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Abstract—Nowadays best performing automatic parallelizers
and data locality optimizers for static control programs rely on
the polyhedral model. Polyhedral compilation consists of three
phases: (1) abstracting the input code into a mathematical
view; (2) analyzing and transforming this representation into
an optimized alternative; (3) generating the corresponding code
while ensuring it is semantically equivalent to the input code.
During this last phase, state-of-the-art polyhedral compilers
generate only one type of parallelism when targeting multicore
shared memory architectures: parallel loops via the OpenMP
omp parallel for directive.

In this work, we propose to explore how a polyhedral
compiler could exploit parallel region constructs. Instead of
initializing a new set of threads each time the code enters
a parallel loop and synchronizing them when exiting it, the
threads are initialized once for all at the entrance of the region
of interest, and synchronized only when it is necessary.

Technically, we propose to embed the whole region contain-
ing parallel loops in an omp parallel construct. Inside the
parallel region, the single construct is used when some code
needs to be executed sequentially; the for construct is used to
distribute loop iterations between threads. Thanks to the power
of the polyhedral dependence analysis, we compute when it is
valid to add the optional nowait clause, to omit the implicit
barrier at the end of a worksharing construct and thus to
reduce even more control overhead.

Through a set of experiments on the PolyBench benchmarks,
we show that resulting codes can overwhelm the performance
obtained by the Pluto polyhedral compiler.

Keywords-code generation; OpenMP; polyhedral model; syn-
chronizations barriers.

I. INTRODUCTION

Optimizing and parallelizing compilers require com-

plex loop transformations that are usually tackled using

the polyhedral model, as in GCC/GRAPHITE [1] and

LLVM/Polly [2]. This powerful model takes as input a

static control piece of code, made of loops with affine

bounds and statements reading and writing arrays through

affine access functions, possibly depending on unknown

constant parameters. The statements are raised into the

mathematical abstraction as polytopes defining their iteration

domains, then analyzed and transformed in order to extract

parallelism, improve data locality, and enable vectorization.

The applied transformations may include arbitrarily complex

sequences of, e.g., loop fusion, fission, peeling, reversal,

interchange, skewing, and tiling. Finally, the code generation

consists in lowering back this mathematical abstraction into

a parallelized and optimized code.

The state-of-the-art polyhedral compiler Pluto [3] gen-

erates multi-threaded code by calling the loop generator

CLooG [4]. This tool annotates the parallel loops to be

generated, such that an OpenMP omp parallel for
directive is inserted on top of every parallel loop that was

identified. This method is pretty effective for simple cases,

e.g., if there is one single outer parallel loop. However, it

often induces unwanted synchronizations in more complex

cases: every time the execution flow encounters such a

parallel for construct, the threads are started (even if they

are not created again each time in modern OpenMP imple-

mentations), and there is an implicit synchronization barrier

at the end of the parallel loop.

In this work, we propose to lift the implicit barriers and

thread restarts which are known to introduce significant

overhead [5], [6]. Our technique embeds the whole piece

of code of interest into a single parallel region, and controls

explicitly where to put the necessary barriers. This is done

automatically thanks to the polyhedral model dependence

analysis. We will exploit the following OpenMP [7] con-

structs and clauses: parallel, for, single, nowait,

and barrier.

This paper is organized as follows. In Sect. II we introduce

our proposal with an example, showing that it can improve

performance of the resulting parallel code. The background

on the polyhedral model and on the OpenMP parallel con-

structs is presented in Sect. III. We detail our main parallel

code generation algorithm in Sect. IV. In Sect. V we show

that our proposal improves the performance of many codes

from the PolyBench benchmark suite. Finally, we present

some related work in Sect. VI, and conclude.

II. MOTIVATING EXAMPLE

Let us consider the main computation of atax from the

PolyBench suite [8]. The original code is given in Fig. 1. It

is a linear algebra kernel that consists of a matrix transpose

and a vector multiplication.

