A Flexible and Distributed Runtime System
for High-Throughput Constrained Data Streams Generation

Paul Godard*T, Vincent Loechner!, Cédric Bastoul®, Frédéric Soulier, Guillaume Muller*

*Caldera, France
TUniversity of Strasbourg and INRIA, France

Abstract—Major research topics on parallel and distributed
frameworks focus on reliability, performance and programma-
bility of large scale systems for, e.g., HPC or Big Data. The
solutions proposed are often directly impacted by the large
scale nature of the problems. Differently, high-throughput data
stream generation is an important challenge for many scientific
and industrial applications which is typically well suited for
small to medium scale systems, and which has to respect
specific constraints about, e.g., speed, throughput or output
location. In this paper we present a framework dedicated to
this class of problems. We propose a performance-oriented
runtime system architecture able to generate constrained data
streams issued from jobs dynamically submitted by the user.
Our architecture is designed to scale from a single host to a
medium-sized cluster with large topology flexibility to achieve
high throughput capabilities while being widely adaptive to a
variety of problems. We provide experimental evidence of the
ability of our framework to meet high-throughput constraints
on an industrial use-case, i.e., professional digital printing, that
may require tens of Gbit/s sustained output rates. We show
in our measurements that our system scales and reaches data
rates close to the maximum throughput of our experimental
cluster.

1. Introduction

During the last decade, the big data and HPC community
achieved great results through a multitude of projects to im-
prove data analysis and machine learning. Processing huge
data streams has become particularly accessible. However,
because in most cases these data streams are produced by
sustained IoT devices or user activities, efficient data stream
generation problems have not been studied in depths. Yet
an efficient generation of data streams is the key to allow
innovation in some scientific and industrial fields, such as
running large physics or financial simulations outputting
several data streams, or producing large and high-speed data
streams which are sent to electronic devices, like industrial
robots or wide digital printers.

Beyond the common goal to generate high-throughput
data streams, these use cases bring on other requirements,
for example on their input data, on the computation itself,
or enforce constraints about the generated data streams.

Not likely covered by existing frameworks, some of these
possible requirements are indivisible input, controlled output
speed, and output location.

The main contribution of this work is to propose a flex-
ible, distributed, and scalable framework architecture able
to efficiently perform data streams generation with respect
to the constraints specified by the user, especially about
speed and output location. Our framework implementation
approaches the theoretical limits of our high-speed experi-
mental cluster for the professional digital printing real-world
use case.

The remainder of this paper is structured as follows. In
Section 2 we present the context and the environment in
which our framework can be run. Then, Section 3 describes
its general design, while Section 4 gives further details about
its implementation. Section 5 exposes our experiments, anal-
yses the results and discusses the resulting capabilities of our
framework. Finally, Section 6 details some related work, and
we conclude in Section 7.

2. Context

This section presents the context and the runtime envi-
ronment of the problems addressed by our framework.

2.1. Big Data Versus HPC

Current runtime systems addressing performance chal-
lenges belong to two main areas of expertise: big data
and HPC. Both exploit parallelism to achieve scalability
but through different approaches. On one hand, big data
is mostly data-oriented, its specialized frameworks are de-
signed to be easy to program, to deploy, and to scale
thanks to high level programming [1], [2], [3]. On the other
hand, HPC focuses on efficient computing, with specialized
frameworks designed for performance fine tuning [4], [5].
This is illustrated by the scale out vs. scale up expression [6]
which designates the ability to handle larger problem by
adding storage for big data or computing power for HPC.
Our framework is closer to the HPC family, to deal with
intensive computation on huge but highly regular data, such
as high-definition image streams.

2.2. Runtime Environment

The typical workflow of our framework is the following:
a user submits constrained data stream generation jobs to the
system; when receiving the jobs, it starts processing them
in parallel, complying to both the available resources and
the user-specified policy; finally each job generates one or
multiple data streams meeting the constraints.

Our target running environment spans from one single
host to a medium-sized cluster composed of a few dozens of
nodes. Such small/medium scale is appropriate for integra-
tion in industrial processes which require data stream gener-
ation, hence our focus on this class of systems. To unify the
resource view, we consider a single host as a cluster of one
node. We suppose that all cluster nodes are interconnected
using a local network, excluding complex routing rules or
introducing jitter and/or fluctuating bandwidth.

We consider as unpredictable runtime events job submis-
sions or dynamic node addition/removal. Hence our target
cluster is likely to experience various events during its
operating time. As a result, all the decisions should be taken
at runtime, excluding strategies of offload decisions by pre-
computation.

2.3. Jobs

In our context, a job contains all the information needed
to produce one or several data streams, i.e., location of the
input data, constraints that the output data streams have to
respect, and processing description. Jobs are submitted to
our framework from an external system that we abstract as
“the user” in the remainder of the paper. Our framework
processes the submitted jobs in order, while allowing to
execute simultaneous jobs in parallel according to the cluster
available resources, to maximize their usage. If a submitted
job cannot be processed due to resource limitation it will be
refused and should be re-submitted later by the user, when
another job is completed.

Our framework can process a variety of job workloads.
However, in this paper we focus on jobs with characteristics
and constraints emphasizing the relevance of our new solu-
tion, which has been designed to handle these characteristics
efficiently. A typical job has the following properties: (1) a
small or indivisible input making the use of a distributed file
system or split input files unnecessary; (2) a high volume
of data during the processing which makes task migration
inefficient during the computational part; and (3) additional
constraints on the output streams which are detailed in the
following subsection.

2.4. Constrained Data Streams

In this paper, we consider a data stream as an ordered
binary data flow with a start and an end. A data stream may
be generated only by a single job, but a job may generate
several data streams. The purpose of our framework is to
handle efficiently the generation of constrained data streams.

