
PolyTOPS: Reconfigurable and Flexible Polyhedral

Scheduler

Gianpietro Consolaro
∗‡

, Zhen Zhang
∗
, Harenome Razanajato

∗
, Nelson Lossing

∗
, Nassim Tchoulak

∗
,

Adilla Susungi
∗
, Artur Cesar Araujo Alves

∗
, Renwei Zhang

†
, Denis Barthou

∗
, Corinne Ancourt

‡
,

Cedric Bastoul
∗
,

∗
Huawei Technologies France, Paris, France

†
Huawei Technologies Co., Ltd., Beijing, China

‡
Mines-Paris PSL University, Paris, France

Abstract—Polyhedral techniques have been widely used for
automatic code optimization in low-level compilers and higher-
level processes. Loop optimization is central to this technique,
and several polyhedral schedulers like Feautrier, Pluto, isl and
Tensor Scheduler have been proposed, each of them targeting a
different architecture, parallelism model, or application scenario.
The need for scenario-specific optimization is growing due to
the heterogeneity of architectures. One of the most critical
cases is represented by NPUs (Neural Processing Units) used
for AI, which may require loop optimization with different
objectives. Another factor to be considered is the framework or
compiler in which polyhedral optimization takes place. Different
scenarios, depending on the target architecture, compilation
environment, and application domain, may require different kinds
of optimization to best exploit the architecture feature set.

We introduce a new configurable polyhedral scheduler,
PolyTOPS, that can be adjusted to various scenarios with
straightforward, high-level configurations. This scheduler allows
the creation of diverse scheduling strategies that can be both
scenario-specific (like state-of-the-art schedulers) and kernel-
specific, breaking the concept of a one-size-fits-all scheduler
approach. PolyTOPS has been used with isl and CLooG as code
generators and has been integrated in MindSpore AKG deep
learning compiler. Experimental results in different scenarios
show good performance: a geomean speedup of 7.66x on
MindSpore (for the NPU Ascend architecture) hybrid custom
operators over isl scheduling, a geomean speedup up to 1.80x
on PolyBench on different multicore architectures over Pluto
scheduling. Finally, some comparisons with different state-of-the-
art tools are presented in the PolyMage scenario.

Index Terms—Polyhedral Optimization, Polyhedral Scheduling,
Configurability, Flexibility

I. INTRODUCTION

The polyhedral model has been widely used in modern

optimizing compilers and frameworks for deep learning work-

loads, e.g., TC (Tensor Comprehension) [1] for PyTorch,

AKG (Automatic Kernel Generator) [2] for MindSpore [3],

nGraph [4] and Affine Dialect in MLIR [5]. Loop-based repre-

sentations of computational kernels, combined with automatic

mathematical (affine) transformations, enhance parallelism

and data locality efficiency on the target hardware. This

technique is characterised by its ability to systematically

optimize execution time in most cases without (or with minimal)

manual adjustment. It has been demonstrated to be successful

on CPU, GPU and NPU (Neural Processing Unit), resulting in

impressive performance improvements.

The core of the polyhedral optimization is the polyhedral

scheduler, which applies affine transformations on the input

for-loops according to its objective function. Some well-known

polyhedral schedulers are the Feautrier scheduler [6], Pluto [7],

isl-scheduler [8] [9], and Tensor Scheduler [10]. They are

characterized by the use of different cost functions, optimizing

for different specific scenarios.

Polyhedral scheduler algorithms are based on mathematical

optimization. Affine constraint systems and cost functions are

constructed to maximize hardware efficiency by iteratively

solving Integer Linear Programming (ILP) problems to find

optimal transformations for each loop dimension. The lack

of controllability and configurability makes it challenging

to produce efficient transformations for new architectures or

scenarios. For example, isl was used in the AKG project to

target Huawei’s NPU Ascend architecture [11]. It performs

well in many cases but poorly in others. For instance, it cannot

produce the transformation illustrated in Fig. 1, which could

easily be lowered on the vector unit of the NPU.

f o r (i = 0 ; i < 100 ; i ++){
f o r (j = 0 ; j < 1 0 ; j ++){

0 : c [j] [i] = a [j] [i] * b ;

1 : d [i] [j] = e [i] [j] * x ;

}
}

f o r (j = 0 ; j < 1 0 ; j ++)

f o r (i = 0 ; i < 100 ; i ++)

0 : c [j] [i] = a [j] [i] * b ;

f o r (i = 0 ; i < 100 ; i ++)

f o r (j = 0 ; j < 1 0 ; j ++)

1 : d [i] [j] = e [i] [j] * x ;

Fig. 1. Left: original for-loop code. It is fully parallel and suitable for GPU

architecture. The Right one is optimal for vectorization of the NPU (for both

vectorized data loading and computing) thanks to the loop distribution and

the interchange for the statement 0. Pluto or isl may be able to find the loop

distribution (specifying the correct fusion heuristic), but no interchange would

be found.

Improving performance when state-of-the-art schedulers

cannot find the optimal transformation can be attempted by

adjusting the initial scheduling results through additional

passes, as can be seen, for example, in AutoPoly [12], the

AKG module for Ascend backend. This method can be

cumbersome, considering the complexity of finding optimal

transformations that preserve the semantics. A recent idea,

“Constraint Injection” [13], proposed to build an interface for

the classical polyhedral scheduler that allows the injection of

custom constraints or partial transformations. This approach can

drive the scheduler to generate appropriate initial scheduling.

979-8-3503-9509-9/24/$31.00 © 2024 IEEE 28

20
24

 IE
EE

/A
CM

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Co

de
 G

en
er

at
io

n
an

d
O

pt
im

iza
tio

n
(C

GO
) |

 9
79

-8
-3

50
3-

95
09

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CG

O
57

63
0.

20
24

.1
04

44
79

1

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

It shows execution time speed-ups of deep learning workloads

on GPU. However, it is kernel-specific and only allows to

optimize for the specific input case. Generalizing an expected

optimization for any input kernel requires more engineering

effort on pre-processing, e.g. dependency analysis, pattern

matching on memory access, etc.

This paper proposes a novel design of a fully controllable

iterative polyhedral scheduler: PolyTOPS. It allows the pro-

duction of architecture-oriented optimizations (e.g. Fig. 1) for

any case from simple user configurations, and it can be easily

adapted to new scenarios. PolyTOPS innovations are twofold:

• Configurability: PolyTOPS provides a rich expressiv-

ity on schedule strategies specification via an easy-to-

use interface. All aspects of an iterative scheduling

mechanism can be configured, e.g., parallelism control,

vectorization, temporal and spatial locality, fine-grained

controlling of statements loop fusion and fission, as

well as partial schedule specifications. Moreover, the

behaviour of PolyTOPS can be elegantly changed into

a well-defined approach, e.g., Pluto-style, Feautrier-style,

isl-style, Tensor-scheduler-style or extended to define

novel strategies, e.g., scenario-specific, kernel-specific,

extending the idea presented in [13].

• Flexibility: Instead of a single “one-size-fits-all” method,

PolyTOPS exhibits a versatile design that can address

scenario-specific optimizations. It is possible to start

from a given generic strategy with little effort and then

incrementally adjust this strategy for some particular loops

of the kernel or for some particular architecture. PolyTOPS

provides an extendable infrastructure for an iterative

scheduler where constraints can be finely tuned – from

predefined strategies down to dedicated transformation

heuristics – for each statement and loop. We show how

our approach can target multiple architectures (different

types of CPU and Ascend NPU) and compare speedups

with state-of-the-art schedulers.

We briefly introduce background notions for polyhedral

schedulers in Section II. PolyTOPS design and implementation

are detailed in Section III, and benchmark results on CPU and

NPU are presented in Section IV.

II. BACKGROUND

Polyhedral optimization of kernels can roughly be decom-

posed into three stages. First, the input code and loop nests

are represented as polyhedra. Then, algebraic transformations

are applied to them, and finally, a new optimized code that

scans the transformed polyhedra is generated. In this section,

we provide an overview of the techniques used in the first two

stages and describe state-of-the-art methods.

A. Polyhedral Model

1) Iteration Domain: For each statement of the code, the

iteration domain represents the range of values taken by the loop

iterators surrounding this statement. The vector i⃗t composed by

these iterators is called the iteration vector. Iteration domains

are assumed to be polyhedra of iteration vectors and can depend

on parameters. The vector of parameters N⃗ is composed of

variables that are constant during the execution of the code.

The domain D of a statement S is defined as:

DS =







i⃗t

∣

∣

∣

∣

∣

∣

MS ·





i⃗t

N⃗
1



 ≥ 0







where MS is a matrix defining the domain polyhedron.

