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albert.cohen@inria.fr

Abstract—Significant advances in compiler optimization have
been made in recent years, enabling many transformations such
as tiling, fusion, parallelization and vectorization on imperfectly
nested loops. Nevertheless, the problem of finding the best
combination of loop transformations remains a major challenge.
Polyhedral models for compiler optimization have demonstrated
strong potential for enhancing program performance, in par-
ticular for compute-intensive applications. But existing static
cost models to optimize polyhedral transformations have signif-
icant limitations, and iterative compilation has become a very
promising alternative to these models to find the most effective
transformations. But since the number of polyhedral optimization
alternatives can be enormous, it is often impractical to iterate
over a significant fraction of the entire space of polyhedrally
transformed variants. Recent research has focused on iterating
over this search space either with manually-constructed heuristics
or with automatic but very expensive search algorithms (e.g.,
genetic algorithms) that can eventually find good points in the
polyhedral space.

In this paper, we propose the use of machine learning to ad-
dress the problem of selecting the best polyhedral optimizations.
We show that these models can quickly find high-performance
program variants in the polyhedral space, without resorting to
extensive empirical search. We introduce models that take as
input a characterization of a program based on its dynamic
behavior, and predict the performance of aggressive high-level
polyhedral transformations that includes tiling, parallelization
and vectorization. We allow for a minimal empirical search on
the target machine, discovering on average 83% of the search-
space-optimal combinations in at most 5 runs. Our end-to-end
framework is validated using numerous benchmarks on two
multi-core platforms.

I. I NTRODUCTION

A significant amount of the computation time in scientific
and engineering applications is usually spent in loops, making
high-level loop transformations critical to achieving high per-
formance for a variety of programs. The best loop optimization
sequence is often not only program-specific, but also depends
on the target hardware. Pouchet et al. illustrated this by
showing the critical impact of tuning polyhedral optimizations
for obtaining the best performance for a variety of numerical
programs on different target processors [31], [30], [32].

Although significant advances have been made in develop-
ing advanced compiler optimization and code transformation
frameworks, it remains an extremely challenging problem to

find the best sequence(s) of high-level loop transformations
to optimize performance on a given architecture. Existing
static models are limited to highly simplified execution models
of the machine. The very complex interplay between all the
hardware resources (e.g., different cores with multiple levels of
private/shared cache and TLBs, instruction pipelines, hardware
pre-fetchers, SIMD units etc.) makes it extremely difficultto
construct a static model that can accurately predict the effec-
tiveness of a given set of loop transformations. Worse still,
some optimization strategies may have conflicting objectives:
for example, maximizing thread-level parallelism may inhibit
SIMD-level parallelism, and may also result in degradationof
data locality and increased memory footprint.

In the quest for higher and more portable performance,
the compiler community has explored research based on
iterative compilation and machine learning totune the com-
piler optimization flags or pass sequence, to find the best
(ordered) set for a given combination of benchmarks and target
architectures. Although significant performance improvements
have been demonstrated [26], [1], [17], [28], the performance
obtained has generally been limited by the optimizations
selected for automatic tuning, and by the degrees of freedom
available for exploration. We identify two main limitations
of iterative compilation efforts so far. First, most compilers
lack a powerful high-level optimization framework: to dateag-
gressive optimizations such as parallelization or vectorization
as implemented in production compilers may simply fail to
restructure the code enough to expose good parallel or vector
loops. Second, the support for loop tiling (also called loop
blocking) in production compilers is quite limited: usually
able to tile only some perfectly nested loops, without any pre-
transformation capabilities to help expose tiling opportunities,
and almost no support for tuning the tile sizes. This is a critical
performance issue as tiling is often the key loop transformation
to achieve good data locality and parallelization [41].

The polyhedral optimization frameworkhas been demon-
strated as a powerful alternative to abstract-syntax-treebased
loop transformations. The polyhedral framework enables the
modeling of an arbitrarily complex sequence of loop trans-
formations in a single optimization step. The downside of
this expressiveness is the extreme difficulty of selecting an



effectiveset of affine transformation coefficients that result
in good performance, combining tiling, coarse and fine grain
parallelization, together with fusion, distribution, interchange,
skewing, permutation and shifting [18], [30], [32].

Previous work on iterative compilation based on this model
showed that there is opportunity for very large performance
improvement over native compilers [31], [30], significantly
better than using standard compilation flag tuning or pass
selection and ordering. However, directly tuning the polyhedral
transformation in its original abstract representation remains
a highly complex problem, where the search space is usually
infinite. Despite progress in understanding the structure of this
space and how to bound its size, this problem remains hardly
tractable in its original form.

Past and current work in polyhedral compilation has con-
tributed algorithms and tools to expose model-driven ap-
proaches for various high-level transformations, including:

• loop fusion and distribution, to partition the program into
independent loop nests;

• loop tiling, to partition (a sequence of) loop nests into
blocks of computations;

• thread-level parallelism extraction;
• SIMD-level parallelism extraction.

Bondhugula et al. proposed the first integrated heuristic for
parallelization, fusion and tiling in the polyhedral model[4],
[5], subsuming all the above optimizations into a single,
tunable cost-model. Individual objectives such as the degree
of fusion or the application of tiling can implicitly be tuned
by minor ad-hoc modifications of Bondhugula’s cost model.

We now summarize the contributions of the present paper.
We address the problem of effectively balancing the trade-
off between all the aforementioned high-level optimizations
to achieve the best performance. As a direct benefit of our
problem formalization,we integrate the power of iterative
compilation schemes with the expressiveness and efficiencyof
high-level polyhedral transformations. Our technique relies on
a training phase where numerous possibilities to drive the high-
level optimizer are tested, using a source-to-source polyhedral
compiler on top of a standard production compiler. We show
how the problem of selecting the best optimization criteria
can be effectively learned using feedback from the dynamic
behavior of various possible high-level transformations.By
correlating hardware performance counters to the success of
a polyhedral optimization sequence,we are able to build a
model that predicts very effective polyhedral optimization se-
quences for an unseen program. Our results show it is possible
to achieve close to the search-space-optimal performance by
testing no more than 5 program versions. To the best of
our knowledge, this is the first effort that demonstrates very
effective discovery of complex high-level loop transformations
using machine learning models.