There exists various constraints, with impact from the gen-
eration process itself to the output quality. Our framework
supports the following constraints, which may be specified
by the user in the job description:

Output location — Specify the cluster nodes on which the
user requires to receive the generated data streams;

Split — Split the generated data into multiple data streams
which can be delivered to different output locations;

Additionally, to improve the quality of the generated data
streams, our framework automatically ensures the following
constraints:

Ordering — Deliver the data streams to the user in the same
order as a sequential data generation;

Split computation — Generate the data by chunks, so the
whole job can be split into tasks that continuously send
data through a small buffer, not requiring to store the
whole job generated data;

Constant speed — Supply the data stream to the user at a
constant speed avoiding starvation, with a best effort
principle;

High-throughput — Exploit the full network and computa-
tion capabilities of the cluster.

3. General Approach

We address the parallel and distributed constrained data
stream generation challenge by using the common concept
of producer-consumer. Three logical types of processes —
scheduler, producer, consumer — provide to our framework
a clear role separation that facilitates the management and
the supervision of the cluster’s resources. The scheduler
achieves resource allocation to complete jobs. We describe
it in Section 3.1. The producers execute tasks and output
chunks of data to the consumers. We present them in Sec-
tion 3.2. At startup, the administrator (the user) chooses
how to deploy these logical processes across the cluster,
matching the infrastructure and the hardware resources. Our
framework offers a large topology flexibility, as discussed
in Section 3.3. This flexibility is supported by a convenient
communication organization depicted in Section 3.4. Sec-
tion 3.5 finally discusses possible extensions to our frame-
work.

3.1. Centralized Scheduler

To coordinate the jobs execution across the cluster we
use a dedicated scheduler process to schedule the jobs and
to assign the cluster’s resources. Its primary objective is to
find an efficient way to execute as much as possible jobs in
parallel by taking advantage of the parallel resources offered
by the cluster, while respecting the various data streams
constraints.

We choose to use a centralized scheduler to ease the
decision-making. This centralization provides multiples ad-
vantages in our context. First, all decisions are taken on
a single point, avoiding latency and conflicts which can
be hard to resolve. Indeed, previous researches tried to

preserve the centralized scheduler model advantages in a
decentralized one, but inevitably leads to complicate the
decision-making process [7], [8] or requires to exchange
control messages over the network, which induces network
load and overheads. Secondly, a centralized scheduler gives
the opportunity to have one unique point of communication
for the user to interact with our framework, this substantially
simplifies the interaction pattern with the environment. The
scheduler is the process that we designate to be in charge of
receiving the job submissions and the job control requests,
like job cancellation. Finally, it also simplifies the commu-
nication path inside the framework by having one unique
authority to connect and to refer to. Since we target small
to medium sized clusters, a centralized scheduler will not
induce much congestion, as it could on very large general-
purpose clusters.

Despite those multiple advantages, a centralized sched-
uler has a major flaw: it is more sensitive to failures. We
decided that this risk is acceptable since we target respecting
high-throughput constraints as the priority: if the scheduler
fails, the whole framework needs to be restarted. We miti-
gate the risks of failure by designing a clear architecture of
our framework and addressing medium clusters, where the
failure rate is low compared to exascale clusters [9].

To schedule multiple jobs over multiple nodes of the
cluster, our scheduler uses the common strategy to split
each job into smaller fasks, executed in parallel on different
nodes. In order to be able for any node to process a chunk
of data we introduce three types of tasks. These tasks are
executed by the producers and are named preload, compute
and expel in accordance with their function. The first task,
preload, downloads the required input data to compute a
given job. The second task, compute, processes a chunk to
produce output data. The last task, expel, sends the produced
data to the output location node(s). Beyond these three
essential tasks, more types of tasks with complementary
functions can be introduced to meet the nature of the covered
use case.

The execution of a job consists in assigning an initial
preload task to different nodes and, when they become ready,
assigning them progressively the compute and expel tasks
in order to complete the job. Thus, for a node, one single
preload task occurs for the whole job, followed by multiple
compute and expel tasks.

Among the wide variety of scheduling strategies existing
in the literature (see Section 6), none of them has shown
its ability to perform optimal decision on every use case
and constraints. Thus, we chose to design our scheduler
to support customizable scheduling policies in order to
offer maximal flexibility to implement the best scheduling
strategy depending on the context. The scheduler policy that
we used in our experiments is presented in Subsection 4.1.

To manage the different constraints associated with each
job and their generated data streams, our scheduler monitors
the nodes and the status of the jobs and their tasks. This
way, our framework is able to take judicious decisions at
runtime, like creating the needed task(s) on the right node(s)
at the right time, to ensure the constant and controlled output

speed, or to supervise network load-balancing by indicating
which network interface to use depending on the current
workload.

3.2. Producer - Consumer

The role of the producer is to receive the tasks assigned
by the scheduler, to execute them in accordance with their
implementation and to notify the scheduler back for each
finished task.

This way, the producer, as its name suggests, is the
process in charge of producing the data of the streams. The
chunks of data are issued from the different tasks assigned
by the scheduler when decomposing the job. Our general
approach allows by design a producer to run on whichever
hardware (e.g. CPU, GPU, FPGA), as long as the producer
process implements the different tasks to use it. Given that
a producer is a process without any hardware assumption,
it can be run on a whole node (including the CPU and the
GPU resources) or it can be specially dedicated to run on
only one hardware resource (e.g. a single CPU core) and
there can be as many producers as there are resources on
the node. These weak assumptions on producers provide our
framework a wide flexibility to process efficiently a large
range of problems.

The execution of a task is at the discretion of the
assigned producer, depending on its implementation and
configuration. For example, a producer running on a whole
node can choose to run a specific task on a specific CPU
core, or on a GPU; to run multiples tasks sequentially or to
run them in parallel.

The consumer’s role is to abstract the complexity of the
running framework to the user. It is the logical location on
which a data stream is outputted and where the user will
access it. Its main purpose is to order the data it collects
from the different producers. This design provides ordered
data streams to the user independently from which producers
compute them, and allows our framework to optimize their
conveyance to the requested output location nodes.

To allow the scheduler to take the best decisions, the
producers and the consumers announce their characteristics
to the scheduler when starting. These characteristics are,
among other minor parameters: their physical host id, their
network connectivity characteristics, and their computation
capacities (for the producers). Using these characteristics,
the scheduler is able to build a reliable view of the cluster
both in network and computation capabilities.