2) Dependencies and Legality: A dependency δS→R from

statement S to statement R means that statement S needs to

be executed before statement R to preserve the semantics of

the program. This dependency is defined on a set of iteration

vector values for S and R, with the following constraints: S
and R access to the same memory location (either S or R is a

write) and S is executed before R. These constraints, similarly

to the domain of statements, define a polyhedron:

δS→R =















(

i⃗tS
i⃗tR

)

∣

∣

∣

∣

∣

∣

∣

∣

MS→R ·









i⃗tS
i⃗tR
N⃗
1









≥ 0















3) Scheduling Function: A scheduling function Θ maps

each statement and iteration vector of its domain to a unique

multi-dimensional date. Dates are totally ordered with the lexi-

cographic order. Given a statement S, ΘS is a multidimensional

function defined dimension-wise by affine forms ϕS,i. These

affine forms depend on iterators i⃗t and parameters N⃗ . ΘS can

be defined as follows:

ΘS :
DS(N⃗)

i⃗t

→ N
m

7→ (ϕS,0(i⃗t) ... ϕS,m−1(i⃗t))

where m is the number of scheduling dimensions, and ϕS,i are

defined by:

ϕS,i(i⃗t) = TS,i ·





i⃗t

N⃗
1



 (1)

where TS,i is the transformation vector.

For a statement S surrounded by k nested loops, at most

2k + 1 dimensions [14] are necessary to express all possible

scheduling transformations (strip mining is not expressed

through the scheduler), but in practice, there is no upper limit

on the number of dimensions.

B. Scheduler

The polyhedral scheduler is an algorithm that computes the

scheduling function Θ. Two types of constraints govern the

computation of this function. It has to preserve the semantics

of the initial code and optimize some cost functions. Both

types of constraints are integer affine constraints.

We now give an overview of the main components necessary

to build the ILP problem, with the proximity cost function

representing the most used cost function defined in the state-

of-the-art:

29

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

1) Scheduling Problem Formalization: PolyTOPS is an

iterative scheduler: The algorithm will find the full scheduling

transformations Θ step by step, building an ILP problem to find

each scheduling dimension ϕS,i, starting from the outermost

dimension until the innermost dimension. The algorithm makes

sure to terminate when enough scheduling dimensions are

found. The scheduler aims to find the optimal vector of

coefficients TS,i for all S.

2) Validity/Legality Constraint: The validity constraint has

been introduced by Feautrier [6]. This is the core of the

polyhedral scheduler because it constrains the transforma-

tion vectors TS,i to have values that preserve the program

semantic (ensuring the legality of the schedule). For each

dependency δS→R, S has to be executed before R:

(i⃗t, i⃗t
′
) ∈ δS→R ⇒ ΘR(i⃗t

′
) ≻ ΘS(i⃗t)

where the symbol ≻ stands for lexicographically greater.

Considering that for an iterative scheduler, each dimen-

sion ϕS,i is computed from the outermost to the innermost,

the definition of validity becomes:

(i⃗t, i⃗t
′
) ∈ δS→R ⇒ ϕR,i(i⃗t

′
) ≥ ϕS,i(i⃗t) (2)

until the dependency δS→R is satisfied. This implication can

be linearized using the Farkas Lemma [15] [6]: constraints are

then expressed only on the space of variables composed by

the vectors TS,i and TR,i.

3) Progression Constraint: The progression constraint is

added at each scheduling iteration to ensure the progression

of the algorithm. Its role is to ensure that the schedule defines

a complete order for the iteration space and to make sure that

the trivial zero solution is avoided. The constraint definition

forces the next scheduling solution to be linearly independent

of previous solutions in the iteration space.

We define the matrix HS as the concatenation (row by row)

of previous scheduling dimension solutions TS,i. We define

the orthogonal complement H⊥
S as follows:

H⊥
S = I −HT

S (HSH
T
S)

−1HS

where I is the identity and HT
S is the transposition of HS .

The progression constraint, considering that we limit our

scheduling search space in the positive orthant, is defined as

the sum (row by row) of the orthogonal complement matrix

as follows,

∀i,H⊥
S,i · h

∗
S ≥ 0 ∧

∑

i

H⊥
S,i · h

∗
S ≥ 1

(3)

with H⊥
S,i a row of H⊥

S , and h∗
S the next solution to compute.

4) Proximity Cost Function: The Proximity cost function

was defined by Bondhugula et al. [7] in order to find among

legal solutions the ones that optimize temporal locality.

The idea is to minimize the distance (in scheduling time)

between multiple accesses to the same memory position. Data

dependences describe multiple accesses to the same memory

position, then the Proximity objective is to minimize the

dependency distance. For a dependency δS→R, the constraint

is defined by:

(i⃗t, i⃗t
′
) ∈ δS→R ⇒ ϕi,R(i⃗t

′
)− ϕi,S(i⃗t) ≤ u⃗N⃗ + w (4)

where u⃗ and w are the cost functions to minimize.

Proximity accurately represents a useful transformation

characteristic and, indirectly, favours the first dimensions to be

parallel, with a dependency distance of 0.

C. State of the Art

In the polyhedral framework defined before, we briefly

describe various state-of-the-art schedulers.

Feautrier’s [6] scheduler is the first iterative polyhedral

scheduler. The target is to optimize for single-core SIMD

CPUs. The Validity constraint is combined with the Feautrier

cost function. This cost function aims to find sequential

outer dimensions that could carry as many dependencies as

possible. This can lead to inner loop parallelism for SIMD

vectorization exploitation.

Pluto [7] iterative scheduler introduces the Proximity cost

function previously described. The aim is to exploit high

parallelism in architectures like multi-core CPUs. A more

recent version, Pluto+ [16], extends features to support loop

reversal and negative skewing and finds the solutions for some

corner case problems that could not be solved by Pluto. Pluto-

lp-dfp [17] is an extension resorting to linear programming

instead of ILP. This relaxation decomposes the scheduling

algorithm into a sequence of transformations, showing the

potential benefits in terms of compilation time.

isl [8] [9] iterative scheduler uses both the re-

implementations of Pluto and Feautrier schedulers to maximize

parallelism. If no external parallelism is found, the Feautrier

cost function is applied to remove as many dependencies as

possible and to find parallelism in subsequent dimensions.

Tensor [10] iterative scheduler is applied to tensor-based

applications, such as AI, typically characterized by high

parallelism and few dependencies. Their focus is the definition

of the Contiguity cost function for cache spatial locality. It

tries to find loop permutations that optimize memory access

patterns. It achieves good results but is domain-specific, limiting

scheduling transformations to loop interchanges only.

One-shot [14] is a scheduler that is not iterative and

is computed by representing the whole multidimensional

transformation Θ(S) as a single ILP problem. This formulation

of the problem makes it easier to represent global constraints

and cost functions over the full schedule Θ as opposed to

iterative schedulers where constraints and cost functions are

usually local to a single scheduling dimension ϕi. However, the

large number of variables and constraints leads to scalability

issues and extended compilation times. Extensions to the One-

shot scheduler [18] [19] propose addressing the complexity

issue via a dictionary of cost functions and a cache mechanism

of previously found optimal solutions.

Current research suggests that existing schedulers are tailored

to a specific objective function, targeting some architecture.

Their behaviours are predetermined, and the available options

30

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

do not provide the flexibility needed to achieve good results in

different areas, for different architectures, and within different

compilers. In AKG, for instance, the optimization target

architectures are diverse, so any of the existing schedulers

may be successful in some scenarios but not in others. The

state-of-the-art still lacks configurability and flexibility.

Several recent works have explored more configurable

approaches: PolyLingual [20] is a work-in-progress domain-

specific language (DSL) for polyhedral schedulers. This DSL

offers building block functions and types that ease the design

of polyhedral schedulers. Expert knowledge is still required

to fully design the scheduler logic, a new scheduler or any

of the previously cited schedulers, but the set of scheduling

strategies it offers should be very wide. However, the designer

has to consider all potential edge cases and guarantee the

algorithm’s completeness.

A lower-level approach is to directly define the set of polyhe-

dral transformations for a code, as proposed by Tiramisu [21].

In this case, the scheduler is replaced by an AI-guided search

strategy among the combination of loop transformations given

by the expert. In Clint [22] instead, a graphic interface allows

the application of manual transformations directly to the

polyhedron. Chlore [23] tackles the explainability problem

and, given an input kernel and its transformed version, tries

to recover the set of polyhedral transformations necessary

to obtain the same transformed version. Finally “Constraint

Injection” [13] proposes a way to inject simple constraints in

the polyhedral scheduler, but it is essentially designed to target

kernel-specific optimizations.

