Pipelined Multithreading Generation in a
Polyhedral Compiler

Harenome Razanajato
hrazanajato@unistra.fr
University of Strasbourg and Inria

Cédric Bastoul
bastoul@unistra.fr
University of Strasbourg and Inria

Vincent Loechner
loechner@unistra.fr
University of Strasbourg and Inria

France France France

1 #pragma omp parallel

2 {

3 #pragma omp for schedule(static) ordered nowait
1 for (int i = 1; i < N; ++i) 4 for (int i = 1; i <N; ++i)

5 #pragma omp ordered
2 A[i] = f1(ALL], ALL - 1D); 6 ALi] = f1(ALL], ALL - 11);

7 #pragma omp for schedule(static) ordered nowait
3 for (int i = 1; i < N; ++i) 8 for (int i = 1; i <N; ++i)

9 #pragma omp ordered
4 B[i] = f2(A[il, BL[i - 11); 10 B[i] = f2(A[il, B[i - 11);
5 /% ... %/ 11 VA V)

12 #pragma omp for schedule(static) ordered nowait
6 for (int i = 1; i < N; ++i) 13 for (int i = 1; i <N; ++i)

14 #pragma omp ordered
7 Z[i] = f4(Y[il, z[i - 11); 15 Z[i] = f4(Y[il, Z[i - 11);

16 }

(a) Original program

(b) Pipelined OpenMP target program

Figure 1. Goal: automatically generate (b) from (a) to take advantage of pipelined multithreading with OpenMP

Abstract

State-of-the-art automatic polyhedral parallelizers extract
and express parallelism as isolated parallel loops. For exam-
ple, the Pruto high-level compiler generates and annotates
loops with “#pragma omp parallel for” directives. Our
goal is to take advantage of pipelined multithreading, a paral-
lelization strategy allowing to address a wider class of codes,
currently not handled by automatic parallelizers.

Pipelined multithreading requires to interlace iterations
of some loops in a controlled way that enables the par-
allel execution of these iterations. We achieve this using
OpenMP clauses such as ordered and nowait. The sketch
of our method is to: (1) schedule a SCoP using traditional
techniques such as PLuTo’s algorithm; (2) detect potential
pipelines in groups of sequential loops; (3) fine-tune the
schedule; and (4) generate the resulting code.

The fully automatic generation is ongoing work, yet we
show on a small set of experiments how pipelined multi-
threading permits to parallelize programs which would oth-
erwise not be parallelized.

Keywords automatic code generation, OpenMP, pipeline,
polyhedral model

IMPACT 2020, January 22, 2020 , Bologna, Italy

1 Introduction

There has been extensive research on software pipelines
focusing mostly on hardware generation, low level imple-
mentation (targeting for example CPUs) and VHDL genera-
tion (targeting for example field-programmable devices). In
most of these researches the input programs are already in
pipelined tasks format, and the goal is to efficiently map them
on the available hardware. The two difficulties addressed by
previous works are (1) to characterize the streams types and
sizes between tasks and (2) to allocate the streams and the
tasks on the fixed size hardware.

Our interest here is higher level pipelined multithreading
code. In multithreading programming environments, streams
and tasks allocation and size are not a problem since we
benefit from multithreading support and a shared memory
between threads. The question we try to answer is: how to
make an automatic parallelizing compiler generate pipelined
multithreaded code? Within a polyhedral compiler the pow-
erful dependence analysis makes it possible to characterize
the flow graph between potential pipelined tasks. However,
state-of-the-art polyhedral compilers do not yet generate
pipelined multithreaded code.

The two main issues that we address are:

1. how to automatically identify pipelines in a polyhedral
compiler;

IMPACT 2020, January 22, 2020 , Bologna, Italy

2. how to generate pipelined code using the OpenMP
high level multithreading APL

Our proposal is based on the following steps. We start by a
traditional polyhedral scheduling using Pluto for example;
then we detect potential pipelines; and finally we modify and
improve the scheduling by fusing loops. In the code genera-
tion step, we make extensive use of the OpenMP “ordered”
and “nowait” clauses.