In Section II, we first present details on the optimization
space we consider, before presenting the machine learning
approach in Section III. Experimental results are presented
in Section IV. We discuss related work in Section V.

II. OPTIMIZATION SPACE

High-level loop transformations are crucial to effectively
map a computation onto the target hardware. Effective map-
ping typically requires the partitioning of the computation
into disjoint parts to be executed on different cores, and the
transformation of those partitions into streams to be executed
on each SIMD unit. In addition, the data flow used by the
computation may need to be reorganized to better exploit the
cache memory hierarchy and improve communication cost.

Addressing these challenges for compute-intensive pro-
grams has been demonstrated to be a strength of the poly-
hedral optimization framework. Several previous studies have
shown how tiling, parallelization, vectorization or data locality
enhancement can be efficiently addressed in an affine trans-
formation framework [21], [34], [14], [24], [36]. Any loop
transformation can be represented in the polyhedral represen-
tation, and composing arbitrarily complex sequences of loop
transformations is seamlessly handled by the framework. This
expressiveness and ease in composing and applying transfor-
mations are the strengths of the polyhedral model. However,
the space of possible optimizations is dramatically enlarged,
imposing challenges on the selection algorithms. In contrast
to previous iterative approaches requiring the evaluationof up
to hundreds of possible transformations [30], [32], we develop
here a scheme that requires at most 5 candidate choices to be
evaluated.

We also observe that high-level transformations are by far
not sufficient to achieve the best performance for a pro-
gram. Numerous low-level optimizations are required, and
chip makers such as Intel have developed extremely efficient
closed-source compilers for their processors. Unfortunately we
have to consider such compilers as black-boxes, because of
the difficulty in precisely determining which optimizations is
implemented and when. Our approach considers the back-
end compiler as part of the target machine, and we focus
exclusively on driving the optimization process via high-level
source-to-source polyhedral transformations.

We next present the set of optimizations that we consider.

A. Polyhedral Model

Sequences of (possibly imperfectly nested) loops amenable
to polyhedral optimization are calledstatic control parts
(SCoP) [14], [18], roughly defined as a set of (possibly
imperfectly nested) consecutive statements such that all loop
bounds and conditionals are affine functions of the surrounding
loop iterators and global variables (constants that are unknown
at compile time but invariant in the loop nest). Relaxation
of these constraints to arbitrary side-effect free programs has
recently been proposed [3], and our optimization scheme is
fully compatible with this extended polyhedral model.

Polyhedral program optimization involves the analysis of
the input program to extract itspolyhedral representation,
including dependence information and array access patterns.
These are defined at the granularity of the statement instance,
that is, an executed occurrence of a syntactic statement.



A program transformation is represented by an affine
multidimensional schedule. This schedule specifies the order
in which each statement instance is executed. A schedule
captures in a single step what may typically correspond to
a sequence of several textbook loop transformations [18].
Arbitrary compositions of affine loop transformations (e.g.,
skewing, interchange, multi-level distribution, fusion,peeling
and shifting) are embedded in a single affine schedule for the
program. Every static control program has a multidimensional
affine schedule [14], and tiling can be applied by extending
the iteration domain of the statements with additional tileloop
dimensions, in conjunction with suitable modifications of the
schedule [18].

Finally, syntactic code is regenerated from the polyhedral
representation on which the optimization has been applied.We
use the state-of-the art code generator CLOOG [2] to perform
this task.

B. Polyhedral Optimizations Considered

High-level optimization primitives, such as tiling or paral-
lelization, often require a complex sequence of enabling loop
transformations to be applied while preserving the semantics.
As an example, tiling a loop nest may require skewing, fusion,
peeling and shifting of loop iterations before it can be applied.
A limitation of previous approaches, whether polyhedral-
based [25], [31] or syntactic-based [8], was the challenge of
assessing the impact of the main optimization primitives, since
the enabling sequence also had to be considered. This led
most previous work to be limited in applicability: the enabling
transformations were not considered in an integrated fashion,
so that transformations such as tiling and coarse-grained par-
allelization could not be applied in the most effective fashion
on numerous programs.

We address this issue by decoupling the problem of select-
ing a polyhedral optimization into two steps: (1) select a se-
quence of high-level primitives in the set{ fusion/distribution,
tiling, parallelization, vectorization, unroll-and-jam}, this
selection being based on machine learning and feedback
from hardware performance counters, and (2) for the selected
high-level primitives, usestatic cost modelsto compute the
appropriate enabling transformations that implement the given
sequence of high-level primitives. We thus keep the expressive-
ness and applicability of the polyhedral model, while focusing
the selection decision only on the main transformations.

1) Loop Tiling: Tiling is a crucial loop transformation
for parallelism and locality. It partitions the computation
into blocks that can be executed atomically. When tiling is
chosen to be applied on a program, we rely on the Tiling
Hyperplane method [5] to compute a sequence of enabling
loop transformations to make tiling legal on the generated loop
nests.

Two important performance factors must be considered for
the profitability of tiling. Tiling may be detrimental as it
may introduce complex loop structure and the computation
overhead may not be compensated by the locality improve-
ment. This is particularly the case for computations where data

locality is not the performance bottleneck. Second, thesizeof
the tiles could have a dramatic impact on the performance of
the generated code. To obtain good performance with tiling,
the data footprint of an atomic tile should typically reside
in the L1 cache. The problem of selecting the optimal tile
size is known to be very hard and empirical search is often
used for high-performance codes [40], [42], [37]. To limit the
search space while preserving significant expressiveness,we
allow the specification of a limited number of tile sizes to be
considered foreach tiled loop. In our experiments, we use only
two possible sizes for a tile dimension: either 1 (i.e., no tiling
along this loop level) or 32. The total number of possibilities
is a function of the depth of the loop nest to be tiled: for
instance, for a doubly-nested loop we test rectangular tiles of
size 1×1 (no tiling), 1×32, 32×1 and 32×32.

