Predictive Modeling
In a Polyhedral Optimization Space

Eunjung Park, Louis-Noél Pouchét John Cavazds Albert Cohefi and P. Sadayappan
* University of Delaware
{epark,cavazgs@cis.udel.edu
T The Ohio State University
{pouchet,sadgy@cse.ohio-state.edu
* INRIA Saclay —lle-de-France
albert.cohen@inria.fr

Abstract—Significant advances in compiler optimization have find the best sequence(s) of high-level loop transformation
been made in recent years, enabling many transformations s to optimize performance on a given architecture. Existing
as tiling, fusion, parallelization and vectorization on inperfectly static models are limited to highly simplified execution ratsd

nested loops. Nevertheless, the problem of finding the best f th hi Th lex interolav bet Il th
combination of loop transformations remains a major challenge. of the machine. 1he very complex interplay between a e

Polyhedral models for compiler optimization have demonstated hardware resources (e.qg., different cores with multipleleof
strong potential for enhancing program performance, in par private/shared cache and TLBs, instruction pipelinegj\ware

ticular for compute-intensive applications. But existing static pre-fetchers, SIMD units etc.) makes it extremely diffictalt
cost models to optimize polyhedral transformations have ghif- construct a static model that can accurately predict theceff

icant limitations, and iterative compilation has become a ery i f . t of | t f i W il
promising alternative to these models to find the most effeate IVEeNess or a given set or loop transiormations. vvorse, st

transformations. But since the number of polyhedral optimzation ~SOme optimizatior_l s_trf’:ltegies may have Confli_cting obje_sti_v
alternatives can be enormous, it is often impractical to iteate for example, maximizing thread-level parallelism may bihi
over a significant fraction of the entire space of polyhedrdy SIMD-level parallelism, and may also result in degradatén
transformed variants. Recent research has focused on itetiag data locality and increased memory footprint.

over this search space either with manually-constructed hgistics In th t for hiah d tabl f
or with automatic but very expensive search algorithms (e.g n the quest for higher and more portable periormance,

genetic algorithms) that can eventually find good points in he the compiler community has explored research based on
polyhedral space. iterative compilation and machine learning ttme the com-

In this paper, we propose the use of machine leaming to ad- piler optimization flags or pass sequende find the best
dress the problem of selecting the best polyhedral optimizens. (ordered) set for a given combination of benchmarks anetarg

We show that these models can quickly find high-performance hitect Alth h sianificant perf . n
program variants in the polyhedral space, without resorting to architectures. ough signimcant perrormance improea

extensive empirical search. We introduce models that take sa have_ been demonstrated [26], [1_]: [17]1 (28], the pe.rfo_rmﬂ_in
input a characterization of a program based on its dynamic obtained has generally been limited by the optimizations
behavior, and predict the performance of aggressive highelvel ~selected for automatic tuning, and by the degrees of freedom
polyhedral transformations that includes tiling, parallelization 5 qilable for exploration. We identify two main limitatisn

and vectorization. We allow for a minimal empirical search m of iterative compilation efforts so far. First most conend
the target machine, discovering on average 83% of the seareh P : ! Ne:

space-optimal combinations in at most 5 runs. Our end-to-eni lack a powerful high-level optimization framework: to daig-
framework is validated using numerous benchmarks on two gressive optimizations such as parallelization or vez&tion
multi-core platforms. as implemented in production compilers may simply fail to
restructure the code enough to expose good parallel or vecto
loops. Second, the support for loop tiling (also called loop
A significant amount of the computation time in scientifiblocking) in production compilers is quite limited: uswyall
and engineering applications is usually spent in loops,ingak able to tile only some perfectly nested loops, without arer pr
high-level loop transformations critical to achieving higer- transformation capabilities to help expose tiling oppnities,
formance for a variety of programs. The best loop optim@ati and almost no support for tuning the tile sizes. This is acaiit
sequence is often not only program-specific, but also depemeérformance issue as tiling is often the key loop transfdiona
on the target hardware. Pouchet et al. illustrated this Iy achieve good data locality and parallelization [41].
showing the critical impact of tuning polyhedral optimimais The polyhedral optimization frameworkas been demon-
for obtaining the best performance for a variety of numéricatrated as a powerful alternative to abstract-syntaxesed
programs on different target processors [31], [30], [32]. loop transformations. The polyhedral framework enables th
Although significant advances have been made in develapedeling of an arbitrarily complex sequence of loop trans-
ing advanced compiler optimization and code transformatidormations in a single optimization step. The downside of
frameworks, it remains an extremely challenging problem this expressiveness is the extreme difficulty of selecting a

I. INTRODUCTION

effectiveset of affine transformation coefficients that result II. OPTIMIZATION SPACE
in good performance, combining tiling, coarse and fine grain

L . - S . igh- formations are crucial to effectiel
parallelization, together with fusion, distribution, énthange, High-level loop trans W

map a computation onto the target hardware. Effective map-

b h . dard lation 1l . on each SIMD unit. In addition, the data flow used by the
etter_t an using _stan ard compl ation ag tuning or paégmputation may need to be reorganized to better exploit the
selection and ordering. However, directly tuning the pelytal

o - . _ cache memory hierarchy and improve communication cost.
transformation in its original abstract representatiomams Addressing these challenges for compute-intensive pro-
g|¥':1ms has been demonstrated to be a strength of the poly-
space and how to bound its size, this problem remains harg dral optim_i;ation framgwo_rk. Severa! pr(_avious studig@eh

' sHown how tiling, parallelization, vectorization or davality

tractable in its original form . enhancement can be efficiently addressed in an affine trans-
_Past and CL_lrrent work in polyhedral compilation has COB5rmation framework [21], [34], [14], [24], [36]. Any loop
tributed algonthr_ns an_d tools to expose _mode_l-dnve_zn 3kransformation can be represented in the polyhedral repres
proaches for various high-level transformations, inahggdi tation, and composing arbitrarily complex sequences of loo
« loop fusion and distribution, to partition the program intaransformations is seamlessly handled by the frameworis Th

infinite. Despite progress in understanding the structiithis

independent loop nests; expressiveness and ease in composing and applying transfor
« loop tiling, to partition (a sequence of) loop nests intgnations are the strengths of the polyhedral model. However,
blocks of computations; the space of possible optimizations is dramatically emldrg
« thread-level parallelism extraction; imposing challenges on the selection algorithms. In cehtra
« SIMD-level parallelism extraction. to previous iterative approaches requiring the evaluatfoup

Bondhugula et al. proposed the first integrated heuristic i hundreds of possible transformations [30], [32], we tigve
parallelization, fusion and tiling in the polyhedral moda], here a scheme that requires at most 5 candidate choices to be

[5], subsuming all the above optimizations into a singl€valuated. . _

tunable cost-model. Individual objectives such as the elegr We also observe that high-level transformations are by far

of fusion or the application of tiling can implicitly be tude not sufficient to achieve the best performance for a pro-

by minor ad-hoc modifications of Bondhugula’s cost modelgram. Numerous low-level optimizations are required, and
We now summarize the contributions of the present papgplp makers such as Intel have_ developed extremely efficient

We address the problem of effectively balancing the tradgloSed-source compilers for their processors. Unforglgate

off between all the aforementioned high-level optimizatio "ave to consider such compilers as black-boxes, because of

to achieve the best performance. As a direct benefit of offe difficulty in precisely determining which optimizatieiis

problem formalizationwe integrate the power of iterativeMPlemented and when. Our approach considers the back-

compilation schemes with the expressiveness and efficignc§"d compiler as part of the target machine, and we focus

high-level polyhedral transformation®ur technique relies on €XClusively on driving the optimization process via higivé|

a training phase where numerous possibilities to drive tje-h SCUrce-to-source polyhedral transformations. .

