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Efficient Out-of-core and Out-of-place
Rectangular Matrix Transposition and Rotation

Paul Godard, Vincent Loechner, Cédric Bastoul

Abstract—Modern computers keep following the traditional model of addressing memory linearly for their main memory and
out-of-core storage. While this model allows efficient row access to row-major 2D matrices, it introduces complexity to perform efficient
column access. A common strategy to improve these accesses is to transpose or rotate the matrix beforehand, thus the accessing
complexity is centralized in one transformation operation. Further column accesses are performed as row accesses to the transposed
matrix therefore they are optimized to the memory model. In this paper, we propose an efficient solution to perform in-memory or
out-of-core rectangular matrix transposition and rotation by using an out-of-place strategy, reading a matrix from an input file and
writing the transformed matrix to another (output) file. An originality of our processing algorithm is to rely on an optimized use of the
page cache mechanism. It is parallel, optimized by several levels of tiling and independent of any disk block size. We evaluate our
approach on five common storage configurations: HDD, hybrid HDD-SSD, SSD, software RAID 0 of several SSDs and NVMe. We show
that it brings significant performance improvement over a hand-tuned optimized reference implementation developed by the Caldera
company and we confront it against the baseline speed of a straight file copy.

Index Terms—out-of-core, out-of-place, matrix transposition, matrix rotation, SSD, NVMe
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1 INTRODUCTION

E FFICIENT out-of-core matrix transposition and rotation
is of utmost importance in many applications, e.g.,

FFT, K-Means clustering or image processing. The volume
of data handled by precise simulations and high resolu-
tion pictures is in constant growth with the increase of
computing power and storage size, both in main memory
and secondary storage. The well-known class of out-of-core
problems manipulates data that do not fit in memory.

The matrix transposition problem has been extensively
tackled by previous research [1], [2], [3], [4], [5], [6], [7].
The traditional model of addressing memory is linear and
benefits from spatial locality (in data blocks, to exploit hard
drive and file system mechanisms or at a smaller granularity
in caches), therefore row accesses benefit from row-major
storage and column accesses benefit from column-major
storage. For a given algorithm, it is essential for performance
to decide how to store a matrix: in row-major or in column-
major format. However, if an algorithm or a whole program
requires both row accesses and column accesses to a given
matrix, it may be useful to store the matrix in both formats.
The transposition converts a matrix from one format to the
other and centralizes the problem of inefficient accesses into
this single part of the program.

The matrix 90 degrees clockwise rotation problem is
related to the transposition problem: a rotation is a trans-
position combined with a horizontal reflection (see Fig. 1);
hence the only difference is the reverse order of the elements
in the destination rows (in row-major format). Such rotation
algorithms are common in image manipulation problems,
for example to convert a landscape image to portrait or the
other way around for appropriate processing or printing. In
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the following of this paper, a matrix transformation refers to
either matrix transposition or rotation.

Our primary target is efficient matrix transformation in
the context of deep image processing pipelines for high-
definition professional printing. After rasterization, we ma-
nipulate rectangular bitmap images with a typical data size
of dozens of GB. As the raster image processor runs on off-
the-shelf hardware, our data is typically too large to fit in
main memory but easily fits twice in secondary storage.
This situation may hold in other contexts where a user
manipulates large datasets organized as matrices.

We address the problem of out-of-place matrix trans-
formation where the input matrix is given as a file on
secondary storage and the user wants to generate the trans-
formed output matrix as a new file on secondary storage. It
opposes to in-place transformation, where the original file is
modified incrementally up to turn into the output matrix.

The secondary storage technology significantly evolved
recently with the popularization of flash memory drives
(SATA/SSD and NVMe). Compared to a traditional hard
disk drive (HDD) requiring the actuator arm to move and
the disk to spin, a flash memory has no moving component.
It is much faster and permits efficient random accesses,
although sequential writes are more efficient than random
writes to some extent.