III. POLYTOPS

PolyTOPS is a configurable iterative polyhedral scheduler.

The objective is to propose a flexible, easy-to-adjust tool

to ensure that existing strategies, or a mix between existing

strategies (generalizing what isl proposes), can be described

with very little effort while still allowing the expert to guide

the scheduler more precisely if needed be. To achieve this,

PolyTOPS provides a general iterative scheduler scheme, where

the strategy can be defined through a configuration file.

The workflow of PolyTOPS is described in Fig. 2. The main

blocks are similar to schedulers such as isl [8] or Pluto [7].

Both the input and the output of PolyTOPS are polyhedral

representations of the code. The main parts of the input are the

initial schedule and the dependencies. They can be expressed

as isl objects or in OpenScop format. The result of the core

ILP-based scheduling algorithm may be further post-processed:

this phase handles tiling, intra-tile optimization and skewing

for wavefront parallelism (see [7, Section 5.3]). It is important

to highlight that no tile-size decision is implemented in the

core scheduler. Tile sizes must be externally provided for tiling

to be applied. Finally, as PolyTOPS can output isl objects or

an OpenScop representation, the code generation can then be

done with tools or libraries such as isl or CLooG [24].

The significant contribution of PolyTOPS is in the config-

uration block, which supports two kinds of interfaces, JSON

and C++. This feature allows the specification of high-level

Fig. 2. PolyTOPS workflow representation, showing the major blocks,

including the post-processing and the configuration. We support both

Openscop and isl-representation as Polyhedral Representation

optimization strategies. Predefined or new strategies can be

composed or extended through simple keywords. Further cus-

tomization, down to kernel-specific strategies such as statement

fusion or partial schedule specification, is also possible.

The configuration of PolyTOPS controls the scheduler

for each specific scheduling dimension. For example, we

could add cost functions for a specific dimension, distribute

some statements in another dimension or add constraints to

another one. The configurable features can be divided into two

main types:

• Local configurations: They directly control the ILP

creation. Predefined cost functions can be selected, and

their priority order can be specified. New variables,

ILP constraints or cost functions can be defined. Last

but not least, it is possible to define the statement

distribution/fusion for each dimension. It will be translated

internally into specific constraints that will force the

distribution specification.

• Global Configurations: These are higher-level features

that do not only impact the definition of the ILP for

a specific scheduling dimension. These features require

several logic steps in the scheduling algorithm to be

satisfied. For example, the directives are suggestions to

the scheduler to attempt to vectorize or parallelize a

specific loop. Another example is AutoVectorization, used

to automatically detect (based on the memory stride and

access pattern) what loops should be scheduled innermost

for possible vectorization.

Let us now describe all possible configurations, starting from

the locals and going on with the global ones.

A. Local Configurations

1) Cost functions control: A specific combination of pre-

defined or new cost functions and their priorities (given by

the textual order, from leftmost to rightmost) can be defined

or omitted for each scheduling dimension (Listing 1 line 7).

The objective function is the vector of variables. The order

of the variables is important because they are minimized in

lexicographic order.

New variables can be introduced, as shown in Listing 1 line 3,

used in custom constraint definitions and as cost functions.

31

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

1{
2 "scheduling_strategy" : {
3 "new_variables" : ["x"],

4 "ILP_construction" : [

5 {
6 "scheduling_dimension" : "default",

7 "cost_functions" : ["contiguity", "proximity", "x"]

8 }
9],

10 "custom_constraints" : [

11 {
12 "scheduling_dimension" : "default",

13 "constraints" : ["x - Si_it_i >= 0"]

14 }
15],

16 "fusion" : [

17 {
18 "scheduling_dimension" : 0,

19 "total_distribution" : false,

20 "stmts_fusion" : [["0", "1"], ["2"]]

21 }
22],

23 "directives" : [

24 {
25 "type" : "vectorize",

26 "stmts" : "0",

27 "iterator" : "1"

28 }
29]

30 }
31}

Listing 1. JSON example showing most of the configurable features of

PolyTOPS, including cost function control and definition, constraints

definition, fusion control and directives

The predefined cost functions are proximity from

Pluto [7], feautrier [6], contiguity inspired from the

cost function defined in Tensor scheduler [10], and a new

simple one named bigLoopsFirst that tries to schedule

first (outermost) the loops with the largest iteration space.

The contiguity cost function is designed to schedule

the iterators in the order that offers a better spatial locality.

For each statement S, given the set of iterators i⃗tS , we define

a cost function named contiguity as follows:

contiguity(S) =

|T it

S
|

∑

i=0

T i⃗t
S,i × cS,i (5)

contiguity(S) ≥ 0

where cS,i is a support coefficient that describes a priority

order optimizing the memory access pattern. For instance,

focusing on the kernel in Fig. 1(left), the two vectors of support

coefficient c⃗S0 and c⃗S1 would be respectively:

c⃗S0 = (10 1)
c⃗S1 = (1 10)

with i⃗tS0 = i⃗tS1 =

(

i
j

)

to force the scheduler to select the outermost loops with the

smallest contiguity coefficients.

The bigLoopsFirst (BLF) cost function is designed to

schedule the loops with the largest domains outermost. The

design is the same as the contiguity cost function, but the

coefficients ci used in Formula 5 are based on prioritizing the

dimensions with the highest bounds first. BLF can be useful in

scenarios where kernels have a lot of parallelism, in which only

one level or a few levels of outer parallelism are exploitable

by the architecture. We try then to maximize the number of

parallel iterations. For instance, focusing on the kernel in Fig. 1,

the two vectors c⃗S0 and c⃗S1 would be respectively:

c⃗S0 = (1 10)
c⃗S1 = (1 10)

with i⃗tS0 = i⃗tS1 =

(

i
j

)

.

2) Custom Constraints: Using a simple interface, custom

constraints are affine inequalities or equations. They can

constraint the scheduling functions ϕS,i(i⃗t) defined by Eq. (1),

for any statement S and dimension i through their vector of

coefficients, TS,i. We can separate this vector into subvectors

(T i⃗t
S,i T

N⃗
S,i T

1

S,i). A constraint can involve any of the coefficient

of TS,i using the notation:

S[stmt] [var type] [idx var],

where i is implicitly defined as the current dimension consid-

ered (iterative scheduler) and:

• stmt is a statement number from 0 to M − 1 (where M
is the number of statements), following the initial textual

order. It identifies a unique statement S.

• var type can be one of the following keywords: it refers

to the subvector T i⃗t
S,i, par refers to the subvector T N⃗

S,i and

cst refers to the constant term T 1

S,i.

• idx var is the index of the variable. The outermost iterator

of a statement is considered iterator 0. The order of the

parameters is the textual order in the input program.

Additionally, any user-defined variable can be used in the

constraints. Notice that replacing stmt or idx var with the

keyword ‘i’ represents the sum of all the variables of that type.

For example, a constraint that disables skewing for Statement

3 would be expressed by:

S3 it i ≤ 1.

This is equivalent to:

∑

k

T i⃗t
S3,k ≤ 1.

Custom constraints can be defined either for specific scheduling

dimensions or for all of them using the fusion keyword (see

the example in Listing 1 lines 10-15).

The constraints that are accepted must be affine. This means

that given the vector of variables V⃗ just described, it is possible

to define all the constraints in the form:

constraint = AV⃗ + c
≥

=
0

where A is a matrix of integer coefficients, and c is an integer.

3) Fusion/Distribution control: Custom loop-fusion deci-

sions can be specified for a specific kernel. We give the ability

to control the fusion, selecting which statements to fuse and

which ones to distribute for each level. Listing 1, lines 16-22,

shows a configuration example specifying that statements 0 and

1 are to be fused and statement 2 distributed at the scheduling

dimension 0.

32

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

S t r a t e g y I n f o s t r a t e g y (l a s t s o l u t i o n , s t m t s , o l d s t r a t e g y){
S t r a t e g y I n f o n e w s t r a t e g y ;

i f (! l a s t s o l u t i o n . p a r a l l e l &&

! o l d s t r a t e g y . r e c o m p u t e l a s t s o l u t i o n) {
n e w s t r a t e g y . r e c o m p u t e l a s t s o l u t i o n = t r u e ;

n e w s t r a t e g y . c o s t f u n c t i o n s = {” f e a u t r i e r ”}
} e l s e {

n e w s t r a t e g y . c o s t f u n c t i o n s = {” p r o x i m i t y ” } ;

}
re turn n e w s t r a t e g y ;

}

Listing 2. An isl style configuration described using the C++ configuration.