level optimizer are tested, using a source-to-source @alsa We next present the set of optimizations that we consider.

compiler on top of a standard production compiler. We show

how the problem of selecting the best optimization criterfa: Polyhedral Model

can be effectively learned using feedback from the dynamicSequences of (possibly imperfectly nested) loops amenable

behavior of various possible high-level transformatioByg. to polyhedral optimization are calledtatic control parts

correlating hardware performance counters to the sucdesy®CoP) [14], [18], roughly defined as a set of (possibly

a polyhedral optimization sequenoge are able to build a imperfectly nested) consecutive statements such thabaf |

model that predicts very effective polyhedral optimizatse- bounds and conditionals are affine functions of the surrmgnd

guences for an unseen progra@ur results show it is possibleloop iterators and global variables (constants that ar@owvk

to achieve close to the search-space-optimal performayceads compile time but invariant in the loop nest). Relaxation

testing no more than 5 program versions. To the best of these constraints to arbitrary side-effect free progriuas

our knowledge, this is the first effort that demonstrates verecently been proposed [3], and our optimization scheme is

effective discovery of complex high-level loop transfotioas fully compatible with this extended polyhedral model.

using machine learning models. Polyhedral program optimization involves the analysis of
In Section Il, we first present details on the optimizatiothe input program to extract itpolyhedral representatign

space we consider, before presenting the machine learninguding dependence information and array access pattern

approach in Section Ill. Experimental results are present€hese are defined at the granularity of the statement instanc

in Section IV. We discuss related work in Section V. that is, an executed occurrence of a syntactic statement.

A program transformation is represented by an affinecality is not the performance bottleneck. Second,size of
multidimensional schedule. This schedule specifies therordhe tiles could have a dramatic impact on the performance of
in which each statement instance is executed. A schedthe generated code. To obtain good performance with tiling,
captures in a single step what may typically correspond tioe data footprint of an atomic tile should typically reside
a sequence of several textbook loop transformations [18).the L1 cache. The problem of selecting the optimal tile
Arbitrary compositions of affine loop transformations (g.gsize is known to be very hard and empirical search is often
skewing, interchange, multi-level distribution, fusigreeling used for high-performance codes [40], [42], [37]. To linfiet
and shifting) are embedded in a single affine schedule for thearch space while preserving significant expressivemess,
program. Every static control program has a multidimeraliorallow the specification of a limited number of tile sizes to be
affine schedule [14], and tiling can be applied by extendirgpnsidered foeach tiled loopIn our experiments, we use only
the iteration domain of the statements with additionalltigp two possible sizes for a tile dimension: either 1 (i.e., fiadi
dimensions, in conjunction with suitable modifications loét along this loop level) or 32. The total number of possilshkti
schedule [18]. is a function of the depth of the loop nest to be tiled: for

Finally, syntactic code is regenerated from the polyhednaistance, for a doubly-nested loop we test rectangules tife
representation on which the optimization has been applied. size 1x 1 (no tiling), 1x 32, 32x 1 and 32« 32.
use the state-of-the art code generatoro©G [2] to perform 2) Loop Fusion/Distribution:In the framework used in the
this task. present paper, there is an equivalence between (i) mayimall

o) fusing statements, (i) maximizing the number of tilablego
B. Polyhedral Optimizations Considered levels, (iii) maximizing locality and (iv) minimizing comm

High-level optimization primitives, such as tiling or phkra nications. In its seminal formulation, Bondhugula prombse
lelization, often require a complex sequence of enablimg loto find a transformation that maximizes the number of fused
transformations to be applied while preserving the seroantistatements on the whole program using an Integer Linear
As an example, tiling a loop nest may require skewing, fusioRrogram encoding of the problem [4]. However, maximally
peeling and shifting of loop iterations before it can be &bl fusing statements may prevent parallelization and verderi
A limitation of previous approaches, whether polyhedration, and the trade-off between improving locality despite
based [25], [31] or syntactic-based [8], was the challenfge @ducing parallelization possibilities is not capturedc@dly,
assessing the impact of the main optimization primitivesces fusion may interfere with hardware prefetching. Also, afte
the enabling sequence also had to be considered. This Iégision, too many data spaces may contend for use of the same
most previous work to be limited in applicability: the enial cache, reducing the effective cache capacity for each-state
transformations were not considered in an integrated dashi ment. Conflict misses are also likely to increase. Obviqusly
so that transformations such as tiling and coarse-graiaed psystematically distributing all loops is generally not atee
allelization could not be applied in the most effective fash solution as it may be detrimental to locality.
on nhumerous programs. The best approach clearly depends on the target archigectur

We address this issue by decoupling the problem of seleatd the performance variability of an optimizing transfarm
ing a polyhedral optimization into two steps: (1) select a séion across different architectures creates a burden irsitey
guence of high-level primitives in the sgfusion/distribution, portable optimization schemes. We consider in this pageeth
tiling, parallelization, vectorization, unroll-and-jarh, this high-level fusion schemes for the program: (bFuse, where
selection being based on machine learning and feedbawk do not fuse at all; (2BmartFuse, where we only fuse
from hardware performance counters, and (2) for the selectegether statements that carry data reuse; andvéXFuse,
high-level primitives, usestatic cost model$o compute the where we try to maximally fuse statements. These three cases
appropriate enabling transformations that implement tierg are easily implemented in the polyhedral framework, simply
sequence of high-level primitives. We thus keep the express by restricting the cost function of the Tiling Hyperplane
ness and applicability of the polyhedral model, while fangs method to operate only on a given (possibly empty) set of
the selection decision only on the main transformations. statements.

1) Loop Tiling: Tiling is a crucial loop transformation Interaction with tiling: The scope of application of tiling
for parallelism and locality. It partitions the computatio directly depends on the fusion scheme applied on the pragram
into blocks that can be executed atomically. When tiling ®nly statements under a common outer loop may be grouped
chosen to be applied on a program, we rely on the Tiling a single tile. Maximal fusion results in tiles performing
Hyperplane method [5] to compute a sequence of enablingpre computations, while smart fusion may result in more
loop transformations to make tiling legal on the generadeg| tiles to be executed but with fewer operations in them. The
nests. cache pressure is thus directly driven by the fusion anuaigtili

Two important performance factors must be considered fscheme.
the profitability of tiling. Tiling may be detrimental as it 3) Thread-level parallelizationThread-level parallelism is
may introduce complex loop structure and the computatiot always beneficial, e.g., with small kernels that exeteite
overhead may not be compensated by the locality improvierations or when it prevents vectorization.
ment. This is particularly the case for computations whetad When a loop nest is tiled, it is always possible to execute

the tiles either in parallel or in a pipeline-parallel fashi For implements the fusion choice, (b) maximizes the number
untiled loops, we rely on a cost model that pushes dependence of parallel loops, (c) maximizes the number of tilable

to the inner loop levels, naturally exposing outer paradieps. dimensions [4] on each individual partition;
To drive thread-level parallelization we expose two opdion 3) Modify the schedule according to the vectorization cost
(1) Parallel where we use OpenMP and insertf@ agma onp model, if Vector is set, to expose inner parallel loops;

paral l el for above the outer-most parallel loop of each loop 4) Tile all tilable loop nests, if any, ifile is set. The tile
nest; and (2NoParallel where no pragma is inserted and no sizes to be used are encodedTin

transformation is perform_ed.. ' Other transformations do not require further modification
~ 4) SIMD-level parallelization: Our approach to Vvector- ot the program schedule. Depending on their activatiof jn
ization leverages recent analytical modeling results by Trthey are applied as post-pass on the generated prograneyas th

funovic et al. [36]. We take advantage of the polyhedrglyy require syntactic modifications to the code (e.g.,litisg
representation to restructure imperfectly nested program pnragmas or unrolling the code).