The teaser example of Fig. 1 presents the pipelined OpenMP
code that we can automatically generate from a program. In
this example, the original code (1a) is obviously pipeline-able:
each function can be assigned to a task and executed suc-
cessively in the following loops. In the pipelined version of
this code (1b) the group of threads is created when entering
the parallel region (line 1). Then, each thread will execute
a block of successive iterations of the current loop (lines
4-6 for example) before executing the same iterations of the
next loop (lines 8-10), without waiting for the first loop to be
completed thanks to the nowait clause. Another thread will
execute the following iterations of the first loop, and so on.
The ordered clause ensures that the code contained in each
loop is executed in order, since the loops carry a dependence
and can not be parallelized.

This paper is organized as follows: Sec. 2 reviews the
OpenMP constructs that we will be using. In Sec. 3 we de-
scribe the core of our method for generating pipelined code
in a polyhedral compiler. Some preliminary experimental
results are given in Sec. 4. We discuss some related work in
Sec. 5 and conclude in Sec. 6.

2 Pipelines in OpenMP

There have been numerous proposals of dataflow parallelism,
stream processing and process networks libraries and lan-
guages that permit to exploit pipeline parallelism. They usu-
ally rely on the support of low level or OS provided FIFOs.
In multithreading environments like multicore general pur-
pose processors, using FIFOs implies useless memory copies
and synchronization overheads that could be avoided: very
simple synchronization mechanisms are often sufficient to
realize a software pipeline in a shared memory environment.
Although the class of codes that we address is not as general
as with tasks communicating through FIFOs, we propose to
use asynchronous parallelism and ordered execution of par-
allel loop iterations to implement pipelines in nested loops.

On the other hand, source-to-source polyhedral paral-
lelizers usually generate multithreaded parallel code using
OpenMP [10]. For example, the PruTo parallelizer and local-
ity optimizer [2] generates “#pragma omp parallel for”
directives to enclose parallel loops. But OpenMP can also
be used to generate pipelined multithreading, using the
clauses that will be detailed hereafter. The advantage of
using OpenMP is that it is well suited and efficient for shared

Harenome Razanajato, Cédric Bastoul, and Vincent Loechner

memory architectures and it is already integrated and widely
used in polyhedral compilers.

2.1 Parallel regions

Parallel execution begins at the starting point and sequen-
tial execution is resumed at the ending point of the parallel
regions. When the master thread reaches a parallel region,
worker threads are requested to execute the code within
that region along with the master thread. Worker threads
are stopped and the master thread continues the execution
alone when all threads have reached the end of the parallel
region. In OpenMP, the pragma “omp parallel” is used to
specify that the work enclosed in the construct is a parallel re-
gion. Parallel regions come with a creation and management
overhead. Optimized parallel codes should merge parallel
regions when it is possible, eventually using synchronization
mechanisms inside of the parallel region when necessary.
All available threads execute the code within a parallel
region unless a work sharing construct is specified. Since
we are dealing with polyhedral codes the most common
work sharing construct that we will be using is the loop
distribution among the threads. In OpenMP the pragma “omp
for” is used to distribute the loop iterations of the loop
enclosed in the construct among the available threads.

2.2 Ordered execution

For a piece of code contained in a parallel loop to be executed
in order, OpenMP provides the “ordered” clause. It has to be
provided at two levels: in the loop distribution work sharing
construct and to enclose the code to be executed in order, as
if the loop was sequential. The latter “omp ordered” clause
may appear at most once in the parallel loop.

2.3 Synchronizations and asynchronicity

Work sharing constructs have synchronization barriers im-
plied at the end: all threads have to wait for all the others
before continuing their execution. We will explicitly remove
them in order to generate pipelined loops. In OpenMP the
“nowait” clause may be specified along with a work sharing
construct to remove its implicit barrier at the end.

For the iterations of two such successive parallel loops to
follow in order, the OpenMP specification enforces the use
of the “schedule(static)” clause in the loop distribution
work sharing construct. An optional explicit chunk size can
be specified, but it must be the same one among pipelined
parallel loops.

To perform explicit synchronizations, OpenMP also allows
the declaration of a mutex using the omp_lock_t type. The
mutex can then be accessed using the classical lock/unlock
functions: omp_set_lock () and omp_unset_lock().