2) Loop Fusion/Distribution:In the framework used in the
present paper, there is an equivalence between (i) maximally
fusing statements, (ii) maximizing the number of tilable loop
levels, (iii) maximizing locality and (iv) minimizing commu-
nications. In its seminal formulation, Bondhugula proposed
to find a transformation that maximizes the number of fused
statements on the whole program using an Integer Linear
Program encoding of the problem [4]. However, maximally
fusing statements may prevent parallelization and vectoriza-
tion, and the trade-off between improving locality despite
reducing parallelization possibilities is not captured. Secondly,
fusion may interfere with hardware prefetching. Also, after
fusion, too many data spaces may contend for use of the same
cache, reducing the effective cache capacity for each state-
ment. Conflict misses are also likely to increase. Obviously,
systematically distributing all loops is generally not a better
solution as it may be detrimental to locality.

The best approach clearly depends on the target architecture,
and the performance variability of an optimizing transforma-
tion across different architectures creates a burden in devising
portable optimization schemes. We consider in this paper three
high-level fusion schemes for the program: (1)NoFuse, where
we do not fuse at all; (2)SmartFuse, where we only fuse
together statements that carry data reuse; and (3)MaxFuse,
where we try to maximally fuse statements. These three cases
are easily implemented in the polyhedral framework, simply
by restricting the cost function of the Tiling Hyperplane
method to operate only on a given (possibly empty) set of
statements.

Interaction with tiling: The scope of application of tiling
directly depends on the fusion scheme applied on the program.
Only statements under a common outer loop may be grouped
in a single tile. Maximal fusion results in tiles performing
more computations, while smart fusion may result in more
tiles to be executed but with fewer operations in them. The
cache pressure is thus directly driven by the fusion and tiling
scheme.

3) Thread-level parallelization:Thread-level parallelism is
not always beneficial, e.g., with small kernels that executefew
iterations or when it prevents vectorization.

When a loop nest is tiled, it is always possible to execute



the tiles either in parallel or in a pipeline-parallel fashion. For
untiled loops, we rely on a cost model that pushes dependences
to the inner loop levels, naturally exposing outer parallelloops.
To drive thread-level parallelization we expose two options:
(1) Parallel where we use OpenMP and insert a#pragma omp
parallel for above the outer-most parallel loop of each loop
nest; and (2)NoParallel where no pragma is inserted and no
transformation is performed.

4) SIMD-level parallelization: Our approach to vector-
ization leverages recent analytical modeling results by Tri-
funovic et al. [36]. We take advantage of the polyhedral
representation to restructure imperfectly nested programs, to
expose vectorizable inner loops. The most important part of
the transformation to enable vectorization comes from the
selection of which parallel loop is moved to the innermost
position. The cost model selects a synchronization-free loop
that minimizes the memory stride of the data accessed by two
contiguous iterations of the loop [36]. Note, this interchange
may not always lead to the optimal vectorization, or may
simply be useless for a machine which does not support SIMD
instruction. We expose two options: (1)Vector, where the
schedule is modified to expose good (ie, stride one memory
accesses) vectorizable innermost loops, which are marked with
ivdep and vector always pragmas to facilitate compiler
auto-vectorization; and (2)NoVector, where no additional
transformations are performed to enable vectorization.

5) Loop unroll-and-jam:Loop unrolling is known to help
expose instruction-level parallelism. Tuning the unrolling fac-
tor can influence register pressure, in a manner that is compiler
and machine-dependent. We expose three options that are
applied on all innermost loops of the program: (1)NoUnroll;
(2) UnrollBy4; and (3)UnrollBy8.

C. Putting it all Together

1) Generating the Final Transformation:A sequence of
high-level primitives is encoded as a fixed-length vector of
bits, referred to asT. To each distinct value ofT corresponds
a distinct combination of the above primitives. Technically,
on/off primitives (i.e., Tile/NoTile, Parallel/NoParallel, etc.)
are encoded using a single bit. Non-binary primitives such
as the unroll factor or the tile sizes are encoded using a
“thermometer” scale. As an illustration, to model unroll-and-
jam factors we use two binary variables(x,y). The pair(0,0)
denotes no unroll-and-jam, an unroll factor of 4 is denoted
by (0,1) and unroll factor of 8 by(1,1). Different tile sizes
are encoded in a similar fashion. In our experiments, we only
model the tile size on the first three dimensions (leading to 9
possibilities), and use a constant size forT. Thus for programs
where the tiles have a lower dimensionality, some bits inT
have no impact on the transformation.

To generate the polyhedral transformation corresponding to
a specific value ofT, we proceed as follows.

1) Partition the set of statements according to the fusion
choice (one inNoFuse, SmartFuse or MaxFuse);

2) Apply the Tiling Hyperplane method [5] locally on each
partition to obtain a schedule for the program that (a)

implements the fusion choice, (b) maximizes the number
of parallel loops, (c) maximizes the number of tilable
dimensions [4] on each individual partition;

3) Modify the schedule according to the vectorization cost
model, if Vector is set, to expose inner parallel loops;

4) Tile all tilable loop nests, if any, ifTile is set. The tile
sizes to be used are encoded inT.

Other transformations do not require further modification
of the program schedule. Depending on their activation inT,
they are applied as post-pass on the generated program, as they
only require syntactic modifications to the code (e.g., inserting
pragmas or unrolling the code).

2) Candidate Search Space:The final search space we
consider depends on the program. For instance, not all pro-
grams exhibit coarse-grain parallelism or are tilable. Forcases
where a primitive has no effect on the final program because
of semantic considerations, multiple values ofT lead to the
same candidate code version. The search space, considering
only values ofT leading to distinct transformed programs,
ranges from 91 to 432 in our experiments, out of 864 possible
combinations that can be encoded inT.