expose vectorizable inner loops. The most important part ofz) Candidate Search Spacefhe final search space we

the transformation to enable vectorization comes from the . .. depends on the program. For instance, not all pro-

selection of which parallel loop is moved 1o the Innermoﬂrams exhibit coarse-grain parallelism or are tilable. ¢ages

fhostmo_n._ T_he C&St model selte_c(;s af f%/ n%hrtonlzatlon-f:jeg I(zwhere a primitive has no effect on the final program because
at.mlnlmlz.?s t'e menfu:rr]ysl rae %6 eN ?at?]gcgstse Y %P semantic considerations, multiple valuesToflead to the
contiguous iterations of the loop [36]. Note, this intensba same candidate code version. The search space, considering

mayln?)t alwallys I?ad to thﬁ optlrr;r)arl] (\j/ectorlz?tmn, ort g:a §Iy values of T leading to distinct transformed programs,
SImply be USEIess Tor a machiné which does not suppor nges from 91 to 432 in our experiments, out of 864 possible

mstructlon_. We expose two options: (_Msctor_, where the combinations that can be encodedTin
schedule is modified to expose good (ie, stride one memory

accesses) vectorizable innermost loops, which are markbd w
ivdep and vector always pragmas to facilitate compiler

auto-vectori_zation; and (2NoVector, where no _ adpiitional Since we have removed the problem of computing enabling
transformations are performed to enable vectorization. transformations, we can focus the search on the primitives
5) Loop unroll-and-jam:Loop unrolling is known to help ith the highest impact as described in Section Il. When
expose instruction-level parallelism. Tuning the unralifac- considering a space of semantics-preserving polyhedral op
tor can influence register pressure, in a manner that is d@mplimizations, even the most aggressive bounding can lead to
and machine-dependent. We expose three options that gffons of possible polyhedral optimizations [30]. We é&fed
applied on all innermost loops of the program: {gunroll; 3 tremendous reduction in the search space size when com-
(2) UnroliBy4; and (3)UnroliBy8. pared to these methods, but we have hundreds of sequences to
C. Putting it all Together consider. In this paper, we propose to formulate the sellecti_
of the best sequence as a learning problem, and use off-line

1) Generating the Final TransformationA sequence of . _. . - ;
. L . . t to build dict that te the best
high-level primitives is encoded as a fixed-length vector %?alnlng o build predictors that compute the best sequhce

bits, referred to a3 . To each distinct value of corresponds f polyhedral primitives to apply to a new program.
a distinct combination of the above primitives. Technigall
on/off primitives (i.e., Tile/NoTile, Parallel/NoParallel, etc.)
are encoded using a single bit. Non-binary primitives such We focus in this work on thdynamicbehavior of programs,
as the unroll factor or the tile sizes are encoded usingb§ means of hardware performance counters. Using those
“thermometer” scale. As an illustration, to model unrallda abstracts away the specifics of the machine, and overcomes th
jam factors we use two binary variablesy). The pair(0,0) lack of precision of static performance models. Also, medel
denotes no unroll-and-jam, an unroll factor of 4 is denotagsing performance counter characteristics of programe hav
by (0,1) and unroll factor of 8 by(1,1). Different tile sizes been shown to out-perform models that use only static featur
are encoded in a similar fashion. In our experiments, we ordy program [8].
model the tile size on the first three dimensions (leading to 9 given input program is represented by a feature vector of
possibilities), and use a constant size TorThus for programs performance counters collected by running the full program
where the tiles have a lower dimensionality, some bitin on the machine. We use the PAPI library [27] to gather
have no impact on the transformation. information about memory management, vectorization and
To generate the polyhedral transformation correspondinggrocessor activity. In particular, for all cache levels arid
a specific value off, we proceed as follows. levels we collect the total number of accesses and misses,
1) Partition the set of statements according to the fusidine total number of stall cycles, the total number of vector
choice (one iNNoFuse, SmartFuse or MaxFuse); instructions, and the total number of issued instructidxik.
2) Apply the Tiling Hyperplane method [5] locally on eachcounter values are normalized using the total number of
partition to obtain a schedule for the program that (apstructions of the program.

IIl. SELECTING EFFECTIVE TRANSFORMATIONS

A. Characterization of Input Programs

B. Speedup Prediction Model different machine learning algorithms — regression and SVM

A general formulation of the optimization problem is tdSupport Vector Machine), using Weka [6].
construct a search function that takes as input features offhe Regression based model demonstrates the relationship
a program being optimized and generates as output onebefween dependent and independent variables, and we can
more optimization sequences predicted to perform well ¢$€ this model to expect dependent variables according to
that program. Previous work [13], [8] has proposed to mod#le change of given independent variables. We used linear
the optimization problem by characterizing a program usiriggression to fit the predictive model to dependent variable
performance counters. We use a prediction model originaWyhich is speedup of programs, and independent variables
proposed by Cavazost al. [12], [7], but slightly adapted which are performance counters and the polyhedral optimiza
to support polyhedral primitives instead. We refer to it as #n sequence. Regression model often makes assumptions
speedup predictor model about the data-generating process, and this is often ufseful

This model takes as an input a tugdlg, T) whereF is the prediction even though the assumption is not correct. Hewev
feature vector of all hardware counters collected wheningn regression model may not be optimal because of this and
the original program; andl is one of the possible sequence opossibly mislead results when we use incorrect assumptions
polyhedral primitives. Its output is a prediction of the sgap SVM is a supervised machine learning technique, used for
T should achieve, relative to the performance of the originbbth classification and regression, and it can apply linear
code. Figure 1 illustrates the speedup prediction modeal. Rechniques to non-linear problems. First, SVM transformatad
a given input program, first the feature vector of perforneaninto a linear space by using kernel functions, and uses arline
counters are collected. Then, the model is ask to predict thlassifier to separate data with a hyperplane. SVM not only
expected speedup of a primitive sequefdceBy predicting finds a hyperplane to separate data, but also finds the best
the performance of each possible sequence, it is possiblenymerplane, so called maximum margin hyperplane, showing
rank them according to their expected speedup and select tie largest separation from the set of hyperplanes.
sequence(s) with the highest speedup.

C. Model Generation and Evaluation

New Program We train a specific model for each target architecture, as the

specifics of a machine (e.g., cache miss cost, number of,cores
etc.) significantly influence what transformations are cffe
for it. In addition, to evaluate the quality of linear regsiem

Extract performance versus SVM, we train one specific model for each.
Counters A model is trained as follows. For a given progrdmin
the training set, (1) compute its execution tifieand collect
l, L] sl its performance countefs; (2) for all possible sequences of
11] All possible polyhedral primitivesT;, apply the transformation t® and
] sequences for ~ €xecute the transformed program on the target machine, this
— : the program gives an execution timer,, and the associated speedbp=

Performance counters (F)

CL] E/Es; (3) train the model with the entrfF, Tj) = Sy This is

: T ’ repeated for all programs in the training set. This is illatgd
Primitive sequence (T) in Figure 2.