Feautrier is used as the fallback case when the Proximity fails to extract

parallelism

B. Global Configurations

1) Directives: Directives, Listing 1 lines 23-29, specify

that certain loops should be parallel, or vectorized

(scheduled innermost and not fused) or sequential. This

can be used to suggest partial code transformations while

the remaining scheduling transformation decisions are left to

the scheduler. The scheduler will try to satisfy the directives

unless scheduling legality can not be guaranteed. Directives

that prevent legality preservation are discarded.

2) Auto Vectorization: This option instructs the scheduler

to use a simple heuristic to detect dimensions that could

be vectorized for each statement. The heuristic looks for

dimensions that move contiguously in memory. The scheduler

then computes a scheduling transformation where: (1) the

vectorizable dimensions are scheduled as innermost and (2) the

corresponding statements are unfused for this scheduling dimen-

sion. For architectures such as CPUs or NPUs, vectorization

is critical for performance.

C. Configurations Strategy

The configurations can be specified using two different

interfaces, each of them more suitable to different scenarios:

1) JSON interface: The JSON interface, as seen in List-

ing 1, allows to tailor strategies for the input kernel. Local

configurations are statically defined and mapped to scheduling

dimensions. The configurations specify cost functions, extra

constraints and possible loop distributions. However, this

interface does not offer the freedom to define complex strategies

that take outermost partial schedules into account.

2) C++ interface: In this configuration, the strategy is

defined in a dynamic library that is loaded by PolyTOPS

and called before each scheduling iteration. This enables a

dynamic specification of each scheduling strategy, generalizing

isl [8] strategy, which calls a Pluto-style scheduler as default

and a Feautrier-style scheduler as fallback. This example is

shown in Listing 2. Furthermore, the strategy definition has

access to many details concerning the statements and the partial

schedule computed until the present iteration. This gives the

opportunity to create more complex strategies.

The configuration is expressive enough to allow switching

between different strategies like Pluto-style, Feautrier-style,

isl-style, and TensorScheduler-style and define new ones. The

Algorithm 1: PolyTOPS Scheduler

Data: Input Dependencies deps, Statements S, Scheduling

Configuration config
Result: Scheduling Θ ∀S, Tilability: Bands, Parallelism info

for each level: ParallelDimension

1 constraints ← CreateConstraints(config , deps);
2 dimension ← 0;

3 band← 0;

4 repeat
5 if config .type = C++ then
6 config ← UpdateConfiguration(Θ);
7 end
8 if config .Distribute(dimension) then
9 φ← Distribute(dimension, config);

10 Θ.Append(φ);
11 Bands.Append(band);
12 RemoveSatisfiedDependencies(deps);
13 /* Ends the current band */

14 band← band+ 1;

15 else
16 ILP ← constraints(dimension);
17 φ← Solve(ILP);
18 if φ ̸= ∅ then
19 Θ.Append(φ);
20 /* Same band as before */

21 Bands.Append(band);
22 else
23 /* Change band and retry! */

24 RemoveSatisfiedDependencies(deps);
25 band ← band+ 1;

26 ILP ← constraints(dimension);
27 φ← Solve(ILP);
28 if φ ̸= ∅ then
29 Θ.Append(φ);
30 Bands.Append(band);
31 else
32 φ← UnfuseSCCs(deps);
33 Θ.Append(φ);
34 Bands.Append(band);
35 RemoveSatisfiedDependencies(deps);
36 band← band+ 1;

37 end
38 end
39 end
40 ParallelDimension.Append(φ.isParallel());
41 P ← ProgressionConstraint(Θ);
42 until P = ∅ && deps = ∅;
43 return Θ;

only limit is that the configuration can only influence the core

“Scheduler” block of Fig. 2. For instance, the main Pluto ILP

strategy can be easily replicated using the configuration, but

the post-processing and internal fusion heuristics cannot.

D. Common Algorithmic Structure

PolyTOPS relies on an algorithmic structure shown in

Algorithm 1 that is common to the iterative schedulers, such

as Feautrier’s [6], Pluto [7], isl-scheduler [8] and Tensor

Scheduler [10]). This is a generalization of Pluto algorithm,

using the configuration strategy to drive the scheduler.

The termination criteria of the algorithm are to check if the

iteration space is completely covered and if all the dependencies

33

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

def t r s m L o f f d i a g (a , b) :

i n v e r s e 0 = a l l o c a t e (b . shape , b . d t y p e)

row = b . shape [0]

c o l = b . shape [1]

f o r i in r a n g e (row) :

f o r j in r a n g e (i) :

f o r l in p a r a l l e l (c o l / / 1 6) :

f o r k in v e c t o r i z e (1 6) :

i n v e r s e 0 [i , l *16+k] = a [i , j] * b [j , l *16+k]

b [i , l *16+k] = b [i , l *16+k] − i n v e r s e 0 [i , l *16+k]

re turn b

(a) Input code. Directives are displayed in red.

def t r s m L o f f d i a g (a , b) :

i n v e r s e 0 = a l l o c a t e (b . shape , b . d t y p e)

row = b . shape [0]

c o l = b . shape [1]

f o r l in p a r a l l e l (c o l / / 1 6) :

f o r i in r a n g e (row) :

f o r j in r a n g e (i) :

f o r k in v e c t o r i z e (1 6) :

i n v e r s e 0 [i , l *16+k] = a [i , j] * b [j , l *16+k]

f o r k in v e c t o r i z e (1 6) :

b [i , l *16+k] = b [i , l *16+k] − i n v e r s e 0 [i , l *16+k]

re turn b

(b) Optimized code (before tiling) thanks to PolyTOPS

Fig. 3. Hybrid Custom Operator example.

are fulfilled (line 42). The algorithm iterates to find a new

scheduling dimension until the termination criteria are met

(from line 4 to line 42). To compute the next dimension ϕ, the

scheduler firstly verifies if the fusion heuristic (or the interface

for PolyTOPS) imposes a loop distribution for this scheduling

dimension (lines 8-14). If not, the algorithm continues with

the standard step (lines 16-21), constructing the ILP system

composed of the cost functions and constraints defined for

the dependencies that are not yet completely satisfied. If

no solution is found, the algorithm attempts to remove the

dependencies satisfied by the previous scheduling dimension,

and it continues building the ILP problem and trying to

find a solution (lines 23-30). If all preceding steps fail, loop

distribution is enforced by analyzing the strongly connected

components (SCC) of the dependency graph and distributing the

loop of different SCC (lines 32-36). Once the solution is found,

it updates the progression constraint, ensuring that the next

computed dimension of ϕ will be linearly independent from the

previous ones and that the schedule is a bijective transformation.

The algorithm computes Bands and ParallelDimension.

Bands are used in post-processing tiling to determine which

dimensions can be tiled. ParallelDimension indicate which

scheduling dimensions are parallel.

This algorithmic scheme covers all iterative schedulers of

the literature just by defining the appropriate configurations.

PolyTOPS extends them with the ability to select and define

the cost functions and constraints (lines 16, 26). The JSON

interface is expressed statically, so it is parsed once at the

beginning of the scheduling algorithm, while the C++ interface

allows for a logic-based decision using the information from

the schedule Θ found so far (line 6), so it is updated for each

scheduling iteration. For both cases, the configuration impacts

loop fusion/distribution decision (line 9).

Legality (Eq. (2)) and progression (Eq. (3)) constraints are

TABLE I

(ASCEND 910 NPU) CUSTOM OPERATOR RESULTS, SHOWING THE

NUMBER OF CYCLES FOR EACH CASE AND THE SPEEDUP OBTAINED BY

POLYTOPS RESULTS OVER THE ISL ONES

Case Input/Output
isl

(cycles)

PolyTOPS

(cycles)
Speedup

LU

decomp
16x16 27943 18333 1.52

trsmL

off diag

16x16x16 15375 704 21.84

16x16x32 31126 1122 27.74

16x16x48 45172 1518 29.76

16x16x64 62414 1938 32.21

16x16x80 75611 2324 32.53

16x16x96 93387 2724 34.28

16x16x112 108384 3223 33.63

trsmU

transpose

16x16x16 55370 22100 2.51

16x32x16 107159 44298 2.42

16x48x16 160547 64281 2.50

16x64x16 212907 87914 2.42

16x80x16 267627 106479 2.51

16x96x16 317589 130221 2.44

16x112x16 370941 151204 2.45

always included when computing a solution, whatever the

configuration. Hence the scheduler always terminates (similar

proof as the one for Pluto [7]). Moreover, the scheduler is

guaranteed to find a valid schedule if no custom constraints and

no fusion/distribution control are defined in the configuration.

Indeed, strategies do not prevent finding a legal schedule, and

directives are ignored when they conflict with the legality.