III. SELECTING EFFECTIVE TRANSFORMATIONS

Since we have removed the problem of computing enabling
transformations, we can focus the search on the primitives
with the highest impact as described in Section II. When
considering a space of semantics-preserving polyhedral op-
timizations, even the most aggressive bounding can lead to
billions of possible polyhedral optimizations [30]. We achieved
a tremendous reduction in the search space size when com-
pared to these methods, but we have hundreds of sequences to
consider. In this paper, we propose to formulate the selection
of the best sequence as a learning problem, and use off-line
training to build predictors that compute the best sequence(s)
of polyhedral primitives to apply to a new program.

A. Characterization of Input Programs

We focus in this work on thedynamicbehavior of programs,
by means of hardware performance counters. Using those
abstracts away the specifics of the machine, and overcomes the
lack of precision of static performance models. Also, models
using performance counter characteristics of programs have
been shown to out-perform models that use only static features
of program [8].

A given input program is represented by a feature vector of
performance counters collected by running the full program
on the machine. We use the PAPI library [27] to gather
information about memory management, vectorization and
processor activity. In particular, for all cache levels andTLB
levels we collect the total number of accesses and misses,
the total number of stall cycles, the total number of vector
instructions, and the total number of issued instructions.All
counter values are normalized using the total number of
instructions of the program.



B. Speedup Prediction Model

A general formulation of the optimization problem is to
construct a search function that takes as input features of
a program being optimized and generates as output one or
more optimization sequences predicted to perform well on
that program. Previous work [13], [8] has proposed to model
the optimization problem by characterizing a program using
performance counters. We use a prediction model originally
proposed by Cavazoset al. [12], [7], but slightly adapted
to support polyhedral primitives instead. We refer to it as a
speedup predictor model.

This model takes as an input a tuple(F,T) whereF is the
feature vector of all hardware counters collected when running
the original program; andT is one of the possible sequence of
polyhedral primitives. Its output is a prediction of the speedup
T should achieve, relative to the performance of the original
code. Figure 1 illustrates the speedup prediction model. For
a given input program, first the feature vector of performance
counters are collected. Then, the model is ask to predict the
expected speedup of a primitive sequenceT. By predicting
the performance of each possible sequence, it is possible to
rank them according to their expected speedup and select the
sequence(s) with the highest speedup.

New Program 

Predicted speedup for 

each sequence 

Extract performance 

Counters 

… 

Primitive sequence (T) 

All possible 

sequences for 

the program 

Speedup prediction model 

Performance counters (F) 

… 

… 

… 

…
 

Fig. 1. Speedup prediction model

We implemented the speedup prediction model by using two

different machine learning algorithms – regression and SVM
(Support Vector Machine), using Weka [6].

The Regression based model demonstrates the relationship
between dependent and independent variables, and we can
use this model to expect dependent variables according to
the change of given independent variables. We used linear
regression to fit the predictive model to dependent variable
which is speedup of programs, and independent variables
which are performance counters and the polyhedral optimiza-
tion sequence. Regression model often makes assumptions
about the data-generating process, and this is often usefulfor
prediction even though the assumption is not correct. However,
regression model may not be optimal because of this and
possibly mislead results when we use incorrect assumptions.

SVM is a supervised machine learning technique, used for
both classification and regression, and it can apply linear
techniques to non-linear problems. First, SVM transforms data
into a linear space by using kernel functions, and uses a linear
classifier to separate data with a hyperplane. SVM not only
finds a hyperplane to separate data, but also finds the best
hyperplane, so called maximum margin hyperplane, showing
the largest separation from the set of hyperplanes.

C. Model Generation and Evaluation

We train a specific model for each target architecture, as the
specifics of a machine (e.g., cache miss cost, number of cores,
etc.) significantly influence what transformations are effective
for it. In addition, to evaluate the quality of linear regression
versus SVM, we train one specific model for each.

A model is trained as follows. For a given programP in
the training set, (1) compute its execution timeE and collect
its performance countersF; (2) for all possible sequences of
polyhedral primitivesTi , apply the transformation toP and
execute the transformed program on the target machine, this
gives an execution timeETi , and the associated speedupSTi =
E/ETi ; (3) train the model with the entry(F,Ti) = STi . This is
repeated for all programs in the training set. This is illustrated
in Figure 2.

Each of our models must predict optimizations to apply to
unseen programs that were not used in training the model.
To do this, we need to feed as input to our models a
characterization of the unseen program. We then ask the
model to predict the speedup of each possible transformations
sequencesTi in our optimization space, given the unseen
program characteristics. We order the predicted speedups to
determine which sequence is predicted best, and apply it to
the unseen program.

Note in the experiments presented below, we use the stan-
dardLeave One Out Cross-Validationprocedure for evaluating
our models. That is, the two models (SVM or LR) are trained
on N− 1 benchmarks, and evaluated on the benchmark that
has been left out. This procedure is repeated individually for
each benchmark to be evaluated: each evaluation is done on a
program that was never seen by the model during the training.
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Fig. 2. Overview of the training phase

D. One-shot and Multi-shot Evaluation

The models presented above output a single optimization
sequence for an unseen program. For the rest of the paper, we
refer to this approach as the 1-shot model.

It is worth considering an empirical evaluation of several
candidate transformations, as the predictor may not predict
correctly the actual best sequence for the program. A typical
source for misprediction comes from the back-end compiler:
depending on the inputsource code, it may performs spe-
cific optimizations based on pattern-matching, for instance.
As an illustration, we observed in our experiments that for
the benchmark2mm (computing two matrix multiplications
tmp=A.B;out put= tmp.C), the best performance when using
Intel ICC 11.0 is achieved whenno tiling is applied by our
framework, despite high cache miss ratios. We suspect this is
because ICC performs specific optimizations on this particular
computation (matrix-multiply), since in this setup tiling2mm
to make it L1-resident decreases the performance. However,
another program with similar hardware counter features may
be processed entirely differently by ICC, and as shown by our
experiments even the same program is handled differently by
ICC 11.0 and ICC 11.1 on two different machines.