Each of our models must predict optimizations to apply to
unseen programs that were not used in training the model.
To do this, we need to feed as input to our models a
characterization of the unseen program. We then ask the
model to predict the speedup of each possible transformsatio
sequencesl; in our optimization space, given the unseen
program characteristics. We order the predicted speedups t
ll determine which sequence is predicted best, and apply it to

Speedup prediction model

the unseen program.
Note in the experiments presented below, we use the stan-

Predicted speedup for dardLeave One Out Cross-Validatigmocedure for evaluating
cach sequence our models. That is, the two models (SVM or LR) are trained
on N —1 benchmarks, and evaluated on the benchmark that
Fig. 1. Speedup prediction model has been left out. This procedure is repeated individualty f

each benchmark to be evaluated: each evaluation is done on a
We implemented the speedup prediction model by using tyapogram that was never seen by the model during the training.

apply each of them and execute both transformed programs
on the machine; we then keep the one that in practice

& Programs performs best. This implies iteratively testing two caradél
transformations. Similarly, we end up testing on the maghin
five candidate transformations with the 5-shot models.

Extract performance Compile and run each IV. EXPERIMENTAL RESULTS
counters possible transformation
A. Experimental Setup
l l We provide experimental results on two multi-core sys-
[s e — tems:Nehalem, a 2-socket 4-cores Intel Xeon 5620 (16 H/W
' { { { ' ' o threads), andR900, a 4-socket 6-cores Intel Xeon E7450 (24
11 225:;“;3:’;5 H/W threads). Both systems have 16 GB of memory and run
// 1 Linux. The back-end compiler used for the baseline and all
N RN N candidate polyhedral optimizations is Intel ICC with optio
Performance counters (F) - / -fast, version 11.1 foMNehalem and version 11.0 forR900.
l fzv Our benchmark suite is PolyBench v2 [20], composed of
Primitive | 28 different kernels and applications containing statintoul
sequence (T) Speedup to parts. The datasets are the reference one [20], and most
Baseline benchmarks are L3-resident in our testing framework.

B. Comparison of LR, SVM and Random

We show in Table I-Il the performance of the three dif-
Linear Regression / SVM ferent models we have evaluated. For each benchmark, we
report the performance improvement over the original code,
l, when compiled withi cc -fast, for the 1-shot, 2-shot and
5-shot approaches. In particular we repaR for Linear
Speedup RegressionsvVM for Support Vector Machinek for Random
Prediction Model (averaging 100 experiments) ardOpt the fraction of the
optimal performance improvement achieved by the best of
LR and SVM. Regarding the search space, we repopt
the best improvement achieved by a candidate optimization
in our search space. We also report in the colupoty the
performance improvement achieved when using a polyhedral
The models presented above output a single optimizatistatic cost model to select the transformation [4]. In our
sequence for an unseen program. For the rest of the paper,ngenenclature, it correspondsitaxFuse andParallel andTile,
refer to this approach as the 1-shot model. using a default tile size of 32 in each tiled dimension. We als
It is worth considering an empirical evaluation of severalompare against a tuning of 12 flag optimization sequenges fo
candidate transformations, as the predictor may not prediCC (one of- 2, - C3, -f ast, with and without- paral | el
correctly the actual best sequence for the program. A typica turn on and off automatic parallelization, and with and
source for misprediction comes from the back-end compilegithout - no- vec to turn on and off vectorization). We report
depending on the inpusourcecode, it may performs spe-the improvement achieved by the best flag sequence applied
cific optimizations based on pattern-matching, for instancon the original code in th&cC column.
As an illustration, we observed in our experiments that for Analysis: First, we observe that polyhedral optimization
the benchmarkmm (computing two matrix multiplications tuning significantly outperforms ICC flag tuning, fromx2
tmp= A.B; out put=tmpC), the best performance when usingo 3.5x better performance is achieved on average. And for
Intel ICC 11.0 is achieved wheno tiling is applied by our all benchmarks and all architectures, there exists at least
framework, despite high cache miss ratios. We suspectshisone polyhedral sequence which outperforms ICC. We also
because ICC performs specific optimizations on this pdeicuobserve that the polyhedral static cost model we use for
computation (matrix-multiply), since in this setup tili&jnm comparison is significantly outperformed by our approach.
to make it L1-resident decreases the performance. HowevEhjs static model has proved its effectiveness for programs
another program with similar hardware counter features meayth significant data reuse, as dnrrelation andcovariance for
be processed entirely differently by ICC, and as shown by oimstance. Nevertheless, for numerous programs tiling cand/
experiments even the same program is handled differently parallelization is detrimental to performance, ag@summyv
ICC 11.0 and ICC 11.1 on two different machines. or dynprog. The performance drop mainly comes from the
We propose to evaluate also 2-shot and 5-shot models. Fery complex loop structure that is generated with polyhedr
the 2-shot model, we keep the two predicted best sequendiisig, which in turn inhibits numerous scalar optimizaton

Fig. 2. Overview of the training phase

D. One-shot and Multi-shot Evaluation

TABLE |
PERFORMANCEIMPROVEMENTS FORINTEL XEON E5620 BASELINE: ICC 11.1 FAST)

1-shot 2-shot 5-shot
[Benchmark | Opt Poly ICC | LR SVM R %0pt_| LR SVM R %0pt_| LR SVM R %0pt_|
2mm 13.8< 4.07x 1.00x | 13.8x 13.8x 2.67x 100% | 13.8x 13.8x 3.87x 100% | 13.8x 13.8x 5.28x 100%
3mm 11.9< 217« 1.00x | 2.46x 0.81x 1.54x 20.67% | 2.46x 2.33x 2.53x 20.67% | 2.46x 2.33x 3.71x 20.67%
adi 3.73x 3.66x 1.86x | 3.22x 3.22x 1.30x 86.33% | 3.22x 3.22x 2.32x 86.33% | 3.22x 3.22x 2.82x 86.33%
atax 2.40x 2.00x 1.31x | 0.85x 2.39x 1.14x 99.58% | 0.85x 2.39x 1.30x 99.58% | 1.41x 2.40x 1.70x 100%
bicg 1.61x 0.75< 1.27x | 059« 0.58< 0.49x 36.65% | 0.59x 0.58x 0.81x 36.65% | 0.59x 1.61x 1.00x 100%
cholesky 1.00x 0.88< 1.00x | 0.41x 0.97x 0.55< 97.98% | 0.41x 0.97x 0.80x 97.98% | 0.41x 0.97x 0.94x 97.98%

correlation 21.1x 2.88x 3.24x 8.98x 10.7x 4.30x 50.81% | 8.98x 10.7x 6.43x 50.81% | 11.8x 17.8x 10.2x 84.71%
covariance 21.5x 13.0x 3.25x 215« 21.5x 5.29x 100% | 21.5x 21.5x 5.90x 100% | 21.5x 21.5x 9.72x 100%

doitgen 12.5x 4.15x 1.00x 1.06x 3.67x 2.15x 29.34% | 1.06x 3.85x 3.23x 30.78% | 3.39x 3.95x 5.09x 31.60%
durbin 1.00x 1.00x 1.00x 0.99x 1.00x 0.99x 100% | 0.99x 1.00x 1.00x 100% | 0.99x 1.00x 1.00x 100%
dynprog 1.01x 0.32x 1.01x 0.61x 0.71x 0.70x 71.72% | 0.61x 0.91x 0.84x 91.92% | 0.61x 0.91x 0.93x 91.92%
fdtd-2d 2.46x 0.56x 2.12x 0.63x 0.77x 0.70x 31.30% | 0.63x 0.77x 1.15x 31.30% | 0.77x 2.46x 1.37x 100%
fdtd-apml 7.98x 5.78x 1.00x 4.89x 7.36x 2.56x 92.23% | 4.89x 7.36x 3.83x 92.23% | 6.35x 7.36x 5.13x 92.23%
gauss-filter 1.83x 1.75x 1.00x 0.57x 1.13x 0.69x 61.75% | 0.57x 1.13x 0.94x 61.75% | 1.03x 1.13x 1.18x 61.75%
gemm 13.7x 2.74x 1.05x 2.94x 1.49x 1.54x 21.43% | 2.94x 2.63x 2.59x 21.43% | 2.94x 8.49x 5.43x 61.97%
gemver 1.95x 1.84x 1.44x 0.97x 0.97x 0.69x 49.74% | 0.97x 0.97x 0.85x 49.74% | 0.97x 1.95x 1.41x 100%

