
THÈSE DE L’UNIVERSITÉ PARIS-SUD

Spécialité : Informatique

présentée par

Cédric BASTOUL

pour obtenir

L’HABILITATION À DIRIGER DES RECHERCHES DE L’UNIVERSITÉ PARIS-SUD

Sujet de la thèse :

Contributions à l’optimisation des programmes de haut niveau

Contributions to High-Level Program Optimization

Soutenue le 12 décembre 2012

Devant le jury composé de :

Pr. Philippe CLAUSS Président
Pr. François BODIN Rapporteur
Pr. François IRIGOIN Rapporteur
Pr. Sanjay RAJOPADHYE Rapporteur
Pr. Pierre BOULET Examinateur
Pr. Albert COHEN Examinateur
Pr. Daniel ETIEMBLE Examinateur

Thèse préparée à l’Université Paris-Sud
au sein du Laboratoire de Recherche en Informatique (LRI), UMR 8623 CNRS et de l’équipe

Grand Large, INRIA Saclay Île-de-France

2

3

“Helping programmers to develop efficient applications without sacrificing productivity.”
This is, in one sentence, the rationale behind my involvement in research since the defense
of my PhD in December 2004. This document presents an overview of my related activities
during the past eight years in various research groups, as postdoc at University of Auvergne,
as assistant professor at Paris-Sud University, as visiting professor at Reservoir Labs Inc.
and more recently as visiting researcher at CNRS.

4

5

Contents

Contents 5

1 Introduction 9
1.1 The Programming Wall . 9
1.2 Limits of Program Optimization Tools . 10
1.3 High-Level Optimizations for High-Level Programs . 11
1.4 Challenges Addressed in this Document . 11
1.5 Habilitation Thesis Overview . 13

2 The Polyhedral Path 15
2.1 Polyhedral Representation of Programs . 16

2.1.1 Polyhedral Relations . 17
2.1.2 Representing Statement Instances: Iteration Domains 17
2.1.3 Representing Order and Placement: Mapping Relations 19
2.1.4 Representing Memory Accesses: Access Relations 22

2.2 Applying a Mapping in the Polyhedral Model . 23
2.2.1 Transformation in the Model . 23
2.2.2 Expressing Data Dependences . 25

2.3 Scanning Polyhedra . 27
2.3.1 Fourier-Motzkin Elimination-Based Scanning Method 27
2.3.2 Parametric Integer Programming-Based Scanning Method 28
2.3.3 QRW-Based Scanning Method . 29

2.4 Conclusion . 31

3 User Accessibility 33
3.1 Syntactic Feedback: Static Control as a Programming Model 33
3.2 Semantic Feedback: the Violation Analysis Approach 35

3.2.1 On the Need For Instance-wise Data Dependence Analysis 37
3.2.2 Characterization of Violated Dependences . 38
3.2.3 Removing Data Dependence Violations . 40

3.3 Semi-Automatic Mapping Construction . 43
3.3.1 Clay Mapping Structure, Notations and Operators 45
3.3.2 Revisiting Classical Transformations in Clay 46
3.3.3 Correcting Transformation Scripts . 50

3.4 Easing Polyhedral Framework Integration: the OpenScop Initiative 52
3.5 Conclusion . 53

6 CONTENTS

4 Optimization Quality: An Iterative Approach 55
4.1 Legal Transformation Spaces . 56

4.1.1 One-Dimensional Schedules . 57
4.1.2 Multidimensional Schedules . 60

4.2 Practical Search Space . 62
4.2.1 Mapping Coefficient Bounding . 62
4.2.2 Search Space Construction . 63

4.3 Legal Space Traversal . 65
4.3.1 Exhaustive Search . 65
4.3.2 Heuristic Traversal . 65
4.3.3 Evolutionary Traversal . 68

4.4 Overview of the Experimental Platform . 68
4.5 Lessons Learned from Experiments . 69

4.5.1 Search Space Construction Cannot Avoid Legality 69
4.5.2 Exhaustive Search Is Out of Reach In General 70
4.5.3 Model-Based Performance Models Are Not Enough 71
4.5.4 The Compiler Is a Part of the Experimental Platform 72
4.5.5 All Mapping Coefficients Are Not Equal With Respect to Performance 72
4.5.6 Performance Distribution Is Not Random . 73
4.5.7 Bad Solutions Are Close to Good Ones . 73
4.5.8 Random Search Is Not Likely to Provide Good Results 74
4.5.9 Benefits Are Significant . 75

4.6 Coupling Model-Based and Iterative-Based Optimizations 75
4.7 Related Work . 76
4.8 Conclusion . 77

5 Scalability: Facing the Real World 79
5.1 Data Dependence Analysis Scalability . 79

5.1.1 Fast Data Dependence Violation Check . 79
5.1.2 Transitively-Covered Dependences . 81
5.1.3 Scalability . 83
5.1.4 Related Work . 84

5.2 Code Generation Scalability . 85
5.2.1 Reducing Code Generation Time . 87
5.2.2 Preserving Generated Code Quality . 91
5.2.3 Putting it All Together . 97
5.2.4 Related Work . 97

5.3 Conclusion . 99

6 Applicability: Beyond Static Control 101
6.1 Relaxing the Static Control Constraints . 102

6.1.1 Modeling Arbitrary Loop Structure . 102
6.1.2 Modeling Arbitrary Conditionals . 102

6.2 Revisiting the Polyhedral Framework . 104
6.2.1 Program Analysis . 104
6.2.2 Program Transformation . 106
6.2.3 Code Generation . 107

6.3 Reducing Control Overhead . 109

CONTENTS 7

6.3.1 Computing the Value of Predicates . 110
6.3.2 Predicate Placement . 110

6.4 Experimental Results . 111
6.4.1 Methodology and Setup . 111
6.4.2 Results . 111

6.5 Related Work . 114
6.6 Conclusion . 115

7 Conclusion and Perspectives 117

A Related Tools 121
A.1 Candl . 121
A.2 Clan . 122
A.3 Clay . 122
A.4 CLooG . 122
A.5 LeTSeE . 123
A.6 OpenScop (Formerly SCoPLib) . 123
A.7 PipLib . 123
A.8 PoCC . 124
A.9 R-Stream . 124
A.10 Other Related Tools . 124

B CV (French) 127
B.1 Expérience professionnelle . 127
B.2 Formation . 128
B.3 Compétences techniques . 128
B.4 Langues . 129
B.5 Recherche et développement . 129
B.6 Distinctions . 129
B.7 Coordination et participation à des projets scientifiques 130
B.8 Enseignement . 130
B.9 Encadrement . 131
B.10 Fonctions d’intérêt collectif . 131
B.11 Intérêts personnels . 132
B.12 Publications . 132

Bibliography 133

8 CONTENTS

9

Chapter 1

Introduction

1.1 The Programming Wall

Frequency scaling used to bring performance improvements without any effort from application devel-
opers. This time is now over. The reason is, silicon transistor technology reached a physical and financial
limit. Chip power dissipation is the consequence of the switching power, which is proportional to the
frequency, and of various leakage currents, which become higher as the feature size decreases. As a con-
sequence, high-frequency processors require a significant amount of energy and generate overheating
while suitable cooling systems may be too expensive. To continue to benefit from the increasing number
of transistors per surface unit, the processor industry shifted to designs including several cores. Cores
are processors that share some resources such as a cache level or a memory bus. We refer to multicore
when a chip includes from two to few dozens of cores (such as current general purpose processors) and
to manycore when this number grows to hundreds (such as current hardware accelerators like GPGPUs).
This solution allows the use more transistors on the same chip without increasing the clock frequency
and still increasing the theoretical peak performance. However, the price to pay to benefit from such
architectures is often to rewrite applications. And this price is high.

Multicore or manycore architectures are not bringing new fundamental problems with respect to
program parallelization. However, their availability on desktop and embedded systems is dramatically
changing the scope of these problems. While parallelization was expert’s business, any programmer
writing a new application should now take into account this new dimension. While compute-intensive
applications (usually very regular) were the typical targets for parallelization, all softwares are now
potentially affected. While a parallel computer was usually dedicated to running a single application
until its termination, dozens of parallel programs should now coexist on the same system.

Despite these facts, several years after multicore architectures became ubiquitous, the massive shift
to parallel programming has not happened yet. Systems are more responsive because the illusion of
parallelism provided by multitasking (the central processing unit switches quickly from one program to
another) is becoming a reality. But despite few exceptions, notably modern web browsers and antiviruses,
most programs are still sequential. The main reason is the complexity of parallel programming which is
still out of reach for non-experts. Despite many attempts, no proposal for a new language or program-
ming model has been successful at establishing a new standard combining productivity and performance.
Hence, at the time this habilitation thesis is written, the shift to multicore architectures corresponds to a
brutal raise of the development costs to reach the same portion of peak performance than on monocore

10 1. INTRODUCTION

architectures, a “programming wall”. If no satisfactory solution is provided, programs will not benefit
from the increasing number of cores and performance may soon stall.

Computer architects are working on solutions to avoid such a situation. The most likely scenario is
the introduction of heterogeneity within a single chip. Rather than providing hundreds of identical cores,
it suggests to use a part of the silicon surface to specialized hardware accelerators (such as GPUs or
neural networks). Introducing new challenges on programming models, compilation and optimization,
this solution would bring another brick to the programming wall.

1.2 Limits of Program Optimization Tools

Apart from profiling tools that aim at determining program critical parts and at observing their behavior,
the tool set of developers looking at parallelizing and optimizing their programs consists in three main
families: parallel languages, libraries and compilers. They correspond to complementary approaches
with their own strengths and limitations,

Parallel languages can provide high-level abstractions (mathematical objects, trees, graphs, etc.) or
parallel programming idioms (parallel loops, reduction, tasks etc.) or a fine control over the program
execution (data distribution, alignment etc.). Many proposals have been presented (for instance Cilk,
Chapel, Cn, CUDA, Fortress, HPF, UPC, X10 etc.). Nevertheless, none of them made its way (except
on proprietary hardware) against the three de-facto parallel programming approaches, namely threads,
OpenMP and MPI (note that none of them is a language), despite their weaknesses. Reasons are twofold.
On one hand, programmers have legitimate concerns about developing applications using a language or
a library while its long-term viability is unknown; and obviously, programming habits die hard. On the
other hand, those languages are still leaving much of the work to the programmers, such as extracting
parallelism or detailing data layout and distribution.

Optimized libraries (such as LAPACK, MKL, IPP etc.) provide to the programmers very efficient,
ready to use functions (BLAS routines, FFT, etc.). Some advanced libraries have auto-tuning capabilities
on some variants of a given target architecture (ATLAS, FFTW, SPIRAL...). While they may be very
efficient solutions to some dedicated problems, function and target architecture coverage is, by essence,
limited. Moreover, it is not possible to benefit from global optimization. For instance if two matrix
multiplications reuse a given matrix, two calls will be necessary while a global optimization is likely to
provide better results.

The last major family of tools is compilers (such as GCC, IBM XL or Intel ICC). They can provide
language extensions (through pragmas, such as OpenMP or OpenACC) or offer automatic parallelization
and optimization capabilities (vectorization, loop transformations...). Optimizing compilers may provide
the best productivity, since they do not require to learn a new programming language, along with the best
portability since they achieve the optimization work according to the target architecture. Compilers have
a good record at taking advantage of the available resources within a single core, e.g., extracting instruc-
tion level parallelism or short-vector parallelism. Unfortunately those results are fragile and depend on
the input source code and compilation options in a difficult way to understand and to predict. Moreover,
they still have a poor support at extracting coarse grain parallelism.

1.3. HIGH-LEVEL OPTIMIZATIONS FOR HIGH-LEVEL PROGRAMS 11

1.3 High-Level Optimizations for High-Level Programs

Our work on helping programmers to develop efficient applications without sacrificing productivity be-
longs to the high-level compilation approach. Low-level compilers like GCC are multi-layer programs,
translating the original source code into successive intermediate representations until the target object
code is generated. During those translations, high-level constructions inherited from programmer’s work
such as arrays or iterative loops may be lost (or altered so aggressively that it is difficult to extract them
back) before the optimization process. For instance GCC first translates the input code to GENERIC,
a language-independent representation, then to GIMPLE, a three-address representation, then to RTL, a
low-level, machine dependent representation. Optimizations are done at GIMPLE and RTL levels, far
away from the input source code.

Contrary to low-level compilation, high-level compilation builds on the high-level structures avail-
able from the input code to design high-level optimizations altering those structures. Source-to-source
compilers use this strategy to transform an input source code to another, optimized source code with
a similar (or possibly higher) abstraction level. Obviously, high-level approaches are possible within a
low-level compiler by reconstructing high-level structures, when this is possible.

High-level optimizations are essential to optimize and parallelize codes on modern architectures with
several cores and deep memory hierarchies. Low-level compilation techniques are good at optimizing
and parallelizing on a fine scale, e.g., achieving an efficient use of registers or extracting fine grain
parallelism such as instruction level parallelism. The reason is that they can analyze precisely close
enough instructions. Coarse grain parallelism or optimizing for large memories is quite different because
it requires to analyze instructions that may be thousands of instructions away with respect to the dynamic
sequential execution. Unrolling factors of thousands are not acceptable, hence, it is necessary to rely on
high-level abstractions that can represent large sets of dynamic executions of program instructions and
be compact at the same time.

The polyhedral model provides such a compact yet powerful abstraction for a subset of programs
corresponding to regular computation codes (such that the control flow is not data-dependent and loop
bounds, conditions and array accesses are affine forms). In this model, each dynamic execution of an
instruction is encoded as an integer point in a geometrical space. It is restrictive enough to compute
exact data dependences and data flow on programs that perfectly fits the model and it is possible to
rely on conservative analyses on more general programs (dependences are over-approximated). This
model has been the cornerstone of major advances in high-level optimization and parallelization over the
last two decades [Fea92b, BDSV98, Lim01, Gri04, BHRS08, CB-PBCC08a, CB-PBB+11]. Our work
contributes to this approach.

1.4 Challenges Addressed in this Document

Back to the days of my PhD thesis, the polyhedral model was known to suffer from strong scalability
problems (in particular for data dependence analysis and the code generation phase which translates the
polyhedral abstraction back to a code). Moreover, while optimal parallelism extraction algorithms had
been designed, exploiting this parallelism to reduce the execution time was essentially an open question.
Our work during the past eight years focused on pushing the limits of the polyhedral model and to
contribute at building a convincing high-level compiler approach to cross the programming wall. We
addressed four main challenges: designing practical ways to interact with the user, building efficient

12 1. INTRODUCTION

optimizations with respect to performance, improving the scalability of the data dependence analysis
and the code generation step, and enlarging the scope of polyhedral compilation techniques.

User Accessibility Compilation techniques developed for automatic optimization and parallelization
provide powerful analyses and complex code restructuring capabilities [Fea92a, CB-GVB+06]. How-
ever, the fully-automatic nature of compiler techniques is missing several opportunities for better op-
timizations. (1) The programmer should help the compiler to extract the high-level abstraction of the
critical parts of his programs. (2) The compiler should analyze the reasons why an optimization cannot
be applied, rather than the usual go/no go answer from data dependence analysis. (3) The programmer
should be able to drive the compiler through high-level interfaces. Hence, the first challenge we address
is how to build an efficient partnership between the programmer and the compiler to design the best
optimizations.

We present how a programmer can actively collaborate with a high-level optimization engine. We
advocate for the use of a simple programming model, powerful enough to write most compute inten-
sive codes, and simple enough to be analyzed in depth by a compiler. We introduce the concept of
semantic feedback, that a compiler can use to help programmers (or optimizing algorithms) to design
semantics-preserving optimizations. We show how to build a set of high-level transformation primitives
by revisiting classical loop transformations and how a compiler can correct a transformation script to
respect data dependences, if possible and if necessary.

Parts of these results notably involved the supervision of Nicolas Vasilache and collaborations with
Albert Cohen, Sylvain Girbal and Sebastian Pop [CB-VBGC06, CB-PCB+06].

Optimization Quality Optimizing compilers should actually improve performance. However, because
of the complex interplay between the many hardware resources and because of the complexity of low-
level compilers, if is difficult to predict the behavior of a given code, along with a given compiler option
set. The second challenge we address is to design an automatic optimization technique able to find a
near-optimal optimization, as independent as possible from imprecise cost and performance models.

We present a feedback-directed, high-level iterative optimization approach to answer this challenge.
We show how we can build a legal transformation space where each point represents a unique, semanti-
cally equivalent version of the input code. We achieve an in-depth analysis on small problems to design
efficient heuristic traversal techniques to find the best performing versions for a given target platform.

These results notably involved the supervision of Louis-Noël Pouchet and Nicolas Vasilache, and
collaborations with Uday Bondhugula, John Cavazos, Albert Cohen, J. Ramanujam and P. Sadayappan
[CB-PBCV07, CB-PBCC08b, CB-PBCC08a, CB-PBB+10, CB-PBB+11]

Scalability High-level compilation techniques based on a polyhedral representation of programs are
relying on high complexity techniques at nearly every stages. Those techniques behave well in practice
because simple transformations are applied on simple problems. The third challenge we address is to
design scalable techniques able to face complex real world examples and to demonstrate precise analyses
can be issued in a reasonable amount of time and efficient solutions can be found to complex problems.

We study this problem on two aspects of high-level compilation frameworks, namely data depen-
dence analysis and code generation. We present a fast dependence checking algorithm and a demonstra-
tion of scalability of instance-wise data dependence analysis on large benchmarks. We present scalable

1.5. HABILITATION THESIS OVERVIEW 13

code generation methods that make possible the application of increasingly complex transformations on
increasingly large programs. By studying the transformations themselves, we show how it is possible
to benefit from their properties to dramatically improve both code generation quality and space/time
complexity, with respect to the best state-of-the-art code generation tool. In addition, we build on these
improvements to ensure an efficient generated code even for complex scenarios.

These results notably involved the supervision of Nicolas Vasilache and collaborations with Albert
Cohen and Reservoir Labs Inc. [CB-VBGC06, CB-VBC06, CB-BVL+09].

Applicability The main limitation of the polyhedral model is known to be its restriction to statically
predictable, loop-based program parts. The fourth challenge we address is to relax this limitation and to
study how it can be used to operate on general data-dependent control-flow.

To answer this challenge, we embed control and exit predicates as first-class citizens of the algebraic
representation, from program analysis to code generation. Complementing previous (partial) attempts
in this direction, our work concentrates on extending the code generation step and does not compromise
the expressiveness of the model. We present experimental evidence that our extension is relevant for
program optimization and parallelization, showing performance improvements on benchmarks that were
thought to be out of reach of the polyhedral model.

These results notably involved the supervision of Mohamed-Walid Benabderrahmane and Louis-Noël
Pouchet, and a collaboration with Albert Cohen [CB-BPCB10].

1.5 Habilitation Thesis Overview

This document is organised as follows. Chapter 2 describes the polyhedral representation of programs.
It revisits the program transformation process through the “relation” abstraction used in state-of-the-art
frameworks. Chapter 3 presents our efforts on designing efficient ways for a high-level compiler to in-
teract with its users. It discusses different strategies such as syntactic and semantic feedback and details
a semi-automatic optimization approach based on the relation abstraction and augmented with automatic
correction capabilities. Chapter 4 describes the very first high-level iterative compilation approach based
on the legal transformation space. It presents various heuristics to find optimizing transformations effi-
ciently and a coupling between iterative and model-driven approaches. Chapter 5 depicts our efforts on
providing scalable techniques for data dependence analysis and code generation. It presents an empirical
study of exact analyses on large programs and of complex code generation problems. Chapter 6 shows
our methodology to support irregular codes within a polyhedral framework. It demonstrates that gen-
eral codes can benefit from existing high-level compilation techniques thanks to our extensions. Finally,
Chapter 7 sums up the contributions of this work and details some future research directions.

14 1. INTRODUCTION

15

Chapter 2

The Polyhedral Path

Since the very first compilers, the internal representation of programs has been in direct correspondence
with their operational semantics. In such abstract syntaxes, each statement appears only once even if it
is executed many times. This representation has severe limitations. First of all, it may limit the accuracy
of program analysis. For instance, if a statement in a loop has some data dependence relation with
another statement, we would consider both of them as single entities while the dependence relation may
involve only very few of the dynamic iterations of these statements. This is particularly common in loop-
based programs accessing arrays. Next, it may limit program transformation applicability. For instance,
loop transformations operate on individual statement iterations. Lastly, it limits the expressiveness of
program transformations: the most impactful loop nest transformations cannot be expressed as structural,
incremental updates of the loop tree structure [CB-GVB+06].

The polyhedral model is a semantical, algebraic representation which combines analysis power,
transformation expressiveness and flexibility to design sophisticated optimization heuristics. The poly-
hedral model is closer to the program execution than operational/syntactic representations because it
operates on individual statement iterations, or statement instances. For each instance, the optimizing
algorithm will compute a mapping which will determine at which time (time mapping, or scheduling)
and/or on which processor (space mapping, or placement) this instance has to be executed.

The origin of this model goes back to the late Sixties with the work of Karp, Miller and Wino-
grad for scheduling systems of uniform recurrence equations [KMW67]. This seminal work has been
transposed on one side to systolic array design [Qui84, RPF86, RK88, QD89] and on the other side
to automatic parallelization of programs, with Lamport’s hyperplane method [Lam74]. Until the early
Nineties, most subsequent optimization and parallelization techniques relied on syntactic loop trans-
formations rather than affine scheduling [Wol82, AK87, Wol87, WL91, ST92, Ban93]. But they also
relied on an ever increasing data dependence abstraction precision, always defined as some class of
convex affine sets (see Yang et al. for a survey of those abstractions and their relations with transfor-
mation techniques [YAI95]). The convergence of program representation, dependence abstraction and
mapping, all expressed using affine sets, ultimately led to the polyhedral model (also referred in the
literature as the polytope model) [Pug91b, Fea92a, Len93]. This model has been the basis for major
advances in automatic optimization and parallelization of programs [Fea92b, BDSV98, Lim01, Gri04,
BHRS08, CB-PBCC08a, CB-PBB+11]. After decades of research, production compilers are getting
closer to making effective use of the polyhedral model to compile for multicore architectures, including
GCC [CB-PCB+06, TCE+10], LLVM [GZA+11], IBM XL [BGDR10] and Reservoir Labs Inc. high
level compiler R-Stream [MVW+11].

16 2. THE POLYHEDRAL PATH

Roughly, program restructuring in the polyhedral model is a three step process. First, a program (a
source code or its abstract syntax tree) which can fit the model is translated to the polyhedral represen-
tation, then an optimizing algorithm computes a sequence of optimizing transformations in the model,
finally the model is translated back to a program. The expectations are (1) to facilitate the extraction
of the properties of the program (e.g., data reuse, parallelism) through the mathematical representation,
(2) to compute a sequence of optimizing and parallelizing transformations in the model to exploit those
properties using classical linear programming techniques and (3) to apply those optimizations as a single
and straightforward model transformation step.

This chapter presents the polyhedral framework using the union of relations abstraction, which corre-
sponds to the current state of the art. Section 2.1 presents this abstraction and how it is used to represent
static control programs. Section 2.2 shows how to apply a transformation in this model and the con-
straints a transformation must satisfy to preserve the original program semantics. Section 2.3 presents
different techniques to generate a program from the model abstraction and focuses on the state-of-the art
technique. Finally, Section 2.4 concludes and summarizes our contributions to the polyhedral path.

2.1 Polyhedral Representation of Programs

The polyhedral model is a mathematical representation of programs which eases both analysis and re-
structuring. It allows the description of the parallelization and optimization problem in a compact and
expressive way. This representation is also the key to solving this problem efficiently thanks to power-
ful and scalable polyhedral or mathematical libraries such as PIP, PolyLib, CLooG, PPL, isl or Omega
(see Appendix A for some details about those tools). This model, or parts of it, has been used in most
successful work on automatic parallelization and optimization. Program parts for which this model can
encode the exact semantics are called static control parts [Fea91], or SCoPs, for short.

The polyhedral model is about representing and restructuring programs through affine sets. Early
abstractions had various restrictions, on either the program representation (e.g., ability to process only
perfectly nested loops [Len93]), or the mapping (e.g., only unimodular transformations [Ban90]) or the
code generation process (e.g., only one polyhedron at a time [LVW94]). The evolution of the model
followed the evolution of fundamental algorithms on polyhedral manipulation. The parametric extension
of Chernikova’s algorithm to convert a system of inequalities to vertices is the current basis for efficient
polyhedral operations in several libraries [LW97, Le 92]. The parametric extension to the Simplex/Go-
mory algorithm [Fea88a] and the integer extension of the Fourier-Motzkin elimination method [Pug91a]
are widely used to check the existence of an integer point inside a polyhedron, for linear programming
or code generation. More recent works show how to manipulate Z-polyhedra within an optimization
framework [GR07, Ver10, SLM12].

Latest research and development allows unions of general affine relations to be used in every steps of
a polyhedral optimization framework. This abstraction is presented in Section 2.1.1. Three mathematical
objects based on unions of relations need to be defined to manipulate codes within the polyhedral model.
First, iteration domains provide the relevant information about the various executions of the same state-
ment, they are detailed in Section 2.1.2. Second, space-time mapping functions provide the order of the
various instances with respect to each other and their placement amongst different processors. Lastly
access functions model reading and writing on memory cells. They are described in Section 2.1.3.

2.1. POLYHEDRAL REPRESENTATION OF PROGRAMS 17

2.1.1 Polyhedral Relations

A relation is a mapping from a set of input coordinates in an input space to a set of output coordinates
in an output space. A polyhedral relation R (~p) is a finite union of basic relations R (~p) =

⋃
i R i(~p),

each basic relation being a function associating to ~p a relation that can be represented using m affine
constraints in the following way:

R i(~p)=

~xin→~xout ∈ Zdim(~xin)×Zdim(~xout)

∣∣∣∣∣∣∣∣∣∣
∃~li ∈ Zdim(~li) :

[
Aout,i Ain,i Li Pi ~ci

]


~xout

~xin
~li
~p
1

≥~0
 ,

where:

• ~xin ∈ Zdim(~xin) is an input coordinate,

• ~xout ∈ Zdim(~xout) is an output coordinate,

• ~li ∈ Zdim(~li) is the vector of local variables (also referred as set variables in the literature),

• ~p ∈ Zdim(~p) is the vector of parameters (unknown but fixed integer values, a.k.a. free variables),

• ~ci ∈ Zdm is a constant vector,

• Aout,i ∈ Zm×dim(~xout), Ain,i ∈ Zm×dim(~xin), Li ∈ Zm×dim(~li) and Pi ∈ Zm×dim(~p) are integer matrices.

Polyhedral relations have been originally suggested by Kelly and Pugh as a convenient object to
represent programs and to compute data dependences [KP93, KP95]. However, early polyhedral relations
had to respect various constraints and could not be used directly to represent all aspects of a polyhedral
framework (e.g., mapping had to be invertible). Modern implementations of polyhedral relations such as
isl [Ver10] allow the use of the full expressiveness of relations.

Without loss of generality and except stated otherwise, we will only consider basic relations without
local variables, to simplify notations in this document.

2.1.2 Representing Statement Instances: Iteration Domains

The key aspect of the representation of programs in the polyhedral model is to consider statement in-
stances. A statement instance is one particular execution of a statement. Each instance of a statement
that is enclosed inside a loop can be associated with the value of the outer loop counters (also called iter-
ators). For instance, let us consider the polynomial multiply code in Figure 2.1: the instance of statement
S1 for i = 2 is z[2] = 0.

In the polyhedral model, statements are considered as functions of the outer loop counters that may
produce statement instances: instead of simply "S1", the notation S1(i) is preferred. For instance,
statement S1 for i = 2 is written S1(2) and statement S2 for i = 4 and j = 2 is written S1

(4
2

)
. The vector

of the iterator values is called the iteration vector.

Obviously, dealing with statement instances does not mean that unrolling all loops is necessary. First
because there would probably be too many instances to deal with, and second because the number of

18 2. THE POLYHEDRAL PATH

f o r (i = 0 ; i < 2∗N − 1 ; i ++)
S1 : z [i] = 0 ;

f o r (i = 0 ; i < N; i ++)
f o r (j = 0 ; j < N; j ++)

S2 : z [i + j] += x [i] ∗ y [j] ;

Figure 2.1: Polynomial Multiply Kernel

instances may not be known. For instance, when the loops are bounded with constants that are unknown
at compile time (called “parameters”), e.g., N in the example code in Figure 2.1. A compact way to
represent all the instances of a given statement is to consider the set of all possible values of its iteration
vector. This set is called the statement’s iteration domain. It can be conveniently described by all the
constraints on the various iterators that the statement depends on. When those constraints are affine and
depend only on the outer loop counters and some parameters, the set of constraints defines a polyhedron
(more precisely this is a Z-polyhedron, but polyhedron is used for short). We can use a special case of
relation to represent the iteration domain, since no input (or more exactly a constant input) is necessary:

DS(~p) =

()→~ıS ∈ Zdim(~ıS)

∣∣∣∣∣∣ [DS]

 ~ıS
~p
1

≥~0
 ,

where~ıS is the dim(~ıS)-dimensional iteration vector and DS ∈ ZmDS×(dim(~ıS)+dim(~p)+1) is an integer matrix
where mDS is the number of constraints. For instance, here are the iteration domains for the polynomial
multiply example in Figure 2.1:

• DS1(N) =

()→
(

i
)
∈ Z

∣∣∣∣∣∣
[

1 0 0
−1 2 −2

] i
N
1

≥~0
 ,

• DS2(N) =

()→
(

i
j

)
∈ Z2

∣∣∣∣∣∣∣∣


1 0 0 0
−1 0 1 −1

0 1 0 0
0 −1 1 −1




i
j

N
1

≥~0
 .

Iteration domains can be unions of basic relations, e.g., when a condition in the input code splits the
iteration domain into a union of disjoint polyhedra. For instance, statements in Figure 2.2 are guarded
by a condition which separates the iteration domain.

The iteration domain of S3 would be the following (note that constraints above the dashed line in the
matrix are equalities while constraints under this line are inequalities):

2.1. POLYHEDRAL REPRESENTATION OF PROGRAMS 19

f o r (i = 0 ; i < N; i ++) {
f o r (j = 0 ; j <= i ; j ++) {

i f (i == j | | j == 0)
S3 : A[i] [j] = 1 ;

e l s e
S4 : A[i] [j] = A[i −1][j] + A[i −1][j −1];

}
}

Figure 2.2: Pascal Triangle Kernel

DS3(N) =

()→
(

i
j

)
∈ Z2

∣∣∣∣∣∣∣∣
 −1 1 0 0

1 0 0 0
−1 0 1 −1




i
j

N
1

 =

≥
~0


⋃

()→
(

i
j

)
∈ Z2

∣∣∣∣∣∣∣∣
 0 1 0 0

1 0 0 0
−1 0 1 −1




i
j

N
1

 =

≥
~0

 .

Local variables can be introduced in the iteration domain when existential quantifiers are useful.
They can be used for instance when non-unit loop steps (a.k.a. strides) or modulo conditions are present
in the input code. For instance, the loop in Figure 2.3 shows a loop with a stride 2.

f o r (i = 0 ; i < 2∗N; i += 2) {
S5 : c [i] = (a [i] ∗ b [i]) − (a [i +1] ∗ b [i + 1]) ;
S6 : c [i +1] = (a [i +1] ∗ b [i]) + (a [i] ∗ b [i + 1]) ;

}

Figure 2.3: Complex Vector Multiply Kernel

The iteration domain of S5 can be represented using a local variable l to express the fact that i is even:
∃l ∈ Z s.t. i = 2 ∗ l (note that again, constraints above the dashed line in the matrix are equalities while
constraints under this line are inequalities):

DS5(N) =

()→
(

i
)
∈ Z

∣∣∣∣∣∣∣∣ ∃l ∈ Z :

 −1 2 0 0
1 0 0 0
−1 0 2 −1




i
l
N
1

 =

≥
~0

 .

2.1.3 Representing Order and Placement: Mapping Relations

Iteration domains do not provide any information about the relative execution order between statement
instances, nor do they inform about the processor that has to execute them. Such information is provided
by other mathematical objects called space-time mappings. They describe a relation between a statement
instance and the logical date when it has to be executed and the processor coordinate where it has to be

20 2. THE POLYHEDRAL PATH

executed. In the literature, the part of those relations dedicated to time is called scheduling while the part
dedicated to space is called placement (or allocation, or distribution).

In the case of scheduling, the logical dates express at which time a statement instance has to be
executed, with respect to the other statement instances (from the same statement and other statements as
well). It is typically denoted θS for a given statement S. For instance, let us consider the three statements
in Figure 2.4(a) and their scheduling functions in Figure 2.4(b). The first and third statements have to
be executed both at logical date 1. This means they can be executed in parallel at date 1 but they have
to be executed before the second statement since its logical date is 2. The target code implementing this
scheduling using OpenMP pragmas is shown in Figure 2.4(c), where a fictitious variable t stands for the
time. It can be seen that at time t = 1, both S1 and S3 are run in parallel, while S2 is executed afterward
at time t = 2.

S1 : x = a + b ;
S2 : y = x + d ;
S3 : z = c ∗ e ;

θS1 = {()→ (1)}
θS2 = {()→ (2)}
θS3 = {()→ (1)}

t = 1 ;
pragma omp p a r a l l e l s e c t i o n s
{

pragma omp s e c t i o n
{

S1 : x = a + b ;
}
pragma omp s e c t i o n
{

S3 : z = c ∗ e ;
}

}
t = 2 ;

S3 : y = x + d ;

(a) Original Code (b) Scheduling (c) Target Code

Figure 2.4: One-Dimensional Scheduling Example

Logical dates may be multidimensional, like clocks: the first dimension could correspond to days
(most significant), next one to hours (less significant), the third one to minutes and so on. The order
of multidimensional dates with a decreasing significance for each dimension is called the lexicographic
order. Again, it is not possible to assign one logical date to each statement instance for two reasons: this
would probably lead to an intractable number of logical dates and the number of instances may not be
known at compile time. Hence, a more compact representation called the scheduling relation is used. A
scheduling relation is a mapping from statement instances to logical dates. They have the following form
for a statement S:

θS(~p) =

~ıS→~tS ∈ Zdim(~ıS)×Zdim(~tS)

∣∣∣∣∣∣∣∣ [TS]


~tS
~ıS
~p
1

≥~0
 ,

where~ıS is the dim(~ıS)-dimensional iteration vector and TS ∈ ZmθS×(dim(~ıS)+dim(~tS)+dim(~p)+1) is an integer
matrix where mθS is the number of constraints. Scheduling relations can easily encode a wide range of
usual transformations such as skewing, interchange, reversal, shifting tiling etc. Many program trans-
formation frameworks have been proposed on top of such relations (or some particular cases of such

2.1. POLYHEDRAL REPRESENTATION OF PROGRAMS 21

relations like scheduling functions), such as UTF [KP93], URUK [Gir05] or CHiLL [CCH08].