Only the custom constraints and fusion/distribution may lead

to an empty solution. This is different from approaches such

as Tiramisu [21] or other approaches that do not use a sched-

uler since each scheduling function obtained by composing

transformations has to be proved valid.

IV. EXPERIMENTAL RESULTS

Our experiments focus on demonstrating the flexibility of

PolyTOPS, capable of adapting to the different scenarios

shown in the following session, and the expressiveness of

the configurability, capable of changing the behaviour of

the scheduler.

A. MindSpore Hybrid Custom Operators

In the first scenario, PolyTOPS is used in the context of

MindSpore [3] for the generation of custom operators on

NPU hybrid custom operators [25] for AI applications. The

experiments are run on an Atlas 800 (model 9010) server

featuring 8 Ascend 910 NPU accelerators [26] [27]. The goal

is to define custom operators differently from the default AI

operators that are already predefined. When creating these

operators, it is possible to express some directives passed

through the AKG [2] compiler to PolyTOPS as part of the

internal configuration. PolyTOPS schedules the operator and

tries to comply with the provided directives. Table I shows

the speedups obtained with such directives compared to isl

(the default scheduler previously used in AKG [2]), both cases

implemented in MindSpore and isl is used for code generation.

34

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

The speedups are significant for all the 3 operators with all

the different sizes, with a geomean speedup of 7.66x.

These results come from a manual specification, mostly

focusing on vectorization directives that will end up applying

interchanges and vectorizing innermost. We can see an example

of one of the operators in Fig. 3a. In this case, the directives

hint to vectorize the loop k. The result obtained is shown in

Fig. 3b. The speedup obtained is because isl would detect k
as parallel and schedules it as the outermost loop, thus losing

the vectorization opportunity.

Although these results are achieved through manual directive

specifications, we discovered that the same configuration

file, enabling auto-vectorization and using the proximity cost

function, could systematically be used for all kernels for all

sizes. This suggests that the ability, through configurations, has

the potential not only to obtain kernel-specific optimizations

but also to generate effective heuristics for groups of use cases

or specific scenarios.

B. Comparing Scheduling Strategies on Polybench

The second part of our experiments is focused on the

Polybench [28] benchmark. In this experimental section, we

chose to compare PolyTOPS results against Pluto. This section

uses CLooG [24] for code generation for all schedulers.

We repeated the tests in three different system configurations:

• AMD: AMD EPYC 7452, with 32 cores (2 threads for

each core), 2 sockets. 256 MiB of L3 cache. The compiler

version is gcc-11.3.

• Intel1: Intel Xeon E5-2683 CPU (x86 64), with 2 sockets

with 16 cores each (2 threads for each core). 80 MiB of

L3 cache. The compiler is gcc-10.5.

• Intel2: Intel Xeon Silver 4215 CPU (x86 64), with 2

sockets with 8 cores each (2 threads for each core). 22

MiB of L3 cache. The compiler is gcc-10.5.

Polybench contains heterogeneous kernels coming from dif-

ferent domains, such as linear algebra, data mining and stencil

computation, and it represents a reference for the polyhedral

optimization benchmarks. In our experiments, the performance

obtained by PolyTOPS (using different configurations) is

compared to Pluto, using the last development version (commit

eddc385). For Pluto, the options --parallel --tile

--nounrolljam --no-diamond-tiling are used. The

last two are disabled because their post-processing is not

available in PolyTOPS so far.

Our study of PolyTOPS showcases three general strategies

for each kernel: The proximity cost function is used in the

pluto-style strategy (Fig. 4 left), while contiguity cost function

is used in the tensor-scheduler-style strategy (with proximity as

secondary). The no-skewing constraint is also applied (Fig. 4

right). The isl-style strategy (Listing 2) defaults to proximity,

and if no parallelism is found, it recomputes the scheduling

dimension, resorting to Feautrier’s strategy. These strategies

are the same as their state-of-the-art counterparts regarding

ILP construction and the primary objective. Our heuristic

for the fusion strategy distributes statements with a different

{
” s c h e d u l i n g s t r a t e g y ” : {

” I L P c o n s t r u c t i o n ” : [

{
” s c h e d u l i n g d i m e n s i o n ” : ” d e f a u l t ” ,

” c o s t f u n c t i o n s ” : [p r o x i m i t y ”]

}
] ,

}
}

{
” s c h e d u l i n g s t r a t e g y ” : {

” I L P c o n s t r u c t i o n ” : [

{
” s c h e d u l i n g d i m e n s i o n ” : ” d e f a u l t ” ,

” c o s t f u n c t i o n s ” : [” c o n t i g u i t y ” ,

” p r o x i m i t y ”] ,

” c o n s t r a i n t s ” : [” no− skewing ”]

}
] ,

}
}

Fig. 4. JSON configurations showing pluto-style (on the left) and

tensor-scheduler-style (on the right)

loop dimensionality (number of surrounding loops), similar to

Pluto’s smartfuse heuristic.

Last but not least, we show the result obtained using a kernel-

specific configuration for each kernel. These configurations are

obtained by playing with the cost functions, fusion decisions

and vectorization directives, and they can change between

different architectures and kernels.

Out of clarity, in Fig. 5, we removed the kernels nussinov,

adi, deriche, ludcmp and floyd-warshall where the results are

identical between Pluto and PolyTOPS. For the first 4 cases,

both Pluto and PolyTOPS fall back to the initial schedule.

Performance can be improved but it requires support for the

negative scheduling coefficients. Floyd-warshall is too simple

to obtain speedups applying loop transformations.

1) Results Analysis: Focusing on the charts in Fig. 5, we

can see that heuristics like pluto-style, tensor-scheduler-style,

and isl-style perform differently depending on the kernel. For

example, isl-style performs well for stencil applications with

complex dependencies like jacobi-2d, jacobi-1d, and heat-

3d, where the Feautrier’s fallback is crucial for parallelism.

However, in other cases like correlation, covariance, durbin,

lu, and trmm, isl-style performs poorly. Pluto-style and tensor-

scheduler-style differ mainly in the no-skewing constraint.

Pluto-style finds a complex skewing that enables parallelism

in jacobi-1d, but the generated code is complex, degrading

the overall performance compared to the tensor-scheduler-style

solution. On the other hand, pluto-style outperforms tensor-

scheduler-style in fdtd-2d because parallelism (that requires

skewing) is crucial for performance improvements in this case.

In some cases, tensor-scheduler-style performs better because

of contiguity interchange.

As expected, the kernel-specific configuration outperforms

or at least obtains the same speedup as the other strategies,

obtaining an overall geomean speedup of 1.82 for AMD, 1.71

for Intel1 and 1.76 for Intel2.

For gramschmidt (Intel1 and Intel2), in the kernel-specific

configuration, thanks to a fusion decision based on maximizing

the data reuse, we can find a better speedup compared to Pluto.

A hardware counter analysis shows indeed a smaller number

of L3-cache-misses (around 5 times less) for our configuration

compared to Pluto’s.

Another case where fusion is important is showcased in

symm: Our fusion heuristic decides to distribute one statement

from the beginning, enabling parallelism. The result produced

by Pluto is, instead, fully sequential (a complete fusion

is applied).

35

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

2−5
2−4
2−3
2−2
2−1
20
21
22
23
24

S
p

e
e
d

u
p

A
M

D

pluto-style tensor-scheduler-style isl-style kernel-spec

2−4
2−3
2−2
2−1
20
21
22
23
24

S
p

e
e
d

u
p

In
te

l1

pluto-style tensor-scheduler-style isl-style kernel-spec

ja
c
o
b
i-

1
d

tr
is

o
lv

sy
m

m
g
ra

m
sc

h
m

id
t

fd
td

-2
d

a
ta

x
ja

c
o
b
i-

2
d

d
o
it
g
e
n

g
e
su

m
m

v

b
ic

g

h
e
a
t-

3
d

sy
rk

c
h
o
le

sk
y

g
e
m

v
e
r

m
v
t

c
o
rr

e
la

ti
o
n

2
m

m lu

sy
r2

k

3
m

m

tr
m

m
c
o
v
a
ri

a
n
c
e

g
e
m

m

d
u
rb

in
se

id
e
l-

2
d

ge
om

ea
n

2−4
2−3
2−2
2−1
20
21
22
23
24

S
p

e
e
d

u
p

In
te

l2

pluto-style tensor-scheduler-style isl-style kernel-spec

Fig. 5. Speedups (in log scale) of PolyTOPS (using 4 different configurations, pluto-style, tensor-scheduler-style, isl-style and kernel-specific) compared to

Pluto. The kernel-specific configuration is at least as good as the three previous ones. The results are sorted by decreasing kernel-specific speedups in Intel2

machine. Tests done on AMD (top), Intel1(middle) and Intel2(bottom)

Another factor to highlight is the fact that, for a few cases,

we need to change the kernel-specific configuration between

different architectures. This can be explained by several factors,

such as different cache sizes, different numbers of cores and

threads and different environments (compiler, architecture,

operating system). Among these cases, we can find jacobi-

2d, heat-3d and fdtd-2d, where for the Intel machines isl-style

is the most performant configuration, while for AMD a simple

loop distribution performs better.