The knowledge of the cluster connectivity enables to
perform a judicious communication distribution. Indeed, the
scheduler is able to provide to producers and consumers the
source and destination points (e.g., the network interfaces) to
use if multiple paths are available, which enables to perform
load-balancing among the different jobs.

Our framework supports adding and removing producers
and consumers during its execution: they can dynamically
join and quit the cluster, which adds flexibility in the cluster
composition. Following these events, the scheduler modifies

its internal view of the cluster and takes appropriate deci-
sions by reassigning uncompleted tasks or aborting jobs. In
the same way, our framework is able to react appropriately
against producers or consumers crashes or disconnections.

Quitting the cluster for a producer while tasks are run-
ning on it will make the scheduler reassign those tasks
to other producers. It risks to abort the job if the tasks
cannot be computed by another producer in time. Quitting
the cluster for a consumer while a job is associated to it will
systematically abort the job since it is impossible to honor
the job requested output data stream location.

3.3. Flexible Topology

As our framework offers to support parallel job execu-
tion and output locations, it implies to support at runtime a
high level of flexibility and configuration of logical topol-
ogy.
The scheduler selects the best producers to generate the
data streams and outputs them on the mandatory consumers
according to the job specification. Depending on the situ-
ation, selected producers and mandatory consumers can be
on the same node or on distant ones. This characteristic
introduces the notion of localhost and distant connection
between a producer and a consumer depending on the
location of the two processes.

In order to offer high throughput, multiple producers
can serve one single consumer. Indeed, assigning successive
chunks of a job to multiple producers provides the ability
to sum the compute capabilities by executing them in par-
allel. Also, multiple consumers are required to handle the
capability of splitting a data stream computed by one or
multiple producers to several output location points. This
relationship between producers and consumers are what
we name the logical topology. Logical topologies can be
classified into four categories as shown in Figure 1: one-to-
one, one-to-many, many-to-one and many-to-many depend-
ing respectively on the number of producers and the number
of consumers.

Our framework is designed to provide a total flexibility
between the different logical topologies. Furthermore, it can
mix all of them in the same cluster since multiple jobs can
be executed in parallel across a same physical cluster while
respecting their outputted data stream constraints.

The interaction between the producers and the con-
sumers is related to the common publish/subscribe design
pattern [10]. But some important differences must be men-
tioned. First, the subscription part is not issued by the
consumer but initiated by the producer which is instructed
by the scheduler to send his computed data to the consumer.
Secondly, contrarily to the pub/sub design pattern, we do
not propose a duplication of a data stream to multiple
consumers, since it is not the purpose of our framework.

3.4. Organization and Protocol

To achieve high throughput on the outputted data streams
and good performance over hardware cost ratio, our frame-

work exploits a clear synchronization across the different
processes presented in this section and in its interaction with
the user.

High throughput should not be achieved at the price
of high latency. Indeed, increasing the latency of a system
to periodically improve the throughput usually leads to de-
creased global performance, due to the additional overhead
introduced by the lack of responsiveness of the system.

To address this challenge, we decompose our framework
in two parts. As shown in Figure 2, we distinguish a low
latency control and synchronization path (left-hand part),
and a high throughput pipeline of data (right-hand part). The
low latency message path drives the high-throughput data
path. High-throughput requires the usage of buffers [11],
that are as small as possible to limit the output data latency,
but large enough to ensure an efficient overlapping to hide
parallel processing synchronization overhead.

To maximize the throughput, we design a large pipeline
from the initial storage of the input data to the outputted
data stream to the user. This pipeline is achieved by limiting
to the strict minimum the synchronizations between the
different processes and offer a natural synchronization.

To expect good performance in a cluster, the commu-
nication protocol between the processes is critical. First of
all, the user submits a job to the scheduler, which checks
the job validity and ensures that the requested consumers
corresponding to the output locations are present in the
cluster. If all the consumers respond to be able to handle the
job (there is no failure at allocating local resources), and if
there is enough producer computing capacity, the scheduler
sends the user a job acceptance message.

Then, when the user informs to be ready to read pro-
duced data on the consumers, the scheduler starts scheduling
job chunks over the dynamically selected producers by
creating and assigning the needed tasks, until all the job data
is fully sent to the consumers to generate the data streams.

Finally, when the user has done reading all the data of
the streams, it explicitly informs the scheduler that the job
is completed. The scheduler will forward this information
to the concerned consumers to release their resources.

This communication protocol leads to a very clear inter-
action between the user and the framework. All connections
are specified and follow a unique path. The interaction
between the user and the consumer is reduced to a sim-
ple read-only data access. This unambiguous protocol is
a prerequisite to be able to isolate and handle errors or
unpredictable events such as a crash or a network failure.

3.5. Possible Extensions

This paper focuses on presenting an effective solution
to constrained high-throughput data streams generation. Its
clear design and role separation allow our framework to be
easily enhanced, as discussed hereafter.

The risk of centralized scheduler failure can be mitigated
by various strategies. We propose to define or elect, when
the framework starts, one or multiple nodes as backup
scheduler(s) which stay up-to-date thanks to data replication.

N
Data
s e =

(a) one-to-one

(b) one-to-many

(c) many-to-one (d) many-to-many

Figure 1: Logical topologies: from one-to-one to many-to-many with scheduler (S), producers (P) and consumers (C).

Input files

Storage

Scheduler

Tasks list

“Tasks manager ‘ Preload ‘

ilitie
oducers 15 Producer
Capabilities

Submit job User Data Stream

Figure 2: Overview of the low latency control path and the
high throughput data path (right-hand side boxes) between
the scheduler, storage, producer and consumer.

When a scheduler failure is detected, the backup scheduler
replace the current one by informing all processes of the
cluster and continuing its work.

To extend the use cases of our framework, we propose to
support DAG (directed acyclic graph) execution by stacking
and linking multiple stages of producers but keeping one
unique level of output consumers. Therefore, we can support
more complex scenarios including data dependencies while
preserving the advantages of one consumer output stream:
localization, stream delivery abstraction, controlled speed,
and automatic ordering.