0

0 1

i

S1

i

S2

0

0

j

Figure 2.5: Polynomial Multiply Abstract Tree

A very useful example of multi-dimensional mapping relation is the scheduling of the original
program. A method to compute it has been presented by Feautrier as a demonstration of the existence of
a legal scheduling [Fea92b]. The technique is to build an abstract syntax tree of the program such that, (1)
the nodes correspond to the loops and they are labelled with the corresponding loop counters. A fictitious
loop running once and enclosing the whole program is used as the root of the tree. (2) Statements
are leaves. (3) Arcs connect loops with their internal loops or statements. They are labelled with the
corresponding textual order of the loop or the statement in the source code. The original scheduling for
each statement is simply the list of labels from the root to the according leaf, the ith label corresponding
to the ith dimension of the scheduling. For instance, let us consider the polynomial multiply code in
Figure 2.1. Its abstract tree is shown in Figure 2.5. According to this tree, the original scheduling
relation is:

• θS1(N) =


(

i
)
→

 t1
S1

t2
S1

t3
S1

 ∈ Z×Z3

∣∣∣∣∣∣∣∣∣∣∣∣∣

 −1 0 0 0 0 0
0 −1 0 1 0 0
0 0 −1 0 0 0




t1
S1

t2
S1

t3
S1
i
N
1


=~0


,

which simply corresponds to the function θS1(N)
(

i
)
=

 0
i
0



• θS2(N)=



(
i
j

)
→


t1
S2

t2
S2

t3
S2

t4
S2

t5
S2

 ∈ Z2×Z5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


−1 0 0 0 0 0 0 0 1

0 −1 0 0 0 1 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 1 0 0
0 0 0 0 −1 0 0 0 0





t1
S2

t2
S2

t3
S2

t4
S2

t5
S2
i
j

N
1


=~0



,

which simply corresponds to the function θS2(N)

(
i
j

)
=


1
i
0
j
0

 .

22 2. THE POLYHEDRAL PATH

Placement is similar to scheduling, only the semantics is different: instead of logical dates, a place-
ment relation πS maps instances of statement S to processor coordinates corresponding to the processor
that has to execute the instance. A space-time mapping relation σS is a multidimensional relation em-
bedding both space and time information for statement S: some dimensions are devoted to scheduling
while some others are dedicated to placement. In the polyhedral representation, the semantics of each di-
mension is not relevant: after code generation, each dimension will be translated to some loops that can
be post-processed to become parallel or sequential according to their semantics (obviously, semantics
information can be used to generate a better code, but this is out of the scope of this introduction).

Mapping unions can be used to apply a different mapping on different parts of the input space (e.g., to
perform an index-set splitting) and/or to duplicate some parts of the input space (e.g., to apply unrolling
or to achieve versioning). A mapping union does not need to be disjoint, but it will be translated into a
disjoint union before applying it (i.e., there is no duplication of instances with the same mapping).

2.1.4 Representing Memory Accesses: Access Relations

After iteration domain and space-time mapping, the third main mathematical object used to represent a
program in the polyhedral model is the access relation. The access relation models the memory reference
behavior for a given access. It maps statement instances to memory cells for a given statement and a given
array reference. When those relations are affine and depend only on the outer loop counters and some
parameters, they can be written in the following general form:

AS,r(~p) =

~ıS→~aS,r ∈ Zdim(~ıS)×Zdim(~aS,r)

∣∣∣∣∣∣∣∣ [AS,r]


~aS,r

~ıS
~p
1

≥~0
 ,

where r denotes the reference number in the statement,~ıS is the dim(~ıS)-dimensional iteration vector,~aS,r

is the dim(~aS,r)-dimensional access vector where the ith element corresponds to the index of the ith array
dimension and AS,r ∈ ZmAS,r×(dim(~ıS)+dim(~aS,r)+dim(~p)+1) is an integer matrix where mAS,r is the number of
constraints. For instance, let us consider the polynomial multiply code in Figure 2.1, page 18. The
corresponding access relations would be the following:

• AS1,1(N) =


(

i
)
→
(

aS1,1
)
∈ Z×Z

∣∣∣∣∣∣∣∣
[
−1 1 0 0

]
aS1,1

i
N
1

=~0

 ,

• AS2,1(N) =


(

i
j

)
→
(

aS2,1
)
∈ Z2×Z

∣∣∣∣∣∣∣∣∣∣
[
−1 1 1 0 0

]


aS2,1

i
j

N
1

=~0

 ,

2.2. APPLYING A MAPPING IN THE POLYHEDRAL MODEL 23

• AS2,2(N) =


(

i
j

)
→
(

aS2,2
)
∈ Z2×Z

∣∣∣∣∣∣∣∣∣∣
[
−1 1 0 0 0

]


aS2,2

i
j

N
1

=~0

 ,

• AS2,3(N) =


(

i
j

)
→
(

aS2,3
)
∈ Z2×Z

∣∣∣∣∣∣∣∣∣∣
[
−1 0 1 0 0

]


aS2,3

i
j

N
1

=~0

 .

2.2 Applying a Mapping in the Polyhedral Model

2.2.1 Transformation in the Model

Iteration domains can be extracted directly from the input code. They represent for each statement the
set of their instances. In particular they do not encode any ordering information: iteration domains
are nothing but “bags” of unordered statement instances. On the opposite, mapping relations, typically
computed by an optimizing or parallelizing algorithm, provide the ordering information for statement
instances. It is necessary to collect all this information into a polyhedral representation before the final
code generation. There exist two ways to achieve this task:

Inverse Transformation Let us consider an iteration domain defined by the system of affine constraints
D~ı+ ~d ≥~0 where ~d is a constant vector, possibly parametric, and the transformation function lead-
ing to a target index~t = T~ı. By noticing that~ı = T−1~t it follows that the transformed polyhedron
in the new coordinate system can be defined by:

T (~p) =
{
()→~t ∈ Zdim(~t) | [DT−1]~t + ~d ≥~0

}
.

Generalized Change of Basis Alternatively, new dimensions corresponding to the ordering in leading
positions can be introduced while using the relation notation we used for the iteration domain in
Section 2.1.2 and the mapping relation in Section 2.1.3:

T (~p) =

()→
(
~t
~ı

)
∈ Zdim(~t)+dim(~ı)

∣∣∣∣∣∣∣∣
[

T
0 D

]
~t
~ı
~p
1

≥~0
 .

The inverse transformation solution has been introduced since the seminal work on parallel code
generation by Ancourt and Irigoin [AI91]. It is simple and compact but has several issues: the trans-
formation matrix must be invertible, and even when it is invertible, the target polyhedra may embed
some integer points that have no corresponding elements in the iteration domain (this happens when the
transformation matrix is not unimodular, i.e., whose determinant is neither +1 or −1). This necessitates
specific code generation processing, briefly discussed in Section 2.3.1. The second formula is attributed
to Le Verge, who named it the Generalized Change of Basis [Le 95]. It does not require any property on
the transformation matrix. Nevertheless, the additional dimensions may increase the complexity of the

24 2. THE POLYHEDRAL PATH

code generation process. It has been rediscovered independently from Le Verge’s unpublished work and
used in production code generators only recently [CB-Bas04a]. Both formulas are used, and possibly
mixed, in current code generation tools, depending on the desired transformation properties.

In the case of a mapping union, the mapping is first translated into a union of disjoint mappings to
avoid the duplication of instances with the same mapping. Then, for a mapping union with n parts, each
iteration domain is duplicated into n iteration domains, and the ith of them is mapped with the ith union
part.

As an example, a compiler may suggest the following space-time mapping for the polynomial multi-
ply code shown in Figure 2.1, page 18:

• σS1(N) =


(

i
)
→
(

p
t

)
∈ Z×Z2

∣∣∣∣∣∣∣∣∣∣
[
−1 0 1 0 0

0 −1 0 0 0

]
p
t
i
N
1

=~0

 ,

• σS2(N) =


(

i
j

)
→
(

p
t

)
∈ Z2×Z2

∣∣∣∣∣∣∣∣∣∣∣∣
[
−1 0 1 1 0 0

0 −1 0 0 0 1

]


p
t
i
j

N
1

=~0


.

Its first mapping dimension p is a placement that corresponds to a wavefront parallelism for S2 and
improves locality by executing the initialization of an array element by S1 on the same processor where
it is used by S2. The second mapping dimension t is a very simple constant scheduling that ensures the
initialization of the array element is done before it is used (it is usual to add the identity schedule at the
last dimensions, however this will not be necessary for the continuation of this example). To apply the
space-time mapping of the polynomial multiply proposed in Section 2.1.3 page 18, it is convenient to
use the Generalized Change of Basis because the transformation matrices are not invertible (note that in
the following formula, constraints “above” the line are equalities while constraints “under” the line are
inequalities):

• TS1(N) =

()→

 p
t
i

 ∈ Z3

∣∣∣∣∣∣∣∣∣∣


−1 0 1 0 0

0 −1 0 0 0
0 0 1 0 −1
0 0 −1 1 0




p
t
i
N
1

 =

≥
~0

 ,

• TS2(N) =


()→


p
t
i
j

 ∈ Z4

∣∣∣∣∣∣∣∣∣∣∣∣



−1 0 1 1 0 0
0 −1 0 0 0 1
0 0 1 0 0 −1
0 0 −1 0 1 0
0 0 0 1 0 −1
0 0 0 −1 1 0





p
t
i
j

N
1


=

≥
~0


.

In the target polyhedra, whatever the chosen formula, the order of the dimensions is meaningful: the
ordering is encoded as the lexicographic order of the integer points. Thus, the parallel code generation

2.2. APPLYING A MAPPING IN THE POLYHEDRAL MODEL 25

problem is reduced to generating a code that enumerates the integer points of several polyhedra, with
respect to the lexicographic ordering of the mapping dimensions.

2.2.2 Expressing Data Dependences

Not all mappings do preserve the original program semantics. Hence, it is critical to formalize the nec-
essary information to preserve it. This is done through data dependence abstractions. Those abstractions
characterize the fact that some ordered statement instances access the same memory location [Ber66].
Many abstractions exist, depending on the precision of the analysis and on the requirements of the user.
The simplest and least precise one is called dependence levels, it specifies for a given loop nest which loop
carry the dependence. It has been introduced in the Allen and Kennedy parallelization algorithm [AK87].
The direction vectors is a more precise abstraction where the ith element approximates the value of all
the ith elements of the distance vectors (which shows the difference of the loop counters of two depen-
dent instances). It has been introduced by Lamport [Lam74] then formalized by Wolfe [Wol95] and is
clearly the most widely used representation. The most precise abstraction is the dependences between
iterations [IT87, Fea92a] which is able to determine exactly the set of statement instances in dependence
relation. The choice of a given dependence abstraction is crucial for further study. For some subsets of
input codes and desired transformations, simple abstractions may encode the exact necessary informa-
tion [YAI95, Iri11]. But in our context of general domain, access and mapping relations, choosing an
imprecise dependence abstraction can result in blacking out interesting optimizations.

In this document, we use dependence between iterations, however we will use the term dependence
relations for consistency and to highlight the fact that unlike most existing work, we use access relations
instead of access functions to describe them. A dependence relation δ

S,rS
d→T,rT

(~p) is a mapping from
instances and accessed memory locations of a source statement S to instances and accessed memory
locations of a target statement T , at a given dependence depth d (defined below), for a given pair of
memory references rS and rT . The dependence relation is not empty for two instances iff they access the
same memory locations and the source instance accesses the memory locations first. The dependence
relation is built using three sub-relations:

1. Existence condition of the instances: the instances must belong to the iteration domains of their re-
spective statements. The constraints involved are those of the iteration domains, see Section 2.1.2.

2. Conflict condition of the memory locations: the memory locations must belong to the access rela-
tion of their respective accesses and they must refer to the same locations. The constraints involved
are those of the access relations, see Section 2.1.4, plus the equality of the access dimensions.

3. Causality condition of the instances: the instances of the source statement in the dependence
relation are executed before the corresponding instances of the target statement. The constraints
involved in this condition depend on the situation. They can be separated into a disjunction with
as many parts as common loops to both S and T . Each part corresponds to a common loop depth
and is called a dependence depth. For a given dependence depth d > 0, the causality condition is
made of two parts:

• the equality of the iteration vector elements at depth less than d: ixS = ixT for x < d,
• idT ≥ idS if S is textually before T , idT > idS otherwise.

If no loop is shared by S and T , there is no causality constraint and the dependence may only exist
if S is textually before T .

26 2. THE POLYHEDRAL PATH

Hence, the general form of a dependence relation with causality constraints is the following. We use the
notation M~v for the submatrix of M made of the columns of M to be multiplied with the vector elements
of~v:

δ
S,rS

d→T,rT
(~p) =

{(
~ıS
~aS,rS

)
→
(

~ıT
~aT,rT

)
∈ Zdim(~ıS)+dim(~aS,rS)×Zdim(~ıR)+dim(~aT,rT)

∣∣∣∣∣ ∆
S,rS

d→T,rT

}
,

where ∆
S,rS

d→T,rT
is the following dependence constraint system:

∆
S,rS

d→T,rT
:



D~ıS
S 0 0 0 D~p

S Dc
S

0 0 D~ıT
T 0 D~p

T Dc
T

A~ıSS,rS
A
~aS,rS
S,rS

0 0 A~p
S,rS

Ac
S,rS

0 0 A~ıTT,rT
A
~aT,rT
T,rT

A~p
T,rT

Ac
T,rT

0 I 0 −I 0 0
I1..d−1,• 0 −I1..d−1,• 0 0 0

Id,• 0 −Id,• 0 0 0 or −1





~ıS
~aS,rS

~ıT
~aT,rT

~p
1



≥
≥
≥
≥
=

=

≥

~0

The complete information about data dependences of an input program is stored in the data depen-
dence graph. In this directed graph, each program statement is represented using a unique vertex, and
the existing dependence relations between statement instances are represented using edges. Each vertex
is labelled with the iteration domain of the corresponding statement and the edges are labelled with the
dependence relation between the source and destination statements. As an example, the data dependence
graph of the polynomial multiply kernel of Figure 2.1 page 18 is shown in Figure 2.6. The dependence
constraint systems are the following:

• ∆
S1,1 0→S2,1

:



1 0 0 0 0 0 0
−1 0 0 0 0 2 −2

0 0 1 0 0 0 0
0 0 −1 0 0 1 −1
0 0 0 1 0 0 0
0 0 0 −1 0 1 −1
1 −1 0 0 0 0 0
0 0 1 1 −1 0 0
0 −1 0 0 1 0 0





i
aS1,1

i′

j
aS2,1

N
1



≥
≥
=

=

=

~0,

• ∆
S2,1 1→S2,1

:



1 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 −1

0 1 0 0 0 0 0 0
0 −1 0 0 0 0 1 −1
0 0 0 1 0 0 0 0
0 0 0 −1 0 0 1 −1
0 0 0 0 1 0 0 0
0 0 0 0 −1 0 1 −1
1 1 −1 0 0 0 0 0
0 0 0 1 1 −1 0 0
0 0 −1 0 0 1 0 0
−1 0 0 1 0 0 0 −1





i
j

aS1,1

i′

j′

aS2,1

N
1



≥
≥
=

=

=

≥

~0.

2.3. SCANNING POLYHEDRA 27

Finally, to avoid enforcing unnecessary constraints in reductions or scans [AK02], it is also possible
to consider fundamental properties such as commutativity and associativity, to further refine the data
dependence graph. We present in chapters 3 and 4 how to use the data dependence information either to
check the preservation of the semantics (i.e. the legality of the transformation), or to build a semantic-
preserving transformation, or to transform an illegal transformation into a legal one.

DS1

δ
S1,1 0→S2,1

(N)

δ
S2,1 1→S2,1

(N)

DS2

Figure 2.6: Dependence Graph of the Polynomial Multiply Kernel

2.3 Scanning Polyhedra

Once the target code information has been encoded into some polyhedra that embed the iteration spaces
as well as the scheduling and placement constraints, the code generation problem translates to a poly-
hedra scanning problem. The problem here is to find a code (preferably efficient) visiting each integral
point of each polyhedra, once and only once, with respect to the lexicographic order of some dimensions.
Three main methods have been successful in doing this. Fourier-Motzkin elimination-based techniques
have been the very first, introduced by the seminal work of Ancourt and Irigoin [AI91]. They are dis-
cussed briefly in Section 2.3.1. While Fourier-Motzkin-based techniques aim at generating loop nests, an
alternative method based on Parametric Integer Programming has been suggested by Boulet and Feautrier
to generate lower-level codes [BF98]. This method is discussed briefly in Section 2.3.2. Lastly, Quilleré,
Rajopadhye and Wilde showed how to take advantage of high-level polyhedral operations to generate
efficient codes directly [QRW00]. As this later technique is now widely adopted in production environ-
ments, it is discussed in some depth in Section 2.3.3.

2.3.1 Fourier-Motzkin Elimination-Based Scanning Method

Ancourt and Irigoin [AI91] proposed in 1991 the first solution to the polyhedron scanning problem.
Their work is based on the Fourier-Motzkin pair-wise elimination technique [Sch86]. The scope of
their method was quite restrictive since it could be applied to only one polyhedron, with unimodular
transformation matrices. The basic idea was, for each dimension from the first one (outermost) to the last
one (innermost), to project the polyhedron onto the axis and to deduce the corresponding loop bounds.
For a given dimension ik, the Fourier-Motzkin algorithm can establish that L(i1, ..., ik−1)+~l ≤ ckik and
ckik ≤U(i1, ..., ik−1)+~u, where L and U are constant matrices,~l and~u are constant vectors of size ml and
mu respectively, and ck is a constant. Thus, the corresponding scanning code for the dimension ik can be
derived:

28 2. THE POLYHEDRAL PATH

f o r (ik = maxml
j=1d(L j(i1, ..., ik−1)+ l j)/cke ;

ik ≤minmu
j=1b(U j(i1, ..., ik−1)+u j)/ckc ;

ik ++) {
Body (ik) ;

}

The main drawback of this method is the large amount of redundant control since eliminating a variable
with the Fourier-Motzkin algorithm may generate up to n2/4 constraints for the loop bounds where n is
the initial number of constraints. Many of those constraints are redundant and it is necessary to remove
them for efficiency.

Most further works tried to extend this first technique in order to reduce the redundant control and to
deal with more general transformations. Le Fur presented a new redundant constraint elimination policy
by using the simplex method [Le 96]. Several works proposed to relax the unimodularity constraint of
the transformation to an invertibility constraint by using the Hermite Normal Form [Sch86] to avoid scan-
ning “holes” in the polyhedron [LP94, Xue94, DR94, Ram95]. Griebl, Lengauer and Wetzel [GLW98]
relaxed the constraints of code generation further to transformation matrices with non-full rank, and also
presented preliminary techniques for scanning several polyhedra using a single loop nest. Kelly, Pugh
and Rosser showed how to scan several polyhedra in the same code by generating a naive perfectly
nested code and then (partly) eliminating redundant conditionals [KPR95]. Their implementation relies
on an extension of the Fourier-Motzkin technique called the Omega test. The implementation of their
algorithm within the Omega Calculator is one of the most popular parallel code generators [KMP+96].
This technique has been refined by Chen to minimize control overhead further [Che12].

2.3.2 Parametric Integer Programming-Based Scanning Method

Boulet and Feautrier proposed in 1998 a parallel code generation technique which relies on Parametric
Integer Programming (PIP for short) to build a code for scanning polyhedra [BF98]. The PIP algorithm
computes the lexicographic minimal integer point of a polyhedron. Because the minimum point may not
be the same depending on the parameter values, it is returned as a tree of conditions on the parameters
where each leaf is either the solution for the corresponding parameter constraints or ⊥ (called bottom),
i.e., no solution for those parameter constraints.

The basic idea of the Boulet and Feautrier algorithm (in the simplified case of scanning one polyhe-
dron) is to find the first integer point of the polyhedron, called first, then to build a function next which
for a given integer point returns the next integer point in the polyhedron according to the lexicographic
ordering. Both first and next computations can be expressed as a problem of finding the lexicographic
minimum in a polyhedron. Finally, the code can be built according to the following canvas, where x is
an integer point of the polyhedron that represents the iteration domain:

x = f irst ;
L1 : i f (x == ⊥)

goto L2 ;
Body () ;
x = next ;
goto L1 ;

L2 : . . .

2.3. SCANNING POLYHEDRA 29

Generalizing this method to many polyhedra implies combining the different trees of conditions
and subsequent additional control cost and code duplication. While this technique has no widely used
implementation, it is quite different than the others since it does not aim at generating high-level loop
statements. This property may be relevant for specific targets, e.g., when the generated code is not the
input of a compiler but of a high-level synthesis tool.

2.3.3 QRW-Based Scanning Method

Quilleré, Rajopadhye and Wilde proposed in 2000 the first code generation algorithm that builds a target
code without redundant control directly [QRW00]. While previous schemes started from a generated
code with some redundant control and then tried to improve it, their technique (referred as the QRW
algorithm) never fails at removing control, and the processing is easier. Eventually it generates a better
code more efficiently.

The QRW algorithm is a generalization to several polyhedra of the work of Le Verge, Van Dongen
and Wilde on loop nest synthesis using polyhedral operations [LVW94]. It relies on high-level polyhedral
operations (like polyhedral intersection, union, projection etc.) which are available in various existing
polyhedral libraries. The basic mechanism is, starting from (1) the list of polyhedra to scan and (2) a
polyhedron encoding the constraints on the parameters called the context C, to recursively generate each
level of the abstract syntax tree of the scanning code (AST).

QRW: build a polyhedra scanning code AST without redundant control.

Input: a polyhedron list, a context C, the current dimension d.
Output: the AST of the code scanning the input polyhedra.

1. Intersect each polyhedron in the list with the context C;

2. Project the polyhedra onto the outermost d dimensions;

3. Separate these projections into disjoint polyhedra (this generates
loops for dimension d and new lists for dimension d +1);

4. Sort the loops to respect the lexicographic order;

5. Recursively generate loop nests that scan each new list with dimen-
sion d +1, under the context of the dimension d;

6. Return the AST for dimension d.

Figure 2.7: Sketch of the QRW Code Generation Algorithm

The algorithm is sketched in Figure 2.7 and a simplified example is shown in Figure 2.8. It corre-
sponds to the generation of the code implementing the polynomial multiply space-time mapping intro-
duced in Section 2.2. Its input is the list of polyhedra to scan, the context and the first dimension to scan.
This corresponds to Figure 2.8(a) in our example, with the first dimension to scan being p. The first step
of the algorithm intersects the polyhedra with the context to ensure no instance outside the context will
be executed. Then it projects them onto the first dimension and separates the projections into disjoint
polyhedra. For instance, for two polyhedra, this could correspond to one domain where the first poly-

30 2. THE POLYHEDRAL PATH

1

2

2
1

1 2i

j

p

2N

N

N

2N

N

Context: n≥ 3

TS1(N) :


p = i
t = 0
1≤ i≤ 2N

TS2(N) :


p = i+ j
t = 1
1≤ i≤ N
1≤ j ≤ N

(a) Polyhedra to Scan and Context Information (degenerated dimension t is not drawn)

0 p

Projection

S1 alone

S1 and S2

onto (p)

p=1

p>=2 p<=2N

#pragma omp p a r a l l e l f o r
f o r (p = 1 ; p <= 1 ; p ++)

T ′S1
(N) :

{
t = 0
i = 1

#pragma omp p a r a l l e l f o r
f o r (p = 2 ; p <= 2∗N; p ++)

T ′′S1
(N) :

{
t = 0
i = p

T ′S2
(N) :


t = 1
1≤ i≤ N
1≤ j ≤ N
i+ j = p

(b) Intersection with the Context, Projection and Separation onto the First Dimension

2
1

1 2i

Projection

S1 alone

S2 alone

onto (p,i)
p

p=1 p>=2

i>=1

i=p

i<=p−1

p<=2N

i<=N

i>=p−N

N

2N

N 2N

pragma omp p a r a l l e l f o r
f o r (p = 1 ; p <= 1 ; p ++)

f o r (t = 0 ; t <= 0 ; t ++)
f o r (i = 1 ; i <= 1 ; i ++)

S1 : z [i] = 0 ;

pragma omp p a r a l l e l f o r
f o r (p = 2 ; p <= 2∗N; p ++) {

f o r (t = 0 ; t <= 0 ; t ++)
f o r (i = p ; i <= p ; i ++)

S1 : z [i] = 0 ;
f o r (t = 1 ; t <= 1 ; t ++)

f o r (i = max (1 , p−N) ;
i <= min (N, p−1); i ++)

f o r (j = p−i ; j <= p−i ; j ++)
S2 : z [i + j] += x [i] ∗ y [j] ;

}

(c) Recursion on the Next Dimensions

Figure 2.8: QRW Code Generation Example

2.4. CONCLUSION 31

hedron is “alone”, one domain where the second polyhedron is “alone” and one domain where the two
polyhedra coexist. This is depicted in the Figure 2.8(b) for our example: it depicts the projection onto
the p axis and the separation. Two disjoint polyhedra are created: one where S1 is alone on p (it has only
one integer point but a loop is generated to scan it, for consistency) and one where S1 and S2 are together
on p (it can be seen here that the domain where S2 is “alone” is empty). The constraints on dimension p
for the resulting polyhedra give directly the loop bounds. As the semantics of the placement dimension
is to distribute instances across different processors, this loop is parallel. Then the algorithm recursively
generates the next dimension loops for each disjoint polyhedron separately as shown in Figure 2.8(c) for
our example. First, the projection/separation on (p, t) is done. It is trivial because t is a constant in every
polyhedron: it only enforces disjonction and ordering of the polyhedra inside the second doall loop.
Next the same processing is applied for (p, t, i): the loop bounds of the remaining dimensions can be
deduced from the graphical representation (the trivial dimension t is not shown).

The QRW algorithm is simple and efficient in practice, despite the high theoretical complexity of
most polyhedral operations. However, in its basic form, it tends to generate codes with costly modulo
operations, and the separation process is likely to result in very long codes. Several extensions to this
algorithm have been proposed to overcome those issues [CB-Bas04a, CB-VBC06]. CLooG, a popular
implementation of the extended QRW technique demonstrated effectiveness and robustness of the ex-
tended algorithm [CB-Bas04a]. It is now used in production environments such as in GCC, LLVM or
IBM XL.

2.4 Conclusion

The polyhedral model encodes the complete information about dynamic iterations, data dependences and
memory accesses of a restricted class of programs through affine sets. In this representation, it is possible
to rely on mathematical tools to analyse programs and to build optimizing and parallelizing instance-
wise mappings. This chapter presented the relation abstraction to represent static control programs,
and how it can be used to manipulate codes from source to source, provided the availability of libraries
for manipulating Z-polyhedra. This abstraction is already at work, e.g., in recent versions of the isl
library [Ver10] or in the Clay framework (see Section 3.3), but this is probably the first document that
revisits the polyhedral path with this abstraction.

The relation concept goes back to the work of Kelly and Pugh in the early Nineties [KP93, KP95].
However, it sufferred from various limitations because of the lack of fundamental algorithms and scalable
tools to manipulate the unrestricted polyhedral representation from the original source code analysis to
the code generation.

The “polyhedral path” presented in this chapter is the result of a slow maturation with recent addi-
tions. I made some contributions to its construction. First I showed how a general mapping could be
applied, hence allowing mapping relations while the most general alternative at the moment was invert-
ible functions1 (i.e., a particular case where the constraints are only equalities and the constraint matrix
has full-row rank). Second, I contributed to popularize and I extended the QRW algorithm through
the code generation tool and library CLooG [CB-Bas04a]. By that time the model was still lacking a
complete support for Z-polyhedra (however it was possible to mimic them in CLooG using additional
dimensions), and mapping unions. Z-polyhedra has been the subject of recent works by Gautam and Ra-
jopadhye [GR07], Seghir et al. [SLM12] and Verdoolaege [Ver10] which implemented them inside the

1I recall here that this transformation was first discovered independently by Le Verge, see Section 2.2.1 for details.

32 2. THE POLYHEDRAL PATH

isl library, and added the support for that library to CLooG. Another recent addition is mapping unions
proposed by Tobias Großer2.

State-of-the art polyhedral library isl [Ver10], extraction tools like Clan [CB-Bas08] or Pet [Ver12],
data dependence analyzers like Candl [CB-BP12] or isl [Ver10] and the code generation tool CLooG
[CB-Bas04a] support the program abstraction discussed in this chapter. Relations allow the expression
of, e.g., tiling from the mapping, and union of relations offers, e.g., index-set splitting. Still, efficient
automatic mapping construction algorithms benefiting from the full expressiveness of this abstraction are
yet to be designed.

2Informal discussion around CLooG improvements in 2009.

33

Chapter 3

User Accessibility

This chapter is about tools, abstractions, techniques and lessons on how to help users to take advantage
of high-level optimization techniques. It is necessary to consider two main user categories for the opti-
mization frameworks we are developing. The final user aims at optimizing a program. He may or may
not be the author of this program. He can be an optimization expert, i.e., knowledgeable on both the
architectural details of the target hardware and the usual program optimization techniques. He can be an
expert of the input program as well, i.e., knowledgeable about the internals of the application, from the
data structures to the algorithms. Automatic or semi-automatic optimization tools may be useful for any
final user if he lacks some part of the expertise or if he looks at accelerating and improving the reliability
of the optimization process. The way the tools will support the final user depends on his expertise and
his needs. Hence, it is necessary to provide suitable solutions to the various final user profiles.

Contrary to the final user, the intermediate user goal is not to optimize programs directly, but to de-
velop tools for final users. Those tools, such as compilers, may be very complex. We are also developing
ways for the intermediate users to integrate the technologies we are designing, with the best trade-off
between technical ease and processing power. Providing the intermediate user with a pertinent access
path to optimization techniques, we contribute to their dissemination and to their use by final users.

In this chapter, we first build on our experience at designing high-level optimization frameworks to
advocate considering static control as a programming model and to provide syntactic feedback to the
programmer. Then we show in Section 3.2 how to provide a semantic feedback to the programmer, with
respect to the optimization sequence he is willing to apply. Section 3.3 offers a high-level entry point to
the programmer, by revisiting the classical loop transformations in the light of the relation abstraction,
and by building on the semantic feedback to help the user to define legal transformation scripts. Finally,
Section 3.4 discusses the OpenScop effort for standardizing the polyhedral abstraction to facilitate the
dissemination of polyhedral frameworks and to ease their construction.

3.1 Syntactic Feedback: Static Control as a Programming Model

A largely underestimated challenge to a successful use of the polyhedral model is the raising problem,
i.e., the action of translating a source code or an equivalent internal representation into a polyhedral
abstraction. We can distinguish two schools of raising techniques which correspond to two very different
approaches of high-level compilation techniques:

34 3. USER ACCESSIBILITY

• IR raising extracts the polyhedral abstraction from the internal representation of a compiler and is
not guaranteed to be the first pass of that compiler.

• Direct raising extracts the polyhedral abstraction directly from a high-level representation of the
code, i.e., from the source code itself or from an intermediate representation such that it is possible
to generate back the unmodified original source code.

IR raising has to automatically detect the parts of the intermediate representation amenable to a poly-
hedral abstraction because various processing of the internal representation may have considerably mod-
ified its properties, for better or for worse. It is typically related to implementations of polyhedral frame-
works inside low-level compilers, such as WRAP-IT for ORC [CB-BCG+03a, Gir05, CB-GVB+06],
GRAPHITE for GCC [CB-PCB+06, TCE+10] or Polly for LLVM [GZA+11].

Independently from the paramount iteration domain and access function construction challenges
(e.g., see Trifunovic et al. [TCE+10, Tri11] and Pop [Pop06] for these problems with respect to GCC),
integrating polyhedral compilation techniques in production low level compilers raised several issues.
Some of them were expected, some of them were more surprising. First, high-complexity techniques
are not welcome in production compilers. Polyhedral analyses have a very high worst-case complexity.
This complexity is mostly hidden when dealing with human-written codes, since the code parts relevant
to a polyhedral analysis are typically simple and small. However problems are likely to surface because
irregular extensions are now possible (see Chapter 6), because larger and more complex codes are now
automatically generated, and because of aggressive inter-procedural analyses. Second, a compiler is
made of many passes. While some are good for polyhedral analyses (e.g., constant propagation), some
are wasting the efforts of a user to write a code which should benefit from the polyhedral framework (e.g.,
induction variable substitution or array linearization may introduce non-affine array accesses). This is a
general statement for any optimization, but it is extremely critical for a technology which may change the
performance by an order of magnitude. Third, the impact of program transformations on iterators (whose
original values may be reused or, more maliciously, which may overflow) has been an underestimated
problem which needs to be investigated. Hence, bringing all the benefits of a polyhedral framework to
production compilers requires further research and development on, e.g., lower complexity techniques
or internal compiler construction we are currently investigating.

Direct rising typically relies on the user to mark the code part to be processed by the polyhe-
dral framework and/or to counterbalance analysis weaknesses (to, e.g., ensure the absence of pointer
aliasing or function side-effects). It is typically related to high-level, source-to-source frameworks like
PoCC [CB-PBB+10, CB-PBB+11], or R-Stream [MVW+11, CB-MLV+09, CB-BVL+09, CB-LVM+10]
or Pluto [BHRS08].

Contrary to their low-level compiler counterparts, high-level polyhedral frameworks require some
efforts from their users: the code parts to be processed must be written in such a way that the direct raising
is possible. In addition, if the raising system does not have the analysis power of a complete compiler, to,
e.g., perform alias analysis, the user is required to provide the missing information. This task is usually
done through language extensions such as pragmas. As an example, Figure 3.2 shows the rules to write
a code that the raising tool Clan [CB-Bas08] is able to process. Modern direct raising tools like Clan or
Pet [Ver12] also integrate diagnostic mechanisms providing syntactic feedback to users to help them to
comply to the static control paradigm, as illustrated in Figure 3.1. Another significant difference with
low-level compilers is the compilation time which is a weak constraint since users accepted to rely on
high complexity techniques and have the guarantee that their codes can be processed.

3.2. SEMANTIC FEEDBACK: THE VIOLATION ANALYSIS APPROACH 35

$ c a t foo . c

pragma scop
f o r (i = 0 ; i < N∗ j ; ++ i)

f o r (j = 0 ; j < N; ++ j)
S1 () ;

pragma endscop

$ c l a n foo . c

[Clan] E r r o r : non−a f f i n e e x p r e s s i o n a t l i n e 2 , column 1 9 .
f o r (i = 0 ; i < N∗ j ; ++ i)

~~~^
[ Clan ] E r r o r : a loop i t e r a t o r was p r e v i o u s l y used as a p a r a m e t e r a t l i n e 3 , column 8 .

f o r ( j = 0 ; j < N; ++ j )
~~~^

Figure 3.1: Syntactic feedback Example Using Clan

To achieve a reasonable amount of the peak performance on a given architecture, a programmer
may choose (1) to learn the details and specific API and language layers of the target architecture like
CUDA [nVi12], or (2) to use high level abstractions and tools like SPIRAL [PSX+04] to automatically
generate a target code, or (3) to make extensive calls to optimized libraries like BLAS [HKL73], or (4)
to rely on an optimizing compiler. The drawbacks of the first approach are well known: high learning
curve, tedious task of parallelism extraction, slow and error-prone programming, lack of portability of
the languages and the optimizations. The second solution requires to learn a new abstraction model
and is typically domain-specific (as SPIRAL for DSP algorithms). The third solution necessitates the
availability of an adequate library for the target architecture and may miss optimizations across library
calls. A common property of the first three approaches is to necessitate significant efforts from the
programmers. The last approach is the less demanding for the application writers, but it raises the
problem of the availability of a good enough optimizing compiler, usually several years after a given
architecture is available.