gesummv 2.44< 0.91x 242« 1.71x 1.94x 1.34< 79.51% | 1.71x 1.94x 1.72x 79.51% | 1.94x 1.94< 2.05< 79.51%
gramschm 10.9x 3.86x 1.01x 3.40x 1.00x 2.96x 31.05% | 3.94x 1.00x 3.98x 36.30% | 3.94x 1.01x 6.61x 36.30%

lu 1.67x 1.16x 1.01x 1.63x 1.15< 0.79x 97.60% | 1.63x 1.15x 1.12x 97.60% | 1.63x 1.53x 1.40< 97.60%
ludemp 1.03x 0.96x 1.01x 1.01x 1.01x 1.02< 99.03% | 1.01x 1.01x 1.02x 99.03% | 1.02x 1.01x 1.02< 99.03%
mvt 1.48x 1.17x 1.00x 0.78x 1.03x 0.53x 69.59% | 0.78x 1.03x 0.79x 69.59% | 0.83x 1.03x 0.98x 69.59%
reg_detect 1.07x 0.52x 1.00x 0.29x 0.29x 0.67x 27.10% | 0.29x 0.29x 0.82x 27.10% | 0.62< 0.45< 0.97x 57.94%
seidel 9.71x 0.81x 1.00x 0.83x 0.83x 3.39% 8.55% | 0.83x 0.98x 4.05x 8.55% | 0.98x 7.60x 6.96x 78.27%
symm 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 100% | 1.00x 1.00x 1.00x 100% | 1.00x 1.00x 1.00x 100%
syr2k 757« 0.25«< 7.15x 5.87x 7.14x 2.65x 94.32% | 5.87x 7.14x 4.51x 94.32% | 5.87x 7.14x 6.63x 94.32%
syrk 9.17x 0.78x 8.84x 3.76x 1.38x 199« 41.00% | 3.76x 2.52x 2.90x 41.00% | 4.62< 9.01x 5.23x 98.26%
trisolv 3.90x 1.40x 1.50x 3.69x 3.69x 1.07x 94.62% | 3.69< 3.69x 1.48x 94.62% | 3.69x 3.69x 2.18x 94.62%
trmm 1.27< 0.33 1.00x 0.14x 0.14x 0.43x 11.02% | 0.14x 0.14x 0.87x 11.02% | 0.14x 1.20x 1.04x 94.49%
[Average [6.dx 213« 1.98< [3.16x 3.27x 1.61x 64.39% | 3.16x 3.43x 2.24x 65.38% | 3.50x 4.68x 332 83.18% |

the compiler side. Our technique is able to compensate for thus discover significant performance improvements, however
effect, by using simpler (in terms of code structure) potjdia¢ almost systematically lower than using LR or SVM. Further-
optimizations when it is the most profitable. more, because of the uneven distribution of good points in

The 1-shot model can be seen as a non-iterative compilati®§ Space, Random may fail to draw a good transformation
scheme: the unseen program is analyzed once to gatherSfRguence while the SVM and LR procedures are deterministic.

hardware performance counter values, and the model OUtp@FSAccuracy of the Prediction
the optllmlzatlon to be. applied. .Th.ls model provides satis- The model we build fot.R and SVM predicts the speedup
factory improvements in the majority of cases, however for,

about 1/3 of the benchmarks applying the sequence predi?éor?] ;r?(femf(';;upn?gzeg;alth%p“Tcl)zarlg(r)nn gsoﬁﬁi'cﬁ“ﬁenwghj dple)re-
best will decrease the performance. We believe this mo [brog

el . : - .
can be improved. We conducted additional experiments 5t plied. To estimate the accuracy.of the prediction, we show
. . . . igure 3-4 the performance predicted by and SvM for all
includes tuning the learning algorithm parameters (eltg, t . L

: . candidate optimizations, sorted w.r.t. the actual peréoroe
Gaussian parametgrand the soft margin paramet@rfor the L .
e . of the optimizations, for four representative benchmarks.
SVM), with improvements observed, but there was no single
configuration that was performing best on all two machmeg

Figure 3 compares the prediction for the same benchmark
At this stage, tuning the learning algorithm parametersi§pe mm on both tested architectures. First, we observe the rela-

. tively low density of best points, represented at the fantrigf
e plain curveActual. This emphasizes the search problem is

the benchmarks may also significantly simplify the Iear_nlnﬁot trivial, and plain random techniques have a low prolitgbil

problem, preliminary experiments indicate this is a prongs in average to discover the optimal points. Regarding the

direction. L : .
_) prediction, we observe in both cases for SVM numerous spikes

The 2-shot model provides only a small improvement ove predicted best points. A careful observation shows slig
the 1-shot, in contrast the 5-shot model can reach closeto ifference in the speedup predicted for all spikes, leading
better performance than the 1-shot. On average, SVM pesforfRe highest spike for E5620 to correspond to one of the optima
better than LR and Random on all machines when consideriggst point; while for E7450 the 4 highest spikes do not aghiev
the 5-shot model. The 5-shot SVM model reaches on averaggre than 2.38 improvement. This pattern is representative
85%-89% of the space optimal performance improvemegf several benchmarks: the models predicts a fraction of the
This emphasizes the relevance of allowing for a limitegag ch space to be potentially optimal, represented byethos
empirical search step, in order to significantly improve thgsikes. We have observed that in most cases a nearly optimal
final performance gain. point is in the five first, however there are cases suajrass-

We also observe that a pure random search on averagéfiler for which only the " spike achieves the optimal speedup,

TABLE I
PERFORMANCEIMPROVEMENTS FORINTEL XEON E7450 BASELINE: ICC 11.0 FAST)