We propose a new algorithm to perform out-of-core and
out-of-place rectangular matrix transformation that is very
efficient on SSD, SSD based RAID 0 and NVMe. At coarse-
grain, it is a tile-by-tile source file reading and destination
file writing that benefits from the operating system efficient
page cache implementation, enforced by some standard
POSIX system calls. The fine grain computation is done by
prioritizing contiguous data writes, in parallel and strip-
mined for efficient cache usage and automatic vectoriza-
tion. We present experimental evidence that our algorithm
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(a1) Original Layout (b1) Rotated Layout (c1) Transposed Layout

y: row index

x: column index

for ( x = 0 ; x < W; x++)
for ( y = 0 ; y < H; y++)

dst [ x ] [ y ] = s r c [H−1−y ] [ x ] ;

for ( x = 0 ; x < W; x++)
for ( y = 0 ; y < H; y++)

dst [ x ] [ y ] = s r c [ y ] [ x ] ;

(a2) Original Position (b2) Naive Rotation (c2) Naive Transposition

i = yW + x i
′
= (iH + H) mod (HW + 1) − 1 i

′
=

{
HW − 1, if i = HW − 1
iH mod (HW − 1), otherwise

(a3) Original Index (b3) Rotation Mapping (c3) Transposition Mapping

Fig. 1. Matrix Rotation and Transposition: data layout transformation examples, naive codes and linear mappings for H ×W matrices

reaches near the speed of a simple file copy.
The general problem is presented in Sec. 2. We give some

related work in Sec. 3. In Sec. 4 we present our solution, and
we describe the benchmarks in Sec. 5. Finally, we conclude
and discuss future work in Sec. 6.

2 PROBLEM STATEMENT

This section presents the background of our work. It details
our notations and general assumptions, then it reviews the
matrix transposition/rotation problems and provides some
characteristics of the memory systems we are addressing.

In this work we consider a H ×W source matrix src,
where each element is specified using zero-based indexing,
i.e., the first element is src[0][0] and the last element is
src[H-1][W-1]. Elements are stored contiguously accord-
ing to a row-major organization: rows are stored one after
the other. We address general rectangular matrices without
specific size constraints or padding.

Given a H ×W matrix src, a rotation is a data layout
transformation so that the matrix is rotated by 90 degrees:
elements of Fig. 1(a1) are rearranged to Fig. 1(b1). A trans-
position is a related data layout transformation so that each
row (resp. column) is transformed to a column (resp. row):
elements of Fig. 1(a1) are rearranged to Fig. 1(c1). Rotated
and transposed matrices differ only by a reversal of their
rows. Naive kernels to perform these operations are shown
in Fig. 1(b2) and Fig. 1(c2). They implement a mapping
transformation associating to each index of the original
layout a new index in the output layout. The mapping
formulas are presented in Fig. 1(b3) and Fig. 1(c3).

When the matrices are too large to fit in the main mem-
ory, they come as files stored on a secondary storage, either
a traditional spinning hard drive (HDD), a flash memory
drive (SSD, NVMe) or even several of them striped in a
RAID 0 logical unit. On the one hand, random accesses on
HDDs are much slower than sequential accesses because
moving the mechanical arm is extremely slow. On the other
hand, flash memory drives provide an efficient support for
random accesses with an asymmetry between read and
write accesses, write accesses being slower. Our context

makes it significant to provide efficient solutions in all these
cases despite their different properties. In particular, since
both device families are block-based, an efficient manage-
ment of blocks is of utmost importance.

Most modern operating systems provide an abstraction
layer to access block devices data [8]. This abstraction offers
both portability and automatic optimization to access these
slow devices. In the Linux kernel, by default, all block
devices are accessed through the main-memory page cache.
The page cache system improves data reuse, speeds up
writes by executing these operations on cached data and
speeds up further reads with speculative read ahead.

While the page cache improves the performance of a
wide range of applications, they are harmful to the naive
out-of-core matrix transformations. They drastically in-
crease the amount of data transferred from and to the disks
since data locations, contained in many different pages, are
accessed successively thus causing many page faults and
synchronizations. The resulting poor performance is visible
in our experiments in Sec. 5.

3 RELATED WORK

For in-memory problems, naive implementations of matrix
rotation/transposition lead to poor data locality and non-
optimized accesses. For out-of-core problems, they lead to a
large amount of costly I/O operations. Due to its impor-
tance, the matrix transposition optimization problem has
been widely addressed in previous work.