High-level optimization techniques based on the polyhedral model demonstrated high retargetability
as shown by Reservoir Labs R-Stream compiler (including targets to OpenMP, Tilera, Cell, ClearSpeed
and CUDA with a general polyhedral mapper) or by the research compiler Pluto (including targets to
OpenMP, CUDA and MPI). Hence it is a choice framework for optimizing compilers to rapidly adapt to
new targets. As a result, we advocate here for the use of the static control paradigm as a programming
model. The only effort required from the users is, if it proves to be possible, to rewrite their computational
kernels in a subset of an existing language complying to, e.g., the constraints detailed in Figure 3.2 to
benefit from high-level polyhedral frameworks, and to maximize the probability to enable the internal
polyhedral frameworks of low-level compilers.

3.2 Semantic Feedback: the Violation Analysis Approach

Once a program has been raised to a polyhedral abstraction, we have to build an optimization which
respects the original program semantics. In general, automatic or semi-automatic loop optimizers check
that a given transformation does not alter the semantics of a program before actually applying it. When
legality is enforced by construction, illegal transformations are not considered at all. When legality

36 3. USER ACCESSIBILITY

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

#
p

ra
g

m
a

sc
o

p

S
1

(i
,

j)
;

fo
r

(i
=

1
;

i<
n

;
i+

+
)

fo
r

(j
=

0
;

j<
i;

 j
+

+
)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

C
L

A
N

R
E

F
E

R
E

N
C

E
C

A
R

D
V

er
si

on
1.

0.
th

es
is

fo
rC

la
n

0.
8.

0

A
bo

ut
C

la
n

C
la

n
is

a
tr

an
sl

at
or

fr
om

C
-l

ik
e

co
de

pa
rt

s
to

po
ly

he
dr

al
re

pr
es

en
ta

tio
n.

It
op

en
s

th
e

ga
te

s
of

po
w

er
fu

lp
ol

yh
ed

ra
lc

om
pi

la
tio

n
te

ch
ni

qu
es

pr
ov

id
ed

by
,e

.g
.,

Po
C

C
or

Pl
ut

o.
Pr

og
ra

m
m

er
s

sh
ou

ld
en

su
re

th
ei

r
co

m
pu

ta
tio

n-
in

te
ns

iv
e

co
de

pa
rt

sa
re

co
m

pa
tib

le
w

ith
C

la
n’

si
np

ut
to

be
ne

fit
fr

om
st

at
e-

of
-t

he
-a

rt
au

to
m

at
ic

op
tim

iz
at

io
n

an
d

pa
ra

lle
liz

at
io

n.

B
as

ic
C

on
ce

pt
s

St
at

ic
C

on
tr

ol
Pa

rt
s

C
la

n
is

ca
pa

bl
e

to
tr

an
sl

at
e

pr
og

ra
m

pa
rt

s
ea

si
ly

am
en

ab
le

to
th

e
po

ly
he

-
dr

al
m

od
el

.
W

e
ca

ll
th

em
St

at
ic

C
on

tr
ol

Pa
rt

s
(S

C
oP

fo
r

sh
or

t)
.

T
he

y
ar

e
ba

si
ca

lly
lo

op
-b

as
ed

co
de

s
w

he
re

lo
op

bo
un

ds
,i

f
co

nd
iti

on
s

an
d

ar
-

ra
y

su
bs

cr
ip

ts
ar

e
m

ad
e

of
af

fin
e

ex
pr

es
si

on
s

in
vo

lv
in

g
on

ly
ou

te
r

lo
op

ite
ra

to
rs

,i
nt

eg
er

co
ns

ta
nt

s
(a

.k
.a

.p
ar

am
et

er
s)

an
d

in
te

ge
rl

ite
ra

ls
.

SC
oP

Pr
ag

m
as

C
la

n
tr

an
sl

at
es

co
de

pa
rt

s
de

lim
ite

d
by

sp
ec

ifi
c

pr
ag

m
as

an
d

ig
no

re
sw

ha
t

is
ou

ts
id

e
th

os
e

re
gi

on
s:

å
be

tw
ee

n
#p

ra
gm

a
sc

op
an

d
#p

ra
gm

a
en

ds
co

p
fo

rC
/C

++
,

å
be

tw
ee

n
/*

@
sc

op
*/

an
d
/*

@
en

d
sc

op
*/

fo
rJ

AV
A

.

In
ad

di
tio

n
to

th
e

sy
nt

ac
tic

re
st

ri
ct

io
ns

im
po

se
d

by
C

la
n,

in
se

rt
in

g
SC

oP
pr

ag
m

as
in

a
co

de
al

so
im

pl
ic

ite
ly

sp
ec

ifi
es

th
at

:
å

al
lf

un
ct

io
ns

ca
lle

d
w

ith
in

th
e

SC
oP

ar
e

pu
re

(n
o

si
de

-e
ff

ec
ts

),
å

no
al

ia
si

ng
of

ar
ra

y
na

m
es

is
po

ss
ib

le
w

ith
in

th
e

SC
oP

,
å

po
in

te
rr

ef
er

en
ce

s
be

ha
ve

lik
e

va
ri

ab
le

s
or

ar
ra

ys
.

A
ffi

ne
E

xp
re

ss
io

ns
A

ffi
ne

ex
pr

es
si

on
sa

re
ad

di
tiv

e
fo

rm
so

fl
oo

p
ite

ra
to

rs
(e

.g
.,

i)
,p

ar
am

et
er

s
(e

.g
.,

N
)a

nd
in

te
ge

rs
,w

ith
in

te
ge

rc
oe

ffi
ci

en
ts

,e
.g

.,
7
∗i

+
13
∗N

+
42

.
å

E
xp

re
ss

io
ns

si
m

pl
if

yi
ng

to
af

fin
e

fo
rm

s
ar

e
O

K
,e

.g
.,

3
∗(

i∗
2
+

N
).

Sp
ec

ifi
c

O
pe

ra
to

rs
Fo

ur
pa

rt
ic

ul
ar

op
er

at
or

s
m

ay
be

us
ed

in
C

la
n’

s
in

pu
t.

L
et

us
su

pp
os

e
th

at
a

an
d
b

ar
e

af
fin

e
ex

pr
es

si
on

s
an

d
n

an
in

te
ge

r:
M

ax
im

um
of

a
an

d
b

(a
an

d
b

m
ay

be
ma

x
ex

pr
es

si
on

s)
ma

x(
a,

b)
M

in
im

um
of

a
an

d
b

(a
an

d
b

m
ay

be
mi

n
ex

pr
es

si
on

s)
mi

n(
a,

b)
C

ei
lo

fa
di

vi
de

d
by

n
(c

on
si

de
re

d
as

a
ma

x
ex

pr
es

si
on

)
ce

il
d(

a,
n)

Fl
oo

ro
fa

di
vi

de
d

by
n

(c
on

si
de

re
d

as
a
mi

n
ex

pr
es

si
on

)f
lo

or
d(

a,
n)

ht
tp

:/
/w

ww
.l

ri
.f

r/
∼
ba

st
ou

l/
de

ve
lo

pm
en

t/
cl

an

G
en

er
al

R
es

tr
ic

tio
ns

C
od

es
be

tw
ee

n
SC

oP
pr

ag
m

as
m

us
tc

om
pl

y
to

th
e

fo
llo

w
in

g
re

st
ri

ct
io

ns
:

•
T

he
on

ly
al

lo
w

ed
co

nt
ro

lk
ey

w
or

ds
ar

e
fo

r,
wh

il
e,

if
an

d
el

se
,

w
ith

re
st

ri
ct

io
ns

as
de

sc
ri

be
d

be
lo

w
.

•
A

ny
C

in
st

ru
ct

io
n

w
ith

ou
tc

on
tr

ol
ke

yw
or

ds
is

ac
ce

pt
ed

,w
ith

re
-

st
ri

ct
io

ns
fo

ra
rr

ay
su

bs
cr

ip
ts

as
de

sc
ri

be
d

be
lo

w
.

Id
en

tifi
ca

tio
n

of
C

on
st

ra
in

ed
E

le
m

en
ts

#
in

cl
u

d
e

<
st

d
io

.h
>

#
d

ef
in

e
N

42

in
t

m
ai

n
()

{
in

t
i

,
j;

in
t

p
as

ca
l[

N
][

N
];

#
pr

ag
m

a
sc

o
p

fo
r

(
i

=
0

;
i

<
N

;
i+

+
)

{
fo

r
(

j
=

0
;

j
<=

i;
j+

+
)

{
if

(
i

==
j

||
j

==
0

)
p

as
ca

l[
i

][
j]

=
1

;
el

se p
as

ca
l[

i
][

j]
=

p
as

ca
l[

i−
1]

[j
]

+
p

as
ca

l[
i−

1]
[j
−

1]
;

}
} #

pr
ag

m
a

en
d

sc
o

p

fo
r

(
i

=
0

;
i

<
N

;
i+

+
)

{
fo

r
(

j
=

0
;

j
<=

i;
j+

+
)

{
p

ri
n

tf
("

%
3d

"
,

p
as

ca
l[

i
][

j
])

;
} p

ri
n

tf
("

\n
"

);
} re

tu
rn

0
;

}

L
oo

p
In

iti
al

iz
at

io
n

L
oo

p
an

d
if

C
on

di
tio

n

L
oo

p
St

ep

A
rr

ay
Su

bs
cr

ip
t

L
oo

p
In

iti
al

iz
at

io
n

E
ac

h
lo

op
in

iti
al

iz
at

io
n

m
us

tb
e

an
as

si
gn

m
en

to
f

th
e

lo
op

co
un

te
r

su
ch

th
at

th
e

ri
gh

t
ha

nd
si

de
is

on
e

or
se

ve
ra

l
af

fin
e

ex
pr

es
si

on
s

ag
gr

eg
at

ed
w

ith
ma

x
(r

es
p.

mi
n)

op
er

at
or

s
if

th
e

lo
op

st
ep

is
po

si
tiv

e
(r

es
p.

ne
ga

tiv
e)

.
O

pt
io

na
lly

,t
he

ite
ra

to
rc

an
be

de
cl

ar
ed

as
an

in
t

in
th

e
in

iti
al

iz
at

io
n

pa
rt

.

E
xa

m
pl

e
of

L
oo

p
In

iti
al

iz
at

io
n

D
ia

gn
os

tic
in

t
j

=
3*

i
+

2*
N

C
or

re
ct

j
=

ce
il

d(
i

+
N,

10
)

C
or

re
ct

if
j

st
ep

is
po

si
tiv

e
j

=
ma

x(
i,

ce
il

d(
N,

3)
)

C
or

re
ct

if
j

st
ep

is
po

si
tiv

e
j

=
mi

n(
mi

n(
N,

10
),

7*
i)

C
or

re
ct

if
j

st
ep

is
ne

ga
tiv

e
j

=
mi

n(
ma

x(
i,

1)
,

N)
In

co
rr

ec
t:

m
ix

ed
mi

n
an

d
ma

x

Ti
p:

if
th

e
in

iti
al

iz
at

io
n

fo
rm

is
to

o
re

st
ri

ct
iv

e
fo

r
a

gi
ve

n
pr

og
ra

m
,i

tm
ay

be
po

ss
ib

le
to

m
ov

e
th

e
tr

ou
bl

es
om

e
co

ns
tr

ai
nt

s
to

th
e

lo
op

co
nd

iti
on

or
to

an
ex

te
rn

al
or

in
te

rn
al

if
co

nd
iti

on
.

L
oo

p
an

d
if

C
on

di
tio

n

E
ac

h
lo

op
or

if
co

nd
iti

on
m

us
t

be
a

(c
om

po
si

tio
n

of
)

co
ns

tr
ai

nt
(s

)
on

af
fin

e
ex

pr
es

si
on

s,
an

d
fu

nc
tio

n
ca

lls
.

•
Su

pp
or

te
d

C
op

er
at

or
s

ar
e
>,
>=

,<
,<
=,
==

,!
=,
!,
&&

an
d
||

.

•
mi

n
an

d
ma

x
op

er
at

or
s

ca
n

be
us

ed
to

ag
gr

eg
at

e
ex

pr
es

si
on

s
in

>,
>=

,<
an

d
<=

co
ns

tr
ai

nt
s.

mi
n

(r
es

p.
ma

x)
ex

pr
es

si
on

s
m

us
tb

e
in

th
e

gr
ea

te
r(

re
sp

.l
ow

er
)s

id
e

of
th

e
co

ns
tr

ai
nt

s.

•
C

on
st

ra
in

ts
in

vo
lv

in
g

th
e

m
od

ul
o

op
er

at
or

ar
e

po
ss

ib
le

in
th

e
fo

l-
lo

w
in

g
fo

rm
:l

et
a

be
an

af
fin

e
ex

pr
es

si
on

an
d
x

an
d
y

tw
o

po
si

tiv
e

in
te

ge
rs

,t
he

n
th

e
co

nd
iti

on
(a

%
x

==
y)

is
ac

ce
pt

ed
.

•
Fu

nc
tio

n
ca

lls
al

on
e

ca
n

be
us

ed
as

va
lid

if
co

nd
iti

on
s.

E
xa

m
pl

e
of

C
on

di
tio

n
D

ia
gn

os
tic

i
+

2*
j

<
N

C
or

re
ct

ma
x(

i,
j)

<
fl

oo
rd

(N
,

7)
C

or
re

ct
N>

i
&&

!(
j>

0
||

N!
=1

)
C

or
re

ct
((

2*
i+

1)
%3

==
1)

&&
i>

j
C

or
re

ct
fu

nc
(A

[i
],

b)
C

or
re

ct
in

a
if

co
nd

iti
on

mi
n(

2*
i,

N)
<

0
In

co
rr

ec
t:
mi

n
on

th
e

lo
w

er
si

de
i

+
2

In
co

rr
ec

t:
us

e
(i

+
2)

!=
0

i<
N

&&
g(

a)
In

co
rr

ec
t:

fu
nc

tio
n

ca
ll

no
ta

lo
ne

Ti
p:

to
in

cl
ud

e
da

ta
-d

ep
en

de
nt

co
nd

iti
on

s,
e.

g.
,i
f

(A
[i

]
==

0)
,c

re
at

e
a

pr
ep

ro
ce

ss
or

m
ac

ro
co

nt
ai

ni
ng

th
e

co
nd

iti
on

an
d

re
pl

ac
e

it
in

th
e

SC
oP

by
th

e
m

ac
ro

-f
un

ct
io

n
ca

ll,
e.

g.
,i
f

(m
y_

co
nd

it
io

n(
A[

i]
))

.

L
oo

p
St

ep

U
pd

at
in

g
th

e
lo

op
ite

ra
to

ri
s

on
ly

al
lo

w
ed

in
th

e
lo

op
st

ep
pa

rt
.I

tm
us

tb
e

do
ne

by
ad

di
ng

an
in

te
ge

r
to

th
e

pr
ev

io
us

ite
ra

to
r

va
lu

e.
L

et
i

be
a

lo
op

ite
ra

to
r

an
d
x

an
in

te
ge

r,
th

e
fo

llo
w

in
g

fo
rm

s
ar

e
ac

ce
pt

ed
fo

r
th

e
lo

op
st

ep
pa

rt
:i

++
,+
+i

,i
--

,-
-i

,i
+=

x,
i

-=
x,
i

=
i+

x
an

d
i

=
i-

x.

A
rr

ay
Su

bs
cr

ip
t

A
rr

ay
su

bs
cr

ip
ts

m
us

tb
e

ei
th

er
af

fin
e

ex
pr

es
si

on
s

or
fu

nc
tio

n
ca

lls
.

Ti
p:

to
in

cl
ud

e
in

di
re

ct
io

ns
,e

.g
.,
A[

B[
i]

],
cr

ea
te

a
pr

ep
ro

ce
ss

or
m

ac
ro

co
nt

ai
ni

ng
th

e
su

bs
cr

ip
ta

nd
re

pl
ac

e
it

in
th

e
SC

oP
by

th
e

m
ac

ro
-f

un
ct

io
n

ca
ll,

e.
g.

,A
[m

y_
su

bs
cr

ip
t(

B[
i]

)]
.

In
fin

ite
an

d
wh

il
e

L
oo

ps

In
fin

ite
fo

r
lo

op
s

in
th

e
fo

rm
fo

r
(;

;)
ar

e
su

pp
or

te
d.

wh
il

e
lo

op
s

ar
e

su
pp

or
te

d
w

he
n

th
e

co
nd

iti
on

is
ei

th
er
1

(i
nfi

ni
te

lo
op

)o
ra

fu
nc

tio
n

ca
ll.

Figure 3.2: Clan Reference Card

3.2. SEMANTIC FEEDBACK: THE VIOLATION ANALYSIS APPROACH 37

is checked, illegal transformations are dropped. We show in this section why and how an optimization-
centric approach is more helpful than a legality-centric approach to help the user (a compiler or a human)
in the optimization process.

The classic approach of program optimization considers individual optimization directives (like tile
or skew or fuse etc. [Wol95]), each of them being associated with specific legality conditions, and some-
times specific static analyses [AK02]. For instance, the unimodular transformations on one side, and the
loop fusion/fission on the other side, require distinct legality checking code. This traditional approach
has several drawbacks:

• it is almost impossible to define complex loop transformations with a global impact on the loop
nest, since their legality conditions would be difficult to formally define [Kel96];

• hence complex transformations must be decomposed into sequences of primitive ones, a fragile
and combinatorial task in general [CGP+05];

• each individual transformation must be checked, leading to compile-time overhead and additional
fragility, since a single conservative approximation for one of these checks may invalidate the
whole sequence [CB-GVB+06];

• in terms of compiler engineering, more effort is needed to scatter and specialize legality checking
code in the loop transformation infrastructure [AK02].

Modern compiler optimization techniques ensure legality by construction: data dependences and
causality conditions (see Section 2.2.2) are intimate parts of the transformation problem [Fea92a, BHRS08,
CB-PBB+11]. As a result, pre-processing has to be applied to the input program to remove as many data
dependences as possible before the optimization step, e.g., privatization, total memory expansion, static
single assignment form [LF98], index-set splitting [GFL00] etc. There is in general no easy way back
from those pre-processing techniques while they may have a serious impact in memory use and/or control
overhead. Hence, the ability to check transformations after they have been applied enables new ways to
drive an optimization process: if the compiler can reason about violated dependences, some fundamental
decision flaws of syntactic compilers disappear by converting early decisions into delayed corrections
of illegal transformations. For example, a typical ill-formed optimization problem like “is there a loop
peeling step that would enable fusion of two given loops ?” would simply be converted into the extraction
of the minimal set of iterations that violate the fusion, followed by the natural peeling transformation to
correct this violation.

In the context of these fundamental and compiler engineering motivations, this section explains how
instance-wise dependence information can be used to delay legality checks after the application of com-
plex transformations or long transformation sequences. Second we show that beyond dependence anal-
ysis, an illegal transformation is not necessarily a dead-end. We show how to exactly determine the
violated dependences that need to be corrected. Identifying these violations can in turn enable automatic
correction schemes to fix an illegal transformation sequence with minimal changes.

3.2.1 On the Need For Instance-wise Data Dependence Analysis

The power of an automatic optimizer or parallelizer greatly depends on its capacity to decide whether
two portions of the program execution may be interchanged or run in parallel. Such knowledge is related
to the difficult task of dependence analysis which aims at precisely disambiguating memory references.

38 3. USER ACCESSIBILITY

Many data dependence tests and abstractions have been suggested, with various motivations such as
computational cost, precision or application domain (see Section 5.2.4 for details and useful references).
Several empirical studies have been conducted to compare those tests [PP91, GKT91, PP96, PK04].
The generally accepted conclusion is: “it is more interesting to use simple tests (like the Banerjee-
test [WB87] or I-test [KKP90]), and simple abstractions (like Direction Vectors [Wol95]), because they
capture most data dependence information at a low computational cost”. Our view significantly contrasts
with such generally accepted ideas and with the traditional use of data dependence analysis.

Using an exact instance-wise analysis, a dependence between two statements does not necessarily
hamper the application of an optimizing/parallelizing transformation. Indeed, the comparison of data
dependence tests in above-mentioned studies is quite biased: it only evaluates the ability to prove or dis-
prove dependences between statements, and not to precisely tell which iterations of those statements are
in dependence. The essence of data dependence analysis is to build or to check useful transformations.
To prove or disprove dependences between statements is quite rough since optimization/parallelization
may often be possible even if there exists data dependences (examples will be provided along with the
transformation correction technique, see sections 3.2.3 and 3.3.3). On the contrary, instance-wise anal-
yses and abstractions give the right precision level to decide whether or not to apply a given mapping.
Empirical studies of dependence tests/analyses which ignore the impact on transformations are not pow-
erful enough for advanced compiler design.

Few methods provide an exact solution to the dependence problem for general static control kernels,
such as the Omega test [Pug91a] or the PIP test [Fea91]. They can enable finer program transforma-
tions, like affine mapping [Fea92a, Fea92b, LL97, Gri04, BHRS08, CB-PBB+11], which corresponds
to the granularity of our work, at the price of an higher complexity than their conservative counterparts.
Reasonning about the scalability of an exact dependence test is postponed until Section 5.1.

3.2.2 Characterization of Violated Dependences

Once an optimizing transformation relation (which may correspond to a complex sequence of classic
loop transformations) has been constructed, and applied in the model (see Section 2.2.1), the question
arises whether the resulting program still executes correct code. Our approach consists in building the
dependence graphs (see Section 2.2.2), before applying any transformation, then to apply a given trans-
formation sequence, and eventually to run a legality check at the very end of the transformation sequence.

In the relation formalism, the legality of a transformation is guaranteed if, for any iteration vectors~ıS
and~ıT involved in a dependence relation δ

S,rS
d→T,rT

(~p),

θS(~ıS)≺ θT (~ıT),

where ≺ denotes the lexicographic ordering. Intuitively, this means that the source instance has to be
executed before the target instance after the mapping has been applied.

The violated dependences analyzer computes the iterations that were in a dependence relation in the
original program and whose order has been reversed by the transformation. These iterations, should
they exist, do not preserve the causality of the original program. A violation relation υ

S,rS
d,v→T,rT

(~p) is
a mapping from mapped instances and accessed memory locations of a source statement S to mapped
instances and accessed memory locations of a target statement T , at a given dependence depth d and a
violation depth v (defined below), for a given pair of memory references rS and rT . The violation relation
is not empty for two mapped instances iff they are in dependence relation and the source instance is

3.2. SEMANTIC FEEDBACK: THE VIOLATION ANALYSIS APPROACH 39

mapped after or at the same time as the target instance. Hence, the violation relation is built using three
subrelations:

1. Dependence condition of the instances, see Section 2.2.2.

2. Mapping condition of the instances, see Section 2.1.3.

3. Causality violation condition of the mapped instances: the mapped instances of the source state-
ment in the violation relation are executed after or at the same time as the corresponding mapped
instances of the target statement. The constraints involved in this condition depend on the situa-
tion. They can be separated into a disjunction with as many components as mapping dimensions
in both S and T (i.e. the minimum mapping depth between S and T). Each component corresponds
to a given mapping depth and is called a violation depth. For a given violation depth v > 0, the
causality violation condition is made of two parts:

• the equality of the mapping elements at depth less than v: tx
S = tx

T for x < v,

• tv
T < tv

S if v is less than the minimum number of mapping dimensions between S and T ,
tv
T ≤ tv

S otherwise.

If the minimum number of mapping dimension is 0, there is no causality violation constraint and
the violation may only exist if a dependence exists.

Hence, the general form of a dependence relation with causality violation constraints is the following:

υ
S,rS

d,v→T,rT
(~p) =


 ~ıS

~aS,rS

~tS

→
 ~ıT

~aT,rT

~tT

 ∈ Zdim(~ıS)+dim(~aS,rS)+dim(~tS)

×
Zdim(~ıR)+dim(~aT,rT)+dim(~tT)

∣∣∣∣∣ ϒ
S,rS

d,v→T,rT

 ,

where ϒ
S,rS

d,v→T,rT
is the following violation constraint system:

ϒ
S,rS

d,v→T,rT
:



∆
+

S,rS
d→T,rT

T~ıSS 0 T~tS
S 0 0 0 T~p

S T c
S

0 0 0 T~ıTT 0 T~tT
T T~p

T T c
T

0 0 I1..v−1,• 0 0 −I1..v−1,• 0 0
0 0 Iv,• 0 0 −Iv,• 0 0 or −1





~ıS
~aS,rS

~tS
~ıT
~aT,rT

~tT
~p
1



= or ≥
≥
≥
=

≥

~0,

where ∆
+

S,rS
d→T,rT

is the dependence constraint matrix (see Section 2.2.2) where additional columns set to

zero have been added for the corresponding~tS and~tT dimensions. For reference, the complete system is

40 3. USER ACCESSIBILITY

the following:

D~ıS
S 0 0 0 0 0 D~p

S Dc
S

0 0 0 D~ıT
T 0 0 D~p

T Dc
T

A~ıSS,rS
A
~aS,rS
S,rS

0 0 0 0 A~p
S,rS

Ac
S,rS

0 0 0 A~ıTT,rT
A
~aT,rT
T,rT

0 A~p
T,rT

Ac
T,rT

0 I 0 0 −I 0 0 0
I1..d−1,• 0 0 −I1..d−1,• 0 0 0 0

Id,• 0 0 −Id,• 0 0 0 0 or −1

T~ıSS 0 T~tS
S 0 0 0 T~p

S T c
S

0 0 0 T~ıTT 0 T~tT
T T~p

T T c
T

0 0 I1..v−1,• 0 0 −I1..v−1,• 0 0
0 0 Iv,• 0 0 −Iv,• 0 0 or −1





~ıS
~aS,rS

~tS
~ıT
~aT,rT

~tT
~p
1



≥
≥
≥
≥
=

=

≥
≥
≥
=

≥

~0

Note that we consider here potential violations as violations. For instance, when two instances in a
relation dependence have the same mapping, the violation exists since it is not possible to know which
one will be executed first from the mapping. However, the code generation step may still generate (by
chance) a correct code. To compute only actual violations, simply consider that there is no violation
if the minimum number of mapping dimension is 0 and that the second part of the causality violation
condition is always tT,v < tS,v. Finally, if the mapping relation is a union, the violation analysis has to be
performed on each component of the union.

For a given set of mapping relations and a data dependence graph, the non empty violation relations
are gathered into a violated dependence graph. Beyond characterizing illegal transformation sequences,
it is possible to reason about these graph of violated dependences and effectively derive more flexible
optimization algorithms.

3.2.3 Removing Data Dependence Violations

When a violated dependence graph has been computed for a given mapping, it is possible to reason about
it to modify either the input program or the mapping to remove violations. Some transformations like,
e.g., privatization, or array expansion [LF98, Fea88b], do not generate new violations, but can remove
some of them at the price of a higher memory footprint. Applying such a transformation after violated
dependence analysis ensures the minimal expansion is made for the desired mapping to be applied.

Another way is to modify the mapping itself. Starting from an incorrect transformation sequence, the
goal is to reestablish the legality of the final program while disrupting the mapping as little as possible.
The root of this idea comes from Kelly and Pugh’s work where they try to apply schedule alignment in
the context of the UTF framework [KP93]. They use a depth by depth, conservative approach and let
their alignment technique completely set the constant part of the schedules. We already designed a pow-
erful automatic correction scheme based on instance-wise dependence information based on the space of
legal transformations [CB-BF05]. Our technique could complete partially defined schedules, not only the
constant part, and apply complex corrections in the specific context of data locality optimizing schedules.
However, the complexity of the technique can make it impractical for large multidimensional problems.
Vasilache et al. proposed a correction technique, which, provided a fully specified, but illegal trans-
formation, and ought to compute a minimally intrusive adjustment to the schedule matrices [VCP07].

3.2. SEMANTIC FEEDBACK: THE VIOLATION ANALYSIS APPROACH 41

Assuming the given transformation is an upper bound to the peak performance achievable for this ap-
plication, the adjustment to make it correct becomes an optimization problem in itself. This problem is
NP-complete in general (e.g., when considering loop fusion/fission as a means to correct the schedule
[Dar00]). We are thus working on correction strategies for which a minimal adjustment can be derived
effectively, and on sub-optimal heuristics for other correction strategies.

We propose here a new mapping correction algorithm with the same goal as Vasilache et al.’s algo-
rithm [VCP07], i.e., starting from an illegal mapping, find a constant (possibly parametric) shifting with
minimal deviation. The two techniques are quite different. Contrary to Vasilache et al. the algorithm
presented here is not iterative on depth (however it can be modified in this way to reduce complexity,
see the depth-by-depth variant page 43). Moreover, rather than reasoning on the space where a violation
exists (to find the extremal amount of time units between a source instance and a target instance), we
focus on the space where no violation exists.

Our correction algorithm, named after its implementation “Candl”, is depicted in Figure 3.3. The
intuitive idea is the following:

• First, we introduce new correction parameters and we use them to shift the mapping dimensions to
be corrected. A correction parameter is personal to a given dimension of a given mapping relation.
We create one correction parameter per dimension we want to correct in each statement involved
in a violation (even transitively). Then we shift each dimension we want to correct with its own
correction parameter (i.e., we substitute t with t−C in the relation if t is the dimension to correct
and C is its correction parameter).

• Next, we find the constraints on the correction parameters such that no violation exists. We rely on
Parametric Integer Programming (PIP) for such a task [Fea88a, CB-FcCB02]. For this we express
the violation relations using the shifted mapping and we ask PIP for a solution. The solution is
provided as a quasi-affine selection tree, or quast, i.e., a selection tree based on constraints on
parameters. Each path to ⊥ (no solution) in the quast corresponds to a part of the parameter space
where the violation does not exist. We gather all those parts in a union of polyhedra defining the
“safe” part of the space with respect to the parameters for a given violation relation. Lastly we
intersect all the unions for all the violation relations.

• Finally, we select a solution in the “safe” part of the space, if it exists, such that it has a mini-
mum deviation from the original mapping. This selection highly depend on the structure of the
mapping (are there beta dimensions [CB-GVB+06] so that some dimensions are more important
than others?). Our general strategy is to minimize the absolute value of the correction values with
decreasing priority, from first to last mapping dimensions. It is again an optimization problem
where we use PIP. It is easy to adapt the strategy to the mapping structure if we know it.

A complete example of correction using the algorithm is presented in Figure 3.4. A user wishes to
transform the original program in 3.4(a) using the mapping relation in 3.4(b), much probably to improve
locality for the array A. Using this mapping, a code generator could generate the code in 3.4(c), it
corresponds to a loop fusion. Unfortunately it is easy to see that in the target code, S2 is now consuming
data before S1 produces them. A violated dependence analysis would show that the violation relation
ϒ

S1,1
0,2→S2,2

is not empty. We can try to correct this mapping.

Because there are only two statements, it is not necessary to shift both. We choose to apply a para-
metric correction shifting to the mapping of S1. This shifting impacts the violated dependence relation

42 3. USER ACCESSIBILITY

CANDL MAPPING CORRECTION ALGORITHM

• Input:
M: set of original mapping relations
DDG: data dependence graph
V DG: violated dependence graph

• Output:
Mshift : set of corrected mapping relations

1. choose the set of mapping relations Mshift to correct by shifting (at least one mapping from
each violated dependence in V DG)

2. for each mapping relation M in Mshift do

(a) extend M with p correction parameters, where p is the maximal violation depth of all
the violations where M in involved

(b) shift the ith mapping dimension of M with the ith correction parameter, 0≤ i≤ p (i.e.,
set the column corresponding to the ith correction parameter to the opposed column of
the ith mapping dimension).

3. build the list V of violated dependence relations which have to be recomputed with respect
to the modified mappings

4. Dshift ← universe

5. for each violated dependence relation V in V do

(a) replace the original mapping(s) with the shifted mapping(s) in V (i.e., introduce the
correction parameters as explained in step 2)

(b) compute solutions to V as a quast on correction and global parameters using, e.g., PIP

(c) build a union of polyhedra V such that each union component corresponds to the
parametric conditions leading to no solution (bottom or⊥ in PIP) in the quast; in those
polyhedra, correction parameters are promoted to variables while global parameters
remain parameters

(d) Dshift ←Dshift ∩V

6. if Dshift is empty then

• return /0

else

(a) choose a low deviation solution to Dshift (computed using, e.g., PIP), i.e., a correcting
value for each correction parameter (possibly parametric itself)

(b) replace the correction parameters in Mshift with their corresponding correcting value
and remove the correction parameters (i.e., remove the corresponding columns)

(c) return Mshift

Figure 3.3: Correction by shifting algorithm

3.3. SEMI-AUTOMATIC MAPPING CONSTRUCTION 43

ϒ
S1,1

0,2→S2,2
, but also ϒ

S1,1
0,1→S2,2

. Hence it is necessary to consider both, as shown in Figure 3.4(e) and
3.4(f) where we applied the parametric correction shifting in the relation. For both relations, we compute
the “safe” space where, depending on the parameters, no violation exists. This is done using a call to
PIP [Fea88a, CB-FcCB02] with the violation relation constraints. The quasts and their conversion to
“safe” space are shown in 3.4(g) and 3.4(h). The intersection of the violation-relative “safe” spaces gives
the global “safe” space shown in 3.4(i).

Each part of the “safe” space union contains possible solutions. Moreover, constraints on global
parameters forces versioning: different corrections may be applied depending on the global parameter
values. In our example, we can see from 3.4(i), that any correction is correct for N < 1 (because the
dependence does not exist), but not for N >= 1. We are free to chose any solution correct for N >= 1.
However they are not equivalent with respect to deviation from the original mapping. For instance two
possible corrections are shown in 3.4(j) and 3.4(k). One of them totally cancel the loop fusion, while the
other slightly modifies it. Our general approach is to look for the smallest possible shifting (in absolute
value) for the first dimension, the order of priority being the order of dimensions, hence to achieve the
correction shown in 3.4(k).

From the proposed algorithm, it is easy to derive useful variants:

Full-Depth variant For practical reasons, we restricted the number of shifted dimensions for a given
mapping to the maximum violation depth where it is involved (see Step 2 of Figure3.3). However,
shifting at depth d can generate violations at depth d′ > d (e.g., when shifting results in a loop
fusion). While we can try to solve it at depth < d, we can allow to correct it at a further depth. To
enable this, simply add correcting parameters to all dimensions.

Depth-by-Depth variant For complex cases, the computation of the “safe” part of the space can be
difficult (PIP computation may not converge or the number of elements in the union may explode).
A depth-by-depth approach can be derived if scalability problems rise. To achieve this, an addi-
tional outer loop on mapping depth has to be added to the algorithm. At the nth iteration, only
the correcting parameter for the nth dimension is added to all mapping involved in a dependence
relation, and the correcting values of the n−1 first dimensions are integrated for violation relation
construction.

If the correction algorithm fails, then the mapping is considered as illegal and is simply discarded.

3.3 Semi-Automatic Mapping Construction

The polyhedral mapping abstraction is too complex to be used directly by non-expert human end-users or
optimizing systems based on classical optimizing directives like tile or fuse or skew. However, they could
strongly benefit from its unique properties of exact data dependence analysis to check or to correct their
transformations, and from automatic code generation to handle the complex and error-prone optimization
implementation in a transparent way.