In some cases, our pluto-style strategy can outperform the

Pluto scheduler, and in some other cases, the reverse situation

applies. This is mostly given by different fusion heuristics

implemented in the two schedulers. This gives an idea of the

impact of the fusion heuristic on the optimization problem and

the limits of the existing heuristics.

These experiments show that kernel-specific configurations

can be really useful to explore transformations with minimal

effort. However, the results also show that the generic strategies

defined so far have room for improvement because they ignore

many scenario factors (architecture, use case characteristics).

PolyTOPS can help to design generic configurations that can

work better than the state-of-the-art.

2) Dataset Size Analysis: In the context of kernel size

and scheduling choices, Jacobi-1d (similarly to trisolv) is

an example that highlights the impact of kernel size on

performance. The charts in Fig. 5 show that our solution

la
rg

e
2
x
la

rg
e

4
x
la

rg
e

6
x
la

rg
e

8
x
la

rg
e

1
0
x
la

rg
e

1
2
x
la

rg
e

1
4
x
la

rg
e

1
6
x
la

rg
e

2−2

2−1

20
21
22
23
24

Dataset Size

S
p

e
e
d

u
p

In
te

l1
(l

o
g

s
c
a
le

)

Large-size-dedicated Pluto-style

Fig. 6. Speedups of PolyTOPS compared to Pluto for Jacobi-1d using two

different configurations and multiple data set sizes. The blue one is (best)

dedicated configuration considered for large size. The red one is the

configuration Pluto-style.

outperforms Pluto for all machines. Upon closer inspection, our

solution generates a simple and fully sequential code, while

Pluto generates a more complex code with several conditions

and complex data accesses, enabling parallelism for the inner

loop through initial skewing.

The graph in Fig. 6 demonstrates how the speedup of large-

size dedicated configuration (in blue) changes with different

Polybench dataset sizes. We also present the results of our

pluto-style configuration (in red), which is more consistent

when the size changes. It is noticeable that the parallelism

36

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

ja
c
o
b
i-

1
d

tr
is

o
lv

sy
m

m
g
ra

m
sc

h
m

id
t

fd
td

-2
d

a
ta

x
ja

c
o
b
i-

2
d

d
o
it
g
e
n

g
e
su

m
m

v

b
ic

g

h
e
a
t-

3
d

sy
rk

c
h
o
le

sk
y

*
g
e
m

v
e
r

m
v
t

*
n
u
ss

in
o
v

*
c
o
rr

e
la

ti
o
n

2
m

m lu

sy
r2

k

3
m

m

tr
m

m
*
c
o
v
a
ri

a
n
c
e

g
e
m

m

d
u
rb

in
*
d
e
ri

c
h
e

se
id

e
l-

2
d

ge
om

ea
n

2−4
2−3
2−2
2−1
20
21
22
23
24

2
−7

2
−8

2
−12

2
−7

2
−8

2
−8

2
−4

S
p

e
e
d

u
p

In
te

l1

Pluto-lp-dfp Pluto+ isl-PPCG PolyTOPS

Fig. 7. Speedups (log-scale) of PolyTOPS using the kernel-specific configuration, Pluto-lp-dfp (best fusion heuristic) and Pluto+ compared to Pluto (last dev

version). For the cases marked with the symbol *, no solution was found by any of the fusion heuristics of Pluto-lp presented in [29].

achieved by Pluto (and our pluto-style version) has a greater

impact when the size increases. This indicates that the size of

the kernel is an important factor that the scheduler should take

into account, which points to a possible direction for future

research. Furthermore, we want to highlight the flexibility of

PolyTOPS, which can be reconfigured for all sizes, ensuring

it is at least as good as Pluto, and demonstrating the power of

our reconfigurability.

C. Comparing Scheduling Tools on Polybench

We compare PolyTOPS with Pluto+ [16], Pluto-lp-dfp [17]

and isl-PPCG [9]. The first two works extend Pluto in several

ways, while isl-PPCG is a specific version of isl-scheduler used

in PPCG project. The differences relevant to the scope of our

experiments are that Pluto+ allows negative coefficients and that

several fusion heuristics are available in Pluto-lp-dfp. isl-PPCG

instead uses a combination of Pluto and Feautrier scheduling

algorithms, and it also uses different fusion heuristics. Speedups

over Pluto are reported in Fig. 7. For Pluto-lp-dfp, only the

highest speedup obtained from the three fusion heuristics

for each code is shown [29] (except for some cases where

some of the fusion heuristics did not produce a result). The

speedup shown for PolyTOPS corresponds to kernel-specific

configurations. As for PolyBench, CLooG is the code generator

used for all schedulers.

In the case of doitgen, Pluto+ outperforms PolyTOPS by

enabling parametric shifting. This is a transformation by default

in Pluto+, with no option to disable it. The same solution can

be obtained with PolyTOPS by enabling parametric shifting.

However, we consider it unfair to compare with Pluto, which

does not allow it.

Negative coefficient support is required to find transforma-

tions for nussinov and deriche. It is currently only supported

in Pluto+. Pluto, Pluto-lp-dfp and PolyTOPS only post-process

the initial schedule, whereas for deriche Pluto+ can compute a

slightly better schedule.

Pluto-lp-dfp achieves a slight speedup over PolyTOPS for

trmm and 3mm due to different intra-tile optimization (part of

the post-processing).

In all other cases, PolyTOPS performs better (or similarly)

than all the other versions for two reasons. Firstly, allowing

negative coefficients in Pluto+ is not beneficial for most of the

Polybench cases. Secondly, fusion heuristics Pluto-lp-dfp focus

on generic high-level fusion heuristics that cannot compete

(except for some cases like trisolv and symm) with the kernel-

specific fusion decisions from our configurations.

Regarding isl-PPCG results, cases like trisolv, gramschmidt,

jacobi-2d, heat-3d, cholesky, nussinov, lu, and seidel-2d show

big slowdowns, mainly because of fusion choices, complex

skewing (caused by Feautrier cost function) that generate

a complex final code. Apart from that, we can see that in

some other cases like jacobi-1d, symm, gesummv, and bicg

isl is capable of finding transformations that are really close

(or equal) to the ones found with the best configuration

of PolyTOPS.

D. Comparing Scheduling Tools on PolyMage

We finally compare PolyTOPS performances on the Poly-

MAGE [30] benchmark suite on Intel1. It contains 7 use

cases coming from image processing. Loop-based computations

and stencils characterize these codes, making them interesting

scenarios for polyhedral optimizations. For our experiments,

we started from the naive version of the codes provided in

the benchmark and adapted them to our pipeline with several

pre-processing steps. Clan [31] was used to transform the C++

codes into OpenScop format, and it has been adapted to support

the division operation in the array indices.

From the results in Table II, notice that many results

are not available: For camera-pipe, interpolate and pyramid-

blending Pluto (in all the different versions) does not support

local variables in the polyhedral representation. These are

necessary to represent if statements using modulo and division

operations, and they are also necessary for some complex

accesses. isl-PPCG can handle all the cases except pyramid-

blending, where the transformation generated is empty due to

some internal error.

The available results show that PolyTOPS outperforms or is

on par with state-of-the-art schedulers. The codes camera-pipe,

interpolate, and pyramid-blending contain many statements

while having a low loop dimensionality. Thus the major

difficulty when optimizing them is selecting a good fusion

heuristic that may enable better parallelism while remaining

37

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

TABLE II

POLYMAGE BENCHMARK: TIMING (MILLISECONDS) AND RELATIVE SPEEDUPS AMONG POLYTOPS AND THE STATE-OF-THE-ART SCHEDULERS (ISL-PPCG,

PLUTO, PLUTO-LP-DFP, PLUTO+). FOR SOME CASES AND SCHEDULERS, THE RESULTS ARE UNAVAILABLE (N.A.) BECAUSE OF TECHNICAL LIMITATIONS.