Finally, the computation capability of each producer
could be tackled by the scheduler over the different pro-
cessed tasks to be updated at runtime. Fine-tuning with real
tasks execution shows its effectiveness to obtain realistic
processing power estimation [12], [13]. The computation
capability is exploited by the scheduler to select the best
producers and create tasks which fit ideally on the selected
producers. The precise knowledge of processing capabilities
improves the support of heterogeneous producers [14].

4. Framework Implementation

This section provides further details about the general
approach integration into our framework.

4.1. Scheduler

The scheduler is the central brain of our framework: it
is responsible for coordinating the work of all producers
and consumers, as well as ensuring the flexibility and a fair

resources usage of the cluster to execute several jobs in
parallel. While a non-optimal decision can be harmless in a
small cluster with a low workload, a bad decision can result
in important slowdowns in a larger cluster running at high
workload.

As presented in the previous section, our scheduling
policies are customizable to support specific computation
problems and constraints and improve support for specific
producers or consumers. In the scheduler currently imple-
mented for our experiments, we choose a classical yet effi-
cient load-balancing algorithm. It assigns tasks sequentially
to unused producers, and it also favors locality between pro-
ducers and consumers to maximize throughput and minimize
latency.

The scheduler has a list of available producers and a list
of output locations required by a job. By combining these
two lists it can take a relevant placement decision, choosing
the number and the location of the needed producers, and
thus a topology among one-to-C or many-to-C (C being
the number of output streams). Of course, the bandwidth
is substantially improved by choosing a producer and a
consumer on a same physical host.

To ensure a fair load-balancing with heterogeneous pro-
cessing times, the scheduler dynamically creates tasks to
decompose a job progressively. This leads to an on-demand
policy. As soon as a producer completes a task the scheduler
assigns it a new one. We favor as much as possible the pres-
ence of at least rwo compute tasks on each selected producer.
This strategy allows to maintain a continuous processing by
overlapping communications with computations.

The task sizes depend on the producers capabilities to
reach good computing performance while keeping reactive-
ness of the whole system. To achieve this objective, our
scheduler uses the computing capabilities announced by the
producers.

As a single point of decision, our centralized scheduler
is competent to receive multiple concurrent events from
different producers and consumers or job submissions from
the user. These events are: join / quit events; job submission /
job control events; and task feedback events. These different
events must not generate conflicting decisions. To achieve
this requirement we implemented a unique event queue
in which the events are placed atomically. This enforces
upcoming events from any producer or consumer to be
treated sequentially by the scheduler. The main scheduler
process loops over this event queue.

The number of producers, consumers, and tasks in the
cluster relates to the number of events managed by this
atomic event queue, which may become a bottleneck. To
avoid this, the tasks sizes must be large enough in order

to keep the number of event per job to a moderate value.
Also, if it becomes critical, some optimizations could be
implemented (e.g. cache, red-black tree) or we could use a
parallel event pop on non-concurrent events (e.g. events on
different jobs) to reduce the event processing time. We did
not meet this problem in our experiments.

4.2. Producer

The purpose of the producers is to execute as fast as pos-
sible the tasks assigned by the scheduler and acknowledge
their completion.

Each type of task (preload, compute and expel) is exe-
cuted by a dedicated fask engine. Our framework is designed
to run the task engines in parallel, as system threads. This
leads to overlap communications by computations and thus
to optimize throughput. When a task is done, the task engine
sends a task completed event to the scheduler.

Additionally, multiple preload and expel tasks are ex-
ecuted simultaneously as new threads. This is particularly
efficient to process in parallel multiple expel tasks associated
to different network interfaces. Conversely, only one com-
pute task is executed at a given time, since we considered
that a single producer can make full usage of its available
computing power.

To simplify the producer mechanisms, we designed the
tasks to be run in a stateless mode. Generating and executing
standalone tasks helps to maintain runtime flexibility, by
suppressing the need to keep track of the previous execu-
tions.

While being very common, the preload task execution is
very dependant on the cluster architecture, like the presence
or not of a dedicated NAS to read an input file for example.
Thus, the preload task content should be adapted by the
developer to his storage solution and his input requirements.
In order to provide a universal minimal solution, we imple-
mented for our experiments a very simple NAS running in
the scheduler itself as a service. It allows all producers to
retrieve simultaneously an input file from the scheduler file
system.

The content of a compute task must be implemented by
the developer depending on the problem specification. The
developer gets as input the parameters of the task created
by the scheduler. Once the task computation is done, the
framework associates an id to the data produced, which is
sent to the scheduler in the task completed event.

The execution of the expel task is fully handled by the
framework. When a producer starts an expel task, it is able
to identify the requested data thanks to the id issued by
the compute task. The first step to execute an expel task is
to connect to the target consumer(s). In one-to-many and
many-to-many topologies, the producer runs one thread per
target consumer. At a second step, the producer sends to
each consumer a small control message containing the range
of data that will be sent to it. When a consumer is able to
receive the data properly, it informs the producer to send it.
Finally, the producer informs the scheduler that the expel
task is completed when all data is sent.

Preload
+ N
; Compute Buffering
Allocating
+ -
Scheduling T R Ordering
— —

PN
Job S C_| Data
\ - _ / J Stream

P

Figure 3: Data path view in the many-to-one topology with
scheduler (S), producers (P), consumer (C).

4.3. Consumer

The consumer is in charge of collecting and synchroniz-
ing the different chunks of data generated on the producers
into an ordered data stream delivered to the user.

The consumer will retrieve data from the producers as
soon as it is available but will deliver it to the user in order.
Thus, a consumer is able to block data delivery until all
previous missing data has been received.

To collect efficiently the chunks of data, the consumer
uses a buffer receiving the chunks in parallel as illustrated
in Figure 3. If the buffer is large enough, then it is possible
for the consumer to receive simultaneously different data
ranges from different producers: the buffering allows to start
receiving out-of-order chunks. This improves the synchro-
nization of heterogeneous producers by relaxing the pressure
in the communication between producers and consumers, in
particular when they are associated to multiple jobs.