Several frameworks have been proposed to expose a high-level interface on top of a polyhedral en-
gine, UTF (Unified Transformation Framework) [KP93] and its implementation in the Petit tool [Kel96]
being arguably the very first of them. The URUK (Unified Representation Universal Kernel) frame-
work [Gir05, Vas07, CB-GVB+06, CB-BCG+03a] enables the composition of any complex sequence
of classical loop transformations (including tiling) decoupled from any syntactic form of the program.

44 3. USER ACCESSIBILITY

f o r (i = 0 ; i <= N; i ++)
S1 : A[i] = B[i] ;

f o r (i = 0 ; i <= N; i ++)
S2 : C[i] = A[i + 1] ;

θS1 =

(i
)
→

 0
i
0


θS2 =

(i
)
→

 0
i
1



f o r (i = 0 ; i <= N; i ++) {
S1 : A[i] = B[i] ;
S2 : C[i] = A[i + 1] ;

}

(a) Original Program (b) Illegal Mapping (c) Illegal Target Code

θS1 =

(i
)
→

 0+C1
i+C2

0


(d) Parametric Shifting of θS1

ϒ
S1,1

0,2→S2,2
:



1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 −1
0 −1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 1

0 0 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 −1 0 0 0 0 −1





i
aS1,1
tS1,1
tS1,2
tS1,3

i′
aS2,2
tS2,1
tS2,2
tS2,3

N
C1
C2
1



≥
≥
=
=
=

=
=

=
≥

~0

ϒ
S1,1

0,1→S2,2
:



1 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 1 0 0 0 0 0 0 −1
0 −1 0 0 0 0 1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 1 0 0
1 0 0 −1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 1

0 0 1 0 0 0 0 −1 0 0 0 0 0 −1





i
aS1,1
tS1,1
tS1,2
tS1,3

i′
aS2,2
tS2,1
tS2,2
tS2,3

N
C1
C2
1



≥
≥
=
=
=

=
=

≥

~0

(e) Violated Dependences With Shifted θS1 (f) Potential Violations With Shifted θS1

i f (N >= 1)
i f (C1 >= 0)

i f (−C1 >= 0)
i f (C2 >= 0)

s o l u t i o n
e l s e
⊥

e l s e
⊥

e l s e
⊥

e l s e
⊥

 N ≥ 1
C1 = 0
C2 < 0

∪

{
N ≥ 1
C1 > 0 ∪

{
N ≥ 1
C1 < 0 ∪

{
N < 1

i f (N >= 1)
i f (C1 >= 1)

s o l u t i o n
e l s e
⊥

e l s e
⊥

{
N ≥ 1
C1 < 1 ∪

{
N < 1

(g) Quast and safe space for ϒ
S1,1

0,2→S2,2
(h) Quast and safe space for ϒ

S1,1
0,1→S2,2{

N < 1 ∪

 N ≥ 1
C1 = 0
C2 < 0

∪
{

N ≥ 1
C1 < 0

(i) Result of the intersection of safe spaces

θS1 =

(i
)
→

 0−1
i+0

0


f o r (i = 0 ; i <= N; i ++)

S1 : A[i] = B[i] ;

f o r (i = 0 ; i <= N; i ++)
S2 : C[i] = A[i + 1] ;

θS1 =

(i
)
→

 0+0
i−1

0


S1 : A[0] = B [0] ;

f o r (i = 0 ; i < N; i ++) {
S1 : A[i +1] = B[i + 1] ;
S2 : C[i] = A[i + 1] ;

}
S2 : C[N] = A[N+ 1] ;

(j) High Deviation Depth 1
Correction

(k) Low Deviation Depth 2
Correction

Figure 3.4: Example of Mapping Correction

3.3. SEMI-AUTOMATIC MAPPING CONSTRUCTION 45

Transformations are done on both linear mapping functions with specific structure and iteration domains.
Because each individual transformation in URUK preserves compositionality invariants, ensuring a tar-
get code corresponding to the sequence of transformations is guaranteed and it is possible to check for
the legality of the complete sequence by maintaining the data dependence graph when domain transfor-
mations are performed. The CHiLL framework [CCH08] shares a lot with URUK with the exception
of an alignment pre-processing to iteration spaces to ensure they have the same dimensionality and the
necessity for intermediate dependence checks.

We present yet another revisiting of classical loop transformations in the polyhedral model, but based
on the mapping relation abstraction discussed in Section 2.1.3. The new framework, named after its
implementation Clay, is designed as a new generation URUK framework where domain transformations
are not needed anymore (this is necessary in both URUK and CHiLL to support, e.g., index-set splitting,
peeling, strip-mining or tiling). The complete mapping information is embedded in the mapping relation
which makes this new framework more elegant and simpler (e.g., there is no need for intermediate data
dependence graph updates or checks). The specific mapping structure used in Clay as well as the various
notations and operators are defined in Section 3.3.1. The translation of the classical loop transformation
using relations and our notations and operators are shown in Section 3.3.2.

3.3.1 Clay Mapping Structure, Notations and Operators

We use a particular mapping relation structure with special dimensions which must be preserved during
the process of combining transformations. Simply, in a similar way to UTF, URUK and CHiLL, odd
mapping dimensions (the first dimension being 1) are devoted to express the lexicographic order of loops
and statements. They are called β in URUK and auxiliary loops in CHiLL. We use here the name β

for consistency with URUK. β are restricted to be equal to non-parametric constant values. The vector
formed from β values for a given mapping union component is called a β-vector, or~β. Each β-vector must
be unique and cannot be a prefix of other β-vectors. Even mapping dimensions are called α1. Hence, the
general form of the mapping dimension vector is (β1,α1,β2,α2 . . . ,βn,αn,βn+1)

T . As an example, the
scheduling of the original program, presented in Section 2.1.3 does respect this structure. It is commonly
referred as a “2d +1” structure since in UTF, URUK and CHiLL, the mapping is (2d +1)-dimensional
where d is the number of dimensions of the corresponding iteration domain. In our formalism, the
number of mapping dimensions is odd, but there is no link with the dimensionality of the iteration
domain.

The mapping structure ensures that (1) a target code corresponding to the desired sequence of trans-
formations can be generated and (2) that the whole sequence can be checked for data dependence after
it has been constructed. It is supposed that the input mapping representation respects this structure be-
fore being transformed, then the transformations will ensure it is preserved. Comparatively to Girbal’s
work [Gir05] where many invariants were necessary, the mapping structure corresponds to the sequen-
tiality of β only.

To express classical loop transformations using the relation formalism and our mapping structure, we
use some notations and new operators shown in Figure 3.5. Their purpose is to represent specific relation
sets, β and α vectors and their elements. The notion of β-prefix is paramount. It will be necessary to
select specific subsets of relations implied in a given transformation. From a syntactic point of view,
a β-prefix can represent a specific statement or a specific loop (or, equivalently, the set of statements

1Those dimensions correspond to φ in URUK, but because our formalism does not require further decomposition, we prefer
to use α here.

46 3. USER ACCESSIBILITY

M a mapping union component

~ρ a β-prefix, if empty it corresponds to the root level

~βM β-vector of M

~αM α-vector of M

αi symbolic ith element of any α-vector; when involved in a formula applying to
∀M , it translates to αi

M

M∗ set of all mapping relations

M~ρ subset of M∗ restricted to union components such that~ρ is a β-prefix

M~ρ,i ith subset of M~ρ when those subsets are created and sorted according to the

value β
dim(~ρ)+1
M

M~ρ,next subset of M∗ restricted to union components such that ~ρ1..dim(~ρ)−1 is the β-
prefix and the dim(~ρ)th beta dimension is the next value strictly greater than
ρdim(~ρ)

M~ρ,> subset of M∗ restricted to union components such that ~ρ1..dim(~ρ)−1 is the β-
prefix and the dim(~ρ)th beta dimension is strictly greater than ρdim(~ρ)

↑d unary relation extend operator: ↑d (M) inserts one new α dimension and one
new β dimension before the dth β dimension of M . The new β dimension is
set to 0 while the new α dimension is left free

copy unary relation copy operator: copy(M) creates a new relation as a carbon-copy
of M

Figure 3.5: Notations and Operators used in the Clay Formalism

embedded in that loop). The empty vector is a particular β-prefix value used to select all mappings, or,
from a syntactic point of view, the root of the program.

3.3.2 Revisiting Classical Transformations in Clay

In this section we revisit classical loop transformations [Wol95] using the relation abstraction presented
in Section 2.1.1 and notations and operators presented in Section 3.3.1. We suppose, before starting to
apply any transformation, that each program has been translated to relations as described in Chapter 2 and
more specifically, that mapping relations correspond to the scheduling of the original program described
in Section 2.1.3. Each transformation is presented as a primitive whose parameters can be integers,
integer vectors, affine expressions or affine constraints.

3.3. SEMI-AUTOMATIC MAPPING CONSTRUCTION 47

Most of those primitives are more general than classical loop transformations because they actu-
ally target sets of statement instances and not directly loops. For instance it is possible to achieve a
loop interchange for a subset of statements inside the loops using only one directive, while it would
require a composition of loop splitting, loop interchange and loop fusion using classical loop transfor-
mations [Wol95]. We do not try here to provide a one-to-one translation from classical transformations
to relation formalism. Instead, we provide our own view where classical transformations are a particular
case for each primitive. The most radical change is probably for shifting which can be constant or para-
metric as usual, but which is also generalized to variable shifting. It is clear from our formalism that,
e.g., skewing or reversal are simply particular cases of variable shifting.

Loop Reordering

Syntax reorder(~ρ,~v)

Effect ∀i 0≤ i≤ dim(~v), ∀M ∈M~ρ,i, β
dim(~ρ)+1
M ← vi

Condition card(M~ρ,∗) = dim(~v) and ∀i, j i 6= j, vi 6= v j

Definition Reorganize statements and loops included in the loop corresponding to ~ρ (or at the
root level) according to the vector ~v. The ith element of the vector ~v corresponds to
the new order of the statement or the loop which was originally at order i.

Note Update the β value after~ρ of the selected mappings according to the reordering vec-
tor.

Loop Interchange

Syntax interchange(~ρ, d1, d2)

Effect ∀M ∈M~ρ, αd1
M ↔ αd2

M

Condition ∀M ∈M~ρ, 1≤ d1,d2≤ dim(~αM)

Definition Interchange the loop at loop-depth d1 with the loop at loop-depth d2 for all statement
instances with β-prefix~ρ.

Note In the matrix representation, swap the columns corresponding to αd1 and αd2.

Shifting

Syntax shift(~ρ, d, amount)

Effect ∀M ∈M~ρ, αd
M ← αd

M +amount

Condition 1 ≤ d ≤ dim(~ρ) and amount must be an affine expression not involving mapping
input variables.

48 3. USER ACCESSIBILITY

Definition Move all statement instances with β-prefix~ρ from their iteration coordinates to those
coordinates plus amount, amount being the shifting distance, possibly parametric
and/or variable.

Note This is a substitution of an α value: in the matrix representation of the mapping M ,
add n times amount to each row, where n is the coefficient of αd

M .

Loop Fusion

Syntax fuse(~ρ)

Effect

offset←maxm∈M~ρ

(
β

dim(~ρ)+1
m

)
;

∀M ∈M~ρ,next ,

{
β

dim(~ρ)

M ← ρdim(~ρ)

β
dim(~ρ)+1
M ← β

dim(~ρ)+1
M +offset +1

Condition ~ρ and the existing β-prefix lexicographically directly after~ρ correspond to loops.

Definition Fuse the loop corresponding to~ρ with its direct successor. The order of the statements
and loops inside the fused loop is the same as before fusion.

Loop Splitting

Syntax split(~ρ, d)

Effect ∀M ∈M~ρ,>, βd
M ← βd

M +1

Condition 1≤ d ≤ dim(~ρ)

Definition Split the loop at depth d for all statement instances with β-prefix~ρ1..d into two loops,
the second one directly following the first one, such that the statement instances lex-
icographically after ~ρ at depth dim(~ρ) in that loop belong to the second loop while
the others belong to the first loop.

Index-Set Splitting

Syntax iss(~ρ, constraint)

Effect

offset←maxm∈M~ρ

(
β

dim(~ρ)+1
m

)
;

∀M ∈M~ρ,M ←

(
copy(M)∩ constraint

) ⋃(
copy(M)∩ constraint; β

dim(~ρ)+1
M ← β

dim(~ρ)+1
M +offset +1

)
Condition constraint is an affine constraint on the mapping variables and parameters, and ~ρ

corresponds to a loop.

3.3. SEMI-AUTOMATIC MAPPING CONSTRUCTION 49

Definition Transform every mapping of statement instances with β-prefix ~ρ to a union of two
mappings, one including the new constraint constraint and the other one including
its negation. The uniqueness of the β in all mapping union components is preserved
to ensure further transformations can target either union.

Note If~ρ is a β-vector (hence if it corresponds to a statement instead of a loop), replace M~ρ

with M1..dim(~ρ)−1 in the offset computation, and dim(~ρ)+1 with dim(~ρ) everywhere.
We did not do the case distinction to maintain the notation simple.

Strip-Mining

Syntax stripmine(~ρ, d, l)

Effect ∀M ∈M~ρ, M ←
(
(↑d (M))∩ (l ∗αd

M ≤ α
d+1
M ≤ l ∗αd

M + l−1)
)

Condition 1≤ d ≤ dim(~ρ)

Definition Decompose the loop at depth d, for all statement instances with β-prefix~ρ, into two
consecutive loops such that, for each iteration of the first loop, the second loop iterates
over a chunk of at most l consecutive iterations of the original loop.

Note In the matrix representation, insert two column before the one corresponding to the
previous αd and three rows: two for the inequalities making the relation between the
new αd and αd+1 (the previous one) and one for the equality stating that the new β

dimension is 0.

Loop Reversal (Particular Case of Shifting)

Syntax reverse(~ρ, d)

Effect shift(~ρ, d, −2∗αd)

Condition See shifting.

Definition Reverse the iteration order of the loop at depth d for all statement instances with
β-prefix~ρ.

Note In the matrix representation, it translates to opposing the αd column.

Loop Skewing (Particular Case of Shifting)

Syntax skew(~ρ, d, factor)

Effect shift(~ρ, dim(~ρ), factor ∗αd)

50 3. USER ACCESSIBILITY

Condition See shifting.

Definition Reshape the iteration space such that the loop iterator at depth dim(~ρ) linearly de-
pends on the loop iterator at depth d with a coefficient factor (skew factor).

Peeling (Composition of Index-Set Splitting and Loop Splitting)

Syntax peel(~ρ, bound)

Effect

cut←maxm∈M~ρ

(
β

dim(~ρ)+1
m

)
;

iss(~ρ, αdim(~ρ) ≤ bound);
split

((~ρ
cut

)
, dim(~ρ)

)
;

Condition ~ρ corresponds to a loop and bound is an affine expression on the parameters and the
constant.

Definition Extract from the loop at depth dim(~ρ) all iterations such that the iterator value is
lower or equal to the parametric value bound. The extracted iterations are put inside
a loop in their original order just before the loop where they have been extracted.

Many other transformations may be designed or implemented as a composition of other transformations.
tiling, for instance, is the classic composition of strip-mining and interchange.

3.3.3 Correcting Transformation Scripts

An arbitrary long sequence of Clay primitives can be built by a tool or an expert guided by performance
analyzers to form an optimization script. Such a script will, under the hood, be transposed to a set
of mapping relations, one per statement of the original program. Those mappings can be checked for
legality by the violation analysis but they can also benefit from the automatic correction as stated by
Lemma 3.1.

Lemma 3.1 The correction algorithm of Figure 3.3 preserves Clay’s mapping structure, except for the
last β dimension which can be updated to respect it.

Proof. The correction algorithm may change the mappings only by adding a parametric constants to
each dimension. Such shifting cannot generate new iterations. Moreover, in the case of the β dimensions
of the Clay formalism, the correction constant cannot be parametric because those dimensions are not
linked directly or indirectly to the parameters. Hence, PIP cannot issue parametric conditions involving
the β dimensions, and they remain constant after correction.

β-vector uniqueness is not guaranteed to be preserved by the correction algorithm. However, two
iterations cannot share the same mapping because it is considered as a violation in the violated depen-
dence analysis. Thus, the last β dimension of statements with the same β-vector (or one β-vector and
some β-prefix) is not meaningful for ordering. It follows they can be updated in such a way that each β

vector is unique and is not the prefix of other β-vectors, provided other β values are updated to respect
the relative orders, if necessary.

3.3. SEMI-AUTOMATIC MAPPING CONSTRUCTION 51

$ c a t r i n g _ r o b e r t s . c

pragma scop
/∗ Clay

f u s e (L1) ;
∗ /

/∗ Ring B lur F i l t e r ∗ /
f o r (i = 1 ; i < l e n g t h − 1 ; i ++)

f o r (j = 1 ; i < wid th − 1 ; j ++)
Ring [i] [j] = (Img [i −1][j −1] + Img [i −1][j] + Img [i −1][j +1]+

Img [i] [j −1] + Img [i] [j +1] +
Img [i + 1] [j −1] + Img [i + 1] [j] + Img [i + 1] [j + 1]) / 8 ;

/∗ R o b e r t s Edge D e t e c t i o n F i l t e r ∗ /
f o r (i = 1 ; i < l e n g t h − 2 ; i ++)

f o r (j = 2 ; i < wid th − 1 ; j ++)
Img [i] [j] = abs (Ring [i] [j] − Ring [i + 1] [j −1])+

abs (Ring [i + 1] [j] − Ring [i] [j −1]) ;
pragma endscop

$ c l a y −−check r i n g _ r o b e r t s . c

[Clay] I l l e g a l mapping :
d i g r a p h G {
L e g a l i t y V i o l a t i o n Graph
G e n e r a t e d by Candl 0 . 7 . 0 MP b i t s

S1 −> S2 [l a b e l =" RAW d e p t h 0 , r e f 1−>3, v i o l 2 "] ;
S1 −> S2 [l a b e l =" RAW d e p t h 0 , r e f 1−>4, v i o l 2 "] ;
S1 −> S2 [l a b e l =" WAR d e p t h 0 , r e f 2−>1, v i o l 2 "] ;
S1 −> S2 [l a b e l =" WAR d e p t h 0 , r e f 3−>1, v i o l 2 "] ;
S1 −> S2 [l a b e l =" WAR d e p t h 0 , r e f 4−>1, v i o l 2 "] ;

Number o f edges = 5
}

[Clay] S u g g e s t e d c o r r e c t i o n :
f u s e (L1) ;
s h i f t (S2 , 1 , 1) ;

Figure 3.6: Correction of Loop Fusion on a Ring-Roberts Edge Detection Filter for Noisy Images

Hence, corrections can translate to a sequence of shifting (for α dimensions) and relaxed2 reordering
(for β dimensions) as defined in Section 3.3.2. Note that while we are looking for a minimum deviation
from the original transformation, the correction may undo it entirely if no better solution is found by the
correction algorithm.

An example of the use of such property is shown in Figure 3.6 where two successive filters are
applied on an image. An expert can notice the data reuse of the array Img and ask for a loop fusion to
improve locality using Clay. The script, here a single primitive, is set thanks to a special comment. The
implementation of Clay accepts β-prefix and also more user-friendly inputs, e.g., Ln targets all iterations
inside the nth loop (nth occurrence of the for keyword in the source code text) or Sn targets the iterations
of the nth statement (nth statement in the source code text). In this case the user asks to fuse L1 with the

2Our primitive asks for a list of unique logical dates, here they are not forced to be unique.

52 3. USER ACCESSIBILITY

next loop. Unfortunately this transformation is not legal as shown by the list of violated dependences,
but a correction by shifting is suggested automatically by the tool: as we can see it was necessary to
let a complete column of pixels to be processed before fusion, a slight deviation from the optimizing
transformation.

3.4 Easing Polyhedral Framework Integration: the OpenScop Initiative

In the previous sections, we presented means to interact with the final users that are looking to actually
optimize their codes. In this section, we consider intermediate users which are designing optimizing
tools. We present here shortly the OpenScop initiative to ease both polyhedral framework construction
and their integration within optimizing tools like compilers.

OpenScop is an open specification that defines a file format and a set of data structures to represent a
static control part (SCoP for short), i.e., a program part that can be represented in the polyhedral model.
The goal of OpenScop is to provide a common interface to various polyhedral compilation tools in order
to simplify their interaction.

Designing a single format for tools that have different purposes (e.g., as different as code generation
and data dependence analysis) may sound strange at first. However we could observe that most available
polyhedral compilation tools during the last decade were manipulating more or less the same kind of data
(polyhedra, affine functions...) and were actually sharing a part of their input (e.g., iteration domains and
context concepts are nearly everywhere). We could also observe that those tools may rely on different
internal representations, mostly based on one of the major polyhedral libraries (e.g., Omega, Polylib,
PPL or isl), and this representation may change over time (e.g., when switching to a more convenient
polyhedral library). The OpenScop aim is to provide a stable, unified format that offers a durable guaran-
tee that a tool can use an output or provide an input to another tool without breaking a tool chain because
of some internal changes in one element. The other promise of OpenScop is the ability to assemble or
replace the basic blocks of a polyhedral compilation framework at no, or at least low, engineering cost.

The policy that drives OpenScop can be summarized by these three rules:

• Embed the minimum information to build a complete polyhedral compilation framework in the
so-called core part (to avoid as much as possible empty or useless information for each tool).

• Provide a very stable core part (so users have some guarantee that they will not need to update
their tool because of frequent specification evolution),

• Provide a very flexible extension part (so it can also be used to test wild new ideas).

Another, more technical, rule may be added:

• Avoid any need for external library or tool to support it (i.e., it’s not XML or YAML or anything
like that).

The success of OpenScop in meeting its goals totally depends on its acceptance by the tool developers
(that have to support it in their tools). To help them, we provide an example implementation: the Open-
Scop Library. This library (and in particular its API) is not part of the OpenScop specification (which
includes only the file format and the set of data structures). It is licensed under the 3-clause BSD license

3.5. CONCLUSION 53

so developers may feel free to use it in their code (either by linking it or copy-pasting its code). Most
tools related inside this work (namely, Clan, Candl, Clay and CLooG) already support OpenScop. For
more details about the OpenScop specification and library, the reader is welcome to read at its foundation
document [CB-Bas11b].

3.5 Conclusion

Optimizing and parallelizing on modern architectures can change the performance by an order of magni-
tude. As a result, programmers may be reluctant to rely on fragile black-boxes like optimizing compilers
to perform this task: it is not acceptable that a slight change in the code or a new compiler version can
totally waste the performance. This chapter presented a more open strategy for polyhedral frameworks.

First, we related our efforts and conclusions about the construction of a number of optimizing frame-
works, some based on IR raising like WRAP-IT for ORC [CB-BCG+03a, CB-GVB+06], or GRAPHITE
for GCC [CB-PCB+06], some based on direct raising like Reservoir Labs Inc. R-Stream [CB-BVL+09,
CB-MLV+09, CB-LVM+10, CB-HVB+10] or PoCC [CB-PBB+10, CB-PBB+11]. A conclusion is to
promote static control as a programming model, providing the users with clear directions and syntactic
feedback to guarantee that his code can be processed. Our main technical contribution to this approach
is the high-level raising tool Clan [CB-Bas08] which is currently used in both PoCC and Pluto high-level
compilers.

Next, we presented how a user can interact with a polyhedral framework to design the best optimiza-
tion sequence. The data dependence graph could already point out, e.g., which dependences prevent
the parallelization of a given loop. We presented the violated dependence analysis which can be more
specific by providing feedback to the user (a programmer or a compiler) about what prevents the appli-
cation of a given transformation. This information can be used to drive a compiler to perform only the
necessary pre-processing to enable that transformation (e.g., array expansion), or a user to design the
right sequence of optimizations while preserving the original semantics of the program. On this respect,
we built on the violated dependence analysis to design a mapping correction algorithm that corrects a
transformation for legality with limited changes. The interaction between a user and the compiler can be
done directly from high-level, using the set of directives we introduced. While the directive approach is
not new, we presented the first formalism based on the relation abstraction and how it can benefit from
the correction algorithm to reach another level of flexibility.

Finally, to help polyhedral framework dissemination and to ease their construction, we presented the
first attempt to standardize polyhedral abstractions through OpenScop [CB-Bas11b]. Compilation is a
very applicative matter and better tools raise new questions and new research results. Hence, we believe
such an effort is essential.

54 3. USER ACCESSIBILITY

55

Chapter 4

Optimization Quality: An Iterative
Approach

High-level loop optimizations are necessary to achieve good performance over a wide variety of proces-
sors. Their performance impact can be significant because they involve in-depth program transformations
that aim to sustain a balanced workload over the computational, storage, and communication resources
of the target architecture. High-level optimization frameworks have to take into account both the low-
level compiler and the complete behavior of the architecture. Unfortunately, low-level compilers and
architectures are so complex, obscure or confidential that no model can be precise enough to select an
optimal transformation:

• Low-level compilers are multi-layer softwares which transform the input code to various internal
representations (e.g., abstract syntax trees, control flow graphs, data dependence graphs, static
single assignment form...) and apply multiple passes on each of these representations, until they
generate the target object code. As a result a slight change in the input code, or in the compiler
options, or in the compiler itself (e.g., when using a new version of a given compiler) may result
in a very different output and performance. It is currently infeasible to guarantee at high-level
compile time which (version of a) compiler and which options will enable the best sequence of
low-level optimizations for a given sequence of high-level optimizations.

• The efficient execution of a computation kernel on a modern multi-core architecture requires the
synergistic operation of many hardware resources, via the exploitation of thread-level parallelism;
the memory hierarchy, including prefetch units, different cache levels, TLBs, memory buses and
interconnect; and all available computational units, including SIMD units. Because of the very
complex interplay between all these components, it is currently infeasible to guarantee at compile-
time which set of transformations is leading to maximal performance.

Because of this complexity, optimizing compilers use simplistic performance models that abstract away
many of the architecture intricacies and that simply ignore low-level compilers. In addition, they usually
rely on inaccurate dependence analysis (even when it is computable) and lack frameworks to express
complex interactions of transformation sequences. As a result, they typically uncover only a fraction
of the peak performance available on many applications. We propose an iterative framework in the
polyhedral model to address these issues.

56 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

Feedback-directed and iterative optimizations have become essential technique to keep optimiz-
ing compilers competitive with hand-optimized code [BKK+98, KKO00, CST02, TVA05, KHW+05].
Building on operation research, statistical analysis and artificial intelligence, iterative optimization gener-
alizes profile-directed approach to integrate precise feedback from the runtime behavior of the program
into optimization algorithms. Whether a single application (for client-side iterative optimization) or a
reference benchmark suite (for in-house compiler tuning) are considered, the two main trends are: (1)
tuning or specializing an individual heuristic, adapting the profitability or decision model of a given
transformation [SAMO03], and (2) tuning or specializing the selection and parameterization of existing
(black-box) compiler phases [TVVA03, ABC+06].

Through the many encouraging results that have been published in this area, it has become apparent
that achieving better performance with iterative techniques depends on two major challenges:

Search space expressiveness To achieve good performance with iterative techniques that are portable
over a variety of architectures, it is essential that transformation search space be expressive enough
to let the optimizations target all important architecture components and address all dominant
performance anomalies.

Search space traversal It is also important to construct search algorithms (analytical, statistical, empir-
ical) and acceleration heuristics (performance models, machine learning) that efficiently traverse
the search space by exploiting its static and dynamic characteristics.

We rely on the polyhedral model to construct and traverse large and expressive search spaces of affine
transformations. Those spaces encompass only legal, distinct versions resulting from the restructuring
of any static control loop nest. Girbal et al. show that complex sequences of loop transformations are
needed to generate efficient code for full-size loop nests on modern architectures [CB-GVB+06]. They
also show that such transformation sequences are out of reach of classical loop optimization frameworks,
whereas affine scheduling can successfully model them as one single optimization step [Fea92b, DRV00]
(see Sections 2.1.3 and 3.3.2), and scales to large loop nests with hundreds of array references. Within
this space of complex sequences of loop transformations, our work simultaneously address the two afore-
mentioned challenges.

4.1 Legal Transformation Spaces

Program restructuring is usually broken into sequences of primitive transformations. In the case of loops,
typical primitives are the loop fusion, loop tiling, or loop interchange [AK02]. This approach has severe
drawbacks. First, it is difficult to decide the completeness of a set of directives and to understand their
interactions. Many different sequences lead to the same target code and it is typically impossible to
build an exhaustive set of candidate transformed programs in this way. Next, each basic transformation
comes with its own application criteria such as legality check or pattern-matching rules. For instance it is
unlikely that loop fusion would be applied by a compiler if the bounds of the original loops do not match
(while this may be the result of a former transformation in the sequence). Finally, long sequences of
transformations contribute to code size explosion, polluting instruction cache and potentially forbidding
further compiler optimizations.

Instead of reasoning on transformation sequences, we look for a representation where composition
laws have a simple structure, with at least the same expressiveness as classical transformations, but with-
out conversions to or from transformation descriptions based on sequences of primitives. To achieve

4.1. LEGAL TRANSFORMATION SPACES 57

this goal, we rely on the polyhedral model presented in Chapter 2 where a given mapping may corre-
spond to a large sequence of complex transformations (e.g., those presented in Section 3.3.2). We build
transformation spaces where each dimension correspond to a mapping component and each integer point
corresponds to a unique, legal mapping.

4.1.1 One-Dimensional Schedules

In this section, we focus on a sub-class of mappings that can be modeled through one-dimensional
scheduling functions (a subset of scheduling relations). A one-dimensional schedule, if it exists, ex-
presses the program as a single sequential loop, possibly enclosing one or more parallel loops. A multi-
dimensional schedule expresses the program as one or more nested sequential loops, possibly enclosing
one or more parallel loops. Affine schedules have been extensively used to design systolic arrays [QD89]
and in automatic parallelization programs [Fea92a, DRV00, GFL04]. An affine one-dimensional sched-
ules for a statement S is an affine form on outer loop iterators~ıS and global parameters ~p:

θS(~p) =

~ıS→ t1
S ∈ Zdim(~ıS)

∣∣∣∣∣∣∣∣
[
−1 TS

]
t1
S
~ıS
~p
1

= 0

 .

Or, using the more classical and compact function notation, since we are working with functions here:

θS(~ıS) = TS

~ıS~p
1

 ,

where TS is a constant row matrix called the mapping matrix or the transformation matrix. Such a
representation is much more expressive than sequences of primitive transformations, since a single one-
dimensional schedule may represent a potentially intricate and long sequence of any of the transforma-
tions shown in Figure 4.1. All these transformations can be represented as a partial order in the space of
all instances for all statements, and such orderings may be expressed with one-dimensional scheduling
functions [Wol92].

Transformation Description
reversal Changes the direction in which a loop traverses its iteration range
skewing Makes the bounds of a given loop depend on an outer loop counter

interchange Exchanges two loops in a perfectly nested loop, a.k.a. permutation
peeling Extracts one iteration of a given loop

index-set splitting Partitions the iteration space between different loops
shifting Allows to reorder loops
fusion Fuses two loops, a.k.a. jamming

distribution Splits a single loop nest into many, a.k.a. fission or splitting

Figure 4.1: Possible Transformations Embedded in a One-Dimensional Schedule

In general, applying a mapping changes the semantics of a program. When a mapping preserves the
original program semantics, we say it is legal. Previous works on iterative optimization using a poly-
hedral representation ensure this property by checking, after computing a transformation, whether it is
legal or not [LF05, LF06] (non-iterative optimization algorithms use either a similar approach [KAP97],

58 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

either consider programs simple enough that nearly every transformation is possible [Wol95]). This re-
sults in considering huge search spaces, since every illegal or redundant solutions have to be checked,
and to a significant computation overhead corresponding to each legality check. Nisbet [Nis98], then
Long and Fursin [LF06] experimentally observed that choosing a schedule at random is very likely to
lead to an illegal program version. Moreover, the probability of finding a legal mapping decreases expo-
nentially with program size [CB-PBCV07]. Hence such an approach cannot scale and data dependence
information must be integrated into the construction of the search space.

Two statement instances are in dependence if they access the same memory location and at least one
of these accesses is a write. Maintaining the relative order of such instances is a sufficient condition
to preserve the original program semantics [Ber66]. The data dependence analysis as described in Sec-
tion 2.2.2 gives the exact information on which statement instance pairs have to preserve their relative
original execution order. Let S and T be two statements, rS and rT be two memory references of those
statements respectively, and d be a given loop depth. Each (integral) point of the dependence relation
δ

S,rS
d→T,rT

represents a value of the iteration vectors~ıR and~ıT where the dependence needs to be satisfied,
i.e., where the precedence condition θS(~ıS) < θT (~ıT) must hold. Hence, a mapping is legal if, for any
integer point in any dependence relation δ

S,rS
d→T,rT

,

γS,T = θT (~ıT)−θS(~ıS)−1 is non-negative everywhere in δ
S,rS

d→T,rT
.

Unfortunately, this is not a set of affine constraints since both the components of θT (resp. θS) and~ıT
(resp. ~ıS) are unknown. Feautrier found the way to translate it to affine constraints using the Farkas
lemma [Fea92a]:

Lemma 4.1 (Affine form of Farkas Lemma [Sch86]) Let D be a nonempty polyhedron defined by the
inequalities A ~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative everywhere in D iff it is a
positive affine combination:

f (~x) = λ0 +~λ
T (A~x+~b), with λ0 ≥ 0 and~λT ≥~0.

λ0 and~λT are called Farkas multipliers.

Applying Farkas Lemma to the dependence problem, a mapping is legal if, for any dependence
relation δ

S,rS
d→T,rT

, there exists a set of Farkas multipliers such that:

ΓS,T = λ0 +~λ
T

∆
−
S,rS

d→T,rT


~ıS
~ıT
~p
1


 (1)

Where ∆
−
S,rS

d→T,rT
is the dependence constraint matrix (see Section 2.2.2) of the projection of δ

S,rS
d→T,rT

such that ~aS,rS and ~aT,rT dimensions have been removed1. The Farkas Lemma has to be applied for each
individual union part of the dependence relation. The contribution to the constraint system describing
the legal space of a given union part of a given dependence relation is built by equating the coefficients
in both sides of the equation (1). The intersection of all the constraints gives a global polyhedron, with as

1Removing access dimensions is not necessary: it can be done later while removing Farkas multipliers and may not be
possible at all if access relations are not functions, we do it here to simplify notations.

4.1. LEGAL TRANSFORMATION SPACES 59

many dimensions as there are schedule coefficients for the SCoP (plus Farkas multipliers, to be removed
by projection using, e.g., the Fourier-Motzkin projection algorithm [Fea92a]). This polyhedron is the
space of legal one-dimensional scheduling functions.

The formulation was first proposed by Feautrier [Fea92a], the only notable difference is we accept
coefficients in Z instead of N. This generalization is simpler and has the property that two points of the
space correspond to two different schedules which is an important property for our purpose.

As an example, let us consider the polynomial multiply kernel in Figure 2.1 page 18 and its two
dependence relations shown in Section 2.2.2 page 26. The projection of the dependence relations to
remove reference dimensions can lead to the following dependence constraint systems ans constraint
matrices (note that equalities have been translated to two inequalities for an easier identification of Farkas
multipliers):

• ∆
−
S1,1 0→S2,1

:



1 0 0 0 0
−1 0 0 2 −2

0 1 0 0 0
0 −1 0 1 −1
0 0 1 0 0
0 0 −1 1 −1
1 −1 −1 0 0
−1 1 1 0 0




i

i′

j

N
1

≥~0,

• ∆
−
S2,1 1→S2,1

:



1 0 0 0 0 0
−1 0 0 0 1 −1

0 1 0 0 0 0
0 −1 0 0 1 −1
0 0 1 0 0 0
0 0 −1 0 1 −1
0 0 0 1 0 0
0 0 0 −1 1 −1
1 1 −1 −1 0 0
−1 −1 1 1 0 0
−1 0 1 0 0 −1





i
j

i′

j′

N
1


≥~0.