We may distinguish two classes of techniques to address
out-of-core transposition. The first one is block matrix trans-
position. Its basic idea is to consider the matrix as a block
matrix where each block can fit in memory, transpose the
individual blocks in memory then transpose the block ma-
trix [2], [9]. The second one is multistage matrix transposition,
first introduced by Eklundh [1] for in-place transposition:
at each stage a given number of rows are read to memory
where appropriate elements are rearranged, then the rows
are written back to external memory. After a number of
stages, the matrix is fully transposed with an optimized
number of disk accesses. Kaushik et al. [2] improved Ek-
lundh’s approach by combining reads to reduce the number
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of I/O operations. Suh and Prasanna [5] further improved
out-of-place transposition by scheduling and balancing I/O
operations and by collecting data to buffers with simple
access patterns to reduce the index computation time. Krish-
namoorthy et al. [3], [6] exploited I/O characterization and
parallelism in the context of distributed matrices. Our work
pertains to the block matrix class of solutions. Differently
from existing approaches, we exploit the memory paging
provided by the operating system to organize the writing
operations, and thus benefit from the low-level operating
system disk accesses optimizations.

Optimizing the in-memory part of out-of-core transpo-
sition may lead to second order yet non-negligible per-
formance improvement. Gustavson et al. [7] presented an
efficient parallel approach for in-place transposition of rect-
angular matrices using a greedy determination of cycle
leaders to achieve load balancing and compete with out-of-
place conversion. Zekri [4] exploited vector instructions to
optimize the transposition very internal part. Our technique
exploits parallelism by achieving a parallel block processing
and parallel writes to virtual memory that completely hides
the in-memory processing time. The compiler automatically
generates vector instructions when the appropriate opti-
mization flags are set. So both these concerns are included
and improved by our method.

Most existing out-of-core transposition strategies sup-
pose that matrices are stored on HDD with their specific per-
formance issues, such as poor random access performance.
Shao et al. [10] avoid rotational latency and minimize the
access time of neighboring dataset blocks by using a data
placement strategy providing efficient semi-sequential ac-
cesses along the outer dimensions of a multidimensional
array. Thonangi and Yang [11] exploit SSD characteristics
such as efficient random access and asymmetry between
read and write operation performance to address general
data permutations. Since it manages I/O operations explic-
itly, this solution depends on the SSD characteristics to be
efficient, while we exploit the operating system for a better
performance portability. Moreover, the general nature of
their technique, based on key-value pairs, uses extra data
structures and makes it less efficient at solving simpler spe-
cialized processing such as matrix transposition or rotation.

4 EFFICIENT TRANSPOSITION AND ROTATION

In this section, we detail which optimization we apply to
the naive code in Fig.1(b2): how to choose the iteration
execution order, where to tile and to parallelize, how and
when to read the input file and to write the output file.

4.1 Preliminary ideas

The first observation is that the naive loop nest does not
carry any dependence so we are entirely free to reorder it by
applying any transformation. In our case we will be using
tiling, interchange, strip mining and parallel loops.

The first idea of avoiding reading the entire input file in
memory and writing it back to the disk after transformation
is obvious: if the file is larger than the available memory,
this will induce paging and page faults that drastically limit
performance. The input will be read as successive parts

using a temporary fixed size buffer. As a consequence, the
original loop nest should be tiled and each tile execution will
first read a part of the input file, perform the transformation
and then write the corresponding part of the output file.

The second idea is that ordered writes are much more
efficient than out-of-order writes. We observed in a few
experiments that writing in order to the output file matters
much more than reading in order from the input file for the
best performance on SSD drives, which corresponds to the
expected behavior: random access reads are efficient on SSD
drives, contrary to random writes. On HDD drives ordered
writes should be slightly favored over ordered reads but
the difference in performance is smaller than on SSD drives.
For the best performance, the algorithm should write the
dst array to the output file roughly in order.