It is important to configure the buffer size wisely: while
a buffer with a minimal size will help to keep low latency
in the data path, a too small buffer is likely to create
starvation because of data contention. At the opposite, a
large buffer improves the system to be starvation-free and
leads to optimize bandwidth usage, but rises the latency
in the data path and increases the producer memory and
cache usage (memories are shared with other producers and
consumers that may run on the same node).

The ideal buffer size of each data stream on each con-
sumer is set by the scheduler which can take a decision
with a clear view of the global memory consumption, the
job speed constraints, and the possible earlier starvation
events in previous jobs. To maximize parallelism and com-
munication overlapping, the circular buffer size should be at
least the maximum number of producers multiplied by each
producer chunk size.

4.4. Circular Buffer

We choose to use a circular buffer to implement the
consumer data synchronization buffer. There is one circular
buffer per data stream to deliver.

As the buffer is the key piece of the consumer perfor-
mance, it is important to design it wisely. The circular buffer
allows to manage an infinite data stream in a fixed memory
space avoiding several malloc’s and free’s.

Conforming to our general approach (Section 3), the user
accesses the generated data stream through the consumer, on
the same node. This architecture choice allows to place the
consumer circular buffer in a shared memory; and the user
to directly access data in this buffer. In this way, we avoid
making a supplementary internal memory copy between the
two processes. The user requests access and releases blocks
of data through a simple API with minimal synchronization.

To know which shared memory corresponds to which
job, the circular buffers are identified by a unique id on the
node. When the scheduler informs a consumer to become
an output location for a job, the consumer allocates the
circular buffer and pulls up the corresponding key to the
scheduler. The scheduler then forwards this key through
the job acceptance message to the user, who will use it to
interact with the consumer.

4.5. Network

An efficient distributed system depends on efficient net-
work usage. We developed a specific communication library
to ensure flexible interconnection between the three types of
processes in every topology, fulfilling the low latency and
high throughput requirements.

Our communication library is accountable to open and
manage connections over the well-known Berkeley sockets:
the localhost connections with UNIX sockets, and the distant
connections with INET sockets. The distant connections are
handled by using the common TCP/IP network stack. It
gives to our framework the flexibility to run over wide phys-
ical and logical network configurations. The usage of UNIX
sockets maximizes throughput of localhost connections by
avoiding the costly loopback kernel network stack.

This low level of interaction and configuration permits
to fully exploit all network interfaces present on each node.
In particular, we can explicitly select an input and output
physical interface when opening a connection.

Our library distinguishes two types of communications
to be able to perform different optimizations. The first one is
the message connection dedicated to send control messages,
requests and answers with low latency. The second one is
the raw connection designed to provide an efficient way to
send large amounts of data at full link speed.

To maximize TCP performance we take advantage of its
design and its various options offered by the Linux kernel.
First of all, to reduce the latency drastically when sending
small messages, we disable Nagle’s algorithm [15] and
enable quick ack to disable the piggybacking [16]. Secondly,
we activate the New Reno congestion control algorithm in
order to speed up the packet retransmission, which works
very well on a local network with a low RTT [17].

A persistent control connection is kept open between the
scheduler and each connected producer and consumer. It is
used by the scheduler to send job control messages to the
producers and consumers, and by them to poll up runtime
information and events. Similarly, we favor persistent pro-
ducer to consumer connections. Persistent connections avoid
packet losses when establishing new connections, that occur

often over a highly used physical link. Once a connection
is opened, it stays open and remains in a list of available
connections.

Since producers send data while consumers receive data,
a producer and a consumer can exploit simultaneously a full-
duplex network interface for different jobs without conflict.

5. Experiments

This section provides details about our hardware and
configuration setup, and presents our experiments in an
industrial use case. We focus on three aspects: first, we
confront our system capacity to the physical limits of the
cluster; second, we evaluate our system in various scenarios
of our real-world use case; third, we observe the throughput
variations when enforcing a constant reading speed of the
outputted data streams.

5.1. Digital Inkjet Printing Application

Complementary to pure performance evaluation, we ex-
periment the professional digital inkjet printing as a real-
world use case. This industrial application covers all the
topologies through different scenarios.

The digital inkjet printing industry needs to operate
several computations on data before sending them to the
printer. These computations are denominated as RIP, for
Raster Image Processor. A RIP converts an input image to
rasterized data, which indicate where on the sheet and which
ink (or color) a printer should drop ink drips. To produce this
output matrix, the input image is scaled, linearized, limited
and arranged. These computations introduce data dependen-
cies between the different color layers (or channels) of the
image.

Digital inkjet printing can perform a wide variety of
print jobs that we illustrate by the three jobs presented in
Table 1. These three jobs cover the range of data volumetry
present today and in the coming years in the digital inkjet
printing industry. This table specifies the print job and the
volumetry of one color channel. The diversity of the digital
printing industry offers a use case for each topology:

one-to-one — a single dedicated RIP engine driving a single
printer;

one-to-many — a single RIP engine driving several small
printers;

many-to-one — multiple RIP engines combining their com-
puting capabilities to drive a single fast printer;

many-to-many — multiple RIP engines combining their
computing capabilities to drive a high performance
printer with multiple entry channels or a printer farm.

To integrate this use case into our framework, we map
the following concepts. The jobs are print jobs which desig-
nate the printing of an image on a printer. The outputted data
stream is the printed bitmap ordered by line. The preload
task retrieves the input image on the producer. Finally, the
consumer output location is the node where the printer driver
is physically installed.

Job A Job B Job C
Use case Low quality packaging | Standard quality poster | Very high quality banner
Sheet size 10 x 10 in. 40 x 40 in. 100 x 100 in.
Sheet resolution 300 x 300 dpi 900 x 900 dpi 1,200 x 1,200 dpi
Channel size 72.0 Mbit 10.4 Gbit 115.2 Gbit

TABLE 1: Jobs’ specifications and their output matrix size for one color channel

We limit the chunk size to a fixed maximum: 200 Mbit
of output data has been empirically determined to be the best
trade-off for our experimental digital printing application on
our cluster.

On our producer, we implement the compute task to use
all available cores on the node, hence only one producer
runs per node. There is also only one consumer per node,
with a circular buffer of maximal_compute_task_size x
number_of_selected_producer x 4 (4 is used to create
a multiple buffering of factor four) bits, and the maximal
buffer size is capped to 1 GB.