The two affine schedule prototypes for S1 and S2 are:

θS1(~ıS1) = T i
S1 i + T N

S1 N + T c
S1

θS2(~ıS2) = T i
S2 i + T j

S2 j + T N
S2 N + T c

S2

Using the dependence matrices, we can split the system into as many inequalities as there are indepen-
dent variables, and equate the coefficients in both sides of the equation (1). The contribution of each
dependence is the following:

• δ
S1,1 0→S2,1

(N) :


i : −T i

S1 = λ1,1 − λ1,2 + λ1,7 − λ1,8
i′ : T i

S2 = λ1,3 − λ1,4 − λ1,7 + λ1,8

j : T j
S2 = λ1,5 − λ1,6 − λ1,7 + λ1,8

N : T N
S2−T N

S1 = 2λ1,2 + λ1,4 + λ1,6
1 : T c

S2−T c
S1−1 = − 2λ1,2 − λ1,4 − λ1,5

60 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

• δ
S2,1 1→S2,1

(N) :



i : −T i
S2 = λ2,1 − λ2,2 + λ2,9 − λ2,10 − λ2,11

j : −T j
S2 = λ2,3 − λ2,4 + λ2,9 − λ2,10

i′ : T i
S2 = λ2,5 − λ2,6 − λ2,9 + λ2,10 + λ2,11

j′ : T j
S2 = λ2,7 − λ2,8 − λ2,9 + λ2,10

N : 0 = λ2,2 + λ2,4 + λ2,6 + λ2,8
1 : −1 = − λ2,2 − λ2,4 − λ2,6 − λ2,8 − λ2,11

where λx,y is the Farkas multiplier attached to the xth contribution and the yth row of the corresponding
constraint matrix. The space of legal one-dimensional scheduling functions for the polynomial multiply
kernel is the intersection of the two contributions on the mapping dimensions (plus the fact that all Farkas
multipliers must be greater or equal to zero). To ensure each integer point of this space have different
mapping coordinates, i.e., corresponds to a unique sequence of transformations, we have to eliminate
as much unknowns as possible, starting with Farkas multipliers. This can be done through Gaussian
elimination, Fourier-Motzkin elimination or polyhedral projection using any polyhedral library. If this
space is empty, then no affine one-dimensional schedule is possible for this program.

The legal one-dimensional schedule space is possibly infinite. For instance it is easy to see that if
there is no data dependence at all, every value of the schedule coefficients is possible. It is necessary to
bound this space in such a way that an exhaustive scan becomes possible. We bound the values of the
scheduling coefficients, it is detailed in Section 4.2.1.

Intuitively, to each (integral) point of T corresponds a different schedule for the original program,
i.e., a different program version (or also a valid, distinct transformation sequence). Enumerating points
in this polyhedron can be done by polyhedral code generation algorithms, but even though our problem
lies into the (simpler) convex case, they may not scale over thirty to forty dimensions [AI91, CB-VBC06]
because of the intrinsic combinatorics of characterizing the polyhedron’s integral hull. Fortunately, our
problem happens to be much simpler than the “static” loop nest generation one: we only need to “dynam-
ically” enumerate every integral point which respects the set of constraints provided by T . We may thus
incrementally pick a dimension then pick an integer in the polyhedron’s projection onto this dimension.
This incremental method combines low-complexity projections with the Fourier-Motzkin algorithm and
simple enumerations of dense polyhedra.

4.1.2 Multidimensional Schedules

The set of programs which accept a one-dimensional scheduling is quite restricted since their depen-
dences must be simple enough to require at most one external sequential loop. Considering multidi-
mensional schedules with enough dimensions, it is possible to tackle any static-control loop nest (see
Section 2.1.3.). The construction of the space of legal multimensional scheduling functions uses a mech-
anism similar to the mono-dimensional case seen in Section 4.1.1 with the generalization of the prece-
dence constraint to:

θS(~ıS)≺ θT (~ıT),

where ≺ denotes the lexicographic ordering.2

Using one-dimensional schedules, all dependences have to be satisfied within a single time dimen-
sion and the transformation matrix is a row matrix. For multidimensional schedules, the precedence

2(a1, . . . ,an)≺ (b1, . . . ,bm) iff there exists an integer 1≤ i≤ min(n,m) s.t. (a1, . . . ,ai−1) = (b1, . . . ,bi−1) and ai < bi.

4.1. LEGAL TRANSFORMATION SPACES 61

constraints can be entirely satisfied at any dimension d. Dimensions < d can solve the precedence con-
straint for a subset of the statement instances in dependence relation (possibly empty). We say that the
dependence is weakly solved for those dimensions: θ

1..d−1
T (~ıT)−θ

1..d−1
S (~ıS) � 0. Then at dimension d,

the precedence constraint holds for all remaining statement instances in dependence relation. We say that
the dependence is strongly solved at that dimension: θd

S(~ıS)−θd
R(~ıR) > 0. Once a dependence has been

strongly solved, no additional constraint is required for legality at dimensions > d. Formally, a mapping
is legal if (using δS→T to express a dependence, to lighten notations):

∀δS→T , ∃d ∈ {1, . . . ,min(dim(θS),dim(θT))}, γ
d
δS→T

= 1

∧ ∀ j < d, γ
j

δS→T
= 0

∧ ∀ j ≤ d,∀〈~ıS,~ıT 〉 ∈ δS→T , θ
j
T (~ıT)−θ

j
S(~ıS)≥ γ

j
δS→T

where the vector~γδS→T encodes the dependence satisfaction: its entries are set to 0 for the dimensions
that weakly satisfy the dependence δS→T and the dimension which strongly satisfies δS→T is set to 1. The
proof directly derives from the lexicopositivity of dependence satisfaction [Fea92b].

Selecting the time dimension to strongly solve a dependence leads to a combinatorial problem: each
choice can be considered and corresponds to a potentially different legal sub-space. It is also possible
to arbitrarily increase the number of time dimensions of the schedule, resulting to an infinite set of
scenarios. Hence, it is necessary to set a maximum number of dimensions for each scheduling function.
Choosing dS +1 where dS is the number of surrounding loops for the statement S is enough to be able to
find a scheduling corresponding to the original execution order. Hence, a possible expression of a space
of legal multidimensional scheduling functions is a union of polyhedra of legal scheduling functions, one
union component for each possible decision.

When the mapping coefficients are bounded and (without any loss of generality) when we assume
loop bounds are non-negative, it is possible to avoid the combinatorial selection of the dimensions
strongly satisfying dependences and to build a convex legal space. To build such a space, it is neces-
sary to avoid any constraint on scheduling dimensions if the dependence has been strongly satisfied at a
previous dimension. We can notice that, as shown by Vasilache [Vas07], if the scheduling coefficients
are bounded, it is always possible to find a value K such that for any dimension k:

θ
k
S(~ıT)−θ

k
S(~ıS)≥−K~p−K

the computation of K comes from the evaluation of the maximum value of θk
S(~ıT)−θk

S(~ıS), knowing the
greatest absolute values of the mapping coefficients and the extremal values of the iterators (loop bounds).
We can exploit this property to derive a convex form of semantics-preserving multi-dimensional affine
schedules: a mapping is legal if the three following conditions hold:

(i) ∀δS→T , ∀d ∈ {1, . . . ,mST}, γ
d
δS→T
∈ {0,1}

(ii) ∀δS→T ,
mST

∑
d=1

γ
d
δS→T

= 1

(iii) ∀δS→T , ∀d ∈ {1, . . . ,mST}, ∀〈~ıS,~ıT 〉 ∈ δS→T ,

θ
d
T (~ıT)−θ

d
S(~ıS)≥−

d−1

∑
k=1

γ
k
δS→T

.(K.~p+K)+ γ
d
δS→T

with mST = min(dim(θS),dim(θT)). Parts (i) and (ii) ensure the~γδS→T is only made of binary decision
variables and that only one (the one corresponding to the dimension where the dependence is fully

62 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

satisfied). Part (iii) ensures that either the dependence has not been strongly satisfied in a previous
dimension, and we have θd

T (~ıT)− θd
S(~ıS) ≥ γd

δ
or it has been strongly satisfied and instead we have

θd
T (~ıT)− θd

S(~ıS) ≥ −K~p−K. Using this form, we can build the space of all (bounded) legal affine
multidimensional schedules with fixed dimensions. In the same way as one-dimensional scheduling,
Farkas Lemma is used to linearize part (iii), all the sets of constraints generated for each dependence are
intersected together then Farkas multipliers can be eliminated using, e.g. Fourier-Motzkin projection.

Note that mappings corresponding to loop tiling or index-set splitting are not included in the search
space. The use of Farkas Lemma requires scheduling functions. However, tiling (or strip-mining) in-
troduce dimensions with inequality constraints only, see 3.3.2. In the same way index-set splitting adds
inequalities to the relations and new relation unions, which is not supported either. Because of this, our
search space does not currently encompass loop tiling or index-set splitting. Recent results by Renga-
narayanan et al. and Bondhugula et al. are promising directions towards fully integrating loop tiling with
affine scheduling algorithms [RKRS07, BBK+08b, BHRS08]. We show an example of combining their
techniques with our iterative approach in Section 4.6.

4.2 Practical Search Space

While Section 4.1 presents theoretical search spaces, we make some design choices for those spaces to be
(1) bounded in such a way that we prune less interesting parts as shown in Section 4.2.1 and (2) tractable
by avoiding combinatorial explosion as detailed in Section 4.2.2.

4.2.1 Mapping Coefficient Bounding

The legal mapping space for a given SCoP as described in section 4.1 is possibly infinite. We bound this
space in a systematic way by defining a bounded interval for each mapping coefficient. In this way an
exhaustive scan of the bounded search space becomes possible if it is not too large, and efficient traversal
techniques can be designed. Bounding the space will remove some possible program transformations.
We have to ensure we remove only the least interesting solutions for performance.

We can distinguish two families of coefficients in the schedule expressions, (1) input coefficients
(i.e. iterator coefficients), (2) parameter and constant coefficients. Each family provides a specific con-
tribution to the global program transformation [CB-BCG+03a]. The iterator coefficients impact loop
structure and bounds (skewing-like transformations for instance) while parameters and constant impact
loop ordering and statement ordering within a loop (shifting-like transformations for instance). While the
coefficient values of parameters and constant do not impact the execution time, large iterator coefficients
result in excessive control overhead due to complex loop bounds and modulo operations [CB-Bas04a].
This overhead may wipe out the speedup expected from the transformation/new schedule. Hence we
should bound the values of the iterator coefficients with small values.

We checked empirically that the bounding interval [−1,1] is wide enough in general [CB-PBCV07].
Although it eliminates some schedules from the space (e.g., non-unit skewing), these bounds are compat-
ible with the expression of arbitrary compositions of loop fusion, distribution, interchange, code motion;
in the worst case, it translates into additional time dimensions for multidimensional schedules. Over-
all, This solution is an good trade-off between the expressiveness of the mapping, the scalability of the
compiler and the quality of the generated code.

4.2. PRACTICAL SEARCH SPACE 63

The coefficients of the parameters and the constant (in other words, the coefficient of 1 of the affine
expressions) have also to be bounded to avoid an infinite search space. The difference between the two
extremal values of the interval should be greater than the number of statements to ensure that at least
every ordering of the statements within or outside loops is possible. Greater intervals would offer more
possibilities, for instance to achieve more peeling transformations, but a larger flexibility is rarely useful
in practice.

4.2.2 Search Space Construction

Once the mapping coefficients have been bounded, the search space is ready to be scanned exhaustively or
traversed using heuristics in the one-dimensional case. In the multidimensional case, we face a combina-
torial problems because too many polytopes have to be considered3. For instance, the Ring-Roberts filter
shown in Figure 3.6 has 12 dependence polyhedra, hence a huge number of possible strongly/weakly
solved dependence scenarios.

Feautrier found a systematic solution to the explosion of the number of polyhedra: he considers a
space of legal schedules leading to maximum fine-grain parallelism [Fea92b, Viv02]. To achieve this,
a greedy algorithm maximizes the number of dependences solved for a given dimension. While this
solution is interesting because it reduces the number of dimensions and may exhibit inner parallelism,
it is not practical enough for several reasons. First, it requires the resolution of a system of linear in-
equalities involving every schedule coefficient plus a decision variable per dependence [Fea92b]. This
makes the problem intractable for kernels with a large set of dependences. Moreover, minimizing the
number of dimensions often translates into large schedule coefficients; these generally leads to algorith-
mic complexity and both significant loop bounds and control flow overhead after generation of the target
imperative code [Kel96].

We suggest a simple variation to overcome these two issues. The algorithm in Figure 4.2 sketches
our search space construction for a given static control part. This heuristic outputs for each schedule
dimension d a space Ld of legal solutions.

The algorithm terminates if the intervals for bounding the mapping coefficients are large enough
to guarantee that a solution exists. The scheduling of the original program presented by Feautrier (see
Section 2.1.3) demonstrates that the interval [0,1] is enough for all coefficients except the constant coef-
ficient which must be n if the number of statements is n. In this case, the termination proof uses the same
argument as Feautrier’s multidimensional scheduling algorithm [Viv02]: at least one dependence can be
strongly solved per time dimension d.

This construction algorithm differs from Feautrier’s algorithm as it does not guarantee a maximal
number of dependences solved per dimension. Therefore, it may not minimize the number of dimen-
sions of the schedule4. This is not an issue since our purpose is not to expose the maximum parallelism.
However, this algorithm is efficient and only needs one polyhedron emptiness test per dependence (Over
Ld which contains exactly one variable per schedule coefficient), and the elimination of Farkas multi-
pliers used to enforce the precedence constraint on schedule coefficients is performed dependence per
dependence (i.e., on very small systems).

3We do not use the convex space expressed in Section 4.1.2 because we will build on the dimension-per-dimension struc-
ture to design traversal heuristics and we will benefit from extracted fine-grain parallelism à la Feautrier [Fea92b] to expose
vectorizable inner loops to the low-level compiler.

4It is equivalent to Feautrier’s algorithm when the mapping coefficients are not bounded however, because the maximal set
of dependences which can be strongly solved for a given dimension is unique [Fea92b].

64 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

LEGAL MAPPING SPACE CONSTRUCTION ALGORITHM

Input: a SCoP.
Output: a space Ld of legal solutions for each mapping dimension d.

1. Compute the set G of dependence relations for the SCoP, see Section 2.2.2

2. d← 1

3. while G 6= /0 do

(a) Initialize Ld (the space of legal schedules for time dimension d) to the
space of all mapping coefficients such that they belong to their respective
bounding interval

(b) for each dependence δS→T ∈ G

• Compute WδS→T , the space of legal schedules weakly satisfying
δS→T at dimension d, i.e., such that:
∀〈~ıS,~ıT 〉 ∈ δS→T ,θ

d
T (~ıT)−θd

S(~ıS)≥ 0
• Ld ← Ld ∩WδS→T

(c) for each dependence δS→T ∈ G

• Compute SδS→T , the space of legal schedules strongly satisfying δS→T

at dimension d, i.e., such that:
∀〈~ıS,~ıT 〉 ∈ δS→T ,θ

d
T (~ıT)−θd

S(~ıS)≥ 1
• if Ld ∩SδS→T 6= /0 then

– Ld ← Ld ∩SδS→T

– G← G−δS→T

(d) d← d +1

Figure 4.2: Practical Multidimensional Legal Space Construction Algorithm

So far, we have not defined the order in which dependences are considered when checking against
strong satisfaction. This order can have a significant impact on the constructed space. A long term
approach would be to consider this order as part of the search space, but this is not currently practical
because of the combinatorial explosion. Instead, we use two analytical criteria to order the dependences.

First of all, each dependence is assigned a priority, depending on the memory traffic generated by
the pair of statements in dependence. We use a simplified version of the model by Bastoul and Feautrier
[CB-Bas03]: for each array A and dimension d, we approximate the traffic as mrA

d , where md is the size
of the dth dimension of the array, and rA is the rank of the concatenation of the variable parts of the
subscript matrices of all references to dimension d of array A in the statement. Thus, the generated traffic
evaluation for a given statement is a multivariate polynomial in the parametric sizes of all arrays. We
use profiling to instantiate these size parameters. Intuitively, maximizing the depth where a dependence
is strongly solved maximizes reuse in inner loops and minimizes the memory traffic in outer loops.
Therefore, we start with dependences involved in the statements with minimum traffic. Our second
criterion is based on dependence interference; it is used in case of non-discriminating priorities resulting
from the first criterion. Two dependences interfere if it is impossible to build a one-dimensional schedule

4.3. LEGAL SPACE TRAVERSAL 65

strongly satisfying these two dependences. We first try to solve dependences interfering with the lowest
number of other dependences, maximizing our chance to strongly solve more dependences within the
current time dimension.

4.3 Legal Space Traversal

The algorithm presented in Section 4.2.2 builds one polytope per dimension of the mapping. In the one-
dimensional case, picking a point inside the unique polytope fully describes one legal mapping. In the
multidimensional case, we need to pick one point in every polytope to describe one multidimensional
mapping. Each solution corresponds to one program version: the generated imperative codes will be
distinct if the mapping matrices are distinct. To find the most interesting points in small enough search
spaces, an exhaustive search (with respect to the mapping coefficient intervals) is possible, a scalable
technique is presented in Section 4.3.1. For large spaces, a heuristic search is necessary as detailed in
Section 4.3.2.

4.3.1 Exhaustive Search

Achieving an exhaustive search in the legal space is possible by using polyhedral code generation al-
gorithms [AI91, KPR95, QRW00, CB-Bas04a] (see Section 2.3): we could generate a code to scan the
integer points of the legal space and execute it to perform the exhaustive scan. However, even though
our problem lies into the (simpler) convex case, they may not scale over thirty to forty dimensions
[AI91, CB-VBC06] because of the intrinsic combinatorics of characterizing the polyhedron’s integral
hull. Fortunately, the exhaustive scan problem is much simpler than the “static” loop nest generation
one: we only need to “dynamically” enumerate every integral point which respects the set of constraints
defining the legal space. We may thus incrementally pick a dimension then pick an integer in the poly-
hedron’s projection onto this dimension. This incremental method combines low-complexity projections
with the Fourier-Motzkin algorithm and simple enumerations of dense polyhedra.

To build the dth row of the mapping matrix T , we scan the legal polytope Ld , by successively in-
stantiating values for each coefficient in a predefined order5. Fourier-Motzkin elimination (a.k.a. pro-
jection) [Sch86] provides a representation of the affine constraints of a polytope suitable for its dynamic
traversal. Computing the projection of all variables of a polytope Ld results in a set of constraints defining
the same polytope, but where it is guaranteed that for a point v∈Ld , the value of the kth coordinate vk only
depends on v1, . . . ,vk−1, that is the affine inequalities involve only v1, . . . ,vk. Thus, the sequential order
to build coefficients is simply the reverse order of the Fourier-Motzkin elimination steps. This scheme
guarantees that provided a value in the projection of v1, . . . ,vk−1, a value exists for vk, for all k.6. To
achieve scalability, Pouchet shows that a modified and redundancy-aware version of the Fourier-Motzkin
algorithm is necessary [Pou10].

4.3.2 Heuristic Traversal

For SCoPs with more than 3 or 4 statements, the space construction algorithm leads to very large search
spaces, challenging an exhaustive traversal procedure. It is possible to focus the search on some co-

5The order has no impact on the completeness of the traversal.
6The case of holes in Z-polyhedra is handled through a schedule completion algorithm described in Section 4.3.2.

66 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

efficients of the schedule with maximal impact on performance, postponing the instantiation of a full
schedule in a second heuristic step. We show that such a two-step procedure can be designed without
breaking the fundamental legality property of the search space. This approach will be used extensively
to simplify the optimization problem.

Schedule Completion Algorithm

Relying on the projection mechanism used for the exhaustive scan in Section 4.3.1, it is always possible
to complete or to correct any coordinate set, by slightly modifying them, so it corresponds to a point
in the legal space Ld . Our completion algorithm is sketched below. Given a point v in a n-dimensional
space with some undefined coordinates:

1. set all undefined coordinates to 0;

2. for each k ∈ [1,n]:

(a) compute the lower bound lb and the upper bound ub of vk in Ld , provided the coordinate
values for v1 . . .vk−1,

(b) if vk /∈ [lb,ub], then vk = lb if vk < lb or vk = ub if vk > ub.7

Therefore it is possible to partially build a schedule prefix, e.g., values for the input (iterator) coef-
ficients, leaving the other coefficients unspecified. Then, applying this completion algorithm will result
in finding the minimal amount of complementary transformations to make the transformation lie in the
computed legal space. Three fundamental properties are embedded in this completion algorithm:

1. if v1, . . . ,vk is a prefix of a legal point v in the legal space, a completion is always found;

2. this completion will only update vk+1, . . . ,vdmax , if needed;

3. when v1, . . . ,vk are the~ı coefficients, the heuristic looks for the smallest absolute value for the ~p
and constant coefficients.

Picking coefficients as close as possible to 0 has several advantages in general: smaller coefficients
tend to simplify code generation, improve locality, reduce latency, and increase the size of basic blocks
in inner loops.

Decoupling Heuristic

Our approach to find the best points inside large legal space is called the decoupling heuristic. It leverages
the completion algorithm and derives from the observation of the performance distribution, where density
patterns hinted that not all schedule coefficients have a significant impact on performance [CB-PBCV07,
CB-PBCC08b]. The most performance impacting transformations (interchange, skewing, reversal) are
embedded in the input coefficients of the mapping (the original iterator coefficients, ~ı); followed by
coefficients usually involved in fusion and distribution the ~p coefficients; and finally the less impacting
constant coefficients, representing loop shifting and peeling [CB-PBCC08b]. The completion algorithm

7Z-holes are detected by checking if lb > ub.

4.3. LEGAL SPACE TRAVERSAL 67

finds complementary transformations in order of least to most impacting, as it will not alter any vector
prefix if a legal vector suffix exists in the space.

The principle of the decoupling heuristic for one-dimensional schedules is (1) to enumerate different
values for the~ı coefficients, (2) to instantiate full schedules with the completion algorithm, and (3) to se-
lect the best completed schedules and further enumerate the different coefficients for the ~p part. A direct
extension to the multidimensional case exhibits two major drawbacks. First, the relative performance
impact of the different schedule dimensions must be quantified. Second, an exhaustive enumeration of~ı
coefficients for all dimensions is out of reach, as the number of points exponentially increases with the
number of dimensions [CB-PBCC08a].

To extend the decoupling approach to multidimensional schedules, we need to integrate interactions
between dimensions. For instance, to distribute the outer loop of a nest (which can improve locality and
vectorization [AK02]), one can operate on the ~p and constant parts of the schedule for the first dimension
(a parametric shift). On the other hand, altering the~ı parts will lead to the most significant changes in
the loop controls. Conversely, it is likely that the best performing transformations will share similar~ı
coefficients in their schedules.

Furthermore, the first dimension is highly constrained in general, since all dependences need to be
(weakly or strongly) considered. Conversely, the last dimension is the less constrained and often carries
only very few dependences.8

We conducted an extensive experiment showing that the first time dimension of the schedule, θ1 is
a major discriminant of the overall performance distribution [CB-PBCC08b]. Therefore, the heuristic
starts with an exploration of the different legal values for the coefficients of θ1, and the completion
algorithm is called to compute the remaining rows of θ. Furthermore, this exploration is limited to the
subspace associated with the~ı coefficients of θ1 (and the remaining coefficients of θ1 are also computed
with the completion algorithm), except if this subspace is smaller than a given constant L1 (L1 = 50 in our
experiments). L1 drives the exhaustiveness of the procedure: the larger the degree of freedom, the slower
the convergence. By limiting the search to the~ı class we target only the most performance impacting
subspaces.

To enumerate points in the polytopes, we incrementally pick a dimension then pick an integer in the
polyhedron’s projection onto this dimension. Note that the full projection is computed once and for all by
the Fourier-Motzkin algorithm before traversal. Technically, to enumerate integer points of the subspace
composed of the first m columns of Ld , we define the following recursive procedure to build a point v:

EXPLORE (v,k,Ld):

1. compute the lower bound lb and the upper bound ub of vk in Ld , given the coordinate values for
v1 . . .vk−1;

2. for each x ∈ [lb,ub]:

(a) set vk = x,

(b) if k < m call EXPLORE (v,k+1, Ld) else output v.

The enumeration is initialized with a call to EXPLORE (v,1,Ld). The completion algorithm is then
called on each point v generated, to compute a legal suffix for v (corresponding to the columns [m+1,n]
of Ld), finally instantiating a legal point of full dimensionality.

8This is typically the case when the final dimension is required to order the statements within an innermost loop.

68 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

Then, the heuristic selects the x% best values for θ1 (x was set to 5% in our experiments). The
heuristic then proceeds with the exploration of values for coefficients of θ2 with the selected values of
θ1, and recursively until the last but one dimension of the schedule. The last dimension, corresponding
to the innermost nesting depth in the generated code, is not traversed but completed with a single value:
exploring it would yield a huge number of iterations, with limited impact on the generated code, and
negligible impact on performance. Eventually, the number of schedules visited is bounded with a static
limit (1000 evaluations in our experiments).

4.3.3 Evolutionary Traversal

Genetic algorithms [Gol89] is a well known approach to program optimization. Our contribution is
to reconcile fine-grain control of a transformation heuristics (as opposed to optimization flag or pass
selection [TVA05, ABC+06]) with the guaranteed legality of the transformed program (as opposed to
filtering approaches [Nis98, LO04, LF06] or always-correct transformations [SAMO03, KHW+05].

The challenge of relying on genetic algorithms with instance-wise mappings is to preserve legality
during mutation. We will build on the properties of our legal space and our previous algorithms to design
legality-preserving mutation and crossover operators. The operators of our evolutionary approach are the
following:

Initialization We build an initial individual applying our completion algorithm (see Section 4.3.2)
onto an undefined mapping, and a initial population of 30 to 100 individuals from
aggressive mutations of the initial individual.

Mutation First, we compute the distribution of probability to alter every coefficient, with re-
spect to their performance impact (see Section 4.5.5). Then according to this dis-
tribution, we randomly pick a coefficient to be altered, we replace its value with a
randomly selected value within the legal bounds for that coefficient and we use the
completion algorithm to correct the following coefficients for legality.

Crossover Starting with two individuals, we may apply a row crossover by randomly picking
mapping rows of either individuals for each mapping dimensions to build a new in-
dividual. This preserves legality since there is no dependence between rows. Or we
may apply a column crossover: if we noticed that there exist some sets of coefficients
not connected together in any constraint defining the legal space, then it is safe to ran-
domly pick the corresponding columns of either individuals to build a new individual,
because they correspond to independent sets of coefficients.

Selection We keep the best half of the current population and use mutation and crossover oper-
ators to generate the next generation.

4.4 Overview of the Experimental Platform

The implementation of the LEgal Transformation SpacE Exploration tool is called LeTSeE and its work-
flow is sketched in Figure 4.3. It is composed of several software components, the reader can find some
information about each of them in Appendix A. LeTSeE is a source-to-source framework, where the
input code is first translated to a polyhedral representation decorated with the data dependence graph
(using Clan and Candl), next the legal mapping search space is built and sent to the traversal algorithm,

4.5. LESSONS LEARNED FROM EXPERIMENTS 69

e.g., using the techniques presented in Section 4.2.2 and 4.3. For every “point” chosen by the traversal
algorithm, a target code is generated by CLooG, then compiled using the target low-level compiler and
run onto the target architecture. Execution information (performance, cache misses etc.) reported us-
ing the target architecture hardware counters are communicated to the traversal algorithm to select the
next “point” using either the decoupling heuristic shown in Section 4.3.2 or the evolutionary traversal
discussed in Section 4.3.3. When the traversal algorithm converged, the best performing source code9 is
sent as output.

Polyhedral computing libraries

PipLib FM

SCoP
representation

Iterative compilation and run of base source code
with transformed SCoP

Code generation

Source
Code

Static
Analysis

Program
Generation

Program
Finalization

CLooG
+

Automatic
Parallelization

Run

C compilable
code

Feedback from hardware counter(s)

Compilation

Polyhedral
representation

of SCoP

Bounded
search space

Space
Construction

Space
Exploration

Target
Code

isl

Figure 4.3: LeTSeE’s Workflow

4.5 Lessons Learned from Experiments

The experimental studies the iterative compilation approach presented in this chapter and its varia-
tions and developments have been extensively published [CB-PBCV07, CB-PBCC08b, CB-PBCC08a,
CB-PBB+10, CB-PBB+11] and discussed in Pouchet’s PhD. dissertation [Pou10]. Instead of repro-
ducing them here, we will recall in this section the main lessons learned from (or confirmed by) those
experiments. Some lessons will be illustrated using benchmark studies. Those benchmarks are detailed
by Pouchet [Pou10] and most of them are freely available in the PolyBench Benchmark suite (See Sec-
tion A.10 for details).

4.5.1 Search Space Construction Cannot Avoid Legality

The first attempt to build a high-level iterative framework by Long et al. postponed the mapping legality
question after its construction, by filtering out any illegal mapping using a legality check [LF05]. Using
the legal space, we can evaluate the proportion of legal points in the complete space of bounded mapping
coefficients. The results are detailed in Figure 4.4 on benchmarks accepting a one-dimensional mapping,
and being simple enough to compute the number of legal points and to perform and exhaustive search.
The figure presents the number of dependences for each kernel which is a metric for the complexity of
the program, the interval used for the various mapping coefficients, the search space computation time
on a Pentium 4 Xeon 3.2GHz, the number of possible mappings and the number of legal mappings.

This study shows that, even for simple programs with simple enough dependences to enable a legal
one-dimensional mapping, the number of possible mappings is several orders of magnitude larger than

9With respect to the assumed input. While SCoPs are not sensitive to input values, they may be sensitive to the input size.
In this work, we rely on profiling to evaluate parameter sizes. Versionning is possible as well but is not investigated here.

70 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

the number of legal mappings. Furthermore, the proportion of legal mappings decreases as the number
of dependences grows. Hence, encoding the legality in the search space is mandatory for a practical
implementation of a high-level iteration framework.

Benchmark #Dependences ~ı-Bounds ~p-Bounds c-Bounds Time #Mappings #Legal

h264 15 −1,1 −1,1 0,4 0.011 7.5×105 360
fir 12 −1,1 −1,1 −1,1 0.004 4.7×106 432
fft 36 −2,2 −2,2 0,6 0.079 5.8×1025 804
lu 14 0,1 0,1 0,1 0.005 3.2×104 1280

gauss 18 −1,1 −1,1 −1,1 0.021 5.9×104 506
crout 26 −3,3 −3,3 −3,3 0.027 2.3×1014 798

matmult 7 −1,1 −1,1 −1,1 0.003 1.9×104 912
MVT 10 −1,1 −1,1 −1,1 0.001 4.7×106 16641

locality 2 −1,1 −1,1 −1,1 0.001 5.9×104 6561

Figure 4.4: Comparison of Complete and Legal Spaces

4.5.2 Exhaustive Search Is Out of Reach In General

Working in the bounded legal space ensures to generate only possible mappings. However, an exhaus-
tive enumeration of the mapping coefficients is out of reach in general, even when considering the input
dimensions only because the number of points exponentially increases with the number of dimensions.
Figure 4.5 illustrates this assertion by summarizing the size of the legal polytopes for different bench-
marks, for all schedule dimensions. We consider 10 SCoPs requiring multi-dimensional mappings ex-
tracted from classical benchmarks. This table provides for each kernel the number of dependences, the
number of dimensions of the mapping, the number of legal points for each mapping dimensions, and the
total number of legal mappings. A value > 10n is a conservative lower bound when it was not possible
to compute the exact space size in a reasonable amount of time.

While those kernels have small to medium sizes (from 3 statements for edge to 17 for radar, the
number of legal mappings is not tractable for any of them. Hence, approximated techniques are necessary
to find the most interesting mappings in a reasonable amount of time.

Benchmark #Dep. #Dim. θ1 θ2 θ3 θ4 Total

compress-dct 56 3 20 136 10857025 n/a 2.9×1010

edge 30 4 27 54 90534 43046721 5.6×1015

iir 66 3 18 6984 > 1015 n/a > 1019

fir2 36 2 18 52953 n/a n/a 9.5×107

lmsfir 112 2 27 10534223 n/a n/a 2.8×108

latnrm 75 3 9 1896502 > 1015 n/a > 1022

lpc 85 2 63594 > 1020 n/a n/a > 1025

ludcmp 187 3 36 > 1020 > 1025 n/a > 1046

radar 153 3 400 > 1020 > 1025 n/a > 1048

Figure 4.5: Search space statistics

4.5. LESSONS LEARNED FROM EXPERIMENTS 71

4.5.3 Model-Based Performance Models Are Not Enough

Exhaustive search on simple problems made it possible to find the best mapping for a given program
and a given architecture and a given low-level compiler and its set of options. The form of the best
transformed programs typically appears to be quite complex. Most of the time, it was not possible to
easily understand which part of the transformation sequence was responsible for the speedup. We also
noticed that optimization algorithms based on formal representations were sometimes far away from the
optimal solution. A very simple but striking example is shown in Figure 4.6(A).

The simple, supposedly optimal locality transformation in our class suggests a schedule of (i) for S1
and (j+N) for S2 [CB-Bas03], which results in maximizing the reuse of the array a (see Figure 4.6(B)).
The very best schedules were in fact (i− j) and (i+ j−N +1) (the code generated by our framework is
given in Figure 4.6(C)). While the supposed optimal schedules generate a speedup of 147% with N = 100
and M = 500000 using GCC 3.4 on an Intel Xeon 3.2GHz, the very best schedules generate a speedup
of 398% (with a similar number of L1 and L2 cache-misses but a heavily reduced data TLB misses).
The ever growing complexity of architectures and compilers is not likely to improve the situation and
high-level iterative, feedback-directed techniques will probably become more and more necessary for
optimizing compilers.

/∗ (A) O r i g i n a l code : ∗ /
f o r (i = 0 ; i <= M; i ++) {

a [i] = i ;
f o r (j = 0 ; j <= N; j ++) {

b [j] = (b [j] − a [i]) / 2 ;
}

}

/∗ (B) Chunked code : ∗ /
f o r (t = 0 ; t <= M; t ++) {

a [t] = t ;
}
f o r (t = M; t <= M+N; t ++) {

f o r (i = 0 ; i <= M; i ++) {
b [t−M] = (b [t−M] − a [i]) / 2 ;

}
}

/∗ (C) B e s t t r a n s f o r m a t i o n : ∗ /
a [0] = 0 ;
f o r (t = −M+1; t <= 0 ; t ++) {

f o r (i = max (0 , t +M−N−1); i <= t +M−1; i ++) {
b [t−i +M−1] = (b [t−i +M−1] − a [i]) / 2 ;

}
a [t +M] = t +M;

}
f o r (t = 1 ; t <= N+1; t ++) {

f o r (i = max (t +M−N−1, 0) ; i <= M; i ++) {
b [t−i +M−1] = (b [t−i +M−1] − a [i]) / 2 ;

}
}

Figure 4.6: Intricacy of the transformed code

72 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

4.5.4 The Compiler Is a Part of the Experimental Platform

Our iterative optimization scheme is independent from the compiler and may be seen as a higher level
of classical iterative compilation. A given program transformation may better exploit a feature of a
given processor but it may also enable more aggressive options of a given compiler. Because production
compilers have to generate a target code in any case in a reasonable amount of time, their optimizing
heuristics are very fragile, i.e. a slight difference in the source code may enable or forbid a given opti-
mization phase. Using PathScale EKOPath, we observed that many optimization phases are enabled or
disabled depending on the version generated from our exploration tool [CB-PBCV07].