Finally, in another preliminary experiment we observed
that writing an output file through its memory mapping
(achieved using POSIX’s mmap function) has the same per-
formance as explicit writes from an intermediate buffer. As
detailed at the end of this section, some standard POSIX
parameters have to be set for this to perform best. This
policy allows us to avoid taking care about writing the file
explicitly: the output file simply has to be mmap’ed to the
destination buffer and the operating system will manage
it efficiently and using a minimal amount of memory. By
writing each data to the destination buffer only once and in
sequential order, we maximize the probability that the oldest
pages are complete when the page replacement algorithm
will write them to the output file and unmap them from
memory. This strategy permits the operating system to
schedule the disk accesses in an efficient way. Another ben-
efit of mmap is that we spare an extra buffer for a temporary
destination array, or the need to perform complex memory
copies in an in-place memory transformation.

The input file is explicitly read into a buffer and not
mmap’ed like the output file, for two reasons: (a) to avoid
the many and costly page faults interruptions due to the
column-major access pattern of the input file; and (b) to
separate (explicit) reads from (implicit) writes. This separa-
tion allows our algorithm to alternate reading and writing,
which simplifies operating system’s I/O scheduling.

4.2 Main algorithm

In order to control the maximum size of a memory buffer,
the original x,y loop nest of Fig.1(b2) has to be tiled to
divide the dst array in fixed-sized rectangular tiles. The
tiles are then scanned in the same order (x-outer loop).

The tile size along the y dimension should be larger than
the tile size along x in order to favor contiguous writes. To
compute the tile sizes, we first divide the amount of memory
taken by the array by the limit of available memory to get
the minimal number of necessary tiles. Then the tile size in
each dimension is determined by favoring a large y_tile
size over a smaller x_tile size. We conducted experiments
on a 8 GB main memory platform and various matrix
configurations reported in Tab. 1 (see Sec. 5 for details).
On SSDs, these experiments suggest to select the maximal
possible y_tile size, i.e. the matrix height H, as shown in
Fig. 2a. This figure shows that the baseline y_tile=H is on
average better than the other values. This is the best choice
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TABLE 1
Matrix Characteristics

Name Abbreviation Width Height Ratio (w/h)
horizontal 8 GB h8 125k 64k 1.95

vertical 8 GB v8 64k 125k 0.51
horizontal 16 GB h16 200k 80k 2.50

vertical 16 GB v16 80k 200k 0.40
horizontal 32 GB h32 256k 125k 2.05

vertical 32 GB v32 125k 256k 0.49
horizontal 64 GB h64 400k 160k 2.50

vertical 64 GB v64 160k 400k 0.40
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Fig. 2. Average speedup for different tile sizes with respect to our
selected choice as baseline, with a 1 GB src buffer on different matrix
shapes (horizontal and vertical) and sizes (from 8 to 64 GB, see Tab. 1)

because it favors ordered writes over ordered reads. On
HDDs a y_tile:x_tile ratio of 4:1 is the best compromise
we have found in our experiments, as shown in Fig. 2b. The
baseline 4:1 is on average better than the other ratios. In this
configuration ordered reads also affect performance, but to
a lower extent (about 4 times less than ordered writes).

Each tile execution starts by reading the necessary input
data: a (y_tile × x_tile) rectangle is loaded from the
input file into an allocated src buffer:

/* (x_tile, y_tile) = size of the current tile */
/* (bx, by) = current tile coordinates */
/* assuming the arrays contain bytes */
for ( s i z e t y=0 ; y<y t i l e ; y++) {
/* input line position (by+y) in reverse tile

order */
/* for the transposition use: (by+y) * W + bx */
o f f t o f f s e t = (H−1−(by+ y t i l e−1−y ) ) ∗ W + bx ;
l s e e k ( s r c f i l e , o f f s e t , SEEK SET ) ;
read ( s r c f i l e , &s r c [ y ] [ 0 ] , x t i l e ) ;

}

Then we transform the intra-tile loops to take advantage
of parallelism, cache locality and SIMDization. The global
order of a single y loop is preserved while tiling the x-
loop around the y-loop as a parallel outer loop and an
inner sequential loop. We get the parallel_outer_x - y -
inner_x order:

/* (x_tile, y_tile) = size of the current tile */
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Fig. 3. Speedup due to the use of posix_fadvise with a 1 GB src
buffer, on different matrix shapes and sizes (from 8 to 64 GB, see Tab. 1)