1-shot 2-shot 5-shot
[Benchmark | Opt Poly ICC] LR SVM R %0pt_| LR SVM R %0pt_| LR SVM R %0pt_|
2mm 13.1x 3.67x 1.00x | 1.67x 2.38x 2.77x 21.00% | 1.67x 2.38 5.13x 38.89% | 12.96x 1254 9.32x 98.26%
3mm 12.1x 2.17x 1.00x | 2.17x 1.32x 1.36x 17.89% | 2.17x 11.7x 2.93x 96.62% | 2.88x 11.7x 537x 96.62%
adi 3.28< 2.65< 1.33x | 2.37x 042x 1.37x 72.26% | 2.37x 0.42x 212x 72.26% | 2.37x 0.46x 2.87x 72.26%
atax 1.96x 1.80x 1.00x 1.20x 0.22x 0.67x 61.22% | 1.20x 0.22x 1.14x 61.22% 1.20x 0.22x 1.54x 61.22%
bicg 1.66x 1.01x 1.00x 1.54x 1.06x 0.84x 92.77% | 1.54x 1.06x 1.08x 92.77% 1.66x 1.06x 1.40x 100%
cholesky 1.00x 0.98< 1.16x | 0.61x 0.98« 0.76x 98.99% | 0.61x 0.98x 0.79x 98.99% | 0.62x 0.98x 0.93x 98.99%
correlation 36.6x 36.6x 12.3x | 36.6x 20.2x 12.1x 100% | 36.6x 33.6x 13.3x 100% 36.6x 33.6x 22.2x 100%
covariance 36.9x 11.0x 9.87x 24.5x 24.5x 8.50% 66.30% | 24.5x 24.5x 16.5x 66.30% 36.2x 34.2x 25.7x 98.18%
doitgen 18.3x 5.21x 1.00x 6.91x 1.61x 2.37x 37.78% | 6.91x 5.64x 2.94x 37.78% 6.91x 5.64x 5.35x 37.78%
durbin 1.00x 1.00x 1.00x 0.99x 1.00x 1.00x 100% | 0.99x 1.00x 1.00x 100% 1.00x 1.00x 1.00x 100%
dynprog 1.00< 0.41x 1.00x | 0.64x 0.96x 0.75x 96.97% | 0.64x 0.96x 0.84x 96.97% | 0.64x 0.96x 0.92x 96.97%
fdtd-2d 3.06x 1.71x 295« | 1.71x 1.71x 1.16x 55.88% | 1.71x 2.06x 1.43x 67.32% 1.71x 3.06x 1.94x 100%
fdtd-apml 6.25x 3.01x 1.00x 3.85x 3.30x 1.88x 61.60% | 3.85x 4.41x 3.02x 70.56% 3.85x 4.41x 4.02x 70.56%
gauss-filter 1.06x 0.94x 1.00x 0.35% 0.35x 0.55x 33.01% | 0.35x 0.35% 0.65x 33.01% 0.35x% 0.35% 0.71x 33.01%
gemm 11.6x 3.90% 1.00x 3.43% 2.78% 1.39x 29.54% | 3.43x 2.78x 3.68x 31.70% 3.43% 11.0x 6.27x 95.00%
gemver 2.68x 229« 1.14x | 218 259« 1.08x 96.64% | 2.18< 2.59x 1.81x 96.64% | 2.67x 2.64x 2.26x 99.63%
gesummv 145« 0.68<x 1.44x | 1.24x 0.84x 1.02x 85.52% | 1.24x 0.84x 1.21x 85.52% 1.24x 0.92x 1.27x 85.52%
gramsch 4.34x 2.91x 2.61x 0.83x 0.83x 1.60x 19.12% | 0.83x 0.83x 1.84x 19.12% 1.09x 1.09x 2.74x 25.11%
lu 7.24x 3.15x 1.15x 0.43x 0.43x 1.70x 5.93% | 0.43x 0.96x 2.63% 13.25% 0.96x% 1.84x 4.19x 25.41%
ludemp 1.00x 0.99x 1.00x | 0.99x 0.99x 0.99x 99.00% | 0.99x 0.99x 1.00x 99.00% | 0.99x 1.00x 1.00x 100%
mvt 175« 1.70x 1.00x | 1.73x 1.73x 0.97x 98.86% | 1.73x 1.73x 1.02x 98.86% 1.73x 1.73x 1.63x 98.86%
reg_detect 1.11x 0.80x 1.05x | 0.12x 0.05x 0.42x 37.84% | 0.31x 1.02x 0.73x 91.89% | 0.31x 1.06x 1.02x 95.50%
seidel 9.92x 1.54x 1.00x 9.45x% 9.45x 2.52x 95.26% | 9.45x 9.45x% 3.62x 95.26% 9.45x% 9.45x% 5.84x 95.26%
symm 1.02x 1.00x 1.02x 0.83x 0.83x 0.93x 81.37% | 0.83x 0.83x 0.95x 81.37% 0.83x 0.83x 1.00x 81.37%
syr2k 22.7x 2277x 22.7x | 22.7x 22.7x 6.91x 100% | 22.7x 22.7x 8.87x 100% 22.7x 22.7x 18.4x 100%
syrk 19.7x 9.10x 19.6x | 7.85x 2.14x 2.94x 39.77% | 7.85x 3.18x 7.04x 39.77% | 7.85x 19.6x 8.58x 99.09%
trisolv 197« 098« 1.00x | 1.26x 1.26x 0.85x 63.85% | 1.26x 1.26x 1.24x 62.94% 1.26x 1.42«x 1.38x 72.08%
trmm 1.16x 0.65x% 1.03x 0.40x 0.04x 0.57x 34.48% | 0.40x 0.04x 0.84x 34.48% 0.40x 0.99x 1.00x 86.11%
\ Average \ 8.04x 4.48x 3.38x | 4.91x 3.77x 2.14x 64.42%| 4.92x 4.91x 3.19x 70.80% \ 5.82x 6.60x 4.99x 82.95% |
2mm-full 2mm-full
14 | | | hl 14 - | | bl
Actual Actual
g R —
12k _ 12 | -
10 -
10 -
S S
E E s8r -
(0] 8 - [}
o (&}
3 g of -
£ £
g °f T8
5] 5 _
o a
b -
2 -
. Sl SN
o n f . 7 . . S 2 3
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300
Optimization (sorted by actual performance) Optimization (sorted by actual performance)

Fig. 3. 2mm Prediction for Xeon E5620 (left) and Xeon E7450 (right)

as shown in Figure 4. other. In addition, the back-end compiler is part of the peob

In general, LR prediction follows the prediction of SvM,and may trigger different optimization heuristics for eifént
but with a smoother behavior. This is particularly shown iArchitectures, and we observed the compiler optimizatimm fl
Figure 5. For such situation, LR simply fails to differentia 1S €xtremely hard to predict and can easily be disturbed
enough between all the variants in the search space, and®¥s@ high-level transformation. Learning a model for each
unable to isolate the best sequences: the obtained spesgip@rchitecture is a valid alternative to circumvent thoseigss

at 118x with LR, while it reaches 1B4x with SVM. Discussions:We also investigated using a 10-shot SVM
We also confirmed the need to create models for each aramiedel, which takes the ten predicted best sequences and
tecture to be considered. Different shapes of the perfocmarevaluate all of them. This 10-shot model improves the per-
distribution indicate that the quantity of good performindormance by reaching an average 95% of the search space
transformation sequences vary from one architecture to thptimal performance improvement. It also helped improving

gaussfiterfull has been shown to regularly outperform the most aggressive

‘ X compilation settings of commercial compilers, and it hasrof
been comparable to hand-optimized library functions [39],
[16], [33], [38].

Deciding the enabling or disabling of loop unrolling was
done by Monsifroet al.[26] using decision tree learning, and
was one of the early efforts on using machine learning to tune
a high-level transformation. Kulkarni et al. [23] introdact a
system that used databases to store previously tested code,
thereby reducing running time. They also disabled some
optimizations that did not seem to improve the running tirhe o
the kernel. These techniques are very expensive and therefo
only effective when programs are extremely small, such as

r I
Actual
SVI

LR

Performance Imp.

° w1 a0 =z aw s o those used in embedded domains. Cooper et al. [10] used
Optimization (sorted by actual performance) genetic algorithms to address the compilation phase-iorgler
Fig. 4. Gauss-Filter Prediction for Xeon E5620 problem. They were concerned with finding “good” compiler

optimization sequences that reduced code size. Theirigpofin
was successful in reducing code size by as much as 40%.
correlation-ful However, their technique is application-specific — a geneti
Agual —— ‘ ‘ ’ algorithm had toretrain for each program to decide the best
- optimization sequence for that program.
o - An innovative approach to iterative compilation was pro-
posed by Parello et al. [29] where they used performance
sl B counters at each stage to propose new optimization seguence
The proposed sequences were evaluated and the measured
performance counters with them were used to choose new
optimizations to try. Even though this was a very systematic
approach, the time required for this method was almost aéver
- weeks for each benchmark. Our technique does not need to
generate performance counters during each iteration,rbut i
‘) ‘ ‘ ‘ ‘ ‘ . stead produces a single model to predict the best optiraizati
0 50 100- . 1}50 200 250 300 350 400 450 Sequences for a program
Optimization (sorted by actual performance) Cavazos et al. address the problem of predicting good
Fig. 5. Correlation Prediction for Xeon E5620 compiler optimizations by using performance counters to
automatically generate compiler heuristics [8]. That wads
limited to the traditional optimization space of the PathliSc
compiler. Despite the numerous transformations consitjere

25

Performance Imp.

10 -

th? performance of the more problematic bgnchmarks SUChtﬁ‘é complexity is not cmparable to the restructuring transf
doitgen or gemm and reached the space optimal performan

for those. fations automatically generated by the polyhedral franmkewo

f K il also i ; | ing th Chen et al. developed the CHIiLL infrastructure [9], a
As a future work, we will also Investigate clustering t.aolyhedral loop transformation and code generation frame-

benchmarks into several categories to simplify the legni ork. Tiwari et al. [35] coupled the Active Harmony search

process and improve _th? overall pred_ictipn quality On_e_agﬁgine to automatically tune some high-level transforomati
cluster._ However prellmln_ary r_esults indicates an eﬁ't'e_?)arameters, such as tile sizes. In this paper we target guite
clustering corresponds to isolating the benchmarks on Mh'ﬁiﬁerent search space, going tuning the individual patanse

tiling in our framework prevents ICC from performing they¢ 5 tansformation: we balance the trade-off between séver

same 9pt|m|zat|ons as without it, thereby emp_haS|Z|ng tly?J%ssiny contradictory objectives, such as parallelatdata
sensibility of the clustering to the back-end compiler feas. locality enhancement and vectorization, demonstrating ou

If such pattern is confirmed, it opens the research problemr@‘smtS on a variety of benchmarks and machines
how to characterizehe compiler optimization features, and to Pouchet et al. performed empirical search to directly find

integrate the result into the performance models. the coefficients of the affine scheduling matrix in a polyhe-
dral framework. [31]. While the results showed significant
improvements on small kernels, the empirical search needed
In recent years, considerable research has addressdiv@eraip to a thousand runs for larger benchmarks [30]. In this
compilation and its benefits have been reported in sevetal pwork, we have abstracted the scheduling matrix behind high-
lications [22], [10], [11], [15], [19], [1]. Iterative conifation level polyhedral primitives and the associated cost mofils

V. RELATED WORK

selecting the enabling transformations, reducing theckeann the target machine, we achieve an average speedufof 6
space to only a few hundred possibilities in place of thaver the Intel ICC compiler, which corresponds to an average
billions of possible schedules. This enabled us achieve 0h83% of the best possible performance among all points in
average 85% of the search-space-optimal performance inthe entire search space,

more than 5 runs. Acknowledgments This work was funded in part by the
U.S. National Science Foundation through award 0926688, th
Defense Advanced Research Projects Agency through AFRL
The problem of improving performance through compileContract FA8650-09-C-7915, the DARPA Computer Science

VI. CONCLUSION

optimization has been extensively studied, in particutar Study Group (CSSG) and NSF Career award 0953667.

improve the portability of the optimization process acrass
variety of architectures. lterative compilation and maehi
learning techniques have been demonstrated as power[|
mechanisms to automatically compute good compiler flags,
improving the speed of the generated program and automati-
cally adapting to the target architecture. 2

However, in the multi-core era with increasingly complex
hardware, very advanced high-level transformation mecha-
nisms are required to efficiently map the program on the targ
machine. Complex sequences of loop transformations are
needed to implement tiling, parallelization and vectdicra
all together. While all these optimizations have been swidi [4]
independently, in practice they must be combined to opgmiz
performance.

A modern loop nest optimizer faces the challenge of some:
times contradictory cost models, simply because there is no
single solution that may maximize parallelism, vectoiizat
data locality and still achieve the best performance. Ver A
little work has been done to date in using learning mod-
els for selecting high-level transformations, to drive agdo
nest optimizer that operates on a very rich and compleﬁ]
search space. Our work is the first to propose the use of
learning models to compute effective loop transformations
in the polyhedral modelencompassing tiling, parallelization,
vectorization and data locality improvement via high-leve g
primitives. To determine the best loop transformations dor
program, we decompose the problem into (1) searching f%]
the best sequence of high-level polyhedral primitives.(e.g
tiling, vectorization, etc.); and (2) using static cost ralsdto
compute the final sequence of elementary loop transformstid1C!
that implement those primitives.

In this work, we leverage the power of the polyhedral
transformation framework to automatically build very cdexp (11]
sequences of transformations, enabling tiling and pdizdle
tion transformations on a wide range of numerical codes?]
To select an effective optimization in this space, we have
implemented a speedup predictor model that correlatesitie r
time characteristics of a program (modeled with perforneanfi3]
counters) with the speedup expected from a given polyhedral
optimization (modeled with a sequence of high-level primi-
tives). We evaluated our approach using two machine legrnin
algorithms, linear regression and support vector mactine, (14
a variety of benchmarks and two multi-core machines. For
the test suite, the best points in our optimization searétep [15]
yield an average 8 speedup (with peaks of up to 3% over
ICC on an Intel Xeon E7450. Using the predictive machine
learning models, testing at most five candidate optiminatio

REFERENCES

.Lt'] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, ™Boyle,

J. Thomson, M. Toussaint, and C. Williams. Using machinenieg to
focus iterative optimization. Idth Annual International Symposium on
Code Generation and Optimization (CGQJar. 2006.

] C. Bastoul. Code generation in the polyhedral model sezahan you

think. In IEEE Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT'04pages 7-16, Juan-les-Pins, France, Sept. 2004.

] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and &st@ul.

The polyhedral model is more widely applicable than youkhim Intl.
Conf. on Compiler Construction (ETAPS CC'1L@NCS 6011, pages
283-303, Paphos, Cyprus, Mar. 2010.

U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramam,
A. Rountev, and P. Sadayappan. Automatic transformaticrs f
communication-minimized parallelization and locality tiogization in
the polyhedral model. Innternational conference on Compiler Con-
struction (ETAPS CGC)Apr. 2008.

5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. SadamappA

practical automatic polyhedral program optimization egst In ACM
SIGPLAN Conference on Programming Language Design andehmpl
mentation June 2008.

] R. R. Bouckaert, E. Frank, M. A. Hall, G. Holmes, B. Pfalyer,

P. Reutemann, and I. H. Witten. WEKA—experiences with a gven-
source projectJournal of Machine Learning Researchl:2533—-2541,
2010.

J. Cavazos, C. Dubach, F. Agakov, E. Bonilla, M. F. O'BayG. Fursin,
and O. Temam. Automatic performance model constructiortiferfast
software exploration of new hardware designs. Pimceedings of the
International Conference on Compilers, Architecture, Ayhthesis For
Embedded Systems (CASES 20@gjtober 2006.

J. Cavazos, G. Fursin, F. V. Agakov, E. V. Bonilla, M. F.®@Boyle,
and O. Temam. Rapidly selecting good compiler optimizatiosing
performance counters. I8GO, pages 185-197, 2007.

C. Chen, J. Chame, and M. Hall. CHiLL: A framework for coosp
ing high-level loop transformations. Technical Report 8% U. of
Southern California, 2008.