Pipelined Multithreading Generation in a
Polyhedral Compiler

3 Pipelined Multithreading Generation

Our approach takes as input an already scheduled SCoP
and targets loops that are still sequential. The steps are: (1)
performing loop fission on sequential loops, (2) annotating
groups of consecutive sequential loops with the ordered
and nowait clauses, (3) performing loop fusion between
parallel and ordered sequential loops and (4) performing loop
blocking. Note that our method also requires the scheduling
policy of for loop iterations to be set to static.

3.1 Sequential loop fission

A given loop may contain multiple statements. Interlacing
iterations of loops using the ordered and nowait requires
separate loops. To maximize the potential for interlacing, we
propose to perform loop fission on such loops. However, loop
fission can not be performed on each and every statement of
such loops: loop fission changes the scheduling. Groups of
statements with loop-carried dependencies must belong to
the same loop while loop fission may be applied on groups
of statements with loop-independent dependencies.

Since we take as input a SCoP which should have already
been optimized for locality, we do not want to reorder the
statements from the input loop (apart from the reordering
caused by the loop fission). Determining how to perform
loop fission for our pipelining method amounts to comput-
ing strongly connected components from the dependence
graph: each strongly connected component may belong to a
standalone loop.

1 for (int i = 2; i < N; ++i) {

2 ali] = h[i - 1] + R[i]; // ST

3 b[i] = a[i - 1] + alil; // S2

4 c[i] = b[i - 1] + b[i]; // S3

5 dfi] = c[i - 1] + c[i]; // sS4

6 e[i] = d[i - 2] + d[i - 11; // S5
7 f[il] = e[i - 2] + e[i - 11; // S6
8 glil = fLil + X[il; // s7

9 h[i] = gl[i] + Y[i]; // S8

10}

n for (int i = 2; i < N; ++i) {
12 uli] = v[i - 1] + d[i]l; // S9
13 v[i] = u[i] + Z[il; // S10
14}

Figure 2. Loop fission performed on Van Dongen

For example, in Figure 2, statements S1 to S8 are grouped
in the same loop while statements S9 and S10 are placed in
another loop. There is a loop-carried dependence between
statements S1 and S8: S1, S8 and all statements in between
belong to the same loop. In the same vein, S9 and S10 must
be placed together but can be separated from statements S1
to S8 since there is no loop-carried dependence between the
two groups.

IMPACT 2020, January 22, 2020 , Bologna, Italy

3.2 Relaxed conditions on the nowait clause

According to the OpenMP specification, the nowait clause
may be safely used on a for construct which is followed by
another for construct if the following conditions are met:
(1) both iteration domain sizes are equal, (2) chunk sizes are
equal or not specified, (3) both for loops are bound to the
same parallel region, (4) the loops are not associated with a
SIMD construct.

Previous work [15] explains how to generate code using
the nowait clause for consecutive parallel for loops. This
method can only be applied when the dependencies between
loops link the same logical iterations. Using the ordered
clause allows us to relax the restrictions. Once a given thread
executes an iteration i, of a loop, all previous iterations i,
(m < n) have been executed. In this case, the allowed de-
pendencies between loops include more than dependencies
between identical logical iterations.

Let S1 and S2 be two statements scheduled in separate
consecutive ordered for loops over dimensions dg; and ds;.
Given the dependencies ds1,s2 between S1 and S2, ensuring
that the nowait clause can be used in conjunction with the
ordered clause amounts to verifying that:

551,52 \ P51,52 =0

where:

Ps.52(p) = {Ts1 = Tsz| (ds1 < ds2) }

For nested loops, the dependencies between inner loops
can be projected over ds; and ds;.

3.3 Annotations
3.3.1 Annotating sequential loops

To annotate sequential loops with the ordered and nowait
clauses, the method from [15] can be used with the follow-
ing modifications: (1) all sequential loops are annotated with
#pragma omp for ordered, (2) the bodies of ordered loops
are enclosed in #pragma omp ordered regions, (3) the va-
lidity of the nowait clause is determined as described in
Section 3.2.

The teaser example of Fig. 1 gives an example of such a
generated loop nest.

3.3.2 Extension to parallel loops and cleanup

Section 3.3.1 explains how to add the nowait clause on loops
that precede another loop of the same kind: either a parallel
loop preceding another parallel loop or a sequential loop
preceding another sequential loop. Determining whether a
parallel loop preceding a sequential loop — or vice versa —
can be annotated with the nowait clause amounts to select-
ing the appropriate set of requirements: if the considered
loop is a parallel loop, the stricter conditions on the use of
the nowait clause apply, otherwise, the relaxed conditions
are sufficient.

IMPACT 2020, January 22, 2020 , Bologna, Italy

Finally, any ordered loop without a nowait clause that
is neither preceded by another ordered loop nor precedes
another ordered loop should be reverted to an annotation-
free loop enclosed in a #pragma omp single region.

3.4 Manual synchronization of blocks

An alternative to generating code with #pragma omp ordered
and nowait annotations is to block loops over a given block
size, fuse the resulting loops over the blocking dimension,
distribute the iterations, with a chunk_size of 1, over this
dimension and manually synchronize threads using OpenMP
locks as shown in the example in Figure 3.

The pipelining occurs as follows: (1) for each thread, each
stage of the pipeline is associated with a lock (thus, n X m
locks are required for n threads and m stages), (2) for each
stage i, thread ¢ attempts to own lock[t%n][i] at stage entry
and releases lock[(t + 1)%n][i] at stage exit (hence, each
thread will wait for its predecessor to complete a given stage
of the pipeline), (3) except for the first thread, all locks are
locked at the beginning of the parallel region.

Additionnal code must be generated at the start and the
end of the parallel region to allocate, initialize, destroy and
free the locks. It must be noted that we set the scheduling pol-
icy to static and the chunk_size to 1: otherwise pipelining
opportunities may be lost as a given thread may execute two
or more subsequent blocks of a given stage. The block_size
value in the example in Figure 3 approaches the chunk_size
which would be chosen by OpenMP implementations for the
code example shown in Figure 1b.

4 Experimental Results and Discussion

Our experiments were conducted on an Intel Xeon E5-2620v3
@ 2.40GHz (6 cores, 12 threads) running Linux 5.3.7. The
benchmarks were compiled with options "-03 -march=native
-fopenmp" using gcc 9.2.0 and clang 9.0.0. Linux FIFO sched-
uling was enabled and process priority was set to 75.

Benchmarks van_dongen (Fig. 6a) and wdf (Fig. 6b) come
from Fimmel and Miiller [7] who derive these examples from
Van Dongen et al. [18] and Fettweis [6]. The third benchmark
(Fig. 6¢) is a code example which contains both parallel loops
and sequential loops. The last benchmark (Fig. 6d) is based on
our teaser example where all statements execute a 1 nanosec-
ond nanosleep and then return the sum of the two operands.
The aim is to simulate long sequential computations.

We used PLuTo [2] version 0.11.4 and autoPar from the
Rosk [12] Compiler version 0.9.12.0 on our code samples
and can confirm these tools do not expose parallelism on
our benchmarks (apart from the parallel loop in our third
benchmark).

We generated multiple versions of the benchmarks: the
original sequential code, the sequential code naively anno-
tated with the ordered clause, the code annotated with our
approach, with and without blocking.

Harenome Razanajato, Cédric Bastoul, and Vincent Loechner

1 omp_lock_t** locks;

2 #pragma omp parallel

3 |

4 const size_t num_threads = (size_t) omp_get_num_threads();
5 const size_t block_size = (N/num_threads)+1;

6 const size_t block_count = ((N+block_size-1)/block_size);
7 /* Code to allocate, initialize and set the locks.
8 /* Wait for the lock setup completion. */

9 #pragma omp barrier

10 #pragma omp for schedule(static, 1)

11 for (size_t block = 0; block < block_count; ++block) {
12 /* Compute local loop bounds. */

13 const size_t start = 1 + block * block_size;

14 const size_t end = MIN(start + block_size, N);
15 /* Compute self and next thread indexes. *x/

16 const size_t self = block % num_threads;

17 const size_t next = (block + 1) % num_threads;
18 omp_set_lock(&locks[self]1[0]);

19 for (size_t i = start; i < end; ++i) {

20 ALi] = f(ALiDl, ALi-1D);

21 }

22 omp_unset_lock(&locks[next][0]);

23 /* Other stages of the pipeline %/

24 omp_set_lock(&locks[self][5]);

25 for (size_t i = start; i < end; ++i) {

26 F[il = f(E[i], FLi-11);

27 }

28 omp_unset_lock(&locks[next][5]);

29 }

30 /* Code to destroy and free locks */

31}

Figure 3. Manual synchronization of blocks

A tempting alternative to our approach is to use OpenMP
task constructs. Indeed, the task construct (in conjunction
with the depend annotation) allows finer control over execu-
tion order. We manually wrote two versions: a naive version
where a task is created for each and every statement and
another version where tasks are created for each loop body
after we applied loop fission as described in Section 3.1.