Benchmark
PolyTOPS

(ms)

isl-PPCG

(ms)

Pluto

(ms)

Pluto-lp-dfp

(ms)

Pluto+

(ms)

Speedup

(isl-PPCG)

Speedup

(Pluto-dev)

Speedup

(Pluto-lp-dfp)

Speedup

(Pluto+)

harris 47 108 57 47 57 2.28 1.19 1 1.19

unsharp-mask 120 120 134 120 132 1 1.10 1 1.10

camera-pipe 88 177 n.a n.a. n.a 2.01 n.a n.a n.a

interpolate 89 71 n.a n.a n.a 0.79 n.a n.a n.a

pyramid-blending 74 n.a n.a n.a n.a n.a n.a n.a n.a

cache-friendly. For interpolate, the performance obtained is

lower than isl-PPCG because PPCG uses a more precise code

generation. In our case, Cloog [24] often does not take into

account all directives specifying parallel dimensions for code

generation, losing several parallelization opportunities. For

pyramid-blending, no code is generated by isl.

V. CONCLUSION

PolyTOPS is a novel polyhedral scheduler tool that improves

upon the state-of-the-art black-box polyhedral schedulers

by offering an easy way to configure and tune polyhedral

scheduling. It can adapt to various application scenarios where

polyhedral optimization was previously dismissed due to the

poor results of black-box schedulers. Inputs and outputs can

be expressed either as isl objects or in OpenScop format. Thus,

the output of PolyTOPS can be fed into code generation

tools such as isl [8] or CLooG [24]. PolyTOPS has been

integrated into MindSpore AKG compiler [2]. The performance

of PolyTOPS has been evaluated on one application scenario

and on two benchmark suites. On the application scenario of

hybrid custom operators [25] for an Ascend NPU, a feature of

MindSpore [3], the configurability and flexibility of PolyTOPS

led to better performance than with the isl scheduler (up

to x34 speedup). On Polybench [28] benchmark suite, we

showed that simple configurations can mimic the behaviours

of state-of-the-art scheduling strategies (isl, Tensor Scheduler,

Pluto) and that completely new general configurations can be

created with little effort, outperforming Pluto scheduler [7]

(x1.8 geomean speedup) using kernel-specific configurations

in different CPUs. On the Polymage benchmark suite, we

have shown that PolyTOPS outperforms or is on par with

other schedulers.

This work paves the way for further research. The design

of fusion heuristics is crucial for high performance and could

be an extension for PolyTOPS configurations. Extending the

currently proposed rules for fusion and defining pattern-guided

fusion heuristics would be a way to enrich the existing

scheduling heuristics. Finally, more software and hardware-

specific configuration extensions could prove useful: Internal

heuristics for fusion, tiling adapted to the input hardware

configuration and scheduling decisions based on the kernel size.

VI. DATA AVAILABILITY STATEMENT

PolyTOPS binary and the experimental setup are available

in Zenodo (DOI: 10.5281/zenodo.10205197) [32].

ARTIFACT APPENDIX

A. Abstract

This artifact provides a docker image that contains programs

and scripts to generate results for Fig. 5, Fig. 6, Fig. 7 and

Table II. Results may differ depending on the target architecture

or system.

The image contains PolyTOPS, Pluto, Pluto+, Pluto-lp, and

PPCG. Additional software such as clan, Candl, Cloog, isl and

FPL are also available.

In this artifact, you will be able to replicate the results shown

in the paper and test PolyTOPS and its functionalities.

B. Artifact Check-list (Meta-information)

• Goal: Reproduce results for Fig. 5, Fig. 6, Fig. 7 and

Table II

• Compilation: private

• Hardware: see Section IV-B.

• Metrics: Time (Average time over the number of repeti-

tions) in ms for PolyMage and cycles for PolyBench tests.

• Output: CSV(comma separated values) files.

• How much disk space is required (approximately)?:

6GB.

• How much time is needed to prepare workflow

(approximately)?: 1 min.

• How much time is needed to complete experiments

(approximately)?: more than 12 hours for Intel1 (full

experiments are required, but the timing can be tremen-

dously reduced if excluding isl-PPCG results as described

in Section -E3), while around 5 hours for AMD and Intel2

(only Section -E1 needs to be tested for these 2 machines.)

• Archived?: the artifact can be found in Zenodo:

https://doi.org/10.5281/zenodo.10205197.

C. Description

1) Delivery: a docker image can be found on Zenodo [32]

(https://doi.org/10.5281/zenodo.10205197)

2) Hardware Dependencies: see Section IV-B, respectively

Intel1, Intel2, AMD.

3) Software Dependencies: Docker v24

4) Data Sets: Polybench, PolyMage

D. Installation

The docker is published on Zenodo [32] and can be loaded

from file polytops.tar as follows:

38

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

$ do ck e r l o a d − i p o l y t o p s . t a r

Upon success, image polytops:cgo-2024 will be available.

E. Experiment Workflow

A new polytops:cgo-2024 container can be run using

the following command:

$ do ck e r run − i t −−cap −add=SYS NICE p o l y t o p s : cgo −2024

The image is set up so the default command is ‘/bin/bash

--login‘.

Note that the internal configuration (see ‘/etc/profile.d‘)

requires a login shell for additional software to be found

and executed.

Once inside the container, run the following commands:

$ cd $HOME/ t e s t

$ bash . / r u n c o m p l e t e a r t i f a c t . sh

To replicate our results, we strongly suggest to the users to

wrap test executions in the following command:

$ sudo −− l o g i n n i c e −n −20 bash −c ”{ cd $ (pwd) ; <t e s t >; }”

Password is polytops. This command allows us to prioritize

the execution of our experiments. For instance, the previous

command would become:

$ sudo −− l o g i n n i c e −n −20 bash −c ”{ cd $ (pwd) ;

bash . / r u n c o m p l e t e a r t i f a c t . sh ;} ”

For readability, we will not rewrite it for all the commands.

The script ”run complete artifact.sh“ will run all the scripts

and generate the output timings, representing the results shown:

• PolyTOPS-results (Fig. 5):

$HOME/test/test_fig2_and_4/fig_2.csv

• Data-Size (Fig. 6):

$HOME/test/test_fig3/fig_3.csv

• SOTA (Fig. 7):

$HOME/test/test_fig2_and_4/fig_4.csv

• PolyMage (Table II):

$HOME/test/test_polymage/times_polymage.csv

Notice that the complete script is configured for Intel1, while

for Intel2 and AMD you can refer to Section -E1 that explains

how to run only the specific tests in Fig. 5.

The results can also be computed singularly for each

test case.

https://www.overleaf.com/project/63f31c3c15e8ba0d914c2e10

1) PolyTOPS Results: To obtain the results described in

Fig. 5, users can run these commands:

$ cd $HOME/ t e s t / t e s t f i g 2 a n d 4 /

$ bash t e s t f i g 2 . sh −c $HOME/ t e s t / p a p e r b e s t c o n f i g s I N T E L 1

−n 10

where the option -c specifies the root path of the PolyTOPS

configuration files that we used for PolyBench cases, and -n

specifies the number of executions we want to run for each

final transformation. For the -c option, you can select any of

the following paths, depending on which experiment of Fig. 5

you want to reproduce:

• For Fig. 5 Intel1 machine you can use:

$HOME/test/paper_best_configs_INTEL1/

• For Fig. 5 Intel2 machine you can use:

$HOME/test/paper_best_configs_INTEL2/

• For Fig. 5 AMD machine you can use:

$HOME/test/paper_best_configs_AMD/

2) Data Size Analysis: To replicate these experiments, it is

just necessary to run the following commands:

$ cd $HOME/ t e s t / t e s t f i g 3 /

$ bash t e s t f i g 3 . sh −n 10

where -n is an option specifying the number of executions for

each program version. The output is generated automatically

in $HOME/test/test_fig3/fig_3.csv.

3) SOTA: To replicate Fig. 7, you can run the following

commands:

$ cd $HOME/ t e s t / t e s t f i g 2 a n d 4 /

$ bash t e s t f i g 4 . sh −n 10

where -n specifies the number of executions for each program

version. Notice that in this part of the experiments, a big portion

of time is taken by isl-PPCG results (see the tremendous slow-

downs in Fig. 7). If the user wants to exclude isl from the experi-

ment, the $HOME/test/test_fig2_and_4/test_fig4.sh

script can be edited at line 32, removing the isl keyword.

4) PolyMage: To replicate the PolyMage experiments in

Table II, you can run the following command:

$ cd $HOME/ t e s t / t e s t p o l y m a g e

$ bash t e s t p o l y m a g e . sh

The output will be available in the file

$HOME/test/test_polymage/times_polymage.csv.

F. Evaluation and Expected Result

The results produced (PolyTOPS-results, Data-Size, SOTA,

and PolyMage) are CSV files containing the average execution

time of the different versions of the test cases and the standard

deviation of the timing.