5.2. Hardware Setup

Our cluster is composed of five identical nodes equipped
with an Intel Xeon D-1521, 2x 4 GB of DDR4 RAM
running at 2133 MT/s, and 2x 10 GbE ports powered by
a Supermicro X10SDV-4C-TLN2F motherboard. The five
nodes are running Ubuntu 18.04.1 LTS with Linux Kernel
4.15.0-43-generic. They are interconnected by a dedicated
Netgear XS512EM switch which provides twelve 10 GbE
ports. All nodes are directly connected to the switch.

The two 10 GbE ports on each node allows to simulate
up to eight distant nodes by dedicating one 10 GbE to each
simulated node. We do not observe specific disturbance by
simulating nodes with this strategy. It provides a realistic
way to increase the number of nodes by avoiding modifica-
tions at the network stack level.

5.3. Theoretical Limits

We performed our measurements in four different
topologies. Depending on the topology, the theoretical limits
of the cluster are driven by memory performance, network
capacity or a mixture of both.

The one-to-one topology exists in two configurations
which implies different limits. The first one is the fully
localhost one-to-one, which does not make use of the net-
work. Hence, the limitation is the memory bandwidth to
send data from the producer to consumer. It is the dual-
channel RAM bandwidth! divided by 2: 136 Gbit/s. The
second configuration is when producer and consumer are on
distant nodes, thus the limit is the 10 GbE interconnection
speed. As we use the TCP/IP stack over an Ethernet link,
the effective bandwidth is a bit lower: 9,466 Gbit/s.

We consider the one-to-many and many-to-one topolo-
gies with distant relationship between some nodes on the
cluster and the “one producer” in the first case, and the

1. Memory bandwidth is usually expressed as GB/s, but for clarity we
chose to unify all results using the common unit of Gbit/s.

“one consumer” in the second case. Thus both topologies
are limited by the link going from and going to the ”one”.
As in the distant one-to-one topology, the theoretical limit
is the network capability: 9,466 Gbit/s.

The theoretical limit of the many-to-many topology
is the most complicated due to the mixture of localhost
and distant communications between the producers and the
consumers. We chose to evaluate a typical use case where
each node runs both a producer and a consumer, which
allows a part of the data to be transferred locally. Hence,
the theoretical limit is the amount of data exchanges over
the network minus the amount of data produced on the
localhost producer, since the distant transfers overlap the
local ones. Considering a homogeneous computing power
on the producers and a homogeneous network, the limit is
N x £~ x H, where N is a network link capacity, C' the

c—1
total number of consumers and H the number of nodes.

5.4. Measurements

To evaluate the performances of our solution, we mea-
sure the output data rates on the different topologies for
the three jobs presented in Table 1. Three input files are
preloaded (for a total weight of 80 Mbits) by each producer
for each job to compute.

In Figure 4, we disable the computation in the compute
tasks to measure the maximal communication performance
that our framework can achieve. These results are displayed
against the theoretical limit of our cluster (right-hand bar
of each group of bars). Complementary, Figure 5 shows
the same experiments with the raster image computations
enabled. The throughput is calculated by dividing the job
output data size by the total elapsed time, from the job
submission to the job resources release.

As explained in Section 5.2, we use the two 10 GbE
interfaces of our cluster nodes to simulate up to two pro-
ducers and two consumers on a single physical node. The
measurements employing multiple simulated producers or
consumers are annotated with an asterisk* in Figure 4.

To suppress the interferences of localhost and distant
connections between the producers and the consumers, we
performed our measurements on one single distant node
in the one-to-many and many-to-one experiments. For the
many-to-many topology measurements, each node runs both
a producer and a consumer to keep a constant ratio of
localhost and distant connections in the experiments, and
we do not use the simulated hosts.

The one-to-one, one-to-many and many-to-one experi-
ments run each job described in Table 1 with four color
channels. In the many-to-many topology, to keep a constant

workload between the nodes, each consumer is in charge of
one channel: the jobs are running with as many channel as
the number of nodes present in the experiments.

We evaluate the capability of our framework to deliver
sustained data streams by making the user read the succes-
sive image rows at constant intervals. If the data streams
rates are not sustained, we will observe starvation and a
lower than expected throughput.

5.5. Results

Figures 4a, 4b and 4c show the capability of our frame-
work to meet the theoretical limit for jobs B and C in
respectively distant one-to-one, one-to-many, and many-to-
one topologies. The more producers and consumers, the
more stable are the results. For the job A, poor performance
is due to the very small job size: the submission overhead
cannot be compensated by the efficient data computation
and transfer time. But in Figure 4b this overhead almost
disappears due to the different consumer jobs overlapping,
and every job including job A reaches the theoretical limit
with 4 and more consumers. In Figure 4a the localhost one-
to-one topology stays below the RAM theoretical limit due
to concurrent memory operations occurring over the system,
but we reach a satisfactory 90 Gbit/s on this intensive and
competing in-host memory-copy operation. For the many-to-
many topology in Figure 4d, we do not reach the theoretical
limits. We are still investigating this issue, but we suspect
network congestion: the network driver handles more con-
nections per node, the risk of packet collisions is higher,
and the switch gets loaded with the growing total number
of connections and packets to commute.

Our use case experiments (Figure 5) show a great sta-
bility and scalability when the execution is computation-
bound. Figure 5a shows that we get almost identical results
for localhost and distant connections in the one-to-one topol-
ogy: our framework can distribute producer and consumer
without slowdown as long as the compute capability can
be handled by the network link capacity. In the same way,
Figure 5b illustrates that one producer can distribute its com-
putation power to multiple consumers without performance
loss. The many-to-one topology (Figure 5c) shows the ca-
pability of our framework to sum up the computation power
of different producers all the more as the job size is large.
For job A, the high latency over computation time ratio
explains the absence of speedup. A similar behavior can
be observed for the many-to-many topology in Figure 5d,
which demonstrates the scalability of our framework. On
this real-world use case, we reach more than 9 Gbit/s output
rate, which is the computational limit of our experimental
cluster. This output rate could probably be increased, up
to the networking limits of the cluster met in Figure 4, by
adding more nodes to the cluster or adding computing power
to each node.