/* X loop */
#pragma omp p a r a l l e l
#pragma omp for schedule ( s t a t i c , PAR BLOCK)
for ( s i z e t outx =0; outx<x t i l e ; outx+=INNER X){

const s i z e t inmaxx=MIN( outx+INNER X, x t i l e ) ;
/* Y loop */
for ( s i z e t y=0 ; y<y t i l e ; y++ )
/* X inner loop */
for ( s i z e t inx=outx ; inx<inmaxx ; inx++ )
/* (bx, by) = current tile coordinates */
/* for the transposition use: src[y][inx] */
dst [ bx+inx ] [ by+y ] = s r c [ y t i l e−1−y ] [ inx ] ;

}

The advantages of this loop transformation are the fol-
lowing. The accesses to the src array take advantage of
spatial locality and are vectorized by the compiler. The dst
array is accessed INNER_X times (in different locations) by
the outx and y loops. When y changes, it benefits from
spatial locality. In our experiments an INNER_X tile size
accessing 64 bytes of array data has been determined to
perform best probably because it accesses one L1 cache line
on our experimental platform. The PAR_BLOCK parameter
controls the parallel granularity of the outer loop: each
thread writes PAR_BLOCK × INNER_X successive rows in
the file. We experimentally determined that PAR_BLOCK=4
performs best on our platform, but its influence is very low.
PAR_BLOCK and INNER_X would require adjustment on
significantly different platforms since their impact depend
on both the hardware and the operating system.

4.3 Fine-tuning
We evaluated an explicit synchronization at the end of each
tile execution with an explicit call to fsync() to avoid
asynchronous writes conflicting with the next tile reads.
However we found out it was not necessary since the
operating system is smart enough not to write the dirty
pages to disk during the following reads.

In our final implementation, we use some POSIX system
calls to ensure the best performance of file accesses. A
fine grain advice is given using posix_fadvise(...,
POSIX_FADV_WILLNEED) to limit the read aheads to the
parts of the input file lines contained in the current tile.
Multiple advises are called before the effective read’s in
order to maximize the benefit of read ahead mechanism.
This is done by groups of 64 successive advices followed by
64 reads that is handled efficiently by the Linux operating
system in our experiments.

The speedup due to the use of these posix_fadvise
calls is shown at Fig. 3 in some representative cases pre-
sented in detail in Sec. 5: the horizontal axis represents
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different matrix sizes from 8 to 64 GB and for each storage
configuration (HDD, SSD, RAID). As expected gains on
HDD are not very important and are decreasing when
the matrix size increases since the overhead of the HDD
moving arm is the main limitation in this case. On SSD and
RAID, we reach impressive speedups of more than 4x and
7x (respectively) on average, thanks to the low latency of
random accesses on these devices.

The last two optimizations that we made are the
following. The output file is directly mapped to mem-
ory on the dst array using a mmap() call. Then the
system is said to perform aggressive sequential pages
read ahead and writes using posix_madvise(...,
POSIX_MADV_SEQUENTIAL). In this way, we ensure that
the memory is not polluted by pages of the dst ar-
ray that will not be accessed again. Finally, the src
buffer is said to be kept in main memory by a call to
posix_madvise(..., POSIX_MADV_WILLNEED).

4.4 Hybrid HDD-SSD transformation
When transforming a matrix from an input file stored on
HDD to an output file stored on the same HDD, it can
be useful to use a secondary SSD drive as a bridge. This
basic idea indeed outperforms the direct transformation on
the same drive, despite its overhead due to an extra file
copy. The gain comes from (a) reading a file on one drive
while writing on another avoids any conflict between reads
and writes, and (b) the transformation itself is much more
efficient when using an SSD.

There are two alternative ways of realizing this hybrid
transformation:

1) perform the transformation when transferring the
file from HDD to SSD and then copy the resulting
file back to SSD: HDD T→ SSD→ HDD;

2) copy the original file from HDD to SSD without any
modification and then perform the transformation
during the transfer back from SSD to HDD: HDD→
SSD T→ HDD.

As expected, the most efficient solution is the second one.
During the first straight copy, both files are accessed se-
quentially so we perform ordered reads on HDD on one
side and ordered writes on SSD on the other. During the
transformation phase, we perform random read accesses to
the SSD and mostly ordered writes to HDD. Since random
accesses on SSD are more efficient than on HDD and since
random read accesses are more efficient than random write
accesses on SSD, this is obviously the best solution.