When applying the source-to-source polyhedral compiler

Pluto [3] version 0.11.4 (with option --parallel) to this

code, we get the parallelized and optimized code given

in Fig. 2. The computation of array tmp has been done

first (lines 2–10), with two parallel loops performing the
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1 for (i = 0; i < N; i++)
2 y[i] = 0;
3 for (i = 0; i < M; i++) {
4 tmp[i] = 0.0;
5 for (j = 0; j < N; j++)
6 tmp[i] += A[i][j] * x[j];
7 for (j = 0; j < N; j++)
8 y[j]+=A[i][j]*tmp[i];
9 }

Figure 1. Atax: original code

1 int t1, t2, t3;
2 #pragma omp parallel for
3 for (t2=0;t2<=M-1;t2++)
4 tmp[t2] = 0.0;
5 if (N >= 1) {
6 #pragma omp parallel for private(t3)
7 for (t2=0;t2<=M-1;t2++)
8 for (t3=0;t3<=N-1;t3++)
9 tmp[t2] += A[t2][t3] * x[t3];
10 }
11 #pragma omp parallel for
12 for (t2=0;t2<=N-1;t2++)
13 y[t2] = 0;
14 if ((M >= 1) && (N >= 1)) {
15 for (t2=0;t2<=N+M-2;t2++) {
16 #pragma omp parallel for
17 for (t3=max(0,t2-M+1);t3<=min(t2,N-1);t3++)
18 y[t3]+=A[(t2-t3)][t3]*tmp[(t2-t3)];
19 }
20 }

Figure 2. Atax: Pluto optimized code

initialization and the computation. Array y is then computed:

it is first initialized in a parallel loop (l. 11–13), and then two

nested loops perform its computation, the inner one being

parallel (l. 15–19). Due to data-dependencies, Pluto did not

parallelize the outer loop. Notice that a skewing was applied

on this loop nest.

We propose in this paper to remove the unnecessary

implicit synchronizations, by embedding this whole code

into a single parallel region as shown in Fig. 3. The threads

are created once, at entry of the region. Then, they are

synchronized only when necessary. In this example, the last

two loop nests require a synchronization because of the

successive writes to array y. But the nowait clause can

be added to the first two loops: the dependencies from the

first to the second parallel loop are verified, since the same

threads access the same array elements of array tmp; and

there is no dependency from the second to the third parallel

loop, accessing different arrays.

The performance of those versions of the code, depending

on the dataset size, are given in Table I. The baseline (1x)

is the speed of the sequential version. The experimental

platform is a 6-core Intel processor, as described in Sect. V.

Our custom parallel region version is on average 1.97x faster

than the Pluto version. This is mainly due to the OpenMP

thread re-creation that is avoided inside the last parallel loop

of this code.

1 #pragma omp parallel
2 {
3 int t1, t2, t3;
4 #pragma omp for nowait
5 for (t2=0;t2<=M-1;t2++)
6 tmp[t2] = 0.0;
7 if (N >= 1) {
8 #pragma omp for private(t3) nowait
9 for (t2=0;t2<=M-1;t2++)

10 for (t3=0;t3<=N-1;t3++)
11 tmp[t2] += A[t2][t3]*x[t3];
12 }
13 #pragma omp for
14 for (t2=0;t2<=N-1;t2++)
15 y[t2] = 0;
16 if ((M >= 1) && (N >= 1)) {
17 for (t2=0;t2<=N+M-2;t2++) {
18 #pragma omp for
19 for (t3=max(0,t2-M+1);t3<=min(t2,N-1);t3++)
20 y[t3]+=A[(t2-t3)][t3]*tmp[(t2-t3)];
21 }
22 }
23 }

Figure 3. Atax: synchronization optimized (custom) code

Table I
PERFORMANCE OF THE ATAX BENCHMARK

dataset pluto version custom version
medium 0.46x 1.31x
large 1.24x 1.94x
extralarge 1.27x 2.19x

Before presenting our general code generation algorithm,

the next section will introduce some background on the

polyhedral model and on OpenMP.

III. BACKGROUND

A. Polyhedral Model

The polyhedral model (or polytope model) is a mathemat-

ical framework that can be used to analyze and transform

Static Control Parts (SCoP) of programs.

SCoP transformation using the polyhedral model requires

three steps. First, adequate programs must be raised to a

polyhedral representation. Such a representation shall in-

clude several characteristics of the input SCoP: the iteration

domains of the statements, the original scheduling and the

dependencies. In the second step, a new scheduling can

be determined. The new scheduling may reorder statement

instances as long as no dependency is violated. Finally, a

new code implementation that follows the new scheduling

is generated.

1) Polyhedral Representation: polyhedral frameworks

manipulate affine relation abstractions, which map sets of

input vectors to sets of output vectors with respect to affine

constraints. Such relations represent all the various aspects

of a program such as iteration domains or dependencies

between iterations.