Our experiment presented in Figure 6 shows the through-
put when reading the outputted data streams at constant
speed. These results illustrate the capability of our frame-
work to maintain a sustained data delivery rate at the cost of

only 3.2% producer power loss on average. The worst case
of 13.5% power loss in the localhost one-to-one topology
results from a side effect of an active loop on the consumer
side (to wait for a small time interval) and processing the
data generation on the producer side on the same node; this
phenomenon is also slightly visible in the many-to-many
topology.

Not shown in these graphs, the standard error does not
exceed few percents in worst cases (with an average of
0.5%). To conclude this experiment, we observe only a
few percents power loss compared to the user requested
throughput. In that respect, we expose the capability of our
framework to deliver sustained data streams, at the price of
a very small producer power over-allocation.

These different measurements illustrate the flexibility of
our framework, by being functional on a variety of topolo-
gies, while offering a high throughput and a nice scalability
and constancy. Its capability to approach the theoretical
limits of the cluster permits a real-world application to fully
exploit the cluster computation and communication power.

6. Related Work

Distributed systems are very common and widely used
in various scopes of applications, from research to industry.
Depending on the main objective of the distributed system,
we can distinguish two areas of expertise: HPC were pure
computing performance comes first, and big data where the
capacity to process extremely large data sets comes first.

The most famous HPC oriented framework is MPI.
Although we could have used MPI as an environment for
running tasks and communicating data among them, many
low-level optimizations that we performed would not have
been possible or easily controllable (localhost communi-
cations through a UNIX socket, shared memory between
processes to avoid copies, etc.). Moreover, it is difficult
using MPI to assign specific tasks to specific nodes, to
handle dynamic connection and disconnection, and to handle
dynamic concurrent topology mappings. More recently, the
StarPU versatile framework [18] proposes to create statically
or dynamically [4] one or many tasks to perform compu-
tations, and can be coupled to MPI to run in a cluster.
This framework is effective for implementing one-to-one
and many-to-one topologies. But, compared to our proposal,
it lacks a global view to execute concurrently different jobs
on a single cluster, to implement efficiently many-to-many
topologies, and to handle the output locations of several data
streams.

In the last decade, plenty of big data frameworks were
born. The most popular and active ones are certainly hosted
by the Apache Software Foundation [19], and are gathering
a large range of approaches. Mother of all, the underlying
concept of MapReduce [20] is the central brain of Apache
Hadoop [1]. It is able to process petabytes of data over a
cluster, to perform data analytics for example. To be more
efficient in problems with high data reuse, like machine
learning, the Apache Spark [21] framework maximizes in-
memory data storage and processing thanks to the concept

Job A mmmmm Job C =1
JobB HEEE Limit

Job A mmmm Job C ==
JobB HEEE Limit

Job A mmmmm Job C =1
JobB HEEE Limit

Job A mmmm Job C ==
Job B BN Limit C—

@ 140 w12 w12 60
= = = =
5 120 - 5 10 S 10 5 50
S 100 - [(Y S 40
5 80 5 5 5
2 gl 2 6 a2 6 2 30
- < < L
o 40+ o 4 o 4 o 20
=] =] > =]
o 20 o 2 o 2 o 10
£ o0 T = E o Fo Fo
Localhost Distant 1 2 3 4 5% 6% 7% 8* 1 2 3 4 5% 6% 7% 8* 1 2 3 4 5

Producer-Consumer Relationship Number of distant consumers

(a) one-to-one (b) one-to-many

Number of distant producers Number of nodes

(c) many-to-one (d) many-to-many

Figure 4: Three different jobs running on different topologies: performance compared to the theoretical communication

limits of the cluster.

Job A mmm Job C = Job A mmm Job C m=mm

Job A mmm Job C m=d Job A mmm Job C =

—_ Job B Emmm — Job B mmmm — Job B — Job B mmmm
2 @ Z 10 10

525 525 5 g 5 g

[[Y [Y)

= 2 = 2 T 6 T 6

3150 515 5 5

Q 4y Q. + o o

< L < < 4 < 4

o 1 > 1 =] =]

=1 =1 > =1

go5r- 805 8 2 e 2

£ o E o £ o =]

Localhost Distant 1 2 3 4 1 2 3 4 1 2 3 4 5

Producer-Consumer Relationship Number of distant consumers

(a) one-to-one (b) one-to-many

Figure 5: Three different jobs running on different topologies:

Localhost —+—
Distant
Roofline

Roofline

1Cons. ——— 4Cons. - {F-
2 Cons.
3Cons. A

Number of distant producers Number of nodes

(c) many-to-one (d) many-to-many

performance of a real-world use case including computation.

4 Prod. -k
Roofline

1Prod. ——
2 Prod.
3Prod. A

1Node —— 4 Nodes -t~
2 Nodes
3 Nodes A

5Nodes - © -
Roofline

T T T T T T T
65 70 75 80 85 90 95 100
Requested throughput (%)

Obtained throughput (%)
-]
o

Obtained throughput (%)

Requested throughput (%)

(a) one-to-one (b) one-to-many

T T T T T T T
65 70 75 80 85 90 95 100

T T T T T T T
65 70 75 80 85 90 95 100
Requested throughput (%)

T T T T T T T
65 70 75 80 85 90 95 100
Requested throughput (%)

Obtained throughput (%)
Obtained throughput (%)

(c) many-to-one (d) many-to-many

Figure 6: Measured throughput of job B on different topologies when the user reads the outputted data streams at constant
speed (requested throughput). Throughputs are expressed as the percentage of the throughput obtained for the corresponding

configuration in Figure 5.

of Resilient Distributed Dataset [22]. Apache Storm [23]
is designed to be a distributed event processing framework
able to process events coming from wide sources. Finally,
the Apache Flink [2] framework proposes a flexible core
able to perform any transformation on any stream. A com-
mon point in all of these big data frameworks is to be
designed to process very large datasets over very large
clusters with high-throughput, low latency considerations,
and by handling frequent failures from the hardware or
the software. Specially designed to process big data, these
frameworks use distributed storage (distributed file system,
distributed database, events and/or events streams) as inputs
and as outputs. This approach is not efficient to meet our
requirements of small input files and explicit output streams
locations. Our framework targets concurrent processing of
data streams with on-demand data delivery, that would not
take advantage of these supported mechanisms.