Nevertheless we experimented both solutions and mea-
sured their speedup compared to the baseline HDD to HDD
transformation time. The results are presented in Fig. 4, in
the same condition as in the previous figure: the horizontal
axis corresponds to different matrix sizes and shapes and
the buffer size is 1 GB. The average speedup of solution (1) is
1.8× and for solution (2) it is 4.3×. The second solution is the
one that we implemented and which results are shown and
discussed in the next section (this HDD-SSD configuration
is named “hybrid configuration”).

The final user can expect an acceleration of up to 8.7×
when using a bridge SSD drive for performing the out-of-
place transformation of a matrix stored on HDD.
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Fig. 4. Speedup due to the use of hybrid HDD-SSD configuration against
single HDD with a 1 GB src buffer, on different matrix shapes and
sizes (from 8 to 64 GB, see Tab. 1)

TABLE 2
Maximal read and write transfer rates (MB/s)

HDD SSD RAID 0 (4 SSD) NVMe
Reading speed 135 535 1700 1500
Writing speed 125 310 1200 1200

5 BENCHMARKS

5.1 Hardware Setup
We evaluated the benchmarks on five platforms with dif-
ferent storage configurations. Platform HDD has a single
HDD, hybrid an HDD and an SSD, SSD has a single SSD,
RAID 0 a software RAID 0 of four identical SSDs managed
by the mdadm1 tool, and NVMe has a single NVMe SSD. The
filesystem is ext4 in all configurations. The disks are:

• a 1 TB HDD at 7200RPM “HGST Travelstar 0J22423”;
• four 256 GB SATA/SSDs “Transcend SSD370S”;
• a 1 TB NVMe “PC601 SK hynix M.2”.

Table 2 presents the maximal read and write transfer rates
that we measured for each drive type, by sequentially ac-
cessing large chunks of data using the dd command.

The four first platforms are equipped with an Intel
Xeon D-1521 and 8 GB of DDR4 RAM at 2133 MT/s. The
NVMe platform has an Intel Core i9-9900 and 16 GB of
DDR4 RAM at 2666 MT/s. They run Ubuntu 18.04.1 LTS
with Linux kernel 4.15.0-43-generic. Gcc version 7.3.0 with
options -O3 -fopenmp is used to compile the programs.

5.2 Protocol
Several runtime optimizations are provided by default by
the kernel in order to improve the performance of the disk
accesses [8] primarily based on making a cache system by
exploiting unused RAM.

This is why duration or speed measures of disk-access
bounded programs are highly affected by the cache used
by the kernel for recently accessed files. Hence, before each
of our run we explicitly clear this cache through the kernel
interface2 and instruct to write any data buffered in memory
out to disk with an explicit sync command; this sync
operation is also performed at the end of each benchmark
and just before collecting the execution time. In this way, the
benchmarks run from a clean and reproducible state.

1. Linux software raid.
2. echo 3 >/proc/sys/vm/drop_caches
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Fig. 5. Execution time of cp on different drive types

5.3 Measurements

Table 1 presents the characteristics of the different bench-
marks. The matrix sizes are selected from the main memory
size (8 GB) up to 8 times its size (64 GB). Since the matrices
are rectangular, they are tested in both orientations. Their
width over height ratio is chosen to create a rectangle
around twice wider (horizontal) or narrower (vertical).

We compared three different implementations to per-
form the matrix rotation:

• Simple implements the naive algorithm presented
in Fig. 1(b2), by performing the rotation element by
element with two nested loops reading from and
writing to mmap’ed files;

• Caldera is a hand-tuned application developed by
the Caldera company to achieve a fast rotation of
out-of-core pictures represented by a matrix per color
channel. This professional implementation uses an
out-of-core and out-of-place technique minimizing
the amount of data read from the input file and per-
forming an in-memory tiled rotation to maximize the
sequential data writing. This reference implementa-
tion is in use in the CalderaRIP V12.0 software3 ;

• MaRTOO (Matrix Rotation and Transposition Out-
of-core Out-of-place) is our solution exploiting the
algorithm presented in Sect. 4.