K. D. Cooper, P. J. Schielke, and D. Subramanian. Optirgi for
reduced code space using genetic algorithms. Workshop on Lan-
guages, Compilers, and Tools for Embedded Systeages 1-9, Atlanta,
Georgia, July 1999. ACM Press.

K. D. Cooper, D. Subramanian, and L. Torczon. Adaptiiroizing
compilers for the 21st centurylournal of Supercomputin@3(1):7-22,
August 2002.

C. Dubach, J. Cavazos, B. Franke, M. O'Boyle, G. Fursamd
0. Temam. Fast compiler optimisation evaluation using dedéure
based performance prediction. Broceedings of the ACM International
Conference on Computing Frontierslay 2007.

C. Dubach, T. M. Jones, E. V. Bonilla, G. Fursin, and M.O/Boyle.
Portable compiler optimization across embedded prograrsracroar-
chitectures using machine learning. Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICR()ecember
2009.

P. Feautrier. Some efficient solutions to the affine dalieg problem,
part 1l: multidimensional time. Intl. J. of Parallel Programming
21(6):389-420, Dec. 1992.

B. Franke, M. O'Boyle, J. Thomson, and G. Fursin. Pralitle source-
level optimisation of embedded programs. Rroceedings of the 2005
ACM SIGPLAN/SIGBED Conference on Languages, Compilerd, an
Tools for Embedded Systenmmges 78-86, New York, NY, USA, 2005.
ACM Press.

[16]

[17]

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

M. Frigo and S. G. Johnson. The design and implemematb
FFTW3. Proceedings of the IEEE3(2):216-231, 2005. special issue
on "Program Generation, Optimization, and Platform Adagpte.

G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-TAv Zaks,

B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. BodirBanilla,

J. Thomson, H. Leather, C. Williams, and M. O’'Boyle. MILEPDS
GCC: machine learning based research compilePrbteedings of the [31]
GCC Developers’ Summifune 2008.

S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. PareM. Sigler,

and O. Temam. Semi-automatic composition of loop transitions.
International Journal of Parallel Programming34(3):261-317, June [32]
2006.

M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. #amatic
selection of compiler options using non-parametric infiées statistics.
In Proceedings of the International Conference on Parallethftectures
and Compilation Techniquegpages 123-132, Washington, DC, USA,
2005. IEEE Computer Society.

INRIA and The Ohio State University. Polybench, theyt@dral bench-
mark suite. http://www-rocq.inria.frfoouchet/software/polybench.

(30]

(33]

F. Irigoin and R. Triolet. Supernode partitioning. ACM SIGPLAN [34]
Principles of Programming Languagepages 319-329, 1988.

T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O'Boyle. Cduimed
selection of tile sizes and unroll factors using iteraticenpilation. In [35]

Proceedings of the International Conference on Parallethitectures

and Compilation Techniquepage 237, Washington, DC, USA, 2000.
IEEE Computer Society.

P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidsand D. Jones.

Fast searches for effective optimization phase sequeht&soceedings [36]
of the ACM SIGPLAN '04 Conference on Programming Language
Design and Implementatippages 171-182, New York, NY, USA, 2004.
ACM Press.

A. W. Lim and M. S. Lam. Maximizing parallelism and minimng
synchronization with affine transforms. ROPL '97: Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of prognang
languages pages 201-214, New York, NY, USA, 1997. ACM Press.
S. Long and G. Fursin. A heuristic search algorithm dase unified
transformation framework. IProc. of the 2005 Intl. Conf. on Parallel
Processing Workshops (ICPPW'QF)ages 137-144, Washington, DC,
USA, 2005. IEEE Comp. Soc. [39]
A. Monsifrot, F. Bodin, and R. Quiniou. A machine leargi approach

to automatic production of compiler heuristics. AMMSA '02: Proc.

of the 10th Intl. Conf. on Atrtificial Intelligence: Methodgly, Systems,

[37]

(38]

and Applications pages 41-50, London, UK, 2002. Springer-Verlag. [40]
P. Mucci. Papi — the performance application prograngminterface.
http://icl.cs.utk.edu/papi/index.html, 2000.

M. Namolaru, A. Cohen, G. Fursin, A. Zaks, and A. Freufdactical [41]

aggregation of semantical program properties for macleaming based
optimization. Inintl. Conf. on Compilers Architectures and Synthesis
for Embedded Systems (CASES 10gt. 2010. [
D. Parello, O. Temam, A. Cohen, and J.-M. Verdun. Towaadsystem-
atic, pragmatic and architecture-aware program optinaizgtrocess for
complex processors. I8C '04: Proceedings of the 2004 ACM/IEEE

conference on Supercomputingage 15, Washington, DC, USA, 2004.
IEEE Computer Society.

L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazosatite optimiza-
tion in the polyhedral model: Part 1l, multidimensional émin ACM
SIGPLAN Conf. on Programming Language Design and Impleatient
(PLDI'08), pages 90-100. ACM Press, 2008.

L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilacheterative
optimization in the polyhedral model: Part I, one-dimensiotime.

In Proc. of the IEEE/ACM Fifth Intl. Symp. on Code Generatiord an
Optimization (CGO'07)pages 144-156. IEEE Comp. Soc. press, 2007.
L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, anfanujam,
and P. Sadayappan. Combined iterative and model-drivdmiaption

in an automatic parallelization framework. WCM Supercomputing
Conf. (SC'10) New Orleans, Lousiana, Nov. 2010. 11 pages.

M. Puschel, J. Moura, J. Johnson, D. Padua, M. VelosoSiBger,

J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W
Johnson, and N. Rizzolo. Spiral: Code generation for dspsfoams.
Proceedings of the IEEE93(2):232-275, 2005. special issue on
"Program Generation, Optimization, and Platform Adaptati

J. Ramanujam and P. Sadayappan. Tiling multidimerdidgteration
spaces for multicomputersJournal of Parallel and Distributed Com-
puting 16(2):108—-230, 1992.

A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingssth. A
scalable auto-tuning framework for compiler optimizatiom IPDPS
'09: Proceedings of the 2009 IEEE International SymposiunParal-
lel&Distributed Processingpages 1-12, Washington, DC, USA, 2009.
IEEE Computer Society.

K. Trifunovic, D. Nuzman, A. Cohen, A. Zaks, and |. Ros&wlyhedral-
model guided loop-nest auto-vectorization. Ihtl. Conf. on Parallel
Architectures and Compilation Techniques (PACT,0Rpleigh, North
Carolina, Sept. 2009.

Y. Voronenko, F. de Mesmay, and M. Puschel. Computereggtion of
general size linear transform libraries.ltil. Symp. on Code Generation
and Optimization (CGO’09)pages 102-113, Seattle, Washington, Mar.
2009.

R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical mlsdfor
empirical search-based performance tunindnt. J. High Perform.
Comput. Appl.18(1):65-94, 2004.

R. C. Whaley and J. J. Dongarra. Automatically tuneckdinalgebra
software. InSC '98: Proceedings of the 1998 ACM/IEEE conference
on Supercomputingpages 1-27, Washington, DC, USA, 1998. |IEEE
Computer Society.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automatetpiecal
optimizations of software and the atlas projedearallel Computing
2000.

M. Wolfe. More iteration space tiling. InSupercomputing '89:
Proceedings of the 1989 ACM/IEEE conference on Supercamgput
pages 655-664, New York, NY, USA, 1989. ACM.

42] K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garza,

D. Padua, K. Pingali, P. Stodghill, and P. Wu. A comparison of
empirical and model-driven optimization. |IACM SIGPLAN Conf.
on Programming Language Design and Implementation (PLB))'@an
Diego, CA, June 2003.