Beyond these differences between existing frameworks
and our proposal, some challenges are of course similar.
One of these challenges is the resources allocation prob-
lem [18], [24], which is widely studied for HPC tech-
nologies like OpenCL and Cuda or for complex big data
frameworks like the ones mentioned above. In the big data
field these resource managers are called schedulers. The
Hadoop project reflects their variety [25], providing various
fine tuned scheduling policies. Some of them are notice-
able in popularity (like YARN [26]) or innovative approach
(like the Delay Scheduling [27]). These different resources
management strategies can be used in our framework as
customizable scheduling policies.

7. Conclusion

We presented a flexible and distributed runtime system
architecture for generating constrained, high-throughput data
streams. Its overall conception leads to a very adaptive
and performance-oriented system for small to medium scale
clusters, which is a typical context of such problems. We
implemented this architecture in an experimental framework
and evaluated its efficiency on a real-world professional
digital printing use case mixing compute-intensiveness and
high-throughput constraints. Our experimental study shows
that our framework is able to nearly reach the maximal
network bandwidth of the system in most of the tested
scenarios, and provides excellent scalability.

Ongoing work target reactiveness and resilience im-
provements. We plan to improve the support of heteroge-
neous producers and make the scheduler able to duplicate
tasks to ensure sustained throughput in case of a producer
slowdown or crash.

Acknowledgments

We thank the Caldera company for supporting this work,
providing the computer resources used in the experiments
and the real-world use case to explore constrained data
streams generation problems over different topologies.

References

[1] T. A. S. Foundation, “Apache hadoop,” https://hadoop.apache.org/,
2019, accessed: 2019-01-17.

[2] ——, “Apache flink,” flink.apache.org, accessed: 2019-01-10.
[3] ——, “Apache spark,” spark.apache.org, accessed: 2019-01-17.

[4] C. Augonnet, O. Aumage, N. Furmento, R. Namyst, and S. Thibault,
“Starpu-mpi: Task programming over clusters of machines enhanced
with accelerators,” in Recent Advances in the Message Passing In-
terface, J. L. Triff, S. Benkner, and J. J. Dongarra, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 298-299.

[5]1 M. Forum, “Message-passing interface (mpi) standard, version 3.1,”
http://www.mpi-forum.org/, 2015.

[6] Z.Liand H. Shen, “Performance measurement on scale-up and scale-
out hadoop with remote and local file systems,” in Cloud Computing
(CLOUD), 2016 IEEE 9th International Conference on. 1EEE, 2016,
pp. 456-463.

[71 A. Toptal and I. Sabuncuoglu, “Distributed scheduling: a review
of concepts and applications,” International Journal of Production
Research, vol. 48, no. 18, pp. 5235-5262, 2010.

[8] R.Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed re-
source management for high throughput computing,” in ipdc. IEEE,
1998, p. 140.

[9]1 F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience,” Int. J. of High Performance Computing
Applications, vol. 23, no. 4, pp. 374-388, 2009.

[10] P.T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM computing surveys (CSUR),
vol. 35, no. 2, pp. 114-131, 2003.

[11] J. C. Sancho and D. J. Kerbyson, “Analysis of double buffering on
two different multicore architectures: Quad-core opteron and the cell-

be,” in Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on. 1EEE, 2008, pp. 1-12.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. Bhimani, N. Mi, M. Leeser, and Z. Yang, “Fim: Performance
prediction for parallel computation in iterative data processing ap-
plications,” in 2017 IEEE 10th International Conference on Cloud
Computing (CLOUD), June 2017, pp. 359-366.

Y. Simmhan and L. Ramakrishnan, “Comparison of resource platform
selection approaches for scientific workflows,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing. ACM, 2010, pp. 445-450.

M. Hovestadt, O. Kao, A. Keller, and A. Streit, “Scheduling in hpc
resource management systems: Queuing vs. planning,” in Workshop
on Job Scheduling Strategies for Parallel Processing, 2003, pp. 1-20.

J. Nagle, “Congestion control in ip/tcp internetworks,”
https://tools.ietf.org/html/rfc896, 1984, accessed: 2018-08-17.

V. J. D. Borman, B. Braden and E. R. Scheffenegger, “Tcp exten-
sions for high performance,” https://tools.ietf.org/html/rfc7323, 2014,
accessed: 2018-08-17.

L. A. Grieco and S. Mascolo, “Performance evaluation and compar-
ison of westwood+, new reno, and vegas tcp congestion control,”
ACM SIGCOMM Computer Communication Review, vol. 34, no. 2,
pp- 25-38, 2004.

C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experi-
ence, vol. 23, no. 2, pp. 187-198, 2011.

T. A. S. Foundation, “Apache projects
https://projects.apache.org/, 2019, accessed: 2019-01-10.

directory,”

J. Dean and S. Ghemawat, “System and method for efficient large-
scale data processing,” Jan. 19 2010, uS Patent 7,650,331.

M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of
the ACM, vol. 59, no. 11, pp. 56-65, 2016.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing,” in Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association, 2012,
pp. 2-2.

T. A. S. Foundation, “Apache storm,” storm.apache.org, accessed:
2019-01-10.

C. Gregg, J. Dorn, K. M. Hazelwood, and K. Skadron, “Fine-grained
resource sharing for concurrent gpgpu kernels.” in HotPar, 2012.

D. Yoo and K. M. Sim, “A comparative review of job scheduling
for mapreduce,” in Int. Conf. on Cloud Computing and Intelligence
Systems (CCIS). Citeseer, 2011, pp. 353-358.

V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
0. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of the
4th Annual Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1-5:16. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the 5th
European conference on Computer systems. ACM, 2010, pp. 265—
278.