We propose to evaluate also 2-shot and 5-shot models. For
the 2-shot model, we keep the two predicted best sequences,

apply each of them and execute both transformed programs
on the machine; we then keep the one that in practice
performs best. This implies iteratively testing two candidate
transformations. Similarly, we end up testing on the machine
five candidate transformations with the 5-shot models.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We provide experimental results on two multi-core sys-
tems:Nehalem, a 2-socket 4-cores Intel Xeon 5620 (16 H/W
threads), andR900, a 4-socket 6-cores Intel Xeon E7450 (24
H/W threads). Both systems have 16 GB of memory and run
Linux. The back-end compiler used for the baseline and all
candidate polyhedral optimizations is Intel ICC with option
-fast, version 11.1 forNehalem and version 11.0 forR900.

Our benchmark suite is PolyBench v2 [20], composed of
28 different kernels and applications containing static control
parts. The datasets are the reference one [20], and most
benchmarks are L3-resident in our testing framework.

B. Comparison of LR, SVM and Random

We show in Table I-II the performance of the three dif-
ferent models we have evaluated. For each benchmark, we
report the performance improvement over the original code,
when compiled withicc -fast, for the 1-shot, 2-shot and
5-shot approaches. In particular we reportLR for Linear
Regression,SVM for Support Vector Machine,R for Random
(averaging 100 experiments) and%Opt the fraction of the
optimal performance improvement achieved by the best of
LR and SVM. Regarding the search space, we reportOpt
the best improvement achieved by a candidate optimization
in our search space. We also report in the columnPoly the
performance improvement achieved when using a polyhedral
static cost model to select the transformation [4]. In our
nomenclature, it corresponds toMaxFuse andParallel andTile,
using a default tile size of 32 in each tiled dimension. We also
compare against a tuning of 12 flag optimization sequences for
ICC (one of -O2,-O3,-fast, with and without-parallel
to turn on and off automatic parallelization, and with and
without -no-vec to turn on and off vectorization). We report
the improvement achieved by the best flag sequence applied
on the original code in theICC column.

Analysis: First, we observe that polyhedral optimization
tuning significantly outperforms ICC flag tuning, from 2×
to 3.5× better performance is achieved on average. And for
all benchmarks and all architectures, there exists at least
one polyhedral sequence which outperforms ICC. We also
observe that the polyhedral static cost model we use for
comparison is significantly outperformed by our approach.
This static model has proved its effectiveness for programs
with significant data reuse, as incorrelation andcovariance for
instance. Nevertheless, for numerous programs tiling and/or
parallelization is detrimental to performance, as ingesummv
or dynprog. The performance drop mainly comes from the
very complex loop structure that is generated with polyhedral
tiling, which in turn inhibits numerous scalar optimizations on



TABLE I
PERFORMANCEIMPROVEMENTS FORINTEL XEON E5620 (BASELINE: ICC 11.1 -FAST)

1-shot 2-shot 5-shot
Benchmark Opt Poly ICC LR SVM R %Opt LR SVM R %Opt LR SVM R %Opt

2mm 13.8× 4.07× 1.00× 13.8× 13.8× 2.67× 100% 13.8× 13.8× 3.87× 100% 13.8× 13.8× 5.28× 100%
3mm 11.9× 2.17× 1.00× 2.46× 0.81× 1.54× 20.67% 2.46× 2.33× 2.53× 20.67% 2.46× 2.33× 3.71× 20.67%
adi 3.73× 3.66× 1.86× 3.22× 3.22× 1.30× 86.33% 3.22× 3.22× 2.32× 86.33% 3.22× 3.22× 2.82× 86.33%
atax 2.40× 2.00× 1.31× 0.85× 2.39× 1.14× 99.58% 0.85× 2.39× 1.30× 99.58% 1.41× 2.40× 1.70× 100%
bicg 1.61× 0.75× 1.27× 0.59× 0.58× 0.49× 36.65% 0.59× 0.58× 0.81× 36.65% 0.59× 1.61× 1.00× 100%
cholesky 1.00× 0.88× 1.00× 0.41× 0.97× 0.55× 97.98% 0.41× 0.97× 0.80× 97.98% 0.41× 0.97× 0.94× 97.98%
correlation 21.1× 2.88× 3.24× 8.98× 10.7× 4.30× 50.81% 8.98× 10.7× 6.43× 50.81% 11.8× 17.8× 10.2× 84.71%
covariance 21.5× 13.0× 3.25× 21.5× 21.5× 5.29× 100% 21.5× 21.5× 5.90× 100% 21.5× 21.5× 9.72× 100%
doitgen 12.5× 4.15× 1.00× 1.06× 3.67× 2.15× 29.34% 1.06× 3.85× 3.23× 30.78% 3.39× 3.95× 5.09× 31.60%
durbin 1.00× 1.00× 1.00× 0.99× 1.00× 0.99× 100% 0.99× 1.00× 1.00× 100% 0.99× 1.00× 1.00× 100%
dynprog 1.01× 0.32× 1.01× 0.61× 0.71× 0.70× 71.72% 0.61× 0.91× 0.84× 91.92% 0.61× 0.91× 0.93× 91.92%
fdtd-2d 2.46× 0.56× 2.12× 0.63× 0.77× 0.70× 31.30% 0.63× 0.77× 1.15× 31.30% 0.77× 2.46× 1.37× 100%
fdtd-apml 7.98× 5.78× 1.00× 4.89× 7.36× 2.56× 92.23% 4.89× 7.36× 3.83× 92.23% 6.35× 7.36× 5.13× 92.23%
gauss-filter 1.83× 1.75× 1.00× 0.57× 1.13× 0.69× 61.75% 0.57× 1.13× 0.94× 61.75% 1.03× 1.13× 1.18× 61.75%
gemm 13.7× 2.74× 1.05× 2.94× 1.49× 1.54× 21.43% 2.94× 2.63× 2.59× 21.43% 2.94× 8.49× 5.43× 61.97%
gemver 1.95× 1.84× 1.44× 0.97× 0.97× 0.69× 49.74% 0.97× 0.97× 0.85× 49.74% 0.97× 1.95× 1.41× 100%
gesummv 2.44× 0.91× 2.42× 1.71× 1.94× 1.34× 79.51% 1.71× 1.94× 1.72× 79.51% 1.94× 1.94× 2.05× 79.51%
gramschm 10.9× 3.86× 1.01× 3.40× 1.00× 2.96× 31.05% 3.94× 1.00× 3.98× 36.30% 3.94× 1.01× 6.61× 36.30%
lu 1.67× 1.16× 1.01× 1.63× 1.15× 0.79× 97.60% 1.63× 1.15× 1.12× 97.60% 1.63× 1.53× 1.40× 97.60%
ludcmp 1.03× 0.96× 1.01× 1.01× 1.01× 1.02× 99.03% 1.01× 1.01× 1.02× 99.03% 1.02× 1.01× 1.02× 99.03%
mvt 1.48× 1.17× 1.00× 0.78× 1.03× 0.53× 69.59% 0.78× 1.03× 0.79× 69.59% 0.83× 1.03× 0.98× 69.59%
reg detect 1.07× 0.52× 1.00× 0.29× 0.29× 0.67× 27.10% 0.29× 0.29× 0.82× 27.10% 0.62× 0.45× 0.97× 57.94%
seidel 9.71× 0.81× 1.00× 0.83× 0.83× 3.39× 8.55% 0.83× 0.98× 4.05× 8.55% 0.98× 7.60× 6.96× 78.27%
symm 1.00× 1.00× 1.00× 1.00× 1.00× 1.00× 100% 1.00× 1.00× 1.00× 100% 1.00× 1.00× 1.00× 100%
syr2k 7.57× 0.25× 7.15× 5.87× 7.14× 2.65× 94.32% 5.87× 7.14× 4.51× 94.32% 5.87× 7.14× 6.63× 94.32%
syrk 9.17× 0.78× 8.84× 3.76× 1.38× 1.99× 41.00% 3.76× 2.52× 2.90× 41.00% 4.62× 9.01× 5.23× 98.26%
trisolv 3.90× 1.40× 1.50× 3.69× 3.69× 1.07× 94.62% 3.69× 3.69× 1.48× 94.62% 3.69× 3.69× 2.18× 94.62%
trmm 1.27× 0.33× 1.00× 0.14× 0.14× 0.43× 11.02% 0.14× 0.14× 0.87× 11.02% 0.14× 1.20× 1.04× 94.49%