To illustrate this, we performed an exhaustive scan of the legal space to find the best mapping for
the matrix multiplication kernel, which is a typical target of aggressive optimizations of production
compilers, for various compilers with their most aggressive set of optimization options. We compared,
for a given compiler, the number of cycles the original code took (Original) to the number of cycles the
best transformation took (Best) (results are in millions of cycles). The results are shown in Figure 4.7.
Besides the fact that, contrary to most other works, good speedups are achieved without tiling, we can
observe that the best mappings are quite different, which emphasises the need for a compiler-dedicated
transformation to achieve the best possible performance. This is also true depending on the compiler
options [CB-PBCV07], advocating for a coupling of low-level iterative compilation techniques to find
the best set of compiler options and our high-level techniques.

Compiler Option Original Best Schedule Speedup

GCC 3.4.2 -O3 519 163
θS1(~ıS1) = −1
θS2(~ıS2) = k+1 318.4%

GCC 4.1.1 -O3 515 207
θS1(~ıS1) = −i− j+n−1
θS2(~ıS2) = k+n 248.7%

ICC 9.0.1 -fast 465 72
θS1(~ıS1) = −i+n
θS2(~ıS2) = k+1 645.4%

PathCC 2.5 -Ofast 228 79
θS1(~ıS1) = j−n−1
θS2(~ıS2) = k 308.1%

Figure 4.7: Best Mappings for the matmult Kernel (matrices are 250×250 doubles)

4.5.5 All Mapping Coefficients Are Not Equal With Respect to Performance

We conducted variance studies to capture the relative impact of schedule coefficients. We observe that
the impact on performance distribution of the ~p coefficients is lower than the~ı ones, while the impact of
the c coefficients is almost negligible. Overall, all the conducted experiments confirm the hypothesis of
the Decoupling Heuristic presented in Section 4.3.2. As a result the Decoupling Heuristic performs very
well at finding a near-optimal mapping while scanning only a very restricted set of mappings as shown
in Figure 4.8. It shows the relative percentage of the best speedup achieved as a function of the number
of iterative runs. The decoupling heuristic (the DH plot) yields fast convergence, bringing to light the
correlation between the speedup and the~ı-coefficients. On these tested examples, one may achieve over
98% of the maximum speedup within less than 20 iterations.

4.5. LESSONS LEARNED FROM EXPERIMENTS 73

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Tested points

locality

DH
R

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Tested points

matmult

DH
R

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 s
pe

ed
up

 a
ch

ie
ve

d
(in

 %
)

Tested points

MVT

DH
R

Figure 4.8: Comparison between the random (R) and the decoupling heuristics (DH)

4.5.6 Performance Distribution Is Not Random

When an exhaustive scan of the legal mappings is possible, we can observe the complete performance
distribution. Figure 4.9 shows this distribution for matmult and locality which are compiled with GCC
4.1.1 -O2 and for crout compiled with ICC -fast (left hand side) and GCC 4.1.1 -O3 (right hand
side). Each graph represents the computation time of every point in the search space as a function of its
number in the scanning order. The horizontal line shows the performance of the original program: every
point below this line corresponds to a more efficient program version.

Although the scanning order seems an irrational criteria for such representation, it shows that the
performance distribution is not random. It is not an absurd ordering though: the scanning procedure
could be seen as a very deep loop nest were the outer loop iterates on values of the first iterator coefficient
of the first statement and the inner loop iterates on values of the constant coefficient of the last statement.

From these observations, we conclude that:

• in most cases, contiguous regions of similar performance can be identified;

• several transformations may be close to the best performance, but the probability of finding them
at random can be very low (e.g., on locality);

• the performance distribution depends on the compiler;

• for some benchmarks (e.g., on matmult), strong correlations do exist but are not easily observ-
able without reordering the index space of the transformations (the X axis on the performance
distribution figures).

Understanding performance regularities may help to find “hot” regions in the search space, thus
avoiding useless runs in low-interest regions and diminishing-return searches among nearly optimal so-
lutions.

4.5.7 Bad Solutions Are Close to Good Ones

An interesting property of the search space is, if a given mapping coefficient can significantly degrade
the performance when iterating over it, then this mapping coefficient is more likely to significantly im-
prove the performance as well. We illustrate this property with the performance distribution of the

74 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 2e+09

 0 100 200 300 400 500 600 700 800 900 1000

C
yc

le
s

Transformation identifier

matmult

original

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 0 1000 2000 3000 4000 5000 6000 7000

C
yc

le
s

Transformation identifier

locality

original

 1.26e+09

 1.27e+09

 1.28e+09

 1.29e+09

 1.3e+09

 1.31e+09

 1.32e+09

 1.33e+09

 1.34e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

Transformation identifier

crout

original

original

 1.26e+09

 1.28e+09

 1.3e+09

 1.32e+09

 1.34e+09

 1.36e+09

 1.38e+09

 1.4e+09

 1.42e+09

 0 100 200 300 400 500 600 700 800

C
yc

le
s

Transformation identifier

crout

original

Figure 4.9: Performance distributions for matmult and locality with GCC -O3, and for crout with
ICC -fast and GCC -O3 on Intel Xeon 3.2GHz

compress-dct benchmark, on AMD Athlon on Figure 4.10(A). We exhaustively enumerate and evalu-
ate all 66 points with a distinct value for the~ı+~p coefficients of the first schedule dimension, combined
with all points with a distinct~ı value for the second one; a total of 1.29× 106 schedules are evaluated.
For each distinct value of the first schedule dimension (plotted in the horizontal axis), we report the
performance of the Best schedule, the Worst one, and the Average for all tested values of the second
schedule dimension. We can note the symmetry of performance peaks. Hence significant performance
degradation can be used to find the coefficients that matter as well10.

4.5.8 Random Search Is Not Likely to Provide Good Results

Our experiments show that the density of very good mappings is quite low in general. As an example,
Figure 4.10(B) shows the performance for all the 19683 possible points of θ2 once the best possible θ1

has been selected for the compress-dct benchmark. Mappings are sorted from the best to the worse per-
formance. There is an extremely low proportion of good mappings: only 0.14% of points achieve at least
80% of the maximal performance improvement, while only 0.02% achieve 95% and more. Conversely,
61.11% degrade performance of the original code, while in total 10.88% degrade the performance by a
factor 2. We can also see in Figure 4.9 that the number of point below the horizontal line showing the

10This property is also an illustration of the fragility of the best transformations: a slight change on an important coefficient
can lead to major performance drops.

4.6. COUPLING MODEL-BASED AND ITERATIVE-BASED OPTIMIZATIONS 75

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 10 20 30 40 50 60

S
pe

ed
up

Point index of the first schedule dimension

Performance distribution - compress-dct

Best
Average

Worst

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

S
pe

ed
up

Point of the second schedule dimension, first dimension fixed

Performance distribution (sorted) - compress-dct

(A) All θ1 and representatives of θ2 (B) Best θ1 fixed and all θ2

Figure 4.10: Performance Distribution of compress-dct, AMD Athlon X64, GCC 4.1.1 options -O3
-msse2 -ftree-vectorize

original performance (lower is better) is small compared to the total number of points (with the exception
of matmult. As a result random search is not a good policy to find the best points. Figure 4.8 shows
some examples where the decoupling heuristic outperforms a random strategy, including when the good
mapping density is relatively high as with matmult.

4.5.9 Benefits Are Significant

We tested our decoupling heuristic and our evolutionary algorithm to traverse the legal mapping space
within the LeTSeE framework described in Section 4.4 on a set of benchmarks representative of static
control kernels (8 codes from the UTDSP benchmark suite [Lee98], plus two larger programs including
an industrial radar detection code), on several architectures. The genetic algorithm was able to improve
the performance by 37.6% in average on an AMD Athlon X64 3700+ with GCC 4.1.1 (25.1% for the
decoupling heuristic), 17.9% in average on an AMD Au1500 500MHz (embedded SoC) with GCC 3.2.1
(11.4% for the decoupling heuristic) and 13.3% on an STMicroelectronics ST231 400 MHz (embedded
SoC) with st200cc 1.9.0B (10.4% for the decoupling heuristic).

Our interpretation of these results is that the more complex the architecture or its compiler are, the
better the results obtained using our approach. Let us recall that our approach generates sequential codes:
up to that point, we did not expose parallelism.

4.6 Coupling Model-Based and Iterative-Based Optimizations

Some optimizations demonstrate their effectiveness when driven by a model-based heuristics, such as
vectorization as shown by Trifunovic et al. [TNC+09]. On the contrary, some other transformations
cannot be optimized without a combinatorial search. The loop fusion/distribution is such a transformation
as shown by Darte [Dar00]. Affine mapping encompasses both kind of transformations. To reduce the
legal mapping space, we consider as equivalent all the “points” that could be compared by a robust
performance model. Hence, iterative search can focus on selecting only the “points” for which it is
complex to decide.

76 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

Using this line of reasoning, we designed a multi-stage optimization scheme combining model-driven
and iterative techniques. On one hand, we rely on iterative techniques to drive the choice of loop fu-
sion/distribution. On the other hand, we rely on a model-driven tiling-based optimizing and parallelizing
algorithm and on a model-driven vectorization algorithm. The complete scheme is summarized as fol-
lows (see our paper and Pouchet’s PhD. dissertation for the complete details [CB-PBB+10, Pou10]):

1. We build a search space containing all the legal partitions of the various statements, where two
statements belong to the same partition if they share at least one common loop in the generated
code. This space proves to be very small in practice with respect to the total number of possible
partitions if legality is not considered (e.g., from 1012 solutions to only 8 legal ones for the ludcmp
benchmark of the PolyBench suite) and to allow an exhaustive scan.

2. For a given “point” of the legal partition space:

(a) Apply Bondhugula et al.’s Tiling Hyperplane Method for parallelizing and optimizing local-
ity (which embeds one cost model to choose the way to make a loop nest tilable, and a second
one to decide whether to apply tiling or not) [BHRS08].

(b) Use the model by Trifunovic et al. [TNC+09] to select the order of the innermost loops to
expose the best vectorizable loop to the low-level compiler.

The coupled approach obtained good speedups on the PolyBench test suite over the state of the art
model-based high-level compiler Pluto [BHRS08]: 2× in average on a 24 cores Xeon E7450 and 2.5×
in average on a 4 cores Opteron 8380, and up to 8× with respect to ICC 11.1.

4.7 Related Work

The growing complexity of architectures became a challenge for compiler designers to achieve the peak
performance for every program. In fact, the term compiler optimization is now biased since both compiler
writers and users know that those program transformations can result in performance degradation in some
scenarios that may be very difficult to understand. In the late Nineties, several works started to explore
an optimization space and demonstrated that performing an extensive search, it is possible to beat the
model-based optimization strategies of the compilers. Bodin et al. explore tile size, unrolling factor and
padding through a sampling of the optimization space [BKK+98]. Kisuki et al. also focus on tile size
and unrolling factor, and evaluated 5 search algorithms to reduce the number of runs, including genetic
algorithm, simulated annealing and random search [KKO00]. Cooper et al. relies on genetic algorithm to
choose the best sequence of 10 compiler passes to minimize the target code size [CSS99]. Chow and Wu
look for the best set of compiler switches and reduce the space by reasoning on sets of switches [CW99].
Those observations and first techniques led to two trends: self-optimizing libraries and iterative search
of compilation parameters.

Self-optimizing libraries are a “high-level” part of iterative optimization area where libraries auto-
tune themselves with respect to predefined optimisations (e.g., tiling and unrolling) by generating mul-
tiple version of themselves, then empirically choose the best version for the target architecture. ATLAS
[WPD00], FFTW [FJ05] and SPIRAL [PSX+04] are efficient implementations of this strategy.

Many works demonstrated the potential for iterative optimization on a large range of optimizations,
affecting compiler optimization flags (switches), parameters (e.g., loop unrolling, tiling), phase ordering,

4.8. CONCLUSION 77

the heuristic itself, or the hybridation of multiple heuristics [ACG+04, KHW+05, ABC+06, McBQ02,
SAMO03, CMO06]. As a result, the search spaces can be huge and necessitate fast evaluation techniques.
Kulkarni et al. [KHW+05] introduce the VISTA system, an interactive compilation system which con-
centrates on reducing the time to find good solutions. Another system that attempted to speedup iterative
compilation was introduced by Cooper et al. called ACME [CGH+05]. Triantafyllis et al. [TVA05] de-
velop an alternative approach to reduce the total number of evaluations of a new program. Here the space
of compiler options is examined off-line on a per function basis and the best performing ones are classi-
fied into a small tree of options. Because iterative compilation relies on multiple, costly “runs” (including
compilation and execution), the current emphasis is on improving the profiling cost of each program ver-
sion [KHW+05, FCOT05], or the total number of runs, using, e.g., genetic algorithms [KZM+03] or
machine learning [ABC+06, CMO06].

Our work studies a different search space: instead of relying on existing compiler options to trans-
form the program, we statically construct a set of candidate program versions, considering the distinct
result of all legal transformations in a particular class. Building an actual optimization phase out of
this search space is much easier than from the composition of multiple search spaces arising from short-
sighted, local transformations. Our method is also complementary to other forms of iterative optimization
which address the orchestration of existing heuristics. Furthermore, it is completely independent from
the compiler back-end.

Although multidimensional affine scheduling is an obvious target for iterative optimization, its prof-
itability is one of the most difficult to assess, due to (1) the model’s intrinsic expressiveness (the downside
of its effectiveness) and (2) its lack of analytical models for the impact of transformations on the target
architecture. Hence, related work has been very limited up to this point. To the best of our knowledge,
Nisbet pioneered research in the area with one of the very first papers in iterative optimization. He devel-
oped the GAPS framework [Nis98] which used a genetic algorithm to traverse a search space of affine
schedules for automatic parallelization. In addition, Long et al. [LO04, LF05, LF06] considered a search
space of transformation sequences represented in the UTF framework [Kel96]. Both of these approaches
suffer from under-constraining the search space by considering all possible schedules, including illegal
ones. Downstream filtering approaches do not scale, due to the exponentially diminishing proportion
of legal schedules with respect to the program size. For instance, Nisbet obtains only 3− 5% of legal
schedules for the ADI benchmark (6 statements). Moreover, under-constraining the search space limits
the possibility to narrow the search to the most promising subspaces.

4.8 Conclusion

Present day compilers fail to model the complex interplay between different optimizations and their ef-
fect on all the different processor architecture components. Also, the complexity of current hardware has
made it impossible for compilers to accurately model architectures analytically. Thus, empirical search
has become essential to achieve portable high performance in spite of the analytically intractable hard-
ware complexity. Most iterative compilation techniques target compiler optimization flags, parameters,
decision heuristics, or phase ordering [BKK+98, CST02, SAMO03, KHW+05, TVA05, ABC+06]. This
chapter presents a more aggressive stand, aiming for the construction and tuning of complex sequences
of high-level transformations.

As demonstrated in previous chapters, affine schedules build a very expressive search space, since a
single schedule can represent an arbitrarily complex sequence of loop transformations. The first attempts

78 4. OPTIMIZATION QUALITY: AN ITERATIVE APPROACH

to traverse such a space faced legality problems and showed poor results because only few legal affine
schedules were found [Nis98, LO04]. Our work targets all static control programs and, by construction,
enables iterative optimization in a closed space of semantics-preserving transformations. Building on
Feautrier’s work [Fea92a, Fea92b], we showed how to construct a practical legal mapping space in such
a way that a traversal becomes possible.

To overcome the combinatorial nature of the optimization search space, we designed heuristics and
a genetic algorithm with specialized operators that leverage the algebraic properties of this space, em-
bedding the legality constraints into the operators themselves. We simultaneously demonstrate good
performance gains and excellent convergence speed on huge search spaces, even on larger loop nests
where fully iterative affine scheduling has never been attempted before. Finally, we designed an efficient
coupling between model-based algorithms and our iterative strategy that provided better results than the
purely model-based algorithms.

79

Chapter 5

Scalability: Facing the Real World

Compiler performance has long been quantified through the number of processed code lines per time
unit. Compile time used to be (almost) linear in the code length. In order to find the best possible
optimizations, present day compilers must rely on higher complexity (possibly worst-case exponen-
tial) methods. The polyhedral model is a striking example. Many advances in program restructuring
have been achieved through this model. Most of the underlying methods, as data dependence analy-
sis [Fea91, Pug91a], transformation computation [LL97, Gri04, Fea92b, BHRS08] or code generation
[KPR95, QRW00, CB-Bas04a] exhibit worst-case exponential complexity.

It is not easy to conclude about the scalability of such techniques. The literature is full of algorithms
with high complexity which present a very good practical behavior. The simplex algorithm is probably the
most famous example [Dan51]. It may be used for instance-wise data dependence analysis or to compute
a mapping as a linear programming problem, e.g., when relying on the PIP algorithm [Fea91, Fea92a]
which is based on the dual-simplex and Gomory cuts. Building artificially large and complex problems
is a poor approach to decide about scalability: small randomly generated problems are likely to be
unfeasible while they do not provide much information about how the techniques behave in practice.
As a result, our interpretation of the scalability problem is a matter of (1) computing a solution in a
reasonable amount of time for any real case, and (2) the ability to compute a convenient enough solution
for the most complex real problems.

In this chapter, we describe our efforts and results on facing real problems on two parts of a polyhe-
dral framework. First, Section 5.1 addresses the data dependence analysis problem, showing how to a
achieve a fast but conservative violation checking, how to remove transitively covered dependences and
presenting an empirical study of exact data dependence analysis on some SPEC benchmarks. Second,
Section 5.2 presents solutions to improve the code generation time and to preserve generated code quality
on various situations. We present some related work on that matter in Section 5.2.4.

5.1 Data Dependence Analysis Scalability

5.1.1 Fast Data Dependence Violation Check

We presented in Section 3.2.2 page 38 the characterization of the exact sets of violated dependences at
depth v. For a dependence at depth d from a source reference rS of a statement S with mapping θS to a
target reference rT of a statement T with mapping θT , defined by the constraint matrix ∆

S,rS
d→T,rT

the set

80 5. SCALABILITY: FACING THE REAL WORLD

of violated dependences is described with the following set of constraints:

ϒ
S,rS

d,v→T,rT
:



∆
+

S,rS
d→T,rT

T~ıSS 0 T~tS
S 0 0 0 T~p

S T c
S

0 0 0 T~ıTT 0 T~tT
T T~p

T T c
T

0 0 I1..v−1,• 0 0 −I1..v−1,• 0 0
0 0 Iv,• 0 0 −Iv,• 0 0 or −1





~ıS
~aS,rS

~tS
~ıT
~aT,rT

~tT
~p
1



= or ≥
≥
≥
=

≥

~0,

where ∆
+

S,rS
d→T,rT

is derived from the dependence constraint matrix ∆
S,rS

d→T,rT
detailed in Section 2.2.2

page 25, where additional columns set to zero have been added for the corresponding ~tS and ~tT di-
mensions. The existence of a violated dependence can be checked using parametric integer program-
ming [Fea88a] and, e.g., the PIP tool [CB-FcCB02]. This is an overkill for legality checking. This
section describes a fast dependence test that may be used to check that a given mapping is legal. This
test can also be used to quickly filter out satisfied dependences when computing violated dependence
polyhedra.

In practice, dependence violation can be checked efficiently without relying on costly polyhedral
operations. Consider a violation depth v > 0. The left-hand side of the inequality in the last row repre-
sents the violation amount on depth v, i.e., the amount of time by which S is late with respect to T after
mapping; we shall denote it by ΓS v→T . The problem is to determine whether or not, ΓS v→T can be positive
on ϒ

S,rS
d,v−1→ T,rT

, the violated dependence candidates polyhedron at depth v−1 defined by all rows except
the last one in the violated dependences characterization. This is solved by application of the affine form
of the Farkas Lemma we already used in Section 4.1.1 and that we recall here:

Lemma 5.1 (Affine form of Farkas Lemma [Fea92a, Sch86]) Let D be a nonempty polyhedron defined
by the inequalities A~x + ~b ≥ ~0. Then any affine function f (~x) is non-negative everywhere in D iff it is
a positive affine combination:

f (~x) = λ0 +~λ
T (A~x+~b), with λ0 ≥ 0 and~λT ≥~0.

λ0 and~λT are called Farkas multipliers.

The existence of a set of positive Farkas multipliers, for a given constraints polyhedron, guarantees
the function is positive on this polyhedron. In our case, no violation exists iff ΓS v→T ≤ 0, or equivalently
iff −ΓS v→T − 1 is non-negative everywhere in ϒ

S,rS
d,v−1→ T,rT

. This translates into finding a set of rational
positive solutions in a system made of (1) the equalities when equating the various coefficients in both
sides of the formula and (2) the constraints specifying that each Farkas multipliers is non-negative. This
problem is not parametric anymore and may be solved by (non-integral) linear programming in poly-
nomial time. If no such solution can be found, we consider violated dependences exist. On the other
hand, if a solution is found, there are no violated dependences at depth v for ∆

S,rS
d→T,rT

. Notice this test
is associated with a rational relaxation of the integral constraints on D . This may, in rare cases, lead to
a conservative results. Finally, we can reuse the system built at depth v for checking at depth v+1 since
ϒ

S,rS
d,v→T,rT

is simply ϒ
S,rS

d,v−1→ T,rT
∩
{

ΓS v→T = 0
}

.

Consider the following example:

5.1. DATA DEPENDENCE ANALYSIS SCALABILITY 81

f o r (i = 0 ; i <= N; i ++) {
S : A[i +1] = A[i] ;

}

Reversing this loop corresponds to setting θS =−i. It is obviously illegal. Let us verify this through our
fast legality check. The (simplified) dependence polyhedron is:

δ
S,1 1→S,1

(N) =
{

i≥ 0, i≤ N, i′ ≥ 1, i′ ≤ i+1, i′ ≥ i+1
}
.

After reversal −Γ
S 1→S
− 1 ≥ 0 is written i− i′− 1 ≥ 0. Through the Farkas lemma, a necessary and

sufficient condition is

i− i′−1 = λ0 +λ1i+λ2(N− i)+λ3(i′−1)+λ4(i′− i−1)+λ5(i− i′+1).

Identifying the coefficients of the i, i′, N and constant terms yields the following system:
−1 = λ0−λ3−λ4 +λ5

1 = λ1−λ2−λ4 +λ5
−1 = λ3 +λ4−λ5

0 = λ2

The reader may check that this system has no non-negative solution.

5.1.2 Transitively-Covered Dependences

In general, the full dependence graph contains redundant information associated with transitively covered
dependences. This incurs computational overhead in subsequent optimization, scheduling or legality
checking phases.

The standard technique to eliminate redundant information consists in removing all memory-based
dependences by converting the SCoP to (dynamic) single assignment. This transformation amounts to
array renaming and expansion (a generalization of array privatization), using the array data-flow analysis
technique proposed by Feautrier [Fea88b, Fea91]. This method only considers flow dependences and
computes for each statement and each reference it reads the last producer of the value read. The algo-
rithm walks the code backwards, calling the PIP library [CB-FcCB02] to incrementally build the result.
The solution is a quasi affine selection tree (generalization of a “last write tree” [MAL93]) implement-
ing the case distinctions for pertinent values of the target statement’s iterators and invariant parameters
associated with distinct producers (or distinct affine forms). As a dependence graph compression, the
major drawback of this approach is the need to operate on a single-assignment program, hence to re-
sort to complex array contraction and storage mapping optimization techniques to ultimately reduce the
memory footprint [LF98, QR00].

Our method does not require conversion to single assignment form. Instead, for each target in-
stance, we do identify the last source of a dependence targeting this precise instance, in order to remove
transitively covered dependences, but we consider all dependences including the memory based anti
(write-after-read) and output (write-after-write) ones. The result is a simplified dependence graph for
each depth level, bearing the exact simplified dependence relation. Consider a dependence from S to T
at depth d on a given memory location x. The key to our approach is to determine, which are all the
possible statements that can be interleaved between the time of execution of a source iteration and the

82 5. SCALABILITY: FACING THE REAL WORLD

time of execution of its corresponding target iteration(s) (possibly many). We consider a candidate cov-
ering statement C that writes to x and reason in the Cartesian product of the three former spaces (sharing
parameters and the constant dimension though). C must satisfy the following conditions:

• it must be the target of a dependence of depth d from S;

• it must be the source of a dependence of depth d to T .

The layout of the covering polyhedron corresponds to Figure 5.1.



D~ıS
S 0 0 0 0 0 D~p

S Dc
S

0 0 D~ıC
C 0 0 0 D~p

C Dc
C

0 0 0 0 D~ıT
T 0 D~p

T Dc
T

A~ıSS,rS
A
~aS,rS
S,rS

0 0 0 0 A~p
S,rS

Ac
S,rS

0 0 A~ıCC,rC
A
~aC,rC
C,rC

0 0 A~p
C,rC

Ac
C,rC

0 0 0 0 A~ıTT,rT
A
~aT,rT
T,rT

A~p
T,rT

Ac
T,rT

0 I 0 −I 0 0 0 0
0 I 0 0 0 −I 0 0

I1..d−1,• 0 −I1..d−1,• 0 0 0 0 0
Id,• 0 −Id,• 0 0 0 0 x

I1..d−1,• 0 0 0 −I1..d−1,• 0 0 0
Id,• 0 0 0 −Id,• 0 0 x





~ıS
~aS,rS

~ıC
~aT,rC

~ıT
~aT,rT

~p
1



≥
≥
≥
≥
≥
≥
=

=

=

≥
=

≥

~0

where x = 0 or 1 depending on the dependence depth.

Figure 5.1: Covering Dependences for δ
S,rS

d→T,rT
(~p) and statement C

Due to the transitivity of the equality and inequality relations, access and schedule relations between
S and T can be omitted, contributing to lowering the computational cost of the covering polyhedron.

Once a covering polyhedron has been computed and deemed not empty, it is necessary to relate it to
the points in δ

S,rS
d→T,rT

(~p) that it shadows. The shadowed polyhedron is the projection of the covering
polyhedron on δ

S,rS
d→T,rT

(~p) dimensions. The projection being a standard PolyLib operation, we will not
get into further details here. The last step is then to remove the shadowed polyhedron from the original
dependence polyhedron. Once again this is a standard PolyLib operation that may however return a
non-convex list of convex polyhedra. If removing some transitively covered dependences makes the data
dependence graph more complex, we can simply abort their removal.

Finally, special care must be taken when dealing with conservative dependence approximations asso-
ciated with non-affine array subscripts. Our current implementation preserves every transitively covered
dependence arc when the source or target of this arc is a non-affine reference. More precise methods
have been proposed but their practical evaluation is left for future work [Won95, Bar98].

5.1. DATA DEPENDENCE ANALYSIS SCALABILITY 83

5.1.3 Scalability

Our dependence analysis is implemented within the modern infrastructure of Open64 and PathScale
EKOPath [Cho04]. This compiler family provides key interprocedural analyses and pre-optimization
phases such as inlining, interprocedural constant propagation, loop normalization, integer comparison
normalization, dead-code and goto elimination, as well as induction variable substitution. Our tool
extracts large and representative SCoPs for SPEC CPU2000 fp benchmarks: on average, 88% of the
statements belong to a SCoP containing at least one loop. See [CB-GVB+06] for detailed static and
dynamic SCoP coverage.

In this section, we exercise this implementation on 6 full SPEC CPU2000 fp benchmarks. These
codes were selected because of their large SCoPs, within the set of 8 benchmarks that our tool could
handle without instabilities (largely due to the underlying Open64 platform). In the most challenging
examples, the biggest SCoP almost contains the whole program after inlining.

Figure 5.2 summarizes our experimental results. To stress the analyzer, we performed aggressive
inlining to favor the formation of the largest possible SCoPs. These statistics are often associated with
aggregated SCoPs from multiple functions whose names and line numbers are listed in the second and
third columns. #Params gives the number of global parameters, and #Refs gives the total number of array
references (read and write) in the SCoP. The next two blocks of columns summarize the properties of
the dependence graph, first considering all dependences, second after elimination of transitively covered
dependences: #Matrices gives the number of dependence matrices, #Columns give the average number
of columns in all dependence matrices (i.e., the average dimension of dependence polyhedra, a good
indication of the complexity of the problem), and Analysis Time corresponds the computation time in
seconds to compute the dependence graph on a 2.4GHz Pentium 4 (Northwood) workstation.

The selected SCoPs account for the majority of the execution time in all benchmarks. The smaller
SCoPs have been omitted to focus the experiments on the most time-consuming ones. The SCoPs in
168.wupwise feature non-affine array accesses due to conservative induction variable substitutions (the
actual references are affine but Open64 could not figure it): covered dependences could not be removed
in this case.

The full instance-wise dependence analysis takes up to 37.512 seconds, for the largest SCoP in
173.applu. This is an extreme case with huge iteration spaces (more than 13 dimensions on average, and
up to 19 dimensions). This may sound quite costly, but it still shows that the analysis is compatible with
the typical execution time of aggressive optimizers (typically more than ten seconds for Open64 with
interprocedural optimization and aggressive inlining and loop-nest optimizations). In all other cases,
it takes less than 5 seconds, despite thousands polyhedral operations with close to 10 dimensions on
average.

These results are quite compelling since we compute very large dependence graphs, taking all pairs
of references into account. Many implementation details can also be improved, using cheap dependence
tests as filters for full polyhedral operations, performing on-demand computations on part of the depen-
dence graph only, and improving the polyhedral computation cache to catch a wider scope of operations.
These improvements can bring an additional order of magnitude acceleration, as shown in previous ex-
periments [Won95].

According to these results, removing covered dependences is slightly more expensive. This should
not be taken for a definite result: to simplify the implementation, we used polyhedral differences and calls
to the PolyLib (following an algorithm closer to the one proposed by Pugh [Pug91a]), yet we anticipate

84 5. SCALABILITY: FACING THE REAL WORLD

that an implementation based on Feautrier’s PIP would have a much lower cost [Fea91, Gri04]. Notice
removing covered dependences may sometimes increase the total number of matrices, due to domain
decompositions to represent non-convex iteration spaces.

All Dependences w/o Covered Dependences

Function Source Lines #Params #Refs #Matrices #Columns
Analysis /
Time (s) #Matrices #Columns

Analysis /
Time (s)

168.wupwise zaxpy 11–32 5 16 62 7.5 0.008 62 7.5 0.008
zcopy 11–24 5 12 30 7.0 0.005 30 7.0 0.005

171.swim

main
+ calc1
+ calc2
+ calc3

114–119
+ 261–269
+ 315–325
+ 397–405

5 216 813 10.5 0.895 624 10.4 2.630

172.mgrid
psinv
+ resid
+ interp

149–166
+ 189–206
+ 270–314

2 191 870 8.4 0.735 962 8.4 1.894

173.applu

1st SCoP
2nd SCoP

blts
+ buts
+ jacld
+ jacu
+ rhs

553–624
+ 659–735
+ 1669–2013
+ 2088–2336
+ 2610–3068

4
2

562
1983

3507
12814

11.3
13.5 4.420

37.512
3188
10418

11.2
13.5 14.865

115.439
200.sixtrack thin6d 560–588 7 86 158 11.1 0.044 110 11.1 0.117

301.apsi

1st SCoP
2nd SCoP

dcdtz
+ dtdtz
+ dudtz
+ dvdtz
+ wcont
+ smth

1326–1354
1476–1499
1637–1688
1779–1833
1878–1889
3443–3448

1
7

275
198

4264

216
2.0
12.9

0.211
0.133

203
207 2.0

12.8

1.750
0.726

Figure 5.2: Scalability of instance-wise dependence analysis

A direct computation of the violated dependence graph takes approximately the same amount of time
as computing the dependence graph itself. When verifying very complex transformation sequences, it
may at most become twice as expensive: this is the case when optimizing the 171.swim benchmark as
described in our previous work [CGP+05] (leading to 38% speed-up with respect to the peak SPEC per-
formance with the best optimization flags on Athlon64). As described in Section 5.1.1, if violations are
only associated with a limited number of dependences, it is much more practical to apply the fast Farkas-
based dependence test and compute violated dependence polyhedra only when a possible violation is
detected. This fast dependence test takes a negligible amount of time compared to the actual operations
on polyhedra since it considers the same non-negativity constraints but solves (relaxed) rational linear
programming problems instead of integral ones.

5.1.4 Related Work

Many tests have been designed for dependence checking between different statements or between dif-
ferent executions of the same statement. It has been extensively shown that this problem amounts to
detecting whether or not a system of equations has an integer solution inside a region of Zn [Ban88].

Most of the dependence tests try to find efficiently a reliable, approximative but conservative (they
overestimate data dependences) solutions. The GCD-test [Ban76] has been the very first practical solu-
tion, it is still present in many implementations as a first check with low computational cost. This test as-
sumes that if the greatest common divisor of the coefficients of an equation divides the constant term, then
a solution exists. A generalized GCD-test has been proposed to handle multi-dimensional array refer-
ences [Ban88]. The Banerjee test uses the intermediate value theorem to disprove a dependence: it com-
putes the upper and lower bounds of an equation and checks if the constant part lies in that range [WB87].
The λ-test is an extension to this test that handles multi-dimensional array references [LYZ89]. Some
other important solutions are a combination of GCD and Banerjee tests called I-test [KKP90], the ∆-

5.2. CODE GENERATION SCALABILITY 85

test [GKT91] that gives an exact solution when there is at most one variable in the subscript functions,
and the Power-test which uses the Fourier-Motzkin variable elimination method [Sch86] to prove or
disprove dependences [WT92]. Beside their approximative nature, these dependence tests suffer from
many other major limitations. The most stringent one is their inability to precisely handle if condition-
als, loops with parametric bounds, triangular loops (a loop bound depends on an outer loop counter),
coupled subscripts (two different array subscripts refer the same loop counter), or parametric subscripts.

On the opposite, a few methods allow to find an exact solution to the dependence problem, but at a
higher computational cost. The Omega-test is an extension to the Fourier-Motzkin variable elimination
method to find integral solutions [Pug91a]. On one hand, once a variable is eliminated, the original
system has an integer solution only if the new system has an integer solution (if this is not the case
there is no solution). On the other hand, if an integer point exists in a space computed from the new
system, then there exists an integer point in the original system (if this is the case, there is a solution).
The PIP-test uses a parametric version of the dual-simplex method with Gomory cuts to find an integral
solution [Fea91]. These two tests not only give an exact answer, they are also able to deal with complex
loop structures and (affine) array subscripts. The PIP-test is more precise than the Omega-test when
dealing with parametric codes (when one or more integer symbolic constant are present). Both tests have
worst-case exponential complexities but behave quite well in practice as shown by Pugh for the Omega-
test [Pug91a]. Other costly exact tests exist in the literature [MHL91, ES92] but are often not able to
handle complex control in spite of their cost.