Iteration Domains – The polyhedral model revolves

around the concept of statement instance, i.e. a given ex-
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1 for (i = 0; i < N; ++i)
2 for (j = 0; j < M; ++j)
3 S1: A[j] = A[j] + B[i];

Figure 4. SCoP example

ecution of a statement. Statement instances are identified by

their iteration vectors which consist of the values of the loop

iterators enclosing the statement. The iteration domain of a

statement is the set of its possible iteration vectors. It may

depend on fixed yet unknown values, called parameters. The

iteration domain D for a statement S can be represented as

a polyhedron:

DS(�p) =

⎧⎨
⎩�ıS

∣∣∣∣∣∣ DS

⎛
⎝�ıS�p

1

⎞
⎠ ≥ �0

⎫⎬
⎭ (1)

where �p is the vector of parameters, �ıS ∈ Z
dim(�ıS)

stands for an iteration vector of statement S, and

DS ∈ Z
mDS

×(dim(�ıS)+dim(�p)+1) — where mDS
is the

number of constraints — is an integer matrix that encodes

the constraints.

For instance, considering the statement S1 from Fig. 4,

(0, 0) and (0, 1) would be two possible iteration vectors
(assuming N ≥ 1 and M ≥ 2), whereas (0,M + 2) would

not be possible. The constraints for the iteration vectors

(i, j) of statement S1 would be:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i ≥ 0

i < N

j ≥ 0

j < M

⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i ≥ 0

−i+N − 1 ≥ 0

j ≥ 0

−j +M − 1 ≥ 0

And the iteration domain would be:

DS1

(
N
M

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
i
j

)
∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

1 0 0 0 0
−1 0 1 0 −1
0 1 0 0 0
0 −1 0 1 −1

⎤
⎥⎥⎦

⎛
⎜⎜⎜⎜⎝

i
j
N
M
1

⎞
⎟⎟⎟⎟⎠ ≥ �0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Here, the iteration vector �ıS1 is composed of the two loop

indices (i, j) and the vector of parameters �p of the two

unknown program variables (N,M).
Dependence Relations – Dependences between statement

instances of a source statement S and a target statement T
can be represented as a polyhedron. Each integer point in

this polyhedron signifies that there is a dependency between

the corresponding input and output iteration vectors. Such

a polyhedron can be defined by the following relation:

δS,T (�p) =

⎧⎪⎪⎨
⎪⎪⎩
�ıS → �ıT

∣∣∣∣∣∣∣∣
RS,T

⎛
⎜⎜⎝
�ıS
�ıT
�p
1

⎞
⎟⎟⎠ ≥ �0

⎫⎪⎪⎬
⎪⎪⎭

(2)

For the SCoP example in Fig. 4 there is a dependency due
to the consecutive accesses to array A, from iteration (i, j)

to iteration (i′, j′), when i′ > i and j′ = j. The dependence
relation would be:

δS1,S1(�p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
i
j

)
→

(
i′
j′
)
∣∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎣−1 0 1 0 0 0 −1

0 1 0 −1 0 0 0
0 −1 0 1 0 0 0

⎤
⎦

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i
j
i′
j′
N
M
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
≥ �0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

This constraints matrix corresponds to i′ > i and j′ = j.

2) Scheduling: scheduling relations determine the tem-

poral ordering between statement instances. To do so, each

instance of a statement is associated with a logical date �tS .

θS(�p) =

⎧⎪⎪⎨
⎪⎪⎩
�ıS → �tS

∣∣∣∣∣∣∣∣
TS

⎛
⎜⎜⎝
�ıS
�tS
�p
1

⎞
⎟⎟⎠ ≥ �0

⎫⎪⎪⎬
⎪⎪⎭

(3)

Parallelizing SCoPs amounts to determining a new

scheduling where multiple statement instances have the same

logical date and/or where some logical date dimensions are

identified as parallel, while ensuring that all dependencies

are preserved [3], [9].

3) Code Generation: once a new scheduling has been

decided, the corresponding code can be generated. Such

algorithms shall produce a code that scans each point of

the polyhedra in the order specified by the newly found

scheduling [10], [11]. Most recent refinements to the code

generation problem can be found in CLooG [4], Code-

Gen+ [12] and isl [13].

B. Parallel Constructs

Source-to-source automatic parallelization tools, such as

Pluto [3] or R-Stream [14], generate parallel code from

a sequential program by implementing the whole process

presented in the previous subsection. When targeting general

purpose shared memory architectures such as multicore

CPUs, parallelism is expressed with parallel loop constructs,

usually implemented using OpenMP [7]. Our work opens a

wider use of classical parallel constructs such as parallel

regions, and some work sharing and synchronization mech-

anisms.

1) Parallel Region: parallel computing based on the

fork-join model uses special program parts where parallel

execution branches begin at their starting point and where

the sequential execution is resumed at their ending point.

Such program parts are called parallel regions. In practice,

once a master thread reaches a parallel region, worker

threads are requested to execute the code within that region

along with the master thread. Worker threads are stopped

and the master thread continues the execution alone when

and only when all threads have reached the end of the

parallel region. In OpenMP, the pragma omp parallel
is used to specify that the work enclosed in the construct

is a parallel region. Parallel regions come with a creation
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and management overhead. Moreover, data affinity is not

guaranteed between threads of different parallel regions.

Hence, optimized parallel implementations should merge

parallel regions when it is possible, e.g. when a parallel

region is enclosed within a loop.

2) Work sharing: master and worker threads execute the

same code within a parallel region unless a work sharing

construct is specified.

• Loop constructs split up loop iterations among the

threads according to a scheduling policy. In our work,

we may use the static scheduling policy. It specifies that

iterations are divided equally among threads (except

maybe the last thread). A chunk number of iterations

may be specified. In this case, chunk number of con-

tiguous iterations will be allocated to each thread, in a

round-robin fashion. In OpenMP, the pragma omp for
is used to specify work sharing for the loop enclosed

in the construct. The shortcut omp parallel for
may be used to specify a parallel region containing only

one loop work sharing construct.

• Single constructs specify that a code block is executed

by only one thread. In OpenMP, the pragma omp
single is used to make a single thread execute the

work enclosed in the construct.

Work sharing constructs have synchronization barriers im-

plied in the end of the construct: all threads have to wait

for all the others before resuming their execution. Opti-

mized parallel implementations should explicitly remove

them when they are not necessary.

3) Synchronization: specific constructs allow to add or to

remove thread synchronizations within a parallel region.

• Barrier constructs specify that all threads executing

a parallel region must wait for each other at that

point before resuming their execution. In OpenMP,

the pragma omp barrier is used to specify such a

construct.

• Barrier lifting constructs specify that the implicit bar-

rier at the end of a work sharing construct can be

removed. In OpenMP, the nowait clause may be

specified along with a work sharing construct to remove

its implicit barrier at the end of the work enclosed in

the construct.

An optimized parallel implementation may use such con-

structs to guarantee the correctness of the parallel code or to

avoid the synchronization overhead when it is not necessary.

IV. PARALLEL REGION GENERATION

A. Parallel Regions

Current code generation methods in polyhedral compilers

create an OpenMP parallel region for each parallel loop.

This means that for each parallel loop: 1) a thread team

is created at the start of the loop; 2) the thread team must

always synchronize at the end of the loop (because it is

the end of the parallel region); and 3) the thread team is

destroyed at the end of the loop. Although modern OpenMP

implementations attempt to be clever in regard to this matter,

consequent control overhead still remains [5], [6].

We propose to refine current code generation methods by

generating a single parallel region, when it is profitable:

if there is only an outer parallel loop, it is useless. But

when parallel loops are enclosed in one or many outer

sequential loops, the overhead of multiple parallel regions

can be avoided by creating a single outer parallel region. Our

technique should be applied only on loop nests containing

inner parallel loops or when factorizing multiple parallel

loops into a single parallel region is possible.

Code generation of SCoPs shall then generate an omp
parallel directive at the start of the corresponding

code and generate omp for directives instead of omp
parallel for on parallel loops. However, using a single

parallel region for a whole SCoP raises new redundant

execution and synchronization problems. Indeed, statements

may not all be identified as potentially parallel. Thus, such

parts must be protected with the OpenMP single construct

to ensure they are executed only once.

Enclosing multiple worksharing constructs in a common

parallel region provides the opportunity to introduce the

nowait clause. This clause specifies that the implicit

barrier at the end of a worksharing construct may be omitted.

Whenever two adjacent worksharing constructs share no

dependency, the nowait clause may be used on the first

construct. Moreover, the OpenMP specification states that

under certain circumstances, the nowait clause may be

safely used on a for construct which precedes another

for if the latter loop’s statement instances depend only

on the same logical iteration of the former loop. This is

possible if: 1) the sizes of both iteration domains are equal,

2) the chunk size is either the same for both loops or not

specified, 3) both loops are bound to the same parallel

region, 4) none of the loops is associated with a SIMD
construct. Safe use of the nowait clause in this fashion also

requires the scheduling to be static. This is the default

behaviour for current known implementations of OpenMP

but the specification states that it should be enforced with

the schedule(static) clause.

Special care must be dedicated to worksharing constructs

enclosed in loops. If the worksharing construct of interest

is the last of the outer loop, it may precede the next

worksharing construct in the generated code as well as

the first worksharing construct in the outer loop. In this

case, determining whether the nowait clause can be used

requires to analyze multiple dependencies. The minimal

requirement is the possibility to use the nowait clause

between constructs within the loop. If the next worksharing

construct is not compatible with the nowait clause, a

barrier construct must be used right before the latter

construct instead of right after the former loop. Figure 5
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1 #pragma omp parallel
2 {
3 for (i = 0; i < N; ++i)
4 #pragma omp for nowait
5 for (j = 0; j < M; ++j)
6 S1: A[j] = A[j] + B[i];
7 #pragma omp barrier
8 #pragma omp for
9 for (i = 0; i < M; ++i)

10 for (j = 0; j < i; ++j)
11 S2: C[i] = C[i] * A[j];
12 }

Figure 5. Example of SCoP where the nowait clause requires a barrier

presents such an example: the nowait clause can safely be

used for successive iterations of the loop on i for statement

S1 but the very last batch of iterations must be completed

before S2 can be executed.

B. Determining the validity of the nowait clause

Obviously, if two worksharing constructs next to each

other do not depend on each other, it is valid to add the

nowait clause to the first worksharing construct regardless

of the worksharing construct type or the schedule type

for loops. The implicit barrier of the second worksharing

construct maintains the synchronization with the remainder

of the code.

As explained in the previous subsection, the OpenMP

specification describes four conditions for the safe use of

nowait (as long as the schedule type is set to static)

when there are dependencies between subsequent loop con-

structs. The first condition can be verified using the poly-

hedral model: determining that the sizes of two iteration

domains coincide is possible with Ehrhart polynomials [15].

Ensuring that the second, third and fourth conditions are

fulfilled is trivial: our code generation algorithm aims to

use a single parallel region and thus enforces by design that

the worksharing constructs bind to the same parallel region.

In the same vein, ensuring that the chunk sizes are identical

(or not specified) and that no SIMD construct is associated

is easy.

If the aforementioned conditions are met, compliant

OpenMP implementations must assign the same logical iter-

ations to the same threads. Hence, the last step is to ensure

that the only existing dependencies lie between identical

logical iterations.

Let S1 and S2 be two statements such that S2 depends

on S1 as follows:

δS1,S2(�p) =

⎧⎪⎪⎨
⎪⎪⎩
�ıS1 → �ıS2

∣∣∣∣∣∣∣∣
RS1,S2

⎛
⎜⎜⎝
�ıS1

�ıS2

�p
1

⎞
⎟⎟⎠ ≥ �0

⎫⎪⎪⎬
⎪⎪⎭

Assuming dS1 is the parallel dimension for S1 and dS2

is the parallel dimension for S2, the following polyhedron

links the same logical iterations of S1 and S2:

PS1,S2(�p) =
{
�ıS1 → �ıS2

∣∣ ( dS1 = dS2

) }
The two previous equations combine to get the expression

of dependencies in different logical iterations of S1 and

S2 as: δS1,S2 \ PS1,S2. It immediately follows that the

necessary condition for the validity of the nowait clause

on statement S1 is:

δS1,S2 \ PS1,S2 ≡ ∅
C. Code Generation

The general algorithm for parallel region annotation

is described in Alg. 1. The input of the algorithm is

an optimized (using the polyhedral techniques) Abstract

Syntax Tree (AST), encoded as a list of AST nodes.

Any loop previously identified as parallel shall be an-

notated with #pragma omp for (instead of #pragma
omp parallel for) whereas any other statement shall

be annotated with #pragma omp single. In this poly-

hedral AST, we temporarily (i.e. until the code is actually

pretty-printed) introduce macro statements: we consider the

body of a worksharing construct as a single statement.

Algorithm 1 Parallel Regions Annotation

Input: node list n
1: for all statements s in n do
2: if s is a parallel loop then
3: annotate s with #pragma omp for
4: else
5: annotate s with #pragma omp single
6: end if
7: end for
8: annotate_nowait(n)

At line 8 of Alg. 1 we call algorithm Alg. 2, to annotate as

many worksharing constructs as possible with the nowait
clause. For any given AST node n, n→next references

the next node (if any) at the same AST level. n→nowait
indicates whether the node of interest requires a barrier.

Successive nodes marked with nowait are considered to

belong to the same nowait-group. If a node is a loop,

n→inner corresponds to its body. n→last is used to either

point to the last nowait-group in n→inner or to the nowait-

group that contains n in the case it is not a loop. The value

of n→last is set by the function compute_last (called

lines 4 and 9). last_node returns the last AST node of

a nowait-group. The dep function (lines 5 and 15) takes

as input two nowait-groups of nodes g1 and g2 and returns

true if and only if for each pair of nodes (n1 ∈ g1, n2 ∈ g2)

there is no dependency that would be violated if the nowait
clause was added to all nodes of the nowait-group g1.

The algorithm attempts to leverage as many barriers as

possible: it assumes at first that no node requires a barrier
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Algorithm 2 annotate_nowait

Input: node list n
1: n→nowait = true

2: if n→inner then
3: annotate_nowait(n→inner)

4: compute_last(n)

5: if !dep(n→last, n→inner) then
6: last_node(n→last)→nowait = false

7: end if
8: else
9: compute_last(n)

10: end if
11: if n→next then
12: annotate_nowait(n→next)
13: if !n→inner or last_node(n→last)→nowait then
14: n→nowait = false

15: if dep(n→last, n→next) then
16: n→nowait = true

17: end if
18: end if
19: end if

(line 1) and then restores barriers where needed (lines 6 and

14–17). At each level of the AST, the algorithm recurses

(line 3) into the bodies of loops (n→inner) and on the next

node of the level (line 12). The first and last nowait-groups

(which can coincide) of the body of a loop are of the utmost

importance. The dependencies between these two nowait-

groups must be analyzed (line 5) because the last nowait-

group will precede the next iteration of the first nowait-

group. If this condition is not verified, the last node of the

last nowait-group requires a barrier (line 6). If the node

n is a loop, checking its dependencies with its successor

nowait-group (line 15) and possibly restoring a barrier is

only necessary if no barrier has been restored in its body

(line 13). When doing so, the barrier is temporarily restored

(line 14) so that dep (line 15) always considers n→last and

n→next as different nowait-groups (because n→last may

refer to n if it is not a loop).

The pretty printing phase is akin to current techniques,

with some modifications. The differences are: 1) the

whole SCoP must be surrounded with the #pragma omp
parallel { ... } construct, 2) #pragma omp for
must be used instead of #pragma omp parallel for,

3) #pragma omp single constructs must be printed

where needed, 4) the nowait clause must be added to a

worksharing construct when the corresponding n→nowait is

true and 5) #pragma omp barrier are printed where

needed (after node n when n→nowait is false). To simplify

the generated code, the pretty printing phase may also decide

to omit both the barrier and the preceding nowait clause,

when the barrier would be equivalent to the preceding work

sharing construct’s implicit barrier.

Table II
BENCHMARKS MAIN CHARACTERISTICS

benchmark #main loop #inner #single #nowait
nests paral. loops

adi 2 2 0 0
adi-tile 2 2 0 0

atax 4 1 0 2
bicg 4 1 0 2

cholesky 2 2 2 1
cholesky-tile 2 2 0 0

correlation 9 2 0 1
covariance 7 1 0 2

doitgen 3 3 0 1
doitgen-tile 3 3 0 2

fdtd-2d 6 4 3 2
fdtd-2d-tile 1 1 0 0

floyd-warshall 1 1 0 0
floyd-warshall-tile 1 1 0 0

gemver 3 1 0 0
gramschmidt 8 3 1 1

gramschmidt-tile 5 2 1 1
heat-3d 11 4 7 5

heat-3d-tile 1 1 0 0
jacobi-1d 5 4 7 5

jacobi-1d-tile 1 1 0 0
jacobi-2d 10 4 7 4

jacobi-2d-tile 1 1 0 0
lu 2 1 1 0

lu-tile 2 1 0 0
nussinov 2 1 0 0

nussinov-tile 1 1 0 0
reg detect 16 3 4 2

reg detect-tile 1 1 0 0
seidel-2d 1 1 0 0

seidel-2d-tile 1 1 0 0
trisolv 2 1 1 1

trisolv-tile 2 1 0 0
trmm 2 1 0 0

V. BENCHMARKS

We evaluated our approach with benchmarks taken from

the PolyBench suite [8]. We ran Pluto version 0.11.4 on

all of them, in two flavors: the first one with automatic

parallelization enabled (option --parallel), and the sec-

ond one with parallelization and tiling (option --tile
--parallel). From those two flavors of each benchmark,

we selected the ones where our method was applied, i.e.
where at least one internal parallel loop occurs. This happens

on 34 benchmarks out of 50 (2*25), 14 of them being the

tiled version. Table II describes the main characteristics of

each of these benchmarks: the number of main loop nests

that they contain, the number of parallel loops embeded into

outer sequential loops, the number of single regions, and the

number of nowait clauses that are introduced by our method.

We conducted our experiments on three platforms:

1) An Intel Xeon E5-2620v3 @ 2.40GHz (6 cores,

12 threads), running the Linux 4.11.5 kernel.

Intel Turbo Boost and Hyperthreading were

dynamically disabled during the execution of

the benchmarks. In order to further reduce

the variance of the measurements, Linux FIFO
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Figure 6. Speedup over Pluto, first platform (6-cores/gcc)

scheduling was enabled via the PolyBench’s macro

POLYBENCH_LINUX_FIFO_SCHEDULER. The

compiler is gcc 7.1.1 using options -O3
-march=native -fopenmp.

2) The second platform is a dual socket Intel Xeon E5-

2650v3 @ 2.30GHz (2*10 cores, 40 total threads),

running Linux 4.4.0. The compiler is gcc 5.4.0,

using options -O3 -march=native -fopenmp.

No particular environment variable was set on this

platform to get stable measurements.

3) The last platform is the same computer, but using this

time the icc compiler version 17.0.0 and options

-O3 -march=native -qopenmp. We had to put

the environment variable OMP_NUM_THREADS to 20

in order not to use hyperthreading to get more stable

measurements. Still, the variance was much higher on

this configuration than on the previous ones, so the

results on this platform are less reliable: the variance

exceeds 5% in about half of the measurements that we

made.

The environment variable OMP_PROC_BIND was set to

true on all platforms. The PolyBench scripts that we used

perform all time measurements as the average of 3 median

measurements out of 5 runs. Notice that we report some

speedups that are larger than the number of available cores;

this is not a surprise as Pluto is not only a parallelizer but

also a data locality optimizer and vectorizer.
Figure 6 presents the acceleration of our version compared

to the Pluto version on the 6-cores first platform for the

small, medium, and large datasets of the PolyBench suite.

We can notice from this figure that our method improves

many of these benchmarks: the acceleration is most often

greater than 1x. The geometric mean acceleration for all

datasets is given on the bottom line. On smaller datasets,

the benefit of our method is often greater: in many cases

the ratio between threads creation and synchronizations time

towards computation time is higher when computing small

datasets. The overall mean acceleration on all dataset sizes

available in PolyBench (including mini and extralarge, not

shown in the figure) is 1.36x.
However, we noticed that in some of these benchmarks,

Pluto did not improve the performance over the sequential

version of the code. In order to support our conclusions,

we checked that our method improves both the efficient

parallelized codes and the inefficient ones. Figure 7 presents

both the acceleration of the Pluto version and the one of our

version, over the sequential version on the standard dataset.

The geometric mean of our version speedup over Pluto,

when Pluto performs worse than 1x is 1.95x, and when

Pluto performs better than 1x it is 1.09x. So our method

improves more the poor performing Pluto codes, which is

not a surprise: the synchronization over computation time

ratio is usually higher on those codes. Nevertheless, we

checked that our method improves the performance of most

344

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 15:43:40 UTC from IEEE Xplore.  Restrictions apply. 



0 5 10 15

atax

bicg

doitgen

cholesky

gramschmidt

lu

trisolv

gemver

trmm

reg detect

correlation

covariance

adi

fdtd-2d

heat-3d

jacobi-1d

jacobi-2d

seidel-2d

floyd-warshall

nussinov

doitgen-tile

cholesky-tile

gramschmidt-tile

lu-tile

trisolv-tile

reg detect-tile

adi-tile

fdtd-2d-tile

heat-3d-tile

jacobi-1d-tile

jacobi-2d-tile

seidel-2d-tile

floyd-warshall-tile

nussinov-tile

1.31

1.6

0.14

2.05

3.16

5.46

0.34

1.52

14.23

0.64

11.28

12.28

4.12

2.43

2.96

9.55 · 10−2

2.1

5.24

0.65

4.08

2.87

2.15

3.01

4.23

3.31

1.24

3.17

1.07

0.72

0.37

0.71

2.56

2.52

2.92

0.46

0.69

3.84 · 10−2

1.9

3.43

5.12

0.16

0.65

8.7

0.39

6.36

9.88

5.15

2.18

2.52

4.21 · 10−2

1.99

5.64

0.19

4.31

1.18

2.15

3.76

4.13

2.45

1.19

3.16

1.4

0.66

0.34

0.87

2.63

2.01

3.85

speedup

pluto

custom

Figure 7. Speedup of the Pluto and our custom versions over the sequential
version (first platform (6-core/gcc), medium dataset

of the Pluto parallel codes, whether Pluto performs well or

not. This assessment is confirmed by the measurements on

the other dataset sizes and platforms; we did not put all of

them in this paper for space reasons.

We also ran those benchmarks on 40 threads in the

second configuration (2x 10-cores hyperthreaded), to get the

results presented in Fig. 8. The geometric mean of those

accelerations is 1.52x on the large dataset, and 1.39x on the

extralarge dataset.

Finally, we ran the benchmarks on the 20 threads third

configuration, using the icc compiler and the Intel OpenMP

runtime. Each benchmark acceleration of our version over

the Pluto version is given in Fig. 9 for the large and

extralarge datasets. Some benchmarks, marked with *, are

not reported since there is a numerical divergence between

the different versions, probably due to the icc vectorizer: the

vector floating point unit does not have the same precision
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Figure 8. Speedup over Pluto, second platform (40-threads/gcc)

as the main one. The average acceleration of our version

is respectively 1.14x and 1.11x for the large and extralarge

datasets. The overall acceleration is a bit lower than the

previous ones, most probably due to the more efficient

OpenMP runtime. But those measurements are less reliable,

as said before, since the variance in time measurements often

exceeds the PolyBench default limit (5%).

VI. RELATED WORK

Loop parallelization received a lot of attention in the

optimizing compilation community because loops are known

to embed a significant part of the overall computation time.

Allen and Kennedy’s parallelization algorithm computes

strongly connected components of the dependence graph to

decide about convenient loop distribution to extract parallel

loops [16]. Wolf and Lam’s perfectly nested loop paralleliza-

tion algorithm uses a unified representation of a subset of

loop transformations, known as unimodular transformations,
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Figure 9. Speedup over Pluto, third platform (20-cores/icc)

to extract parallelism [17]. Feautrier’s parallelization algo-

rithm was the first one to propose a general solution to the

(innermost) parallelism extraction problem, by computing

an affine transformation [18], [9]. Feautrier’s work has been

extended in may ways, e.g., by Lim and Lam to extract out-

ermost parallel loops [19], [20], or by Bondhugula et al. as

a general polyhedral framework to optimize parallelism and

data locality [3], [21]. These techniques are now included in

many high-level compilers such as Pluto [3], R-Stream [14]

or TRACO [22], and also in low-level compilers such as

GCC [1], LLVM [2] or IBM XL [23].

Few algorithms are designed to generate synchronizations

e.g., Allen-Kennedy[16] and Lim-Lam [19], but most of

them aim at generating parallel loop constructs with an

implicit barrier synchronization at the end of each parallel

loop, such as the omp parallel for OpenMP parallel

construct [7]. Our technique is complementary to these

works: it may take as input the optimized generated code

(or its internal polyhedral representation) and build the

convenient parallel region construct to minimize the runtime

overhead and remove spurious synchronizations.

Synchronization placement and optimization has been

the subject of many past works, including barrier place-

ment [24], [25] and removal [26], [27]. Works on reducing

synchronization overhead through generating merged SPMD

programs from fork-join implementations are the closest to

our approach [28], [26], [27]. In particular, we share the idea

to put several smaller regions together to remove barriers.

However our context and techniques are quite different

since in our case the code is not modified (except parallel

constructs) and a specific analysis allows to safely remove

barriers, while in the SPMD approach, broadcast barriers

are removed as a consequence of merging regions and of

the choice of work distribution among threads. Zhao et

al. also proposed a technique which reduces task creation

overhead [29] but in the context of task-parallel programs.

VII. CONCLUSION

In this paper, we presented a technique to generate wide

parallel regions rather than separate parallel loops. Our ap-

proach brings many advantages to most high-level optimiz-

ing compilers that are relying on parallel loop construct only.

First, it minimizes the overhead induced by starting/stopping

computation threads. Second, it allows to remove unneces-

sary and costly synchronizations. Lastly, threads may take

advantage of data locality between loops. Our method is not

competing but is complementary to existing parallelization

frameworks: its input is an already optimized code and its

output is an even more efficient optimization. It exploits

the polyhedral representation of programs and a custom

code generation phase to factorize parallel loops into wider

and deeper loop regions where superfluous synchronizations

have been removed. We conducted a wide experimental

study showing that our approach is nearly always beneficial

and brings a significant gain over the state-of-the-art Pluto

compiler, from 1.14 to 1.63 speedup in average, depending

on the dataset size. A clear conclusion of our study is that

high-level polyhedral compilers should now target parallel

regions rather than collections of independent parallel loops.

Ongoing work aims at co-designing an automatic paral-

lelization algorithm along with our parallel region generation

technique, since a more appropriate parallelism form is

likely to bring additional optimization opportunities.
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