Average 6.1× 2.13× 1.98× 3.16× 3.27× 1.61× 64.39% 3.16× 3.43× 2.24× 65.38% 3.50× 4.68× 3.32× 83.18%

the compiler side. Our technique is able to compensate for this
effect, by using simpler (in terms of code structure) polyhedral
optimizations when it is the most profitable.

The 1-shot model can be seen as a non-iterative compilation
scheme: the unseen program is analyzed once to gather its
hardware performance counter values, and the model outputs
the optimization to be applied. This model provides satis-
factory improvements in the majority of cases, however for
about 1/3 of the benchmarks applying the sequence predicted
best will decrease the performance. We believe this model
can be improved. We conducted additional experiments that
includes tuning the learning algorithm parameters (e.g., the
Gaussian parameterγ and the soft margin parameterC for the
SVM), with improvements observed, but there was no single
configuration that was performing best on all two machines.
At this stage, tuning the learning algorithm parameters specif-
ically for each machine remains an alternative. Clustering
the benchmarks may also significantly simplify the learning
problem, preliminary experiments indicate this is a promising
direction.

The 2-shot model provides only a small improvement over
the 1-shot, in contrast the 5-shot model can reach close to 2×
better performance than the 1-shot. On average, SVM performs
better than LR and Random on all machines when considering
the 5-shot model. The 5-shot SVM model reaches on average
85%-89% of the space optimal performance improvement.
This emphasizes the relevance of allowing for a limited
empirical search step, in order to significantly improve the
final performance gain.

We also observe that a pure random search on average let

us discover significant performance improvements, however
almost systematically lower than using LR or SVM. Further-
more, because of the uneven distribution of good points in
the space, Random may fail to draw a good transformation
sequence while the SVM and LR procedures are deterministic.

C. Accuracy of the Prediction

The model we build forLR andSVM predicts the speedup
of a specific polyhedral optimization choice, given the per-
formance counters of the program on which it would be
applied. To estimate the accuracy of the prediction, we showin
Figure 3-4 the performance predicted byLR andSVM for all
candidate optimizations, sorted w.r.t. the actual performance
of the optimizations, for four representative benchmarks.

Figure 3 compares the prediction for the same benchmark
2mm on both tested architectures. First, we observe the rela-
tively low density of best points, represented at the far right of
the plain curveActual. This emphasizes the search problem is
not trivial, and plain random techniques have a low probability
in average to discover the optimal points. Regarding the
prediction, we observe in both cases for SVM numerous spikes
of predicted best points. A careful observation shows a slight
difference in the speedup predicted for all spikes, leadingto
the highest spike for E5620 to correspond to one of the optimal
best point; while for E7450 the 4 highest spikes do not achieve
more than 2.38× improvement. This pattern is representative
of several benchmarks: the models predicts a fraction of the
search space to be potentially optimal, represented by those
spikes. We have observed that in most cases a nearly optimal
point is in the five first, however there are cases such asgauss-
filter for which only the 9th spike achieves the optimal speedup,



TABLE II
PERFORMANCEIMPROVEMENTS FORINTEL XEON E7450 (BASELINE: ICC 11.0 -FAST)

1-shot 2-shot 5-shot
Benchmark Opt Poly ICC LR SVM R %Opt LR SVM R %Opt LR SVM R %Opt

2mm 13.1× 3.67× 1.00× 1.67× 2.38× 2.77× 21.00% 1.67× 2.38× 5.13× 38.89% 12.96× 12.54× 9.32× 98.26%
3mm 12.1× 2.17× 1.00× 2.17× 1.32× 1.36× 17.89% 2.17× 11.7× 2.93× 96.62% 2.88× 11.7× 5.37× 96.62%
adi 3.28× 2.65× 1.33× 2.37× 0.42× 1.37× 72.26% 2.37× 0.42× 2.12× 72.26% 2.37× 0.46× 2.87× 72.26%
atax 1.96× 1.80× 1.00× 1.20× 0.22× 0.67× 61.22% 1.20× 0.22× 1.14× 61.22% 1.20× 0.22× 1.54× 61.22%
bicg 1.66× 1.01× 1.00× 1.54× 1.06× 0.84× 92.77% 1.54× 1.06× 1.08× 92.77% 1.66× 1.06× 1.40× 100%
cholesky 1.00× 0.98× 1.16× 0.61× 0.98× 0.76× 98.99% 0.61× 0.98× 0.79× 98.99% 0.62× 0.98× 0.93× 98.99%
correlation 36.6× 36.6× 12.3× 36.6× 20.2× 12.1× 100% 36.6× 33.6× 13.3× 100% 36.6× 33.6× 22.2× 100%
covariance 36.9× 11.0× 9.87× 24.5× 24.5× 8.50× 66.30% 24.5× 24.5× 16.5× 66.30% 36.2× 34.2× 25.7× 98.18%
doitgen 18.3× 5.21× 1.00× 6.91× 1.61× 2.37× 37.78% 6.91× 5.64× 2.94× 37.78% 6.91× 5.64× 5.35× 37.78%
durbin 1.00× 1.00× 1.00× 0.99× 1.00× 1.00× 100% 0.99× 1.00× 1.00× 100% 1.00× 1.00× 1.00× 100%
dynprog 1.00× 0.41× 1.00× 0.64× 0.96× 0.75× 96.97% 0.64× 0.96× 0.84× 96.97% 0.64× 0.96× 0.92× 96.97%
fdtd-2d 3.06× 1.71× 2.95× 1.71× 1.71× 1.16× 55.88% 1.71× 2.06× 1.43× 67.32% 1.71× 3.06× 1.94× 100%
fdtd-apml 6.25× 3.01× 1.00× 3.85× 3.30× 1.88× 61.60% 3.85× 4.41× 3.02× 70.56% 3.85× 4.41× 4.02× 70.56%
gauss-filter 1.06× 0.94× 1.00× 0.35× 0.35× 0.55× 33.01% 0.35× 0.35× 0.65× 33.01% 0.35× 0.35× 0.71× 33.01%
gemm 11.6× 3.90× 1.00× 3.43× 2.78× 1.39× 29.54% 3.43× 2.78× 3.68× 31.70% 3.43× 11.0× 6.27× 95.00%
gemver 2.68× 2.29× 1.14× 2.18× 2.59× 1.08× 96.64% 2.18× 2.59× 1.81× 96.64% 2.67× 2.64× 2.26× 99.63%
gesummv 1.45× 0.68× 1.44× 1.24× 0.84× 1.02× 85.52% 1.24× 0.84× 1.21× 85.52% 1.24× 0.92× 1.27× 85.52%
gramsch 4.34× 2.91× 2.61× 0.83× 0.83× 1.60× 19.12% 0.83× 0.83× 1.84× 19.12% 1.09× 1.09× 2.74× 25.11%
lu 7.24× 3.15× 1.15× 0.43× 0.43× 1.70× 5.93% 0.43× 0.96× 2.63× 13.25% 0.96× 1.84× 4.19× 25.41%
ludcmp 1.00× 0.99× 1.00× 0.99× 0.99× 0.99× 99.00% 0.99× 0.99× 1.00× 99.00% 0.99× 1.00× 1.00× 100%
mvt 1.75× 1.70× 1.00× 1.73× 1.73× 0.97× 98.86% 1.73× 1.73× 1.02× 98.86% 1.73× 1.73× 1.63× 98.86%
reg detect 1.11× 0.80× 1.05× 0.12× 0.05× 0.42× 37.84% 0.31× 1.02× 0.73× 91.89% 0.31× 1.06× 1.02× 95.50%
seidel 9.92× 1.54× 1.00× 9.45× 9.45× 2.52× 95.26% 9.45× 9.45× 3.62× 95.26% 9.45× 9.45× 5.84× 95.26%
symm 1.02× 1.00× 1.02× 0.83× 0.83× 0.93× 81.37% 0.83× 0.83× 0.95× 81.37% 0.83× 0.83× 1.00× 81.37%
syr2k 22.7× 22.7× 22.7× 22.7× 22.7× 6.91× 100% 22.7× 22.7× 8.87× 100% 22.7× 22.7× 18.4× 100%
syrk 19.7× 9.10× 19.6× 7.85× 2.14× 2.94× 39.77% 7.85× 3.18× 7.04× 39.77% 7.85× 19.6× 8.58× 99.09%
trisolv 1.97× 0.98× 1.00× 1.26× 1.26× 0.85× 63.85% 1.26× 1.26× 1.24× 62.94% 1.26× 1.42× 1.38× 72.08%
trmm 1.16× 0.65× 1.03× 0.40× 0.04× 0.57× 34.48% 0.40× 0.04× 0.84× 34.48% 0.40× 0.99× 1.00× 86.11%

Average 8.04× 4.48× 3.38× 4.91× 3.77× 2.14× 64.42% 4.92× 4.91× 3.19× 70.80% 5.82× 6.60× 4.99× 82.95%
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Fig. 3. 2mm Prediction for Xeon E5620 (left) and Xeon E7450 (right)

as shown in Figure 4.

In general, LR prediction follows the prediction of SVM,
but with a smoother behavior. This is particularly shown in
Figure 5. For such situation, LR simply fails to differentiate
enough between all the variants in the search space, and is
unable to isolate the best sequences: the obtained speedup tops
at 11.8× with LR, while it reaches 17.84× with SVM.

We also confirmed the need to create models for each archi-
tecture to be considered. Different shapes of the performance
distribution indicate that the quantity of good performing
transformation sequences vary from one architecture to the

other. In addition, the back-end compiler is part of the problem
and may trigger different optimization heuristics for different
architectures, and we observed the compiler optimization flow
is extremely hard to predict and can easily be disturbed
by a high-level transformation. Learning a model for each
architecture is a valid alternative to circumvent those issues.

Discussions:We also investigated using a 10-shot SVM
model, which takes the ten predicted best sequences and
evaluate all of them. This 10-shot model improves the per-
formance by reaching an average 95% of the search space
optimal performance improvement. It also helped improving
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the performance of the more problematic benchmarks such as
doitgen or gemm and reached the space optimal performance
for those.

As a future work, we will also investigate clustering the
benchmarks into several categories to simplify the learning
process and improve the overall prediction quality on each
cluster. However preliminary results indicates an efficient
clustering corresponds to isolating the benchmarks on which
tiling in our framework prevents ICC from performing the
same optimizations as without it, thereby emphasizing the
sensibility of the clustering to the back-end compiler features.
If such pattern is confirmed, it opens the research problem of
how tocharacterizethe compiler optimization features, and to
integrate the result into the performance models.

V. RELATED WORK

In recent years, considerable research has addressed iterative
compilation and its benefits have been reported in several pub-
lications [22], [10], [11], [15], [19], [1]. Iterative compilation

has been shown to regularly outperform the most aggressive
compilation settings of commercial compilers, and it has often
been comparable to hand-optimized library functions [39],
[16], [33], [38].

Deciding the enabling or disabling of loop unrolling was
done by Monsifrotet al. [26] using decision tree learning, and
was one of the early efforts on using machine learning to tune
a high-level transformation. Kulkarni et al. [23] introduced a
system that used databases to store previously tested code,
thereby reducing running time. They also disabled some
optimizations that did not seem to improve the running time of
the kernel. These techniques are very expensive and therefore
only effective when programs are extremely small, such as
those used in embedded domains. Cooper et al. [10] used
genetic algorithms to address the compilation phase-ordering
problem. They were concerned with finding “good” compiler
optimization sequences that reduced code size. Their technique
was successful in reducing code size by as much as 40%.
However, their technique is application-specific — a genetic
algorithm had toretrain for each program to decide the best
optimization sequence for that program.

An innovative approach to iterative compilation was pro-
posed by Parello et al. [29] where they used performance
counters at each stage to propose new optimization sequences.
The proposed sequences were evaluated and the measured
performance counters with them were used to choose new
optimizations to try. Even though this was a very systematic
approach, the time required for this method was almost several
weeks for each benchmark. Our technique does not need to
generate performance counters during each iteration, but in-
stead produces a single model to predict the best optimization
sequences for a program.

Cavazos et al. address the problem of predicting good
compiler optimizations by using performance counters to
automatically generate compiler heuristics [8]. That workwas
limited to the traditional optimization space of the PathScale
compiler. Despite the numerous transformations considered,
the complexity is not cmparable to the restructuring transfor-
mations automatically generated by the polyhedral framework.

Chen et al. developed the CHiLL infrastructure [9], a
polyhedral loop transformation and code generation frame-
work. Tiwari et al. [35] coupled the Active Harmony search
engine to automatically tune some high-level transformation
parameters, such as tile sizes. In this paper we target quitea
different search space, going tuning the individual parameters
of a transformation: we balance the trade-off between several
possibly contradictory objectives, such as parallelization, data
locality enhancement and vectorization, demonstrating our
results on a variety of benchmarks and machines.

Pouchet et al. performed empirical search to directly find
the coefficients of the affine scheduling matrix in a polyhe-
dral framework. [31]. While the results showed significant
improvements on small kernels, the empirical search needed
up to a thousand runs for larger benchmarks [30]. In this
work, we have abstracted the scheduling matrix behind high-
level polyhedral primitives and the associated cost modelsfor



selecting the enabling transformations, reducing the search
space to only a few hundred possibilities in place of the
billions of possible schedules. This enabled us achieve on
average 85% of the search-space-optimal performance in no
more than 5 runs.

VI. CONCLUSION

The problem of improving performance through compiler
optimization has been extensively studied, in particular to
improve the portability of the optimization process acrossa
variety of architectures. Iterative compilation and machine
learning techniques have been demonstrated as powerful
mechanisms to automatically compute good compiler flags,
improving the speed of the generated program and automati-
cally adapting to the target architecture.

However, in the multi-core era with increasingly complex
hardware, very advanced high-level transformation mecha-
nisms are required to efficiently map the program on the target
machine. Complex sequences of loop transformations are
needed to implement tiling, parallelization and vectorization
all together. While all these optimizations have been studied
independently, in practice they must be combined to optimize
performance.

A modern loop nest optimizer faces the challenge of some-
times contradictory cost models, simply because there is no
single solution that may maximize parallelism, vectorization,
data locality and still achieve the best performance. Very
little work has been done to date in using learning mod-
els for selecting high-level transformations, to drive a loop
nest optimizer that operates on a very rich and complex
search space. Our work is the first to propose the use of
learning models to compute effective loop transformations
in the polyhedral model, encompassing tiling, parallelization,
vectorization and data locality improvement via high-level
primitives. To determine the best loop transformations fora
program, we decompose the problem into (1) searching for
the best sequence of high-level polyhedral primitives (e.g.,
tiling, vectorization, etc.); and (2) using static cost models to
compute the final sequence of elementary loop transformations
that implement those primitives.

In this work, we leverage the power of the polyhedral
transformation framework to automatically build very complex
sequences of transformations, enabling tiling and paralleliza-
tion transformations on a wide range of numerical codes.
To select an effective optimization in this space, we have
implemented a speedup predictor model that correlates the run-
time characteristics of a program (modeled with performance
counters) with the speedup expected from a given polyhedral
optimization (modeled with a sequence of high-level primi-
tives). We evaluated our approach using two machine learning
algorithms, linear regression and support vector machine,on
a variety of benchmarks and two multi-core machines. For
the test suite, the best points in our optimization search space
yield an average 8× speedup (with peaks of up to 36×) over
ICC on an Intel Xeon E7450. Using the predictive machine
learning models, testing at most five candidate optimizations

on the target machine, we achieve an average speedup of 6.6×
over the Intel ICC compiler, which corresponds to an average
of 83% of the best possible performance among all points in
the entire search space,
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