In this work, we do not advocate for the use of any of these tests, but rather for the computation of
instance-wise dependence information as precisely as possible, i.e., for intensionally describing the stat-
ically unbounded set of all pairs of dependent statement instances. Dependence tests are statement-wise
decision problems associated with the existence of a pair of dependent instances, while instance-wise
dependence analysis provides additional information that can enable finer program transformations, like
affine scheduling [Fea92a, Fea92b, LL97, Gri04, BHRS08, CB-PBB+11]. The intensional characteriza-
tion of instance-wise dependences can take the form of multiple dependence abstractions, depending on
the precision of the analysis and on the requirements of the user [YAI95]. The simplest and least precise
one is called dependence levels, it specifies for a given loop nest which loop carry the dependence. It
has been introduced in the Allen and Kennedy parallelization algorithm [AK87]. The direction vectors
is a more precise abstraction where the i-th element approximates the value of all the i-th elements of
the distance vectors (which shows the difference of the loop counters of two dependent instances). It has
been introduced by Lamport [Lam74] and formalized by Wolfe [Wol95] and is clearly the most widely
used representation. The most precise abstraction is the dependences between iterations [IT87] which
is able to determine exactly the set of statement instances in data dependence relation. The choice of
a given dependence abstraction is crucial for further study. Simple abstractions can provide the exact
information on some simple cases. But in general, choosing an imprecise abstraction can result in inval-
idating interesting transformations. Because we are dealing with any code that can be represented using
polyhedral relations (including, e.g., imperfectly nested loops), dependences between iterations is the
only abstraction which always encode the exact information [YAI95, Iri11]. As a result, this document
relies only on this abstraction, also referred in our work as dependence relations.

5.2 Code Generation Scalability

Polyhedral code generation has an intrinsic worst-case complexity of 3nρ polyhedral operations (them-
selves associated with NP-complete problems), where n is the number of statements, and ρ the maximum

86 5. SCALABILITY: FACING THE REAL WORLD

number of (non-parameter) dimensions. Nevertheless, input programs are not randomly generated. Most
of the time, human-written codes show simple control, loop nests with low depth and which enclose few
statements. Such properties make it possible to regenerate, through the whole source-to-polyhedra-to-
source framework, well known benchmark codes with hundreds of statements per static control compute
kernel (in the SPECfp2000 benchmarks) in an acceptable amount of time [CB-Bas04a].

Complex transformations may be automatically computed by a given optimizing compiler [BDSV98,
LL97, CB-BF03a, Gri04, BHRS08, CB-PBCC08a] or discovered by a programmer with the help of an
optimization environment [MPNT04, CGP+05, Kel96, BDD+07, CCH08]. Their application diminishes
the input program regularity and lead to a challenging code generation problem. The challenge may come
either from the ability to compute any solution (because of a complexity explosion) or from the ability
to find a satisfactory solution (because of a high resulting control overhead). To solve these problems in
practice, we carried out an experiment-driven study, starting from a state-of-the-art code generation tool
[CB-Bas04a]. We analyzed in depth a complex optimizing transformation sequence of the SPECfp2000
benchmark Swim that has been found by an optimization expert with the help of the URUK framework
[CGP+05]. Our goal was to find properties of the transformations themselves that may be exploited to
reduce the complexity problem, and to improve the generated code quality.

To validate our approach, we studied and applied our methods to other complex problems that have
been submitted by various teams from both industry and academia. Each of them uses its own strat-
egy to compute transformations, which encourage the search for common transformation properties. QR
has been provided by Reservoir Labs Inc. which develop the high level R-Stream compiler [MVW+11].
Classen has been submitted by the FMI laboratory of the University of Passau which develops the high
level parallelization tool LooPo [Len93, Gri04]. DreamupT3 has been supplied by the RNTL Project
DREAM-UP between Thales Research, Thomson R&D and École des Mines de Paris [HAI+05]. Gen-
eral properties of these reference problems are shown in Figure 5.3. They proved to be quite different,
spanning all typical sources of complexity in polyhedral code generation: each benchmark has its own
reason to be challenging, e.g. high statement number for Swim, deep loop nests for Classen, big values
that need multi-precision arithmetic to be to manipulated with DreamupT3.

Reference problems
Properties Swim QR Classen DreamupT3

Statement number 199 10 8 3
Maximum loop depth 5 3 8 2
Number of parameters 5 2 1 0

Scheduling dimensionality 11 7 7 1
Maximum coefficient value 60 5 4 1919

Figure 5.3: General properties of reference problems

We investigate two aspects of code generation for complex problems. Section 5.2.1 investigates algo-
rithmic scalability challenges and our solutions, driven by experimental evaluations of the four reference
benchmarks. Section 5.2.2 addresses additional code generation challenges associated with code size
reduction and efficiency; in particular, it presents the first modulo-condition elimination technique that
succeeds for a large class of real-world schedules while avoiding code bloat due to multi-versioning.
Finally, Section 5.2.4 positions this study among related works.

5.2. CODE GENERATION SCALABILITY 87

5.2.1 Reducing Code Generation Time

This section analyzes three important properties of affine schedules used in real-world program genera-
tion problems, then for each property, proposes an algorithmic solution to improve scalability.

Scalar Dimensions

There are many ways to specify a given transformation (or a given sequence of transformations) us-
ing affine schedules. Basically we can divide them in two families. The first kind, mono-dimensional
schedules, describe the execution order thanks to functions with only one dimension. The second kind,
multi-dimensional schedules, use several dimensions to express the ordering. Most of the time, the orig-
inal domains are parametric, i.e., are bounded by (statically) unknown constants. For the first kind, this
variety amounts to manipulating non-affine expressions. This is not the case with multi-dimensional
schedules, when using at least as many dimensions as the original domain [Fea92b]. Moreover, using
additional dimensions to explicitly order different statements onto a given dimension makes transforma-
tion manipulation easier as shown in Section 3.3.2 [Kel96, CGP+05]. As a result, multi-dimensional
schedules with more dimensions than iteration domains are quite often used to specify transformations.
Figure 5.4 shows an example of a loop interchange transformation applied to the polynomial multiply
kernel shown in Figure 2.1 that may be achieved thanks to different schedules. ρ(S) is the depth of the
original statement, i.e., the number of dimensions of its original iteration domain.

Scheduling policy θS1 θS2
Mono-dimensional (i) (n+ j ∗n+ i)

(ρ(S)+1)-dimensional (i,0)T (n+ j, i,0)T

(2∗ρ(S)+1)-dimensional (0, i,0)T (1, j,0, i,0)T

f o r (i = 0 ; i < 2 ∗ d e g r e e − 1 ; i ++)
S1 : z [i] = 0 ;

f o r (j = 0 ; j <= d e g r e e ; j ++)
f o r (i = 0 ; i <= d e g r e e ; i ++)

S2 : z [i + j] += x [i] ∗ y [j] ;

(a) Possible scheduling functions for loop interchange (b) Target code

Figure 5.4: Loop interchange for polynomial multiplication using different schedules

Unified transformation frameworks like UTF [Kel96] or URUK [CGP+05] or CHiLL [CCH08] or
the one presented in Section 3.3.2 are good examples of multi-dimensional schedule policies. All ask for
(2ρ(S)+1) dimensions which allow them to be much more flexible (in the case of the technique detailed
in this document, this is a minimum). Nevertheless, using additional dimensions has a cost. In time:
because each dimension needs costly polyhedral operations (projection/separation/sorting). In space:
each dimension implies (1) a new column in the constraint matrix, (2) as many rows as new constraints
and (3) a new level in the generated code tree.

Most of the time, additional dimensions are scalar, i.e. they are constant for every scheduling func-
tions. Because polyhedral operations on such dimensions are trivial, we systematically remove them
from the constraint matrix, storing the scalar values in ad-hoc vectors. In the following, scalar dimen-
sions will be implicitly stripped away from the schedule matrices. Polyhedral operations as usual with
the additional provision that, before each separation step, we order the polyhedra according to the appro-
priate scalar vector components. Further steps of the code generation algorithm are applied onto lists of
polyhedra having the same values for these components.

This optimization benefits from schedule properties without impacting expressiveness. It may dra-
matically reduce the number of polyhedral operations, improving both time and space complexity. More-

88 5. SCALABILITY: FACING THE REAL WORLD

over, it also reduces the cost (in time and space) of every single polyhedral operation, by reducing matrix
size. In practice, the actual benefits depend on the transformation policy: the more the constant scalar
dimensions, the better the results. Also, this step has a very low complexity and thus does not degrade
computation time even in worst case scenarios. Figure 5.5 shows the results when applying this optimiza-
tion to our reference code generation problems. The scalar ratio gives the number of scalar dimensions
with respect to the total number of dimensions, showing that the different teams which provided their
problems do use scalar dimensions. This results into significant time and space improvement, except for
the last program.

Time Space
Benchmark Scalar ratio Original(s) Scalar(s) Speedup Original(KB) Scalar(KB) Reduction
Swim 6/11 41.20 10.33 3.99× 17480 8128 2.15×
QR 4/7 19.47 2.44 7.98× 3012 988 3.05×
Classen 3/7 1.12 0.69 1.62× 1092 672 1.62×
DreamupT3 0/1 0.49 0.49 1.00× 160 160 1.00×

Figure 5.5: Experimental results for scalar dimension removal

Node Fusion

When specifying transformations for a program with many statements, the processing is often similar for
several statements, at least for some dimensions. For instance, applying a given transformation (same
schedules) to some statements of a given loop nest (same domains) allow to consider only one statement
block. The modified version of the QRW algorithm [CB-Bas04a] is given in Figure 5.6 and exploits the
similarities of the transformations on certain dimensions for different statements.

CodeGeneration: builds an AST (Abstract Syntax Tree) scanning a list of polyhedra
Input:
node: flat AST holding the domains to scan
context: static context (known constraints met by the parameters)
depth: the nesting level

Output: An AST scanning the polyhedra in the lexicographic order

AST ← /0

while node has successors
1 Intersect node.domain with the context
2 Project intersected domain on the depth outermost dimensions and on parameters
3 node ← node.next

if nodes have scalar values at depth and they are different
4 Sort nodes according to their scalar values at depth
5 worklist ← partition nodes by scalar values

foreach job in worklist
6 fusedlist ← Fuse nodes of job with the same projected intersected domain
7 separatedlist ← Apply QRW’s separation step to fusedlist
8 sortedlist ← Sort separatedlist according to the lexicographic order

foreach ASTnode in sortedlist
if ASTnode.domain dimensionality > depth

9 ASTnode.inner = CodeGeneration(ASTnode.node, context, depth+1)
10 Enqueue ASTnode to AST

return AST

Figure 5.6: Extended Code Generation Algorithm

Steps 4 and 5 create work-lists that fully take advantage of the detection of scalar dimensions de-

5.2. CODE GENERATION SCALABILITY 89

scribed in Section 5.2.1. Step 6 examines nodes of each job of the work-list and tries to fuse them into
sub-work-lists to reduce the number of elements given to the QRW algorithm as much as possible. Node
fusion occurs at current depth on the projected domains and is guaranteed to exploit similarities between
schedules at each nesting level independently. The complexity gain of Steps 4, 5 and 6 is difficult to
quantify as it depends on the shape of the generated code itself and transformation similarities across
different statements.

Considering a simple case with n statements in a loop nest level that can be blocked into c chunks
of sc statements with same scalar components. Suppose each chunk can further be blocked into bc

blocks of lbc ≤ sc statements with same projected domains. This translates to ∑bc (QRW(lbc)) instead
of QRW(n) which stands for a call to the QRW separation algorithm that has a worst-case complexity
of 3n. Furthermore, Step 8 also benefits from the reduction above and allows for ∑bc (Sort(lbc)) instead
of Sort(n) which stands for a call to a function sorting n polyhedra that also has an exponential worst
case complexity. Experimental results are summarized in Figure 5.7. As expected, this technique is quite
useful for large problems like Swim.

Time Space
Benchmark Original(s) Fused(s) Speedup Original(KB) Fused(KB) Reduction
Swim 41.20 5.90 6.98× 17480 5048 3.46×
QR 19.47 19.17 1.02× 3012 2992 1.01×
Classen 1.12 1.03 1.09× 1092 1060 1.03×
DreamupT3 0.49 0.49 1.00× 160 160 1.00×

Figure 5.7: Experimental results on node fusion

Domain Iterators

It is well known that code generation is easier when restricting the problem to invertible schedules [Xue94,
QRW00]. CLooG was the first tool to seamlessly manage non-invertible schedules, at the cost of addi-
tional recursion steps, polyhedral projections and larger matrix sizes in the QRW algorithm [CB-Bas03,
CB-Bas04a]. For scalability reasons, we propose to detect non-singularity conditions and refine the re-
cursive AST traversal automatically. Indeed, when considering invertible transformations, the value of
the original domain iterators (used, e.g., in the statement bodies) according to the target space iterators
can be efficiently obtained via matrix inversion (instead of recursive polyhedral projections).

Let θ(~ı) = T ·~ı+Tp ·~p be a schedule transformation where T is invertible, and consider an iteration
domain D : A ·~ı+Ap ·~p≥ 0. The mapping T can be broken down into two distinct components:

• a polyhedron to scan (Figure 5.8) obtained by projecting T on time iterators and parameters only;

• an inverted scatter matrix (ISM) that associates, locally to each statement, the expression of the do-
main iterators as invertible functions of time iterators and parameters. When T is non-unimodular,
T−1 has rational coefficients. Let (di, j) be the denominators of T−1, by taking λi = lcm(di,•) we
define Λ = Diag(λi) as the diagonal matrix where the diagonal element of the ith line is λi. The
left multiplication of the matrix representation of T by (ΛT−1 |0) yields an integral matrix, the
ISM in Figure 5.9.

The benefits brought to the separation algorithm are threefold and contribute to possibly exponential
complexity gains:

90 5. SCALABILITY: FACING THE REAL WORLD

T ⊥
(

~t 0 0
0 0 ~p

)

Figure 5.8: Simplified time-extended domain

(
ΛT−1 −Λ

)(~t
~ı

)
−ΛT−1Tp~p = 0

Figure 5.9: ISM to recover the domain iterators

• it is straightforward to write domain iterators as expressions of time iterators and parameters from
Figure 5.9 instead of performing costly polyhedral projections on each domain iterator;

• the column number of each polyhedron to scan is reduced by the number of domain iterators
(potentially half the original size if there are no parameters);

• the height of the generated AST is reduced on each path to every statement by the same amount
above. However the paths subject to reduction are linear and save no branches from the original
AST but still save polyhedral projections.

The Swim benchmark has invertible schedules only (this is a strong assumption of the URUK frame-
work [CGP+05]), but this is not the case for the other benchmarks. We could therefore evaluate this
optimization to Swim only, yielding 36% reduction in code generation time and 57% reduction in mem-
ory usage. We are working on extending this domain iterator elimination technique to all kinds of non-
invertible schedules, combining Gaussian elimination steps with polyhedral projections.

If Conditional Hoisting

Under complex transformation sequences, the top-down part of the QRW code generation algorithm
[QRW00] yields if conditionals that greatly hamper the quality of the generated code and thus, its
execution time. Figure 5.10 exhibits this behavior on a basic example: generating a code for scanning
the polyhedra of Figure 5.10(a) using the algorithm in Figure 5.6 would lead to the code in Figure 5.10(b).
This figure shows internal guards leading to a high control-overhead.

The approach presented in [QRW00] for removing inner if conditionals and generating a better code
such as the one in Figure 5.10(c) consists of a backtracking call to the separation procedure. Although it
proved successful at performing its primary task, its side effects can yield unnecessary computation and
code bloating. The aforementioned algorithm lacks the capability of factorizing similar conditionals.
Examine a node at depth d after the separation phase. Assume the separation has generated an inner
conditional c which depends only on the i first dimension iterators, i < d. During the backtracking called
at depth d, the original algorithm [QRW00] and its first extension in [CB-Bas04a] perform separation
regardless of the condition c. Therefore, costly polyhedral operations have been made while only a
separation at depth i was necessary. Focusing only on conditionals also avoids to version triangular loops
which may not execute only for specific values of the outer loop counters. For instance, in Figure 5.10(c)

5.2. CODE GENERATION SCALABILITY 91

..

. Instance of S1
Instance of S2
Instance of S3

21

1

. . . n

n

j

2

i

f o r (i =1 ; i <=n ; i ++) {
i f (i ==n) {

S1 (i , n) ;
S2 (i , n) ;
S3 (i , n) ;

}
i f (i <=n−1) {

S1 (i , i) ;
S2 (i , i) ;

}
f o r (j = i +1 ; j <=n−1; j ++)

S2 (i , j) ;
i f (i <=n−1) {

S2 (i , n) ;
S3 (i , n) ;

}
}

f o r (i =1 ; i <=n−1; i ++) {
S1 (i , i) ;
S2 (i , i) ;
f o r (j = i +1 ; j <=n−1; j ++)

S2 (i , j) ;
S2 (j , n) ;
S3 (j , n) ;

}
S1 (n , n) ;
S2 (n , n) ;
S3 (n , n) ;

(a) Domains to scan (b) Before if-hoisting (c) After if-hoisting

Figure 5.10: Removing internal guards with if-hoisting

the j-loop does not iterate for i = n−1; removing this negligible control overhead would increase code
size by 50%.

Our solution boils down to a depth-first traversal of the AST, fetching all the conditionals of sub-
sequent domains for the current nesting level, factorizing them by performing polyhedral separation
(intersection and difference) on conditionals relevant to the current depth only, and intersecting these
newfound conditionals with the current domain, duplicating the underlying AST structure. The algo-
rithm, which intervenes as a post pass after separation guarantees no unnecessary cuts are performed and
therefore avoids unnecessary code explosion. Figure 5.11 shows the duplication factor results on the four
reference benchmarks, i.e., the number of computational statements in the generated code divided by the
number of statements in the polyhedral representation, a reasonable metric for code quality [CB-Bas03].
These results show strong code size reductions can be achieved through our improved if-hoisting phase.
The relatively low duplication factor for Swim (2.5) is also a very good indication of the applicability
and scalability of polyhedral techniques to larger optimization and parallelization problems. Eventually,
to better isolate the effect of this optimization, the last row (Figure 5.11) reports results for the simple
one-statement matrix multiplication, applying three-dimensional tiling and shifting through the URUK
framework [CGP+05]. It incurs major (yet unavoidable) code bloat, but our technique reduces it by a
factor of 2.5.

Benchmark Original dup. factor if-hoisting dup. factor Reduction
Swim 2.5 2.5 1
QR 107 35 3
Classen 11.5 9.6 1.2
DreamupT3 23.3 4 5.8

MxM 175 69 2.5

Figure 5.11: Experimental results with if-hoisting

5.2.2 Preserving Generated Code Quality

Beyond code generation performance, addressing real-world problems raises generated code quality is-
sues that may not directly emerge from smaller, academic examples. This section investigates four

92 5. SCALABILITY: FACING THE REAL WORLD

of them: first, extending code generation to implement a smarter loop unrolling strategy, and sec-
ond building on this extension to achieve a major step in code generation for strided domains and re-
indexed schedules. The last two solutions are examples of code generation-time optimization that have
been implemented within the Reservoir Labs Inc. R-Stream compiler (see Appendix A) for an effi-
cient mapping to architectures where control or access function overhead is critical such as ClearSpeed
CSX700 [Cle08b, CB-BVL+09]: mapping simplification and full-tile extraction.

Enabling Strip-Mining for Unrolling

In most cases, loop unrolling can be implemented as a combination of strip-mining and full unrolling
[Wol95]. Strip-mining itself may be implemented in several ways in a polyhedral setting. Calling b the
strip-mining factor, we choose to model a strip-mined loop by dividing the iteration span of the outer
loop by b instead of leaving the bounds unchanged and inserting a non-unit stride b:

f o r (t =`(~ı) ; t <=u(~ı) ; t ++)

⇓ strip-mine(b)

f o r (t 1 =
⌈
`(~ı)
b

⌉
; t1 <=

⌊
u(~ı)

b

⌋
; t 1 ++)

f o r (t 2 =max (`(~ı) , b∗ t 1) ; t2 <=min (u(~ı) , b∗ t 1 +b−1); t 2 ++)

This design preserves the convexity of the polyhedra representing the transformed code, alleviating the
need for specific stride-recognition mechanisms (based, e.g., on the Hermite normal form).

In Figure 5.12(b) we can see how strip-mining by a factor of 2 the original code of Figure 5.12(a)
yields an internal loop with non-trivial bounds. It can be very useful to unroll the innermost loop to
exhibit register reuse (a.k.a. register tiling), relax scheduling constraints and diminish the impact of
control on useful code. However, unrolling requires to cut the domains so that min and max constraints
disappear from loop bounds. Our method derives from our if-hoisting strategy; the difference lies in
the selection of conditionals. For the purpose of if-hoisting (see Section 5.2.1), we just had to pick the
constraints that did not concern the node at current depth. Here we focus on finding conditionals (lower
bound and upper bound) for the current depth, such that their difference is a non-parametric constant:
the unrolling factor. Hoisting these conditionals actually amounts to splitting the outer strip-mined loop
into a kernel part where the inner strip-mined loop will be fully unrolled, and a remainder part (not
unrollable) spanning at most as many iterations as the strip-mining factor. In our example, the conditions
associated with a constant trip-count (equal to 2) are t2>=2*t1 and t2<=2*t1+1 and are associated with
the kernel, separated from the prologue where 2*t1<M and from the epilogue where 2*t1+1>N. This
separation leads to the more desirable form of Figure 5.12(c).

Finally, instead of implementing loop unrolling in the intermediate representation of our framework,
we delay it to the code generation phase and perform full loop unrolling in a lazy way, avoiding the added
(exponential) complexity on the separation algorithm. This approach relies on a preliminary strip-mine
step that determines the amount of partial unrolling.

Removing Modulo Conditions

When mappings T are Z-polyhedra (a.k.a. lattice polyhedra), the generated code shows modulo con-
ditions. The modulo guards guarantee that only the iterations that belong to the original domain are

5.2. CODE GENERATION SCALABILITY 93

f o r (t =M; t <=N; t ++)
S1 (t) ;

f o r (t 1 =M/ 2 ; t1 <=(N+ 1) / 2 ; t 1 ++)
f o r (t 2 =max (M, 2∗ t 1) ;

t2 <=min (N, 2∗ t 1 + 1) ; t 2 ++)
S1 (t 2) ;

i f (M%2==1)
S1 (M) ;

f o r (t 1 =(M+ 1) / 2 ;
t1 <=(N−1) / 2 ; t 1 ++)

S1 (2∗ t 1) ;
S1 (2∗ t 1 + 1) ;

i f (N%2==0)
S1 (N) ;

(a) Original code (b) Strip-mining of 2 (c) Separation & unrolling

Figure 5.12: Strip-mining and unrolling transformation

scanned in the generated code. For instance, if the ISM of a statement S (see section 5.2.1) that gives
the value of the original domain iterators (e.g., i) according to the transformed space iterators (e.g., t)
gives 2i = t, the execution of the statement S will be guarded with if (t%2 == 0). This situation happens
either when the mapping corresponds to a non-unimodular transformation or when the original domains
D are Z-polyhedra. Both cases boil down to the same code generation problem. We will only detail the
solution in the case of invertible, non-unimodular schedules, for a complete modulo condition removal
scheme, the reader should refer to Vasilache’s thesis [Vas07].

The consequence of generating modulo guards is to introduce a high control overhead. Many solu-
tions have been suggested to avoid them. The first idea was to compute an appropriate loop stride. At
first it was done using the Hermite Normal Form [LP94, Xue94, DR94, Ram95], but this was limited
to only one domain, then by considering the transformation expression itself [KPR95, CB-Bas03], but
some guards cannot be removed in this way. More recent methods suggest to use strip-mining for one
domain [FO05], or to find equivalent transformations with convenient additional dimensions when this is
possible [Gri04], or to unroll the loops according to a convenient unroll factor in the case where modulo
guards depend on only one loop counter [Gri04]. Here we give a general algorithm to drastically reduce
the number of modulo guards inside the loops and even void them all in the loop kernels.

Consider a simple example with two statements, where S1 has the one-dimensional schedule 2t−5
and S2 has the one-dimensional schedule 3t. In other words, the rate of S1 is 50% higher than S2 and is
shifted ahead by 5 iterations. This example is derived from the low-level scheduling and code generation
for a software-pipelined FIR filter, where one functional unit (a multiplier in S1) is needed at a 50%
higher rate than a another one (an adder in S2), and S2 depends on S1. Due to the combined reindexing
(factors 2 and 3 in the schedule) and shifting (by 5 iterations), traditional techniques to avoid modulo
expressions cannot be applied [CB-Bas03], and existing code generators yield the inefficient code of
Figure 5.13. Our technique eliminates modulo expressions completely from the kernel part (the hot path)
of the generated code, without code bloat, and generates the much more efficient version in Figure 5.14.
On this simple example, our technique achieves a 67% reduction in generated code execution-time, with
respect to the more naive one with modulo expressions.

In the general case, the main problem resides in the lower bound of the mapped domain [DR94,
Ram95, Xue94] whose value modulo the stride factor must be known in order to exhibit a regular pattern
in the loop body. This lower bound can be viewed as a pattern alignment synchronization barrier for S1
and S2. Indeed, parametric schedules with non-unit stride factors may generate as many different loop
body patterns as the least common multiplier of these strides; notice these patterns are not identical (in
general) up to loop body “rotations”. The only solution to thoroughly eliminate modulo conditions is
multi-versioning, but it results in severe code bloat for stride factors over 2 or 3.

Our approach consists in forcing pattern synchronization by strip-mining the original loop by a factor

94 5. SCALABILITY: FACING THE REAL WORLD

(. . .)
/ / s o f t w a r e p i p e l i n e k e r n e l
f o r (t =5 ; t <=2∗N−2; t ++) {

i f ((t−5)%3 == 0)
S2 (i = (t −5) / 3) ;

i f (t%2 == 0)
S1 (i = t / 2) ;

}
(. . .)

Figure 5.13: Usual Solution

/ / p r o l o g u e
S2 (0) ;
/ / k e r n e l code w i t h S1 and S2 s y n c h r o n i z e d modulo 6
f o r (t 1 =1; t1 <= f l o o r d (N−4 ,3) ; t 1 ++) {

S1 (i = 3∗ t 1) ; / / t2%6 = 0
S2 (i = 2∗ t1 −1); / /
S1 (i = 3∗ t 1 + 1) ; / / t2%6 = 2
S1 (i = 3∗ t 1 + 2) ; / / t2%6 = 3
S2 (i = 2∗ t 1) ; / / t2%6 = 4

}
/ / e p i l o g u e
f o r (t 1 = c e i l d (N−3 ,3) ; t1 <= f l o o r d (N−1 ,3) ; t 1 ++) {

f o r (t 2 =6∗ t 1 ; t2 <=2∗N−2; t 2 ++) {
i f ((− t 2 +5)%3 == 0)

S2 (i = (t2 −5) / 3) ;
i f (− t 2%2 == 0)

S1 (i = t 2 / 2) ;
}

}

Figure 5.14: Software-Pipelined Solution

that is yet to determine. This amounts to extracting a prologue and an epilogue from the unrollable kernel,
yielding the much more efficient solution of Figure 5.14. Using this method, the prologue and epilogue
still contain internal modulo conditions whereas the kernel (where the vast majority of the execution time
is spent) can be unrolled. This approach is effective on a large class of “well-behaved” schedules. We
will argue at the end of this section that the other “ill-behaved” schedules are intrinsically code-bloating
if modulo expression elimination is to be attempted.

The previous case having the sole purpose of stating the problem simply, we now outline the general
algorithm. This step takes place after the separation, if-hoisting, and lazy unrolling steps. From the
Inverse Scatter Matrix (ISM) shown in Figure 5.9, we can derive that the ith original loop iterator xi

corresponding to a given statement S can be expressed thanks to the ith line of its ISM formula: λi · xi =(
∑ j (ki, j · t j)+C

)
, where C is the constant parametric part. It follows, a modulo condition that rules the

execution of S is
(
∑ j (ki, j · t j)+C

)
mod λi = 0. Let us first assume that C is known at compile time. The

point is to statically determine the values of (ki, j · t j) mod λi for all i and j to be able to remove all the
modulo guards. For that purpose, for each node of the AST at depth j, the time dimension t j will be
unrolled by the least common multiplier over all statements under this node (at depth j) of

lcm j = lcm
{i|ki, j 6=0}

(
λi/gcd(ki, j,λi)

)
.

Unrolling by this factor yields as many instances of t j for which we statically know the value modulo
λi. For a given loop node at depth d, the least common multiplier of all such unrolling factors yields the
global unrolling factor lcm j that is necessary for static elimination of all internal modulo conditions. To
enable unrolling, a new time dimension is introduced by strip-mining by lcm j. This new dimension scans
the same points as the old time dimension, with the additional property that its first iteration is divisible
by lcm j, thus achieving the required synchronization of all statements to a statically known pattern.
Building on the strip-mining method introduced in Section 5.2.2, the strip-mined loop is actually split
into a prologue, a so-called zero-aligned kernel, and an epilogue. By construction, the zero-aligned kernel
has the important property that its outer strip-mined loop scans multiples of lcm j only. Thanks to this

5.2. CODE GENERATION SCALABILITY 95

property, and having fully unrolled the inner strip-mined loop, we may statically evaluate the remainder
of the division of the inner strip-mined loop’s iterator by lcm j. Applying this systematically to all depths
where lcm j is greater than 1 allows all modulo conditions to be removed from the zero-aligned kernel
only.

RemoveModuloGuards: removes modulo conditionals from loop kernels
Input:
node: AST root node
depth: the depth of the modulo conditional

Output: an AST without modulo conditionals in loop nest kernel

nodelist ← empty list
while node has successors
if node is a for loop

1 compute lcmdepth
if lcmdepth > 1

2 kernel.inner ← new time dimension between tdepth and tdepth+1 with constraints
lcmdepth× tdepth ≤ tnew ≤ lcmdepth× tdepth +

(
lcmdepth−1

)
3 Update all the statement informations (domains and ISMs) with the new dimension
4 Strip-mine and partition node.domain in prologue, zero-aligned kernel, and epilogue
5 Enqueue prologue, kernel and epilogue to nodelist
6 Unroll kernel with respect to tnew
7 RemoveModuloGuards(kernel.inner.inner, depth+2)

else
8 RemoveModuloGuards(node.inner, depth+1)

else node is a statement
9 Prune node off the AST if needed

node ← node.next

return nodelist

Figure 5.15: RemoveModuloGuards Algorithm

The algorithm in Figure 5.15 describes how to introduce new time dimensions and unroll them so
as to eliminate modulo conditions. Step 9 is actually not trivial. When reaching the leaves of the AST,
we need to determine which modulo guards have been simplified, which ones are still necessary and
which ones have become unfeasible. Having strip-mined (and unrolled) by the factor lcmdepth, we have
forced newly created time iterators on the path to the innermost kernel to be divisible by λi. If all the
components of an ISM line i are divisible by λi, then the modulo condition is always true and needs not
to be printed. If all the components are divisible by λi but not the constant part, the modulo condition is
always false and the statement should be pruned. In the last case, the modulo condition for line i needs
to be printed, but at least its expression simpler (and faster to evaluate) than it would have been without
strip-mining and unrolling.

Had we wished to fully unroll and had we used versioning, we could have generated an unreasonable
number of versions (up to the factorial of lcmdepth). Our algorithm manages to fully unroll the kernel only,
where most computation time is spent, while the prologues and epilogues (with modulo conditions) hold
at most lcmdepth−1 iterations.

When the value of constant parametric shift component C modulo lcmdepth is not statically known,
it is impossible to statically determine an interleaving pattern. Synchronizing the values of time iterators
modulo lcmdepth does not help and even leads to the insertion of internal modulo conditions. Nonetheless,
one can argue on the interest of schedules that do not exhibit a regular pattern: the interleaving of state-
ments itself totally changes with the values of parameters, hence is intrinsically tied to multi-versioning.

96 5. SCALABILITY: FACING THE REAL WORLD

Mapping Simplification

Once a transformation has been computed to optimize a program, it is possible to find another, equiv-
alent transformation, such that the relative order between the various iterations is not modified [Vas07,
CB-Bas04b]. A simple example is the shifting transformation: if all the iterations of all statements are
shifted in the same way, the relative order is not changed, thus the original and the shifted transforma-
tion are equivalent. The R-Stream compiler (see Appendix A) uses this property to iteratively compute
an equivalent transformations (based on compositions of shifting and skewing transformations) in or-
der to simplify the subscript functions of the array accessed inside a loop. This phase relies on a cost
model to find the best simplification. This may be critical for some target architecture. For instance
on ClearSpeed, there is a significant penalty when an expression involves the processing element num-
ber [Cle08b, Cle08a]. R-Stream extends its cost model to avoid such expressions. As an example,
Figure 5.16 shows the internal tile kernel of a matrix multiplication after mapping by R-Stream, before
simplification in Figure 5.16(a), where PROC0 stands for the processing element number. Thanks to the
simplification, it can be transformed to the one in Figure 5.16(b).

p a r a l l e l f o r (t = 384∗ i +4∗PROC0 ; t <= 384∗ i +4∗PROC0+3; t ++)
p a r a l l e l f o r (m = 8∗ j ; m <= 8∗ j +7 ; m++)

r e d u c t i o n f o r (n = 64∗k ; n <= 64∗k +63; n ++)
C_t [−384∗ i + t−4∗PROC0][−8∗ j +m] += A_t [−384∗ i + t−4∗PROC0][−64∗k+n] ∗

B_t [−8∗ j +m][−64∗k+n] ;

(a) Internal Kernel Without Simplification

p a r a l l e l f o r (t = 0 ; t <= 3 ; t ++)
p a r a l l e l f o r (m = 0 ; m <= 7 ; m++)

r e d u c t i o n f o r (n = 0 ; n <= 6 3 ; n ++)
C_t [t ,m] += A_t [t , n] ∗ B_t [m, n] ;

(b) Simplified Internal Kernel

Figure 5.16: Example of Transformation Simplification For Matrix-Multiply Internal Kernel

Full-Tile Extraction & Normalization

When applying the tiling optimization [Wol87, IT88], it may not always be possible to generate tiles of
the same shape. This may happen because either the original iteration domain is complex or the algo-
rithm used to enable tiling cannot guarantee this property. When tiles have to be distributed between the
processing elements of an hardware accelerator such as a GPGPU or ClearSpeed, it may cause perfor-
mance penalty because a processing element (PE) may have to execute a tile of a different shape than
other processing elements, i.e., introducing costly expressions involving the processing element coordi-
nates. Using ClearSpeed terminology, PE coordinates are poly variables, and expressions using them are
poly expressions [Cle08a].

Such a situation is illustrated in Figure 5.17. The figure shows the polynomial multiplication kernel
of Figure 2.1 with a rectangular iteration domain (Figure 5.17(a)) that requires a transformation of its iter-
ation space called skewing to expose parallelism (Figure 5.17(b)). Then we use the extracted parallelism
to create blocks of workload to be distributed across the processing elements thanks to the tiling transfor-

5.2. CODE GENERATION SCALABILITY 97

mation, in our example for the 96 PEs of the ClearSpeed CSX700 architecture [Cle08b, CB-BVL+09].
The tiled code is shown in Figure 5.17(c) (for clarity reasons we keep the outer loop on the PEs visible
and we do not show explicit memory transfers). The outermost loop on the iterator i is the parallel loop
on the 96 PEs. Hence i is a poly variable and all expressions using i are poly expressions. It follows
that due to a snowball effect, all loops in this tiled code are inefficient poly loops.