Figure 4 presents results observed on the code compiled
with gce with options 03 -march=native -fopenmp. Speedup
values of 0 are displayed for task+fission when no cor-
responding version was generated for a given benchmark
because it would not differ from the task version. Except for
the mix example (which can be partially parallelized), PLuto
does not change the code: the observed speedups are very
close to the speedups observed over the original sequential
version.

As expected, merely adding the ordered clause without
further modification and then executing the loops in an

Pipelined Multithreading Generation in a
Polyhedral Compiler

. _—
mix |
_—
I (.92
wdf |)
16.07 -107%
I 0.96
vandongen —|
16.12-107%
I 2. 39
teaser+nanosleep |
I 2.3
- .75
teaser | .
11.31-1073
| | | | |
0 2 4 6 8
speedup
locks M ordered+nowait ordered
I tasks tasks+fission

Figure 4. Speedups or slowdowns over sequential version
N =100, 000 for teaser,
N = 1,000,000 wdf, van_dongen
N =3000 and M = 3000 for mix
gee 9.2.0, options: -03 -march=native -fopenmp

OpenMP parallel region does not increase performance: all
iterations are executed in the exact same order as the sequen-
tial order with the added overhead of the ordered synchro-
nizations.

Both our approach and the tasks versions allow our teaser
example to significantly outperform the sequential version.
Moreover, it can be noticed that task creation competes
with our approach in situations where the number of tasks
remains contained. However, the introduced overhead can
tremendously impede the resulting program as the number
of tasks grows larger. This can clearly be seen as the task
creation after we apply our loop fission — albeit still too
costly — is much lighter than with the greedy task creation
approach. The overhead comes from the growing amount of
tasks to create and the dependencies which must be checked
at runtime. The drastic impact of this overhead can also be
observed when comparing the performance of tasks on our
teaser with and without the call to nanosleep which was
introduced to mimic long compute times.

Manual blocking and locks outperform the ordered+no-
wait versions and even allows our teaser example to exhibit
speedups without the call to nanosleep. The results show
the speedups for block sizes similar to the default chunk size
for non blocked versions. We have observed even greater
speedups with different block sizes (for instance a speedup of

IMPACT 2020, January 22, 2020 , Bologna, Italy

. I
mix |
I .01
M9.18-1072
wdf | 0
13.7-107°
. 0.19
vandongen —|
l4.7-107°
I 2.08
teaser+nanosleep |
mo.13
mO.1
teaser —| 0
19.107°
| | | | |
0 1 2 3 4
speedup
locks M ordered+nowait ordered
I tasks tasks+fission

Figure 5. Speedups or slowdowns over sequential version
N =100, 000 for teaser, wdf, van_dongen
N =3000 and M = 3000 for mix
clang 9.0.0, options: -03 -march=native -fopenmp

9.6 with a block size of 2048 on our teaser code). The values
were guessed based on the input code and cache size of our
test environment. Further work is required to determine
how to find optimal block sizes for a given pipeline and
environment.

The measurements were also conducted over code com-
piled with clang and the results are presented in Figure 5. In
this case, we limited N to 100, 000 for wdf and van_dongen: it
can already be seen that even for a smaller N value, the task
versions are worse with clang/libomp than with gec/libgomp.
For N = 1,000, 000 we stopped the experiment after more
than 10 minutes spent in the task+fission code (as opposed
to approximately 1 minute for the gec/libgomp version).

5 Related Work

Extensive work has been done on software pipelining [1, 5, 7-
9, 14]. It used to be applied to architectures with specific fea-
tures, while we propose to pipeline loops on multithreading
environments. Software pipelining of a loop body can still
be used on a given core, in the cases where a loop body still
contains more than one statement after our algorithm has
been applied.

There has also been a lot of research focusing on low-level
pipelined code generation, usually based on the concept of
process network [4, 17, 19]. The main concerns of these
papers are the characterization of stream types and sizes and

IMPACT 2020, January 22, 2020 , Bologna, Italy

the efficient placement of tasks on a controlled sized static
hardware. These issues are not relevant in a multithreaded
general purpose environment like OpenMP.

Raman et al. [13] construct pipelines on a similar idea
based on strongly connected components however their
work does not target SCoPs.

Previous work generate other forms of parallelism using
OpenMP constructs and clauses and the polyhedral model.
Sbirlea et al. [16] parallelize doaccross loops using the Open-
MP ordered construct and clause. However, this transfor-
mation is based on specialized input: the input programs
are expressed in a Data-Flow Graph Language and provide
extended information on dependencies. Chatarasi et al. [3]
propose a framework which can handle OpenMP tasks and
ordered constructs. This framework expects input programs
where the parallelism has already been explicitly exposed
with OpenMP annotations and checks the correctness of the
input or optimizes the suggested program. Pop et al. [11]
propose OpenStream as an extension of OpenMP. The cor-
responding compiler can generate code which can exploit
pipeline parallelism. However, it requires help from the pro-
grammer to annotate and expose parallelism in the input
code. Compared to these approaches, our method could be
applied to sequential loops in simple annotation-free SCoPs.

6 Conclusion

We presented in this paper a technique to interlace and exe-
cute in parallel the iterations of otherwise sequential loops.
Using the OpenMP ordered and nowait clauses and thanks
to dependence analysis through the polyhedral model, we are
able to expose pipelined multithreading in programs which
current state-of-the-art automatic polyhedral parallelizers
fail to parallelize.

Our study shows that programs with multiple consecutive
sequential loops and with long enough sequential iterations
can benefit from pipelined multithreading. Indeed, pipelined
multithreading introduces control overhead which can only
be mitigated with long enough compute times.

Integrating our algorithm in an automatic parallelizer
is a work in progress. The synchronizations may impose
a great toll on the resulting program. We plan to investi-
gate whether specifying chunk sizes or tiling multithreaded
pipelined loops may reduce this synchronization overhead.

Our experiments led us to manually write alternative
versions using OpenMP tasks. Although our observations
showed that such constructs were not appropriate in some
of our tests cases, it can be noticed that — in ideal conditions
— using tasks was as efficient as our method. Future work
should investigate the requirements for task efficiency and
how to automatically extract task parallelism from simple
SCoPs.

Harenome Razanajato, Cédric Bastoul, and Vincent Loechner

References

[1] Vicki H Allan, Reese B Jones, Randall M Lee, and Stephen J Allan. 1995.
Software pipelining. ACM Computing Surveys (CSUR) 27, 3 (1995),
367-432.

Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-

pan. 2008. A practical automatic polyhedral parallelizer and lo-

cality optimizer. SIGPLAN Notices 43, 6 (2008), 101-113. https:

//doi.org/10.1145/1379022.1375595

Prasanth Chatarasi, Jun Shirako, and Vivek Sarkar. 2015. Polyhedral

optimizations of explicitly parallel programs. In 2015 International

Conference on Parallel Architecture and Compilation (PACT). IEEE, 213—

226.

Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, and Tanguy

Risset. 2008. High-level synthesis of loops using the polyhedral model.

In High-level synthesis. Springer, 215-230.

[5] Paul Feautrier. 1994. Fine-grain scheduling under resource constraints.

In International Workshop on Languages and Compilers for Parallel

Computing. Springer, 1-15.

Alfred Fettweis. 1986. Wave digital filters: Theory and practice. Proc.

IEEE 74, 2 (1986), 270-327.

Dirk Fimmel and Jan Miller. 2001. Optimal software pipelining under

resource constraints. International Journal of Foundations of Computer

Science 12, 06 (2001), 697-718.

Monica Lam. 1988. Software pipelining: An effective scheduling tech-

nique for VLIW machines. In ACM Sigplan Notices, Vol. 23. ACM,

318-328.

Qi Ning and Guang R Gao. 1993. A novel framework of register

allocation for software pipelining. In Proceedings of the 20th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages.

ACM, 29-42.

[10] OpenMP Architecture Review Board. [n. d.]. OpenMP API version 4.5.
http://openmp.org

[11] Antoniu Pop and Albert Cohen. 2013. OpenStream: Expressiveness
and data-flow compilation of OpenMP streaming programs. ACM
Transactions on Architecture and Code Optimization (TACO) 9, 4 (2013),
53.

[12] Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source
compiler infrastructure. In Cetus users and compiler infrastructure work-
shop, in conjunction with PACT, Vol. 2011. Citeseer, 1.

[13] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew] Bridges,
and David I August. 2008. Parallel-stage decoupled software pipelining.
In Proceedings of the 6th annual IEEE/ACM international symposium on
Code generation and optimization. ACM, 114-123.

[14] B Ramakrishna Rau. 1994. Iterative module scheduling: An algorithm
for software pipelining loops. In Proceedings of MICRO-27. The 27th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE,
63-74.

[15] Harenome Razanajato, Cédric Bastoul, and Vincent Loechner. 2017.
Lifting Barriers Using Parallel Polyhedral Regions. In 2017 IEEE 24th
International Conference on High Performance Computing (HiPC). IEEE,
338-347.

[16] Alina Sbirlea, Jun Shirako, Louis-Noél Pouchet, and Vivek Sarkar. 2015.
Polyhedral optimizations for a data-flow graph language. In Languages
and Compilers for Parallel Computing. Springer, 57-72.

[17] Todor Stefanov, Claudiu Zissulescu, Alexandru Turjan, Bart Kienhuis,
and Ed Deprettere. 2004. System design using Kahn process networks:
the Compaan/Laura approach. In Proceedings of the conference on De-
sign, automation and test in Europe-Volume 1. IEEE Computer Society,
10340.

[18] Vincent H Van Dongen, Guang R Gao, and Qi Ning. 1992. A polynomial
time method for optimal software pipelining. In Parallel Processing:
CONPAR 92—VAPP V. Springer, 613-624.

[19] Sven Verdoolaege. 2013. Polyhedral process networks. In Handbook of
Signal Processing Systems. Springer, 1335-1375.

[2

—

E

—

[4

—

G

—

7

—

[8

[}

[9

—

https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1145/1379022.1375595
http://openmp.org

Pipelined Multithreading Generation in a
Polyhedral Compiler IMPACT 2020, January 22, 2020 , Bologna, Italy

A Benchmarks

1 for (int i = 2; i <N; ++i) {
2 alil = h[i - 1] + R[i]; // ST
3 b[i] = ali - 1] + alil; // S2 1 for (int i = 1; i < N; ++i) {
4 c[i] = b[i - 11 + b[il; // S3 2 alil = X[i] + e[i - 1]; // S1
5 dlil = c[i - 1] + c[il; // s4 3 b[il = alil - gli - 11; // S2
6 e[i] = d[i - 2] + d[i - 11; // S5 4 c[i] = b[i] + e[il; // S3
7 fli] = e[i - 2] + e[i - 11; // S6 5 d[i] = gammal * b[i]; // S4
8 gli] = f[i] + X[il; // S7 6 e[i] = d[i] + e[i - 1]; // S5
9 h[i] = glil + Y[il; // S8 7 f[i] = gamma2 * b[i]; // S6
10 ulil = v[i - 1] + d[i]; // S9 8 glil = fLil + gli - 11; // S7
11 v[il = uli] + Z[il; // S10 9 Y[i]l = c[i] - g[il; // S8
12} 10}
(a) Van Dongen: original code (b) WDF: original code
1 for (int i = 1; i < N; ++i)
2 A[i] = f(A[i], ALi-11);
3 for (int i = 1; i < N; ++i)
4 B[i] = f(A[i], BLi-11);
1 for (int i = 1; i < N; ++i) s for (int i = 1; i < N; ++i)
2 for (int j = 0; j < M; ++3) 6 C[il = f(BLil, C[i-11);
3 for (int k = 0; k < M; ++k) 7 for (int i = 1; i < N; ++i)
4 C[il = C[i] + B[j1 + ALK] + 1.; 8 D[i] = f(CLil, DLi-11);
5 for (int i = 1; 1 < N; ++i) { 9 for (int i = 1; i < N; ++i)
6 D[i]l = D[i - 1] = C[i]; 10 E[i] = f(D[il, E[i-1D);
7 E[i] = E[i - 1] = D[il; 11 for (int i = 1; i < N; ++i)
s} 12 FLil = f(ELi], FLi-11);
(c) Mix: original code (d) Teaser: original code

Figure 6. Benchmarks