The results in the paper are equivalent for PolyMage

(Table II), while for the other charts, we calculated a speedup

(compared to Pluto results) in log scale (base 2) using the

following formula:

speedup = pluto time/variant time

where variant time represents any of the variants of PolyTOPS

or any other scheduler in the charts in Fig. 5, Fig. 7, and Fig. 6.

G. Experiment Customization

If you want to use our tool for custom cases, you can use the

polytops command directly. PolyTOPS supports OpenScop as

input (produced by Clan) and the final code generation is done

by Cloog. Given an input C file input.c (that must contain the

proper PRAGMA), a simple pipeline to generate an optimized

version out.c is:

39

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

$ c l a n i n p u t . c | p o l y t o p s −− i n p u t − f o r m a t = openscop

−− t i l i n g = t ru e −−compute − d e p e n d e n c i e s = t ru e

−− o u t p u t − f o r m a t = openscop | c l o o g s t d i n − openscop −o

. / o u t . c

The option –help provides a list of all the available options.

Moreover, we also provide another script in

$HOME/test/scripts/single_case.sh that can be

used to run a similar pipeline but with some extra PolyTOPS

options. This script contains several extra functionalities that

can be displayed with the –help option.

REFERENCES

[1] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.

Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor com-

prehensions: Framework-agnostic high-performance machine learning

abstractions,” 2018.

[2] J. Zhao, B. Li, W. Nie, Z. Geng, R. Zhang, X. Gao, B. Cheng, C. Wu,

Y. Cheng, Z. Li, P. Di, K. Zhang, and X. Jin, “Akg: Automatic kernel

generation for neural processing units using polyhedral transformations,”

in Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, ser. PLDI 2021.

New York, NY, USA: Association for Computing Machinery, 2021, p.

1233–1248.

[3] L. Chen, Deep Learning and Practice with MindSpore. Springer, 2021.

[4] S. Cyphers, A. K. Bansal, A. Bhiwandiwalla, J. Bobba, M. Brookhart,

A. Chakraborty, W. Constable, C. Convey, L. Cook, O. Kanawi,

R. Kimball, J. Knight, N. Korovaiko, V. K. Vijay, Y. Lao, C. R. Lishka,

J. Menon, J. Myers, S. A. Narayana, A. Procter, and T. J. Webb, “Intel

ngraph: An intermediate representation, compiler, and executor for deep

learning,” CoRR, vol. abs/1801.08058, 2018.

[5] C. Lattner, J. A. Pienaar, M. Amini, U. Bondhugula, R. Riddle,

A. Cohen, T. Shpeisman, A. Davis, N. Vasilache, and O. Zinenko,

“MLIR: A compiler infrastructure for the end of moore’s law,” CoRR,

vol. abs/2002.11054, 2020.

[6] P. Feautrier, “Some efficient solutions to the affine scheduling problem. i.

one-dimensional time,” International Journal of Parallel Programming,

vol. 21, pp. 313–347, 1992.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A

practical automatic polyhedral program optimization system,” in ACM

SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI), Jun. 2008.

[8] S. Verdoolaege, “Isl: An integer set library for the polyhedral model,”

in Proceedings of the Third International Congress Conference on

Mathematical Software, ser. ICMS’10. Berlin, Heidelberg: Springer-

Verlag, 2010, pp. 299–302.

[9] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,

and F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM

Trans. Archit. Code Optim., vol. 9, no. 4, 01 2013.

[10] B. Meister, E. P. A. Kaeru, and B. P. Silexica, “Polyhedral tensor

schedulers,” in 2019 International Conference on High Performance

Computing Simulation (HPCS), 2019, pp. 504–512.

[11] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:

a scalable and unified architecture for ubiquitous deep neural network

computing : Industry track paper,” in 2021 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), 2021, pp. 789–

801.

[12] C. Bastoul, “Keynote: Automatic operator generation for deep learning

frameworks in the all-scenario context: Mindspore/akg architecture,

features and challenges.” in IMPACT 2022. 12th International Workshop

on Polyhedral Compilation Techniques, 2022. [Online]. Available:

https://impact-workshop.org/impact2022/slides/keynote.pdf

[13] C. Bastoul, Z. Zhang, H. Razanajato, N. Lossing, A. Susungi, J. de Juan,

E. Filhol, B. Jarry, G. Consolaro, and R. Zhang, “Optimizing gpu deep

learning operators with polyhedral scheduling constraint injection,” in

2022 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), 2022, pp. 313–324.

[14] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam,

P. Sadayappan, and N. Vasilache, “Loop transformations: Convexity,

pruning and optimization,” ACM SIGPLAN Notices, vol. 46, pp. 549–

562, 05 2011.

[15] A. Schrijver, Theory of Linear and Integer programming. Wiley-

Interscience, 1986.

[16] U. Bondhugula, A. Acharya, and A. Cohen, “The pluto+ algorithm: A

practical approach for parallelization and locality optimization of affine

loop nests,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 38, no. 3, pp. 1–32, 2016.

[17] A. Acharya, U. Bondhugula, and A. Cohen, “Polyhedral auto-

transformation with no integer linear programming,” SIGPLAN

Not., vol. 53, no. 4, p. 529–542, 06 2018. [Online]. Available:

https://doi.org/10.1145/3296979.3192401

[18] M. Kong and L.-N. Pouchet, “Model-driven transformations for

multi- and many-core cpus,” in Proceedings of the 40th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, ser. PLDI 2019. New York, NY, USA: Association

for Computing Machinery, 2019, p. 469–484. [Online]. Available:

https://doi.org/10.1145/3314221.3314653

[19] L. Chelini, T. Gysi, T. Grosser, M. Kong, and H. Corporaal, “Automatic

generation of multi-objective polyhedral compiler transformations,” in

Proceedings of the ACM International Conference on Parallel Archi-

tectures and Compilation Techniques, ser. PACT ’20. New York, NY,

USA: Association for Computing Machinery, 2020, p. 83–96.

[20] T. Hammer and V. Loechner, “PolyLingual: a Programmable Polyhedral

Scheduler,” in IMPACT 2023, Toulouse (31000), France, Jan. 2023.

[21] R. Baghdadi, M. Merouani, M. Leghettas, K. Abdous, T. Arbaoui,

K. Benatchba, and S. P. Amarasinghe, “A deep learning based cost

model for automatic code optimization,” CoRR, vol. abs/2104.04955,

2021.

[22] O. Zinenko, S. Huot, and C. Bastoul, “Clint: A direct manipulation tool for

parallelizing compute-intensive program parts,” in 2014 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), 2014,

pp. 109–112.

[23] L. Bagnères, O. Zinenko, S. Huot, and C. Bastoul, “Opening polyhedral

compiler’s black box,” in Proceedings of the 2016 International Sym-

posium on Code Generation and Optimization. New York, NY, USA:

Association for Computing Machinery, 2016, p. 128–138.

[24] C. Bastoul, “Code generation in the polyhedral model is easier than you

think,” in Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, ser. PACT ’04. USA: IEEE

Computer Society, 2004, p. 7–16.

[25] “Unified cross-platform mindspore hybrid dsl expression (4.1),” 2022.

[Online]. Available: https://mindspore.cn/news/newschildren/en?id=1985

[26] X. Liang, “Chapter 3 - hardware architecture,” in Ascend AI Processor

Architecture and Programming, X. Liang, Ed. Elsevier, 2020, pp. 75–

100.

[27] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:

a scalable and unified architecture for ubiquitous deep neural network

computing : Industry track paper,” in 2021 IEEE International Symposium

on High-Performance Computer Architecture (HPCA), 2021, pp. 789–

801.

[28] L.-N. Pouchet et al., “Polybench: The polyhedral benchmark suite,”

2010. [Online]. Available: https://sourceforge.net/projects/polybench/

[29] A. Acharya, U. Bondhugula, and A. Cohen, “Effective loop fusion in

polyhedral compilation using fusion conflict graphs,” ACM Trans. Archit.

Code Optim., vol. 17, no. 4, 09 2020.

[30] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic

optimization for image processing pipelines,” in Proceedings of

the Twentieth International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’15.

New York, NY, USA: Association for Computing Machinery, 2015, p.

429–443. [Online]. Available: https://doi.org/10.1145/2694344.2694364

[31] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam, “Putting

polyhedral loop transformations to work,” in LCPC’16 International

Workshop on Languages and Compilers for Parallel Computers, LNCS

2958, College Station, Texas, October 2003, pp. 209–225.

[32] G. Consolaro, H. Razanajato, and N. Lossing, “Polytops artifact,” Nov.

2023. [Online]. Available: https://doi.org/10.5281/zenodo.10205197

40

Authorized licensed use limited to: INRIA. Downloaded on January 15,2026 at 16:15:37 UTC from IEEE Xplore. Restrictions apply.