We did not find any other easily available optimized im-
plementation of rectangular out-of-core out-of-place matrix
transformation.

Unlike the simple implementation, both Caldera and
MaRTOO require a buffer to perform partial rotation in-
memory before writing it to the output. We ran experiments
with three buffer sizes: 35 MB, 1 GB and 5 GB. These sizes
match a very low memory usage, a regular one and a greedy
one on our experimental platform, allocating up to 5 GB of
the available 8 GB and leaving only 3 GB to the operating
system (including the page-cache).

We used the cp program as a baseline for the execution
time. The cp command performs a strict duplication of
a file which is perfectly comparable to our out-of-place
approach without rotation processing. We used the standard
version of cp without any option from the GNU coreutils
8.284 provided by default on various Linux distributions.
The execution time of cp is collected with the same care
of a clean and reproducible state as presented above. We
checked that the execution time of cp is linear in the file

3. https://www.caldera.com
4. https://www.gnu.org/software/coreutils/

size on each drive type as shown in Fig. 5. We also observe
that cp provides a throughput corresponding to the transfer
rates observed in Table 2 (for reading the matrix and writing
it back) which reflects its quality as a reliable baseline.

In our experiments the matrix elements are one byte long
which corresponds to one channel of one pixel of an image.
In this way the matrix size in bytes is equal to the number
of elements to process. Our preliminary experiments have
shown that changing the data size while keeping the same
quantity of processed data does not impact the execution
times. The results presented in this section are consistent
among various matrix data types or sizes.

We observed the amount of data read from and written
to the drives by accessing the statistics available through the
/proc/<pid>/io/ interface of the Linux kernel.

5.4 Results

The execution times of our benchmarks in the five configu-
rations are presented in Figures 6–10. Notice that in all these
figures, the Y-axis is logarithmic, in order for the plots to be
compact and easily readable but which flattens the gaps: a
difference of one unit between two bars represents an ac-
celeration of 10×. They compare the three implementations
for different buffer sizes. The baseline is the cp execution
time. The results of the simple implementation and the cp
baseline are reproduced three times in each figure since they
are not dependent on the buffer size.

We did the experiments both on the transposition and
the rotation algorithms but the results show similar behavior
so we only present the rotation here. The missing values for
the simple implementation correspond to execution times
exceeding 10 hours. It shows its limits to process out-of-core
matrices due to the high pressure put on the kernel page
cache, partially accessing many different device blocks. For
example, we observed that it reads up to 64 kB to write one
single byte for v16 in Fig.6!

In the HDD configuration (Fig.6) MaRTOO completes all
benchmarks with a near-linear execution time w.r.t. the
matrix size. When the buffer is very small (35 MB) MaRTOO
has similar performance than the one of Caldera. Due
to the small buffer size, the non-contiguous disk accesses
are unavoidable since we need to read and write the files
in different orders. When the buffer size increases (1 GB
and 5 GB) MaRTOO outperforms Caldera since it has a
higher contiguous versus non-contiguous disk access ratio.
On the matrices h8 and v8 with a buffer size of 5 GB, we
observe that the transformation is almost as fast as the
baseline straight copy. In this particular case, the matrices
are scanned by only two tiles: the input file is scanned (by
the HDD arm) only twice and the output file is written in
order. For larger matrix sizes the number of tiles increases
and consequently the number of times each file has to be
scanned increases too, degrading the performance.

In comparison, Fig. 7 shows the results obtained with the
hybrid configuration. Against the HDD results presented in
Fig. 6, both Caldera and MaRTOO implementations benefit
from using an SSD drive as a bridge. Thanks to more effi-
cient disk accesses, we outperform Caldera for all matrix
and buffer sizes. When using a 5 GB buffer, the execution
time speedup is 3.8× on average and up to 7.9× on large
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Fig. 6. Execution time on HDD configuration (cp: straight file copy time)
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Fig. 7. Execution time on hybrid configuration (cp: straight file copy time)
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Fig. 8. Execution time on single SSD configuration (cp: straight file copy time)
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Fig. 9. Execution time on RAID 0 SSD configuration (cp: straight file copy time)
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Fig. 10. Execution time on NVMe SSD configuration (cp: straight file copy time)
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matrices. Remarkably, we obtain lower execution times with
a 1 GB buffer. It appears that the Linux kernel performs
more efficient disk accesses in this configuration since it has
more page cache available (in the available main memory
of 8 GB): it can flush dirty pages later and thus overlap the
HDD output writes with the SSD input reads.

The results obtained with the SSD configuration pre-
sented in Fig. 8 show about 5× speedup on average for
MaRTOO compared to the Caldera implementation for a
1 GB buffer. MaRTOO performs close to the optimal cp
execution times the higher the buffer size: using a buffer
of 5 GB the matrix rotation is only 10% slower on average
than the straight file copy.

Figure 9 present the results on a RAID 0 of four SSDs.
This plot illustrates that Simple performs even worse for
this configuration. According to our analysis, this is due to
the RAID 0 striping mechanism inducing more aggressive
read ahead, which pollutes the page cache even faster.
Similarly to the single SSD configuration, MaRTOO achieves
near to the cp baseline performance and gets closer to this
baseline the larger the buffer. We outperform Caldera by a
factor of almost 10× on average.

Finally, Fig. 10 presents the results on the single NVMe
platform. Those results resemble the ones of the SSD, since
it is the same flash memory based technology, but four times
faster thanks to the four times faster NVMe throughput.
The difference with the Caldera implementation is even
higher on this platform: on average MaRTOO outperforms it
by 5.7× using a 1 GB buffer. The absolute best performance
of NVMe is similar to the one of the RAID 0 configuration
since they provide similar throughput. One can notice on
this last graph, for a 5 GB buffer size, that our algorithm
slightly outperforms the cp baseline in some cases. This is
probably due to the fact that our algorithm uses multiple
threads to write data to the file and thus achieves to saturate
the NVMe bus, while cp is single-threaded and does not
reach the maximum NVMe throughput.

We measured the effective amount of written and read
data. The effective amount of data written to the drives by
MaRTOO for the 64 GB matrices is close to the output file
size with an average of 6% of writing surplus on the single
HDD configuration and less than 1% on the single SSD and
RAID 0 configurations. The writing surplus is due to the
kernel synchronizing partial block writes. It is higher on
single HDD due to the tiling pattern which generates more
non-contiguous output rows. In comparison, with the same
matrices, the Caldera implementation achieves an average
of 16% of writing surplus on HDD configuration, and 10%
on SSD and RAID 0.

Regarding the effective amount of reads, on the largest
matrices (64 GB) MaRTOO generates an average of 52% (up
to 77%) read surplus on HDD, an average of 20% (up to
32%) on single SSD and an average of 28% (up to 65%)
on RAID 0. The read surplus is due to the unused data
in blocks overlapping the border of the tiles, unused data
read ahead by the kernel and the partial writes mentioned
above which requires reading previously partially written
blocks to complete. In comparison, with the same matrices,
the Caldera implementation achieves an average of 53%
(up to 126%) of read surplus on HDD configuration, 56%
(up to 135%) on SSD, and 64% (up to 194%) on RAID 0.

6 CONCLUSION

This paper presents a new approach to tackle efficient out-
of-core and out-of-place rectangular matrix transposition
and rotation. It relies on a block-matrix strategy with a
parallel, cache-efficient intra-tile processing and an original
in-memory file mapping with an adequate tile scheduling
to exploit efficiently the operating system page cache mech-
anism on a large variety of secondary storage technologies.
Taking advantage of the efficient random read access offered
by flash memory drives while respecting their propensity
for efficient sequential write access, our technique is about
10 times faster than a reference implementation on a RAID 0
SSD configuration and more than 5 times faster on a single
SSD and NVMe configurations. In many cases, its perfor-
mance gets close to the baseline performance of a file copy.

Taking advantage of the operating system provided page
cache mechanism and POSIX calls our proposal offers good
relative independence to the file system or disk low-level
parameters and good performance portability.

Ongoing work aims at improving performance by im-
plementing a better usage of the blocks that are read by
the kernel but not completely used by a tile, i.e., reading
rows dynamically sized to the disk-block boundaries from
the input file and reuse these data.
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