The reason for this situation is that the same code is used to perform the workload of the full tiles
(that have a fixed size determined by the compiler) as well as the partial tiles. Because the compiler
knows which loops iterate over the tiles and which loops actually achieve the workload inside a tile, it is
possible to separate the processing of the full tiles and the partial tiles.

This separation is done at the code generation step. For each statement, we start by determining a set
of conditions (a lower bound and an upper bound) on each intra-tile dimension that ensures a constant
number of iterations are spanned by the given intra-tile dimension. We perform this extraction for each
intra-tile dimension. We subsequently perform projections to derive the necessary conditions exclusively
on the inter-tile dimensions to derive a full tile. These necessary conditions are attached to each statement
as a predicate at the start of polyhedra scanning. When the first inter-tile dimension is reached during
scanning, the predicates for all statements are combined and separated. The combined predicates are
intersected into each statement’s domain and a clone of the statement is created with the negation of this
predicate. Polyhedral domain simplification occurs to cleanup redundancies. After this transformation,
the trip count of every intra-tile loop is constant but their bounds may still depend on the PE number to
reflect their position in the original iteration space. A last step of normalization to 0 moves the offset to
the statement expressions and allows the intra-tile loops to be non-poly.

Applying this code generation scheme to our example leads to the code in Figure 5.17(d). In this
code, there are two parts. The first one corresponds to the full tiles where the inner loops (intra-tile) have
constant bounds and are non poly. The second part is devoted to scanning the partial tiles and have poly
intra-tile loops. Unfortunately because of the normalization, the array subscripts in the statements are
more complex. However (without other positive memory transfer effects), the final code in Figure 5.17(d)
is 30% faster than the one in Figure 5.17(c). The construction of full-tiles has already been used, for
instance when considering parametric tiling [CB-HBB+09], however, to the best of our knowledge, this
is the first solution proposed as a code generation step in the polyhedral model and applied to the control
overhead minimization problem.

5.2.3 Putting it All Together

Let us combine all the previous optimizations and summarize the total improvements in code generation
time, memory usage and generated code size. To further stress the scalability of our tool, we added a more
complex optimization of the Swim benchmark, called Swim+, in its most general setting with 5 parameters
(without context). Those results present strong and consistent improvements on code generation time and
memory footprint while reducing the generated code size significantly.

5.2.4 Related Work

The history of code generation in the polyhedral model shows a constant growth in transformation com-
plexity, from basic schedules for a single statement to general affine transformations for wide code re-
gions. In their seminal work, Ancourt and Irigoin limited transformations to unimodular functions (the
transformation matrix has determinant 1 or −1) and the code generation process was applicable for only

98 5. SCALABILITY: FACING THE REAL WORLD

f o r (i = 0 ; i < N; i ++)
f o r (j = 0 ; j < N; j ++)

z [i + j] += x [i] ∗ y [j] ;

i

j

(a) Original Kernel with Rectangular Iteration Domain

p a r a l l e l f o r (i = 0 ; i <= 2∗N−2; i ++)
f o r (j = max (0 , i−N+ 1) ; j <= min (N−1, i) ; j ++)

z [i] += x [j] ∗ y [i − j] ;

i

j

(b) Extraction of a Parallel Loop by Iteration Domain Skewing

p a r a l l e l f o r (i = 0 ; i <= 9 5 ; i ++)
p a r a l l e l f o r (j = (95 − i) / 9 6 ;

j <= f l o o r d (−116 ∗ i + N − 1 , 1 1 1 3 6) ; j ++)
f o r (k = max ((2 3 2∗ i + 22272∗ j − N + 1) / 152 , 0) ;

k <= min (f l o o r d (N − 1 , 1 5 2) ,
(29∗ i + 2784∗ j + 2821) / 19 − 1 4 7) ; k ++)

p a r a l l e l f o r (l = max (232∗ i + 22272∗ j , 152∗k) ;
l <= min (2∗N + −2, 152∗k + N + 150 ,

232∗ i + 22272∗ j + 2 3 1) ; l ++)
f o r (m = max (152∗k , l − N + 1) ;

m <= min (N − 1 , 152∗k + 151 , l) ; m++)
z [l] += x [m] ∗ y [l − m] ;

Partial Tile

i

j
or

Full Tile

(c) Tiling of 232x152 With an Outer Loop On the PEs Number

p a r a l l e l f o r (i = 0 ; i <= 9 5 ; i ++) {
p a r a l l e l f o r (j = (95 − i) / 9 6 ; j <= f l o o r d (−52∗ i + N + −1, 4 9 9 2) ; j ++) {

f o r (k = max (0 , (104∗ i + 9984∗ j − N + 1) / 152) ;
k <= min (f l o o r d (N − 1 , 1 5 2) , (13∗ i + 1248∗ j + 1285) / 19 − 6 7) ; k ++) {

i f (−104∗ i −9984∗ j + 152∗k + N >= 104) {
i f (104∗ i + 9984∗ j − N >= −1 && −152∗k + N >= 152) {

p a r a l l e l f o r (l = 0 ; l <= 103 ; l ++) {
f o r (m = 0 ; m <= 151 ; m++) {

z [l − 104∗ i − 9984∗ j] += x [m − 152∗k] ∗ y [l − 104∗ i − 9984∗ j − m − 152∗k] ;
}

}
}
i f (−104∗ i −9984∗ j + N >= 2 && 13∗ i + 1248∗ j −19∗k >= 19) {

p a r a l l e l f o r (l = 0 ; l <= 103 ; l ++) {
f o r (m = 0 ; m <= 151 ; m++) {

z [l − 104∗ i − 9984∗ j] += x [m − 152∗k] ∗ y [l − 104∗ i − 9984∗ j − m − 152∗k] ;
}

}
}

}
i f (! (−152∗ k + N >= 152 && −104∗ i −9984∗ j + 152∗k + N >= 104 &&

104∗ i + 9984∗ j − N >= −1 | | 13∗ i + 1248∗ j − 19∗k >= 19 &&
−104∗ i − 9984∗ j + N >= 2 && −104∗ i −9984∗ j + 152∗k + N >= 1 0 4)) {

p a r a l l e l f o r (l = max (152∗k , 104∗ i + 9984∗ j) ;
l <= min (104∗ i + 9984∗ j + 103 , 2∗N − 2 , 152∗k + N + 1 5 0) ; l ++) {

f o r (m = max (l − N + 1 , 152∗k) ; m <= min (N − 1 , 152∗k + 151 , l) ; m++) {
z [l] += x [m] ∗ y [l − m] ;

}
}

}
}

}
}

(d) Code After Full Tile Extraction & Normalization

Figure 5.17: Full Tile Extraction & Normalization for Polynomial Multiplication

5.3. CONCLUSION 99

Time Space Code size
Benchmark Orig.(s) Opt.(s) Speedup Orig.(KB) Opt.(KB) Reduction Orig.(Lines) Opt.(Lines) Reduction
Swim 41.20 2.41 17.09× 17480 2380 7.34× 830 764 1.09×
Swim+ 1219.67 21.62 56.41× 322624 22180 14.55× 17791 12041 1.48×
QR 19.47 2.42 8.05× 3012 988 3.05× 4733 1432 3.33×
Classen 1.12 0.25 4.48× 1092 272 4.01× 130 105 1.24×
DreamupT3 0.49 0.20 2.45× 160 160 1.00× 382 68 5.62×

Figure 5.18: Summary of experimental results

one domain at once [AI91]. Several works succeeded in relaxing the unimodularity constraint to in-
vertibility (the transformation matrix has to be invertible), enlarging the set of possible transformations
[LP94, Xue94, DR94, Ram95]. They all used the Hermite Normal Form [Sch86] to avoid scanning inte-
gers points that have no corresponding points in the initial space. Griebl, Lengauer and Wetzel [GLW98]
relaxed the constraints of code generation further to transformation matrices with non-full rank, relying
on a completion algorithm, and also presented preliminary techniques for scanning several polyhedra
using a single loop nest. A further step has been achieved by Kelly et al. by considering more than one
domain and multiple scheduling functions at the same time [KP95]. This methods has been recently
revisited by Chen to reduce significantly the control overhead in generated codes [Che12].

All these methods relies on the Fourier-Motzkin elimination method [Sch86] to build the target code.
Two alternative have been suggested. First, Boulet and Feautrier presented a code generation technique
based on Parametric Integer Programming [BF98]. Second, Le Verge, Van Dongen and Wilde showed
how to use polyhedral operations based on the Chernikova Algorithm [Le 92] instead, to benefit from its
practical efficiency to handle bigger problems. Quilleré et al. showed a generalization of this work to sev-
eral polyhedra [QRW00], known as the QRW algorithm. I presented a transformation policy to allow gen-
eral non-invertible, non-uniform, non-integral affine transformations and several extensions to the QRW
algorithm to build a robust implementation of this algorithm and to minimize generated control over-
head [CB-Bas03, CB-Bas04a]. Further extensions have been proposed by Vasilache et al. [CB-VBC06].
Such freedom allowed to apply polyhedral techniques to much larger programs with very sophisticated
transformations, and led to novel complexity, scalability and code quality challenges discussed in this
chapter.

5.3 Conclusion

The polyhedral model is a powerful framework to reason about high level loop transformations. However,
it relies on worst-case exponential algorithms which may hamper its use in production compilers or may
prevent the computation of a (good enough) solution in a reasonable amount of time. In this chapter we
addressed two critical parts of a polyhedral compilation framework: data dependence anaysis and code
generation.

Instance-wise array dependence analysis computes a finite representation of the set of all pairs of
dependent iterations of all statements. This problem has always been considered non-scalable or an
overkill compared to less expressive but faster dependence tests. We presented technical contributions to
instance-wise array dependence analysis, and compelling experimental evidence of its scalability through
the validation on full SPEC CPU2000 benchmarks. This relieves the compiler of the expensive and
cumbersome task of implementing specific legality checks for each single transformation. It also allows,
in the case of invalid transformations, to precisely determine the violated dependences that need to be
corrected.

For a long time, scheduling and placement techniques were many steps forward code generation ca-

100 5. SCALABILITY: FACING THE REAL WORLD

pabilities. In 1992, Feautrier provided a general scheduling technique for multiple polyhedra and general
affine functions [Fea92a]. At this time, the only code generation algorithm available had been designed
in 1991 by Ancourt and Irigoin and supported only one polyhedron and unimodular scheduling func-
tions [AI91]. Some scheduling functions had to wait for nearly one decade to be successfully applied by
a code generator. Recent advances on code generation algorithms [QRW00, CB-Bas04a] made it possi-
ble to compute the target code for hundreds of statements while this code generation step was expected
not to be scalable [GLW98]. Unfortunately, these improvements allowed the exploration of larger, more
complex optimization and parallelization problems, which in turn raised several scalability and code
quality challenges. We presented scalable code generation methods that make possible the application
of complex program transformations to real-world computation kernels with up to 199 statements. By
studying the transformations themselves, we show how it is possible to benefit from their properties
to dramatically improve both code generation quality and space/time complexity. Moreover, building
on these algorithmic improvements, we proposed new techniques to generate more efficient code for
complex mappings involving, e.g., non-unit strides or tiling.

We believe these improvements (already available in some tools, like R-Stream, CLooG and Candl,
see Appendix A) are initiating another virtuous cycle towards allowing polyhedral techniques to bring
dramatic improvements in the effectiveness of optimizing and parallelizing compilers.

101

Chapter 6

Applicability: Beyond Static Control

The ability to perform complex loop nest restructuring is required for optimizing and parallelizing tools,
to cope with the complexity of modern architectures. The widespread adoption of multicore processors
and massively parallel hardware accelerators (GPUs) urges production compilers to provide such capa-
bility. The polyhedral model has demonstrated its potential to achieve portability of performance over a
variety of targets. So far, these successes have been limited to static-control, regular loop nests.

Compilers based on the Polyhedral model, including recent research tools like PoCC [Pou10] or
Pluto [BHRS08] or CHiLL [CCH08], target code parts that exactly fit the affine constraints of the model.
Only loop nests with affine bounds and conditional expressions can be translated to a polyhedral repre-
sentation. The reason behind this limitation is not that exact dependence analysis is required to make use
of the polyhedral model, but rather that there is no general scheme to support dynamic control flow in
the program transformation and code generation algorithms. To fight a common misunderstanding, the
power of the polyhedral model is not to achieve exact data dependence analysis, but to implement compo-
sitions of complex transformations as a single algebraic operation, and to model these transformations
in a convex optimization space [Fea92b, Lim01, CB-GVB+06, CB-PBB+10, CB-PBB+11].

In this chapter, we expand the application domain of the polyhedral model. We present slight ex-
tensions to the representation itself, based on the notions of exit and control predicates that allow to
consider general while loops and if conditions. We revisit the whole framework, from input code anal-
ysis to output code generation, while taking care of preserving expressiveness and flexibility. We present
experimental evidence that this extended framework offers new optimization opportunities for existing
optimization algorithms, and opens the door to novel techniques targeting full functions.

The chapter is organized as follows. Section 6.1 introduces extensions to the classical polyhedral
representation of programs to support irregular control flow. Section 6.2 revisits the polyhedral model to
target full functions, from analysis to code generation. Section 6.3 discusses control overhead and some
solutions. Section 6.4 presents experimental results in the extended framework. Section 6.5 discusses
related work, before the conclusion in Section 6.6.

102 6. APPLICABILITY: BEYOND STATIC CONTROL

6.1 Relaxing the Static Control Constraints

The program model we target is general functions where the only control statements are for loops,
while loops and if conditionals. This means function calls have to be inlined1 and goto, continue and
break statements have been removed thanks to some preprocessing. To move from static control parts
to such general control flow we need to address two issues: (1) modeling loop structures with arbitrary
bounds (typically while loops); and (2) modeling arbitrary conditionals (typically data-dependent ones).
In both cases, it implies to not be anymore able to exactly characterize statically the iteration domain of
statements, which remains the privilege of Static Control Parts.

First, we demonstrate that it is possible to express safe over-approximations of the iteration domains
to allow the construction of a polyhedral representation in the case of arbitrary control-flow.

6.1.1 Modeling Arbitrary Loop Structure

Any arbitrarily iterative structure such as for loops with non-affine bounds or while loops is amenable
to polyhedral representation. As explained in Section 2.1.2, the iteration domain of a statement is a
subset of Zn. The convex hull of all executed instances of any statement, even with a non-polyhedral
iteration domain, is a subset of Zn. Thus, an over-approximation that fits the polyhedral model for
the iteration domain of any statement enclosed in a non-static loop is Zn itself. We actually choose to
over-approximate it as Nn to match the standard loop normalization scheme, represented by the non-
negative half-space polyhedron2. This translates to over-approximate any non-static loop with a static
loop iterating from 0 to infinity. Such over-estimate have been used in the same way by Griebl and
Collard for while loop parallelization [GC95].

To guarantee that the program semantics will be preserved, we introduce an exit predication state-
ment which bears the loop bound check. This statement is executed at the beginning of any iteration of
the infinite loop, and exits the loop thanks to a break instruction if the loop conditional is no longer sat-
isfied. This is summarized in Figure 6.1: we consider the original code in Figure 6.1(a) as the equivalent
code in Figure 6.1(b) with the exit predicate ep(i). As shown on the figure, the exit predicate does not
depend on i on the equivalent code. However, we write ep(i) for consistency with the mathematical
representation. In the case of arbitrary for loops, initialization statements are inserted just before the
loop and at the end of the loop body for the increment. Note that all statements in the body of the loop
depend on the exit predication statement.

Formally, an exit predicate ep(i) is a non-affine constraint such that there exists a value v such that
ep(i) is true for i < v and false otherwise. Each statement S has a set of exit predicates, ES. The exit
predicate is attached to the iteration domain of the predicated statements as illustrated in the example in
Figure 6.1(c).

6.1.2 Modeling Arbitrary Conditionals

We apply a similar reasoning to represent non-affine conditionals. To model such a conditionally ex-
ecuted statement in the polyhedral representation we decouple the regular part of the iteration domain
and the irregular conditional. Again, the polyhedral iteration domain is over-approximated and we need

1Pure functions (without side effects) can be called without being inlined but they will not be optimized using our approach.
2This is reported on the constraint part so we accept values in Zn for consistency with the relation definition shown in

Section 2.1.1, page 17.

6.1. RELAXING THE STATIC CONTROL CONSTRAINTS 103

whi le (c o n d i t i o n) {
S () ;

}

f o r (i = 0 ; ; i ++) {
ep (i) = c o n d i t i o n ;
i f (ep (i))

S (i) ;
e l s e

break ;
}

(a) Original Code (b) Equivalent Code

DS() =

{
()→

(
i
)
∈ Z

∣∣∣∣ep(i) ∈ ES,
[

1 0
](i

1

)
≥~0∧ ep(i)

}
(c) Iteration Domain of S

Figure 6.1: Exit predication

to ensure the semantics is preserved. To do so we introduce a control predication which consists in
predicating individually each statement dominated by the non-static conditional by its condition (similar
to if-conversion).

Formally, a control predicate cp(i) is a non-affine constraint that may be true or false depending on
i. Each statement S has a set of control predicates, CS. This is summarized in Figure 6.2: we consider
the code in Figure 6.2(a) as the equivalent code in Figure 6.2(b) with the control predicate cp(i). This
predicate is attached to the iteration domain of the predicated statements as shown in Figure 6.2(c).

f o r (i = 0 ; i < N; i ++) {
i f (c o n d i t i o n (i))

S (i) ;
}

f o r (i = 0 ; i < N; i ++) {
cp (i) = c o n d i t i o n (i) ;
i f (cp (i))

S (i) ;
}

(a) Original Code (b) Equivalent Code

DS(N) =

()→
(

i
)
∈ Z

∣∣∣∣∣∣cp(i) ∈ CS,

[
1 0 0
−1 1 −1

] i
N
1

≥~0∧ cp(i)


(c) Iteration Domain of S

Figure 6.2: Control predication

Being able to safely describe (from the iteration domain point of view) the convex hull of the dy-
namic control flow is only the first step towards supporting full functions. The following section presents
necessary and sufficient modifications of the framework that allow to transform general codes with poly-
hedral techniques. Our goal is to show that, provided a suitable dependence analysis (static, dynamic or
both), only the code generation step needs to be altered to enable any polyhedral optimization technique
on full functions.

104 6. APPLICABILITY: BEYOND STATIC CONTROL

6.2 Revisiting the Polyhedral Framework

Restructuring programs using the polyhedral model is a three steps framework. First, the Program Anal-
ysis phase aims at translating high level codes to their polyhedral representation and to provide data
dependence analysis based on this representation. Second, some optimizing or parallelizing algorithm
use the analysis to restructure the programs in the polyhedral model. This is the Program Transforma-
tion step. Lastly, the Code Generation step returns back from the polyhedral representation to a high
level program. Targeting full functions requires revisiting the whole framework, from analysis to code
generation.

6.2.1 Program Analysis

Once a function has been translated to the polyhedral model with the predicate extensions described in
Section 6.1, data dependence analysis must be performed. Two statements are said to be in dependence
if they access the same memory reference, and at least one of these accesses is a write. When restricting
the study to SCoPs and to array references with affine subscripts — we talk about static references — it
is possible to compute on which instance (iteration) of a given statement any other instance depends as
detailed in Section 2.2.2 [Fea91, Fea92a].

As we broaden the set of handled programs, we have to deal with dynamic behavior (e.g., while
loops) and structural complexity (e.g. subscript of subscript, as in A[B[i]]). As a result, an exact
analysis is no more possible statically. Instead, we rely on a conservative policy, over-estimating data
dependences, preventing some optimizations when semantics safety is unsure.

Conservative policies are widely used in compilation to achieve an approximate analysis of programs
without slowing down the compiler. GCD-test [Ban76] or I-test [KKP90] are popular examples of such
analysis for array references: they can state thanks to a fast GCD computation that two references do not
depend on each other, then safely consider a dependence relation exists otherwise (for instance, GCC
4.4 relies on a multi-dimensional GCD-test for production and on a more costly but exact Omega-test
[Pug91a] for testing). When dedicated preprocessing techniques fail to simplify complex array references
(typically subscript of subscript or linearized subscripts) it is usual to consider the reference as an access
to a single variable, i.e., to suppose that the whole array is read or written. In the same way, when
array recovery fails to translate pointer-based accesses to explicit array references [FO03], it is usual to
consider a dependence between the pointer access and every previously accessed references. Overall, it
is possible to handle any kind of data access in a conservative way.

A conservative approach for irregular data dependence analysis is adding new statements or new
statement iterations because the only effect is adding extra data dependences, without modifying pre-
existing data-dependences3. It is possible to add any additional statement, as long as it does not modify
immediately the control flow (as break, continue or goto statements). Therefore for data depen-
dence analysis, it is safe to consider that irregular conditions (from while loops as well as if con-
ditionals) are always true. A convenient data dependence analysis for our purpose is described by
Feautrier [Fea92a, Fea92b]. This transformation is not compatible with all analyses because assum-
ing predicates are always true may not be conservative. For instance, it is not convenient for dead
code analysis: in the example in Figure 6.3(a), if both branches are considered to be executed, the first
branch would be considered dead (data are totally over-written by the second branch). In the same way,

3As long as they are not considered to simplify pre-existing data dependences, e.g., when removing transitively covered
data dependences.

6.2. REVISITING THE POLYHEDRAL FRAMEWORK 105

Feautrier’s data-flow analysis [Fea91] that relies on last writer computation is not directly suitable for
our conservative approach.

In this chapter, we transform the program control structures in such a way we only have to deal
with for loops, if conditionals and infinite for loops that fits the polyhedral model. Irregularity has
been spread thanks to control and exit predicates to the iteration domains of irregular-control-surrounded
statements. One can achieve a naive but simple conservative analysis by considering an altered repre-
sentation of the input irregular program called abstract program. We build this representation from the
original program in this way:

1. Introduce control and exit predicates as described in Section 6.1.

2. Predicate evaluations are considered as statements that write the predicate, and read the necessary
data to compute the predicate.

3. Irregular data accesses are modeled conservatively (an array with a complex subscript is considered
as a single variable).

4. Predicated statements are considered to read their predicates.

Writing and reading predicates ensure the semantics is preserved when a statement modifies an element
necessary for the predicate evaluation. Ultimately we may perform on this representation usual data
dependence elimination techniques like array privatization [AK02] then exact data dependence analy-
sis [Fea92a].

We illustrate the construction of the abstract program for conservative data dependence analysis
in Figure 6.3. The considered program in Figure 6.3(a) is an optimized version of the Outer Product
Kernel in the case one vector contains some zeros. The conditional introduces irregular control flow that
usually prevents considering such kernel in the polyhedral model (only the inside of the loop i could be
processed, considering i and x[i] as parameters). The first step is to introduce a control predicate and to
attach it to the predicated statements. The predicate evaluation is considered as a new statement as shown
in Figure 6.3(b). Lastly, we consider the value of the predicate is read by each predicated statement and
that the predicate is always true for conservative data dependence analysis as shown in Figure 6.3(c).
Figure 6.3(c) presents the information sent to the data dependence algorithm (everything is regular): for
each statement, its iteration domain and the sets of written and read references. We may use well known
techniques to remove some dependences. In this example we can privatize p to remove loop-carried
dependence and parallelize the code or even interchange the loops using existing polyhedral techniques.

Discussion

Previous work aim at providing less naive and conservative solutions to avoid, as much as possible, to
consider additional dependences. Griebl and Collard proposed a solution in the context of while loops
parallelization, focusing on control flow [GC95]. Collard et al. extended this approach to support com-
plex data references [CBF95]. Other techniques aim at removing some dependences as, e.g., Value-based
Array Data Dependence Analysis [PW93], Array Region Analysis [CI96] Array SSA [KS98] or Maximal
Static Expansion [BCC98]. These techniques would expose their full potential in the context of manipu-
lating full functions in the polyhedral model to minimize the unavoidable conservative aspects. Combin-
ing these static analyses with dynamic dependence tests [RP95, RRH03, RR03, RPR07, RVRA08] into
hybrid polyhedral/dynamic analyses remains to be investigated.

106 6. APPLICABILITY: BEYOND STATIC CONTROL

f o r (i = 0 ; i < N; i ++) {
i f (x [i] == 0) {

f o r (j =0 ; j < M; j ++)
A[i] [j] = 0 ;

}
e l s e {

f o r (j =0 ; j < M; j ++)
A[i] [j] = x [i] ∗ y [j] ;

}
}

f o r (i = 0 ; i < N; i ++) {
p = (x [i] == 0) ;
f o r (j =0 ; j < M; j ++) {

i f (p)
A[i] [j] = 0 ;

}
f o r (j =0 ; j < M; j ++) {

i f (! p)
A[i] [j] = x [i] ∗ y [j] ;

}
}

(a) Outer product kernel (b) Using a control predicate

f o r (i = 0 ; i < N; i ++) {
S0 : W r i t t e n = {p } , Read = {x [i] }
f o r (j =0 ; j < M; j ++)

S1 : W r i t t e n = {A[i] [j] } , Read = {p}
f o r (j =0 ; j < M; j ++)

S2 : W r i t t e n = {A[i] [j] } , Read = {x [i] , y [j] , p}
}

(c) Abstract program for conservative data dependence analysis

Figure 6.3: Abstract program representation for the irregular outer product

6.2.2 Program Transformation

A (sequence of) program transformation(s) in the polyhedral model is represented by a set of mapping
relations (see Section 2.1.1), most of the time restricted to affine functions, one for each statement,
called scheduling, allocation, chunking, etc. depending on the technique. Mapping relations depend on
the counters of the loops surrounding their corresponding statement; they map each run-time statement
instance to a logical execution date. The literature is full of algorithms to find such relations dedicated
to parallelization, data locality or global performance improvement [Fea92b, Lim01, Gri04, BHRS08],
see Chapter 4 for an iterative technique to discover optimizing mappings. Our approach allows to reuse
most existing techniques based on the polyhedral model and multi-dimensional mapping directly.

However, managing while loops, that are translated into unbounded for loops requires a slight
adaptation to preserve the expressiveness of affine mapping relations. This is particularly important in
the context of one-dimensional affine functions, where it is necessary to know the upper bounds of the
loops to be able to reorder them. For instance let us consider the pseudo-code in Figure 6.4(a) composed
of two loops enclosing two statements, S1 and S2. To implement a transformation such that the loop
enclosing S2 will be executed before the loop enclosing S1, we need the logical dates of the instances
of S1 to be higher than those of the instances of S2. Such transformation may be implemented by the
mapping functions θS1(i) = i+Up2 and θS2(i) = i. In these functions, the i part ensures the instances
of a given statement are executed in the same order as in the original code, and the upper bound Up2 of
the second loop is used to ensure the loop of S1 starts after the end of the loop of S2. The target code is
shown in Figure 6.4(b), where variable t represents logical time.

In this work, we may consider for loops with no upper bounds. It is not possible in this way to
reorder those loops respectively to other loops (bounded or unbounded) using one-dimensional schedules

6.2. REVISITING THE POLYHEDRAL FRAMEWORK 107

f o r (i = 0 ; i < Up1 ; i ++)
S1 (i) ;

f o r (i = 0 ; i < Up2 ; i ++)
S2 (i) ;

f o r (t = 0 ; t < Up2 ; t ++) {
i = t ;
S2 (i) ;

}
f o r (t = Up2 ; i < Up2 + Up1 ; i ++) {

i = t − Up2 ;
S1 (i) ;

}

(a) Original program (b) Loop reordering with mapping
θS1(i) = i+U p2 and θS2(i) = i

Figure 6.4: Loop reordering using one-dimensional mapping

only.4 Thus, we introduce a virtual parametric upper bound W, the same for all unbounded for loops with
the constraint that W is strictly greater than all upper bounds of bounded for loops. The W-parameter will
be considered during the program transformation and code generation steps. It will be removed during a
dedicated stage of code generation as detailed in Section 6.2.3. This parameter has to be chosen strictly
greater than other loop bounds to ensure a fusion between a bounded and an unbounded loop will always
be partial (hence the code generation step will always be able to re-create the unbounded part). A single
W-parameter for multiple unbounded loops is enough to be able to reorder them relatively to each other
by using coefficients of this parameter (e.g., to reorder three unbounded loops, we can use mapping
functions like θS1(i) = i, θS2(i) = i+W and θS3(i) = i+ 2W). The W-parameter allows to reuse any of
the existing algorithms supporting parameters to compute mapping functions in our irregular context.

6.2.3 Code Generation

Once a transformation (i.e., a mapping relation) has been computed by an optimization heuristic, apply-
ing it in the polyhedral model is straightforward and leads to a new coordinate system for each iteration
domain [CB-Bas04a]. The last step consists in translating the transformed program from its polyhedral
representation back to a syntactic representation. This phase amounts to finding a set of nested loops
visiting each integral point of each polyhedron once and only once. This is a critical step in the poly-
hedral framework since the final program effectiveness highly depends on the target code quality. In
particular, we must ensure that a bad control management does not spoil performance, for instance by
producing redundant conditions, complex loop bounds or under-used iterations. On the other hand, we
have to avoid code explosion typically because a large code may pollute the instruction cache.

Among existing methods to scan polyhedra and generate code, the extended QRW algorithm is con-
sidered now as the most efficient algorithm [QRW00, CB-Bas04a]. This algorithm is not able in its origi-
nal form to generate semantically correct code for our extended polyhedral representation, as special care
is needed to handle properly predicates and their impact on the generated control-flow. Nevertheless, it is
possible to extend this algorithm to scan and generate regular codes corresponding to the over-estimates
of the iteration domains then to post-process its output to guarantee semantically correct code generation.
See Section 2.3.3 for details about this algorithm.

Previous approaches to model irregular codes (see Section 6.5) were based on complex representa-
tions that did not allow any easy modification of the extended Quilleré et al. algorithm to generate the

4It is easy to remove the limitation using more dimensions, but several algorithms to compute mapping functions are based
on one-dimensional mapping only, and some others rely on the full expressiveness of each dimension.

108 6. APPLICABILITY: BEYOND STATIC CONTROL

code. Instead they rely on ad-hoc, mostly syntactic, code generation schemes. By relaxing the static
constraints thanks to exit and control predication, we make possible, and even natural, the adjustment of
the QRW code generation algorithm. This adaptation takes into account the additional data dependences
on control predicates. The price to pay is displacing the problem of modeling data dependent non-affine
conditions into legality constraints. There is no alteration of the core QRW algorithm: we apply it on
the polyhedral over-estimated iteration domains, leaving predicates attached to each statement. Then
we post-process the result to handle the predicates. There are two tasks to perform: (1) to achieve a
semantically-correct generation of control predicates and exit predicates, and (2) to reconstruct while
loops in the generated code.

Generation of Arbitrary Conditionals Generating arbitrary conditionals is straightforward: the con-
trol predicate is available as a statement information, attached to the polyhedral iteration domain. The
only task is to generate the if instruction containing the predicate around the convenient statement.

Generation of while Loop Structure The task of generating while loops starts by identifying loops
with the W parameter introduced in Section 6.2.2 as an upper bound. Next, we have to identify exit
predicates corresponding to each while loop. Again, this information can be easily extracted because
it is attached to the polyhedral iteration domain of each statement that belongs to a while loop in the
original program.

However, due to the separation step of the extended QRW algorithm, several statements with different
exit predicates could be found in the same iteration domain without corresponding to the same while
loop. So we need to separate these statements and generate the appropriate while loops. we distinguish
three main cases of separation that involve exit predicates:

1. If all statements of the loop have the same exit predicate, no case distinction is needed during
the separation phase. The predicate is therefore considered as the exit predicate of the generated
while loop. Figure 6.5(a) is an example of such a case.

2. If statements or block of statements have different exit predicates, this means (1) they belong to
different while loops; and (2) these statements can be executed in any order (the semantics of
while loops transformations is particular, as discussed later in the section). For this second case,
we can proceed to a separation quite similar to the separation of polyhedra in the regular case.
More exactly, it consists in scanning the domain where both predicates are true at the same time,
thanks to the intersection of two polyhedra, i.e., the space of common points. Then, we scan
domains where only one of the two predicates is true, thanks to the differences between polyhedra.
Figure 6.5(b) shows separation of while loops based on exit predicates attached to statements s1
and s2.

3. If some statements have exit predicates while some others do not have any, this means a regular
for loop has been fused with a part of a while loop. In such a case, we find a statement with an
exit predicate attached to it without identifying the while loop (by identifying the W parameter).
The exit predicate is transformed here into a control predicate plus an exit Boolean (false at the
start of the program). Figure 6.5(c) illustrates this case.

Re-injecting irregular control inside the generated code is simply a matter of replacing predicates
with their expressions taken from the original source code. Unfortunately, this is likely to bring high
control overhead as it is inserted close to the statement, at the innermost level.

6.3. REDUCING CONTROL OVERHEAD 109

f o r (i = 0 ; i < W; i ++) {
S1 (i) ; ep1
S2 (i) ; ep1

}

⇒
whi le (ep1) {

S1 () ;
S2 () ;

}

(a) Same Exit Predicates

f o r (i = 0 ; i < W; i ++) {
S1 (i) ; ep1
S2 (i) ; ep2

}

⇒

whi le (ep1 && ep2) {
S1 () ;
S2 () ;

}
whi le (ep1)

S1 () ;
whi le (ep2)

S2 () ;

(b) Different Exit Predicates

f o r (i = 0 ; i < N; i ++) {
S1 (i) ;
S2 (i) ; ep1

}

⇒

e x i t = f a l s e ;
f o r (i = 0 ; i < N; i ++) {

S1 (i) ;
i f (ep1 && ! e x i t)

S2 (i) ;
e l s e

e x i t = t r u e ;
}

(c) An Exit Predicate Inside A Regular Loop

Figure 6.5: Separation of while loops

Discussion

The semantics of transformations involving while loops is particular: fusion of such loops should be
performed only if the loops can be executed in any order (in Figure 6.5(b), the order of the last two
while loops is arbitrary) and while loop reversal is clearly not supported by our extended framework.
Also, when the transformation states the loop may be run in parallel (e.g., no mapping functions means
all loops are parallel) it means that, except what is necessary for the predicate evaluation, iterations of
the loop may be run in parallel (this allows basic parallelization, e.g., a process devoted to the predicate
computation that spread bundles of full iterations to different processors).

6.3 Reducing Control Overhead

The underlying principle of converting programs to the extended polyhedral representation is to condi-
tionally execute statements depending on the value of a given predicate, which is not necessarily stat-
ically computable. To put the program into the model, we extensively predicate statements regardless
of the control overhead we introduce. We rely on post-pass optimizations to limit this overhead for the
generation of efficient code.

We discuss two main optimizations, namely the computation of the predicate value and the placement
of control predicates. A preliminary for those optimizations to be performed is the gathering of the set of
read and written variables, for each statement and each predicate. It means we have to analyze the state-
ment content to extract the variables involved. Obviously, the optimality of our optimization processes

110 6. APPLICABILITY: BEYOND STATIC CONTROL

is constrained by the accuracy of this analysis. For instance we do not deal yet with control overhead
optimizations of codