGE [8] is a GPU-oriented technique skipping or
simplifying processing with respect to performance impact
while we primarily focus on accuracy. HELIX-UP [5] ignores
some dependences to enable code parallelization, which is
complementary to our approach. Power savings is also studied
by Misailovic et al. [27] who provide a language interface
to rely on hardware providing approximate instruction and
memory storage that draws less power but may produce a
wrong result at a given rate.

Numerical Analysis Techniques ACR has been inspired
by numerical analysis techniques, in particular Adaptive Mesh
Refinement [9] which can maintain the consistency of a
solution for a bounded error in the minimum possible amount
of time in simulation problems. [28] extends the use of a
multiscale analysis for grid adaptation to incorporate locally
varying time stepping. Space filling curves are also used to
transform multidimensional data for better parallelization of
multiscale adaptation methods [29]. The differences between
our approach and these works is the manipulation of the
simulation space since they modify the shape of the simu-
lation space at runtime. Its underlying iteration structure is a
hierarchical grid which incorporates and looses points during
the simulation. On the opposite, the ACR approach keeps the
original iteration space intact while the generated code that
achieves the computation may change dynamically.



VII. CONCLUSION

In this paper, we introduced Adaptive Code Refinement
(ACR), a new compiler technique to improve performance at
the price of accuracy. Starting from a reference program and
high-level approximation information provided by the user, it
generates automatically a program that continuously adapts the
optimization strategy to the most appropriate one in regions of
the computation space. ACR provides a unique set of features
to offer performance, accuracy and flexibility. Performance
is provided by building on state-of-the-art polyhedral code
generation techniques to generate an optimized code and
by exploiting multicore architecture with several specialized
threads to minimize the runtime overhead. Accuracy is pre-
served as much as possible by relying on a dynamic strategy
that achieves precise computation only when and where it
matters and by preserving the original computation ordering.
Finally, flexibility is achieved through a simple yet powerful
set of pragmas to drive the approximation strategy, allowing
the user to focus on a simple ideal computation kernel while
the approximation is managed by the ACR system.

To evaluate ACR, we built its compiler extensions and run-
time, and we applied it on several representative benchmarks
from simulation and iterative algorithms. The experimental
results demonstrate significant performance improvement with
low accuracy deviation, with a minimal effort from the pro-
grammer. We showed that ACR outperforms a manual opti-
mization that would mimic the same dynamic approximation
but which cannot have an optimized control flow that can only
be achieved by our runtime code generation. It is also more
precise than simplified existing loop perforation technique
since ACR is able to select relevant approximation at runtime.
Finally, ACR is complementary to other optimizations such
as polyhedral loop parallelization: our results only report im-
provements due to approximations with low control overhead.

ACR is a first step towards generic compiler-assisted gener-
ation of self-tuning applications. Many studies and extensions
are possible to improve it, including ways to increase the flex-
ibility of the grid, to make the technique even more automatic
or to reduce the mechanism overhead. However it is clearly a
very promising new way to explore for any application where
approximation is either desirable or possible.
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