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Abstract—Nowadays best performing automatic parallelizers
and data locality optimizers for static control programs rely on
the polyhedral model. Polyhedral compilation consists of three
phases: (1) abstracting the input code into a mathematical
view; (2) analyzing and transforming this representation into
an optimized alternative; (3) generating the corresponding code
while ensuring it is semantically equivalent to the input code.
During this last phase, state-of-the-art polyhedral compilers
generate only one type of parallelism when targeting multicore
shared memory architectures: parallel loops via the OpenMP
omp parallel for directive.

In this work, we propose to explore how a polyhedral
compiler could exploit parallel region constructs. Instead of
initializing a new set of threads each time the code enters
a parallel loop and synchronizing them when exiting it, the
threads are initialized once for all at the entrance of the region
of interest, and synchronized only when it is necessary.

Technically, we propose to embed the whole region contain-
ing parallel loops in an omp parallel construct. Inside the
parallel region, the single construct is used when some code
needs to be executed sequentially; the for construct is used to
distribute loop iterations between threads. Thanks to the power
of the polyhedral dependence analysis, we compute when it is
valid to add the optional nowait clause, to omit the implicit
barrier at the end of a worksharing construct and thus to
reduce even more control overhead.

Through a set of experiments on the PolyBench benchmarks,
we show that resulting codes can overwhelm the performance
obtained by the Pluto polyhedral compiler.

Keywords-code generation; OpenMP; polyhedral model; syn-
chronizations barriers.

[. INTRODUCTION

Optimizing and parallelizing compilers require com-
plex loop transformations that are usually tackled using
the polyhedral model, as in GCC/GRAPHITE [1] and
LLVM/Polly [2]. This powerful model takes as input a
static control piece of code, made of loops with affine
bounds and statements reading and writing arrays through
affine access functions, possibly depending on unknown
constant parameters. The statements are raised into the
mathematical abstraction as polytopes defining their iteration
domains, then analyzed and transformed in order to extract
parallelism, improve data locality, and enable vectorization.
The applied transformations may include arbitrarily complex
sequences of, e.g., loop fusion, fission, peeling, reversal,
interchange, skewing, and tiling. Finally, the code generation

consists in lowering back this mathematical abstraction into
a parallelized and optimized code.

The state-of-the-art polyhedral compiler Pluto [3] gen-
erates multi-threaded code by calling the loop generator
CLooG [4]. This tool annotates the parallel loops to be
generated, such that an OpenMP omp parallel for
directive is inserted on top of every parallel loop that was
identified. This method is pretty effective for simple cases,
e.g., if there is one single outer parallel loop. However, it
often induces unwanted synchronizations in more complex
cases: every time the execution flow encounters such a
parallel for construct, the threads are started (even if they
are not created again each time in modern OpenMP imple-
mentations), and there is an implicit synchronization barrier
at the end of the parallel loop.

In this work, we propose to lift the implicit barriers and
thread restarts which are known to introduce significant
overhead [5], [6]. Our technique embeds the whole piece
of code of interest into a single parallel region, and controls
explicitly where to put the necessary barriers. This is done
automatically thanks to the polyhedral model dependence
analysis. We will exploit the following OpenMP [7] con-
structs and clauses: parallel, for, single, nowait,
and barrier.

This paper is organized as follows. In Sect. IT we introduce
our proposal with an example, showing that it can improve
performance of the resulting parallel code. The background
on the polyhedral model and on the OpenMP parallel con-
structs is presented in Sect. III. We detail our main parallel
code generation algorithm in Sect. IV. In Sect. V we show
that our proposal improves the performance of many codes
from the PolyBench benchmark suite. Finally, we present
some related work in Sect. VI, and conclude.

II. MOTIVATING EXAMPLE

Let us consider the main computation of atax from the
PolyBench suite [8]. The original code is given in Fig. 1. It
is a linear algebra kernel that consists of a matrix transpose
and a vector multiplication.

When applying the source-to-source polyhedral compiler
Pluto [3] version 0.11.4 (with option ——parallel) to this
code, we get the parallelized and optimized code given
in Fig. 2. The computation of array tmp has been done
first (lines 2—-10), with two parallel loops performing the
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Figure 1. Atax: original code

int tl, t2, t3;
#pragma omp parallel for
for (t2=0;t2<=M-1;t2++)
tmp[t2] 0.0;
(N >= 1) {
#fpragma omp parallel for private(t3)
for (t2=0;t2<=M-1;t2++)
for (t3=0;t3<=N-1;t3++)
tmp[t2] += A[t2] [t3]

g w N

if

[e)}

*

x[t3];

O w0 0 J

y

#pragma omp parallel for

for (t2=0;t2<=N-1;t2++)

ylt2] = 0;
(M >= 1) && (N >= 1)) {

for (t2=0;t2<=N+M-2;t2++) {

#pragma omp parallel for

for (t3=max(0,t2-M+1);t3<=min (t2,N-1);t3++)
yIE3]+=A[(£2-t3) ] [t3]*tmp[ (£t2-t3)];

if

g W N

o

;

N =
O w w J
-

Figure 2. Atax: Pluto optimized code

initialization and the computation. Array y is then computed:
it is first initialized in a parallel loop (1. 11-13), and then two
nested loops perform its computation, the inner one being
parallel (1. 15-19). Due to data-dependencies, Pluto did not
parallelize the outer loop. Notice that a skewing was applied
on this loop nest.

We propose in this paper to remove the unnecessary
implicit synchronizations, by embedding this whole code
into a single parallel region as shown in Fig. 3. The threads
are created once, at entry of the region. Then, they are
synchronized only when necessary. In this example, the last
two loop nests require a synchronization because of the
successive writes to array y. But the nowair clause can
be added to the first two loops: the dependencies from the
first to the second parallel loop are verified, since the same
threads access the same array elements of array tmp; and
there is no dependency from the second to the third parallel
loop, accessing different arrays.

The performance of those versions of the code, depending
on the dataset size, are given in Table I. The baseline (1x)
is the speed of the sequential version. The experimental
platform is a 6-core Intel processor, as described in Sect. V.
Our custom parallel region version is on average 1.97x faster
than the Pluto version. This is mainly due to the OpenMP
thread re-creation that is avoided inside the last parallel loop
of this code.
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1 #pragma omp parallel
2 {
3 int tl, t2, t3;
4 #pragma omp for nowait
5 for (t2=0;t2<=M-1;t2++)
6 tmp[t2] = 0.0;
7 if (N >= 1) {
8 #pragma omp for private(t3) nowait
9 for (t2=0;t2<=M-1;t2++)
10 for (t3=0;t3<=N-1;t3++)
11 tmp[t2] += A[t2][t3]*x[t3];
12 }
13 #pragma omp for
14 for (t2=0;t2<=N-1;t2++)
15 ylt2] = 0;
16 if (M >= 1) && (N >= 1)) {
17 for (t£2=0;t2<=N+M-2;t2++) {
18 #pragma omp for
19 for (t3=max(0,t2-M+1);t3<=min (t2,N-1);t3++)
20 y[t31+=A[(t2-t3) ] [t3]»tmp[ (£t2-t3)];
21
22 }
23}
Figure 3. Atax: synchronization optimized (custom) code

Table 1
PERFORMANCE OF THE ATAX BENCHMARK

dataset pluto version  custom version
medium 0.46x 1.31x
large 1.24x 1.94x
extralarge 1.27x 2.19x

Before presenting our general code generation algorithm,
the next section will introduce some background on the
polyhedral model and on OpenMP.

III. BACKGROUND
A. Polyhedral Model

The polyhedral model (or polytope model) is a mathemat-
ical framework that can be used to analyze and transform
Static Control Parts (SCoP) of programs.

SCoP transformation using the polyhedral model requires
three steps. First, adequate programs must be raised to a
polyhedral representation. Such a representation shall in-
clude several characteristics of the input SCoP: the iteration
domains of the statements, the original scheduling and the
dependencies. In the second step, a new scheduling can
be determined. The new scheduling may reorder statement
instances as long as no dependency is violated. Finally, a
new code implementation that follows the new scheduling
is generated.

1) Polyhedral Representation: polyhedral frameworks
manipulate affine relation abstractions, which map sets of
input vectors to sets of output vectors with respect to affine
constraints. Such relations represent all the various aspects
of a program such as iteration domains or dependencies
between iterations.

Iteration Domains — The polyhedral model revolves
around the concept of statement instance, i.e. a given ex-

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 15:43:40 UTC from IEEE Xplore. Restrictions apply.



1 for (1 = 0; i < N; ++1)
2 for (3 = 0; jJ < M; ++3)
3 Sl: A[J] = A[j] + BI[i];

Figure 4. SCoP example

ecution of a statement. Statement instances are identified by
their iteration vectors which consist of the values of the loop
iterators enclosing the statement. The iteration domain of a
statement is the set of its possible iteration vectors. It may
depend on fixed yet unknown values, called parameters. The
iteration domain D for a statement S can be represented as
a polyhedron:

>0

Ds(p) = Ds (1)

s

=S gt

where p is the vector of parameters, i € 7,3im(7s)
stands for an iteration vector of statement S, and
Dg € zmps*(dim(@s)+dimB)+1) _ where mp, is the
number of constraints — is an integer matrix that encodes
the constraints.

For instance, considering the statement S1 from Fig. 4,
(0,0) and (0,1) would be two possible iteration vectors
(assuming N > 1 and M > 2), whereas (0, M + 2) would
not be possible. The constraints for the iteration vectors
(i,7) of statement S1 would be:

i >0 i >0

i <N —i+N—-1 >0

j >0 j >0

j <M —j+M—-1 >0

And the iteration domain would be:

1 000 0 ;
N i||-1 0 1 0 -1 "
D51<M>_ (;) 0 100 0 ]\J\/j =0

0 -1 0 1 -1] |7

Here, the iteration vector 757 is composed of the two loop
indices (7,7) and the vector of parameters p of the two
unknown program variables (N, M).

Dependence Relations — Dependences between statement
instances of a source statement S and a target statement 7
can be represented as a polyhedron. Each integer point in
this polyhedron signifies that there is a dependency between
the corresponding input and output iteration vectors. Such
a polyhedron can be defined by the following relation:

=1

S
TSR
ol

dsr(p) = 2

775 — 77T RS,T

For the SCoP example in Fig. 4 there is a dependency due
to the consecutive accesses to array A, from iteration (i, j)
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to iteration (¢', j’), when ¢’ > ¢ and j’ = j. The dependence
relation would be:
-1
0
0

ds1,51(P) = (;) — (;I/) {

This constraints matrix corresponds to i’ > 4 and 7' = j.
2) Scheduling: scheduling relations determine the tem-

poral ordering between statement instances. To do so, each

instance of a statement is associated with a logical date tg.
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0s(P) = (7s — ts|Ts (3)

TR
IV

Parallelizing SCoPs amounts to determining a new
scheduling where multiple statement instances have the same
logical date and/or where some logical date dimensions are
identified as parallel, while ensuring that all dependencies
are preserved [3], [9].

3) Code Generation: once a new scheduling has been
decided, the corresponding code can be generated. Such
algorithms shall produce a code that scans each point of
the polyhedra in the order specified by the newly found
scheduling [10], [11]. Most recent refinements to the code
generation problem can be found in CLooG [4], Code-
Gen+ [12] and isl [13].

B. Parallel Constructs

Source-to-source automatic parallelization tools, such as
Pluto [3] or R-Stream [14], generate parallel code from
a sequential program by implementing the whole process
presented in the previous subsection. When targeting general
purpose shared memory architectures such as multicore
CPUs, parallelism is expressed with parallel loop constructs,
usually implemented using OpenMP [7]. Our work opens a
wider use of classical parallel constructs such as parallel
regions, and some work sharing and synchronization mech-
anisms.

1) Parallel Region: parallel computing based on the
fork-join model uses special program parts where parallel
execution branches begin at their starting point and where
the sequential execution is resumed at their ending point.
Such program parts are called parallel regions. In practice,
once a master thread reaches a parallel region, worker
threads are requested to execute the code within that region
along with the master thread. Worker threads are stopped
and the master thread continues the execution alone when
and only when all threads have reached the end of the
parallel region. In OpenMP, the pragma omp parallel
is used to specify that the work enclosed in the construct
is a parallel region. Parallel regions come with a creation
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and management overhead. Moreover, data affinity is not
guaranteed between threads of different parallel regions.
Hence, optimized parallel implementations should merge
parallel regions when it is possible, e.g. when a parallel
region is enclosed within a loop.

2) Work sharing: master and worker threads execute the
same code within a parallel region unless a work sharing
construct is specified.

e Loop constructs split up loop iterations among the
threads according to a scheduling policy. In our work,
we may use the static scheduling policy. It specifies that
iterations are divided equally among threads (except
maybe the last thread). A chunk number of iterations
may be specified. In this case, chunk number of con-
tiguous iterations will be allocated to each thread, in a
round-robin fashion. In OpenMP, the pragma omp for
is used to specify work sharing for the loop enclosed
in the construct. The shortcut omp parallel for
may be used to specify a parallel region containing only
one loop work sharing construct.

o Single constructs specify that a code block is executed
by only one thread. In OpenMP, the pragma omp
single is used to make a single thread execute the
work enclosed in the construct.

Work sharing constructs have synchronization barriers im-
plied in the end of the construct: all threads have to wait
for all the others before resuming their execution. Opti-
mized parallel implementations should explicitly remove
them when they are not necessary.

3) Synchronization: specific constructs allow to add or to
remove thread synchronizations within a parallel region.

e Barrier constructs specify that all threads executing
a parallel region must wait for each other at that
point before resuming their execution. In OpenMP,
the pragma omp barrier is used to specify such a
construct.

e Barrier lifting constructs specify that the implicit bar-
rier at the end of a work sharing construct can be
removed. In OpenMP, the nowait clause may be
specified along with a work sharing construct to remove
its implicit barrier at the end of the work enclosed in
the construct.

An optimized parallel implementation may use such con-
structs to guarantee the correctness of the parallel code or to
avoid the synchronization overhead when it is not necessary.

IV. PARALLEL REGION GENERATION
A. Parallel Regions

Current code generation methods in polyhedral compilers
create an OpenMP parallel region for each parallel loop.
This means that for each parallel loop: 1) a thread team
is created at the start of the loop; 2) the thread team must
always synchronize at the end of the loop (because it is
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the end of the parallel region); and 3) the thread team is
destroyed at the end of the loop. Although modern OpenMP
implementations attempt to be clever in regard to this matter,
consequent control overhead still remains [5], [6].

We propose to refine current code generation methods by
generating a single parallel region, when it is profitable:
if there is only an outer parallel loop, it is useless. But
when parallel loops are enclosed in one or many outer
sequential loops, the overhead of multiple parallel regions
can be avoided by creating a single outer parallel region. Our
technique should be applied only on loop nests containing
inner parallel loops or when factorizing multiple parallel
loops into a single parallel region is possible.

Code generation of SCoPs shall then generate an omp
parallel directive at the start of the corresponding
code and generate omp for directives instead of omp
parallel for on parallel loops. However, using a single
parallel region for a whole SCoP raises new redundant
execution and synchronization problems. Indeed, statements
may not all be identified as potentially parallel. Thus, such
parts must be protected with the OpenMP single construct
to ensure they are executed only once.

Enclosing multiple worksharing constructs in a common
parallel region provides the opportunity to introduce the
nowait clause. This clause specifies that the implicit
barrier at the end of a worksharing construct may be omitted.
Whenever two adjacent worksharing constructs share no
dependency, the nowait clause may be used on the first
construct. Moreover, the OpenMP specification states that
under certain circumstances, the nowait clause may be
safely used on a for construct which precedes another
for if the latter loop’s statement instances depend only
on the same logical iteration of the former loop. This is
possible if: 1) the sizes of both iteration domains are equal,
2) the chunk size is either the same for both loops or not
specified, 3) both loops are bound to the same parallel
region, 4) none of the loops is associated with a SIMD
construct. Safe use of the nowait clause in this fashion also
requires the scheduling to be static. This is the default
behaviour for current known implementations of OpenMP
but the specification states that it should be enforced with
the schedule (static) clause.

Special care must be dedicated to worksharing constructs
enclosed in loops. If the worksharing construct of interest
is the last of the outer loop, it may precede the next
worksharing construct in the generated code as well as
the first worksharing construct in the outer loop. In this
case, determining whether the nowait clause can be used
requires to analyze multiple dependencies. The minimal
requirement is the possibility to use the nowait clause
between constructs within the loop. If the next worksharing
construct is not compatible with the nowait clause, a
barrier construct must be used right before the latter
construct instead of right after the former loop. Figure 5
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1 #pragma omp parallel

2 {
3 for (1 = 0; 1 < N; ++1i)
4 #fpragma omp for nowait
5 for (j = 0; j < M; ++3)
6 S1: A[j] = A[J] + BI[i];
7 #pragma omp barrier
8 #pragma omp for
9 for (i = 0; i < M; ++1)
10 for (j = 0; j < i; ++3)
11 S2: C[i] = C[i] = A[3J];
12 }
Figure 5. Example of SCoP where the nowait clause requires a barrier

presents such an example: the nowait clause can safely be
used for successive iterations of the loop on i for statement
S1 but the very last batch of iterations must be completed
before S2 can be executed.

B. Determining the validity of the nowait clause

Obviously, if two worksharing constructs next to each
other do not depend on each other, it is valid to add the
nowait clause to the first worksharing construct regardless
of the worksharing construct type or the schedule type
for loops. The implicit barrier of the second worksharing
construct maintains the synchronization with the remainder
of the code.

As explained in the previous subsection, the OpenMP
specification describes four conditions for the safe use of
nowait (as long as the schedule type is set to static)
when there are dependencies between subsequent loop con-
structs. The first condition can be verified using the poly-
hedral model: determining that the sizes of two iteration
domains coincide is possible with Ehrhart polynomials [15].
Ensuring that the second, third and fourth conditions are
fulfilled is trivial: our code generation algorithm aims to
use a single parallel region and thus enforces by design that
the worksharing constructs bind to the same parallel region.
In the same vein, ensuring that the chunk sizes are identical
(or not specified) and that no SIMD construct is associated
is easy.

If the aforementioned conditions are met, compliant
OpenMP implementations must assign the same logical iter-
ations to the same threads. Hence, the last step is to ensure
that the only existing dependencies lie between identical
logical iterations.

Let S1 and S2 be two statements such that S2 depends
on S1 as follows:

1591
2

—

>0

ds1,52(P) = {1 — g2 | Rsi,s2

=3 Y

Assuming dg; is the parallel dimension for S1 and dgo
is the parallel dimension for S2, the following polyhedron
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links the same logical iterations of S1 and S2:

Ps1,52(0) = {Ts1 — sz | (ds1 =ds2) }

The two previous equations combine to get the expression
of dependencies in different logical iterations of S1 and
S2 as: 0s1,52 \ Psi,s2. It immediately follows that the
necessary condition for the validity of the nowait clause
on statement S1 is:

ds1,92 \ Ps1,52 =10
C. Code Generation

The general algorithm for parallel region annotation
is described in Alg. 1. The input of the algorithm is
an optimized (using the polyhedral techniques) Abstract
Syntax Tree (AST), encoded as a list of AST nodes.
Any loop previously identified as parallel shall be an-
notated with #pragma omp for (instead of #pragma
omp parallel for) whereas any other statement shall
be annotated with #pragma omp single. In this poly-
hedral AST, we temporarily (i.e. until the code is actually
pretty-printed) introduce macro statements: we consider the
body of a worksharing construct as a single statement.

Algorithm 1 Parallel Regions Annotation
Input: node list n
1: for all statements s in n do
if s is a parallel loop then
annotate s with #pragma omp for
else
annotate s with #pragma omp single
end if
7: end for
8: annotate_nowait(n)

2
3
4:
5
6

At line 8 of Alg. 1 we call algorithm Alg. 2, to annotate as
many worksharing constructs as possible with the nowait
clause. For any given AST node n, n—next references
the next node (if any) at the same AST level. n—nowait
indicates whether the node of interest requires a barrier.
Successive nodes marked with nowait are considered to
belong to the same nowait-group. If a node is a loop,
n—inner corresponds to its body. n—last is used to either
point to the last nowait-group in n—inner or to the nowait-
group that contains #n in the case it is not a loop. The value
of n—last is set by the function compute_last (called
lines 4 and 9). last_node returns the last AST node of
a nowait-group. The dep function (lines 5 and 15) takes
as input two nowait-groups of nodes g; and go and returns
true if and only if for each pair of nodes (n1 € g1, Ny € go2)
there is no dependency that would be violated if the nowait
clause was added to all nodes of the nowait-group g;.

The algorithm attempts to leverage as many barriers as
possible: it assumes at first that no node requires a barrier
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Algorithm 2 annotate_nowait

Input: node list n
1: n—nowait = true

2: if n—inner then

3: annotate_nowait(n—inner)

4:  compute_last(n)

5. if !dep(n—last, n—inner) then

6: last_node(n—last)—nowait = false
7. end if

8: else

9: compute_last(n)

10: end if

11: if n—next then

12  annotate_nowait(n—next)

13:  if !ln—inner or last_node(n—last)—nowait then
14: n—nowait = false

15: if dep(n—last, n—next) then

16: n—nowait = true

17: end if

18:  end if

19: end if

(line 1) and then restores barriers where needed (lines 6 and
14-17). At each level of the AST, the algorithm recurses
(line 3) into the bodies of loops (n—inner) and on the next
node of the level (line 12). The first and last nowait-groups
(which can coincide) of the body of a loop are of the utmost
importance. The dependencies between these two nowait-
groups must be analyzed (line 5) because the last nowait-
group will precede the next iteration of the first nowait-
group. If this condition is not verified, the last node of the
last nowait-group requires a barrier (line 6). If the node
n is a loop, checking its dependencies with its successor
nowait-group (line 15) and possibly restoring a barrier is
only necessary if no barrier has been restored in its body
(line 13). When doing so, the barrier is temporarily restored
(line 14) so that dep (line 15) always considers n—last and
n—next as different nowait-groups (because n—last may
refer to n if it is not a loop).

The pretty printing phase is akin to current techniques,
with some modifications. The differences are: 1) the
whole SCoP must be surrounded with the #pragma omp
parallel { ... } construct, 2) #pragma omp for
must be used instead of #pragma omp parallel for,
3) #pragma omp single constructs must be printed
where needed, 4) the nowait clause must be added to a
worksharing construct when the corresponding n—nowait is
true and 5) #pragma omp barrier are printed where
needed (after node n when n—nowait is false). To simplify
the generated code, the pretty printing phase may also decide
to omit both the barrier and the preceding nowait clause,
when the barrier would be equivalent to the preceding work
sharing construct’s implicit barrier.
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Table 11
BENCHMARKS MAIN CHARACTERISTICS

#inner #nowait

paral. loops

benchmark  #main loop

nests

#single

adi

adi-tile

atax

bicg

cholesky
cholesky-tile
correlation
covariance
doitgen
doitgen-tile
fdtd-2d
fdtd-2d-tile
floyd-warshall
floyd-warshall-tile
gemver
gramschmidt
gramschmidt-tile
heat-3d
heat-3d-tile
jacobi-1d
jacobi-1d-tile
jacobi-2d
jacobi-2d-tile
Iu

lu-tile
nussinov
nussinov-tile
reg_detect
reg_detect-tile
seidel-2d
seidel-2d-tile
trisolv
trisolv-tile
trmm
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V. BENCHMARKS

We evaluated our approach with benchmarks taken from
the PolyBench suite [8]. We ran Pluto version 0.11.4 on
all of them, in two flavors: the first one with automatic
parallelization enabled (option ——parallel), and the sec-
ond one with parallelization and tiling (option —-tile
——parallel). From those two flavors of each benchmark,
we selected the ones where our method was applied, i.e.
where at least one internal parallel loop occurs. This happens
on 34 benchmarks out of 50 (2*25), 14 of them being the
tiled version. Table II describes the main characteristics of
each of these benchmarks: the number of main loop nests
that they contain, the number of parallel loops embeded into
outer sequential loops, the number of single regions, and the
number of nowait clauses that are introduced by our method.

We conducted our experiments on three platforms:

1) An Intel Xeon E5-2620v3 @ 2.40GHz (6 cores,
12 threads), running the Linux 4.11.5 kernel.
Intel Turbo Boost and Hyperthreading were
dynamically disabled during the execution of
the benchmarks. In order to further reduce
the variance of the measurements, Linux FIFO
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[=]
0.99 — large
adi ——3 0|8 (=] .
1 1.04 — medium
- 0.99 =]
adi-tile 1 = small
11.17
11.57
atax 1 2.87
12.93
bi 1 1.69
ic ] 2.31
g 1 2.64
1.01
cholesky 11.08
11.88
. 1.01
cholesky-tile
1 1.04
. 1 1.06
correlation 11.77
12.14
. 1 1.03
covariance 1 1.
12.39
. 1 2.75
doitgen 13.67
13
. . 1 1.36
doitgen-tile 12.43
/8.14
1
fdtd-2d 1 1.11
11.59
. 1
fdtd-2d-tile ——30 761 L
1 1.
1 1.58
floyd-warshall 1 3.39
1 3.23
. 0.98
floyd-warshall-tile 11.26
11.14
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Figure 6. Speedup over Pluto, first platform (6-cores/gcc)
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scheduling was enabled via the PolyBench’s macro
POLYBENCH_LINUX_FIFO_SCHEDULER. The
compiler is gcc 7.1.1 using options -03
-march=native -fopenmp.

The second platform is a dual socket Intel Xeon ES5-
2650v3 @ 2.30GHz (2*10 cores, 40 total threads),
running Linux 4.4.0. The compiler is gcc 5.4.0,
using options —03 -march=native -fopenmp.
No particular environment variable was set on this
platform to get stable measurements.

The last platform is the same computer, but using this
time the icc compiler version 17.0.0 and options
-03 -march=native -gopenmp. We had to put
the environment variable OMP_NUM_THREADS to 20
in order not to use hyperthreading to get more stable
measurements. Still, the variance was much higher on
this configuration than on the previous ones, so the
results on this platform are less reliable: the variance
exceeds 5% in about half of the measurements that we
made.

The environment variable OMP_PROC_BIND was set to
true on all platforms. The PolyBench scripts that we used
perform all time measurements as the average of 3 median
measurements out of 5 runs. Notice that we report some
speedups that are larger than the number of available cores;
this is not a surprise as Pluto is not only a parallelizer but
also a data locality optimizer and vectorizer.

Figure 6 presents the acceleration of our version compared
to the Pluto version on the 6-cores first platform for the
small, medium, and large datasets of the PolyBench suite.
We can notice from this figure that our method improves
many of these benchmarks: the acceleration is most often
greater than 1x. The geometric mean acceleration for all
datasets is given on the bottom line. On smaller datasets,
the benefit of our method is often greater: in many cases
the ratio between threads creation and synchronizations time
towards computation time is higher when computing small
datasets. The overall mean acceleration on all dataset sizes
available in PolyBench (including mini and extralarge, not
shown in the figure) is 1.36x.

However, we noticed that in some of these benchmarks,
Pluto did not improve the performance over the sequential
version of the code. In order to support our conclusions,
we checked that our method improves both the efficient
parallelized codes and the inefficient ones. Figure 7 presents
both the acceleration of the Pluto version and the one of our
version, over the sequential version on the standard dataset.
The geometric mean of our version speedup over Pluto,
when Pluto performs worse than 1x is 1.95x, and when
Pluto performs better than 1x it is 1.09x. So our method
improves more the poor performing Pluto codes, which is
not a surprise: the synchronization over computation time
ratio is usually higher on those codes. Nevertheless, we
checked that our method improves the performance of most

2)

3)
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Figure 7. Speedup of the Pluto and our custom versions over the sequential
version (first platform (6-core/gcc), medium dataset

of the Pluto parallel codes, whether Pluto performs well or
not. This assessment is confirmed by the measurements on
the other dataset sizes and platforms; we did not put all of
them in this paper for space reasons.

We also ran those benchmarks on 40 threads in the
second configuration (2x 10-cores hyperthreaded), to get the
results presented in Fig. 8. The geometric mean of those
accelerations is 1.52x on the large dataset, and 1.39x on the
extralarge dataset.

Finally, we ran the benchmarks on the 20 threads third
configuration, using the icc compiler and the Intel OpenMP
runtime. Each benchmark acceleration of our version over
the Pluto version is given in Fig. 9 for the large and
extralarge datasets. Some benchmarks, marked with *, are
not reported since there is a numerical divergence between
the different versions, probably due to the icc vectorizer: the
vector floating point unit does not have the same precision
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Figure 8. Speedup over Pluto, second platform (40-threads/gcc)

as the main one. The average acceleration of our version
is respectively 1.14x and 1.11x for the large and extralarge
datasets. The overall acceleration is a bit lower than the
previous ones, most probably due to the more efficient
OpenMP runtime. But those measurements are less reliable,
as said before, since the variance in time measurements often
exceeds the PolyBench default limit (5%).

VI. RELATED WORK

Loop parallelization received a lot of attention in the
optimizing compilation community because loops are known
to embed a significant part of the overall computation time.
Allen and Kennedy’s parallelization algorithm computes
strongly connected components of the dependence graph to
decide about convenient loop distribution to extract parallel
loops [16]. Wolf and Lam’s perfectly nested loop paralleliza-
tion algorithm uses a unified representation of a subset of
loop transformations, known as unimodular transformations,
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to extract parallelism [17]. Feautrier’s parallelization algo-
rithm was the first one to propose a general solution to the
(innermost) parallelism extraction problem, by computing
an affine transformation [18], [9]. Feautrier’s work has been
extended in may ways, e.g., by Lim and Lam to extract out-
ermost parallel loops [19], [20], or by Bondhugula et al. as
a general polyhedral framework to optimize parallelism and
data locality [3], [21]. These techniques are now included in
many high-level compilers such as Pluto [3], R-Stream [14]
or TRACO [22], and also in low-level compilers such as
GCC [1], LLVM [2] or IBM XL [23].

Few algorithms are designed to generate synchronizations
e.g., Allen-Kennedy[16] and Lim-Lam [19], but most of
them aim at generating parallel loop constructs with an
implicit barrier synchronization at the end of each parallel
loop, such as the omp parallel for OpenMP parallel
construct [7]. Our technique is complementary to these
works: it may take as input the optimized generated code

(or its internal polyhedral representation) and build the
convenient parallel region construct to minimize the runtime
overhead and remove spurious synchronizations.
Synchronization placement and optimization has been
the subject of many past works, including barrier place-
ment [24], [25] and removal [26], [27]. Works on reducing
synchronization overhead through generating merged SPMD
programs from fork-join implementations are the closest to
our approach [28], [26], [27]. In particular, we share the idea
to put several smaller regions together to remove barriers.
However our context and techniques are quite different
since in our case the code is not modified (except parallel
constructs) and a specific analysis allows to safely remove
barriers, while in the SPMD approach, broadcast barriers
are removed as a consequence of merging regions and of
the choice of work distribution among threads. Zhao et
al. also proposed a technique which reduces task creation
overhead [29] but in the context of task-parallel programs.

VII. CONCLUSION

In this paper, we presented a technique to generate wide
parallel regions rather than separate parallel loops. Our ap-
proach brings many advantages to most high-level optimiz-
ing compilers that are relying on parallel loop construct only.
First, it minimizes the overhead induced by starting/stopping
computation threads. Second, it allows to remove unneces-
sary and costly synchronizations. Lastly, threads may take
advantage of data locality between loops. Our method is not
competing but is complementary to existing parallelization
frameworks: its input is an already optimized code and its
output is an even more efficient optimization. It exploits
the polyhedral representation of programs and a custom
code generation phase to factorize parallel loops into wider
and deeper loop regions where superfluous synchronizations
have been removed. We conducted a wide experimental
study showing that our approach is nearly always beneficial
and brings a significant gain over the state-of-the-art Pluto
compiler, from 1.14 to 1.63 speedup in average, depending
on the dataset size. A clear conclusion of our study is that
high-level polyhedral compilers should now target parallel
regions rather than collections of independent parallel loops.

Ongoing work aims at co-designing an automatic paral-
lelization algorithm along with our parallel region generation
technique, since a more appropriate parallelism form is
likely to bring additional optimization opportunities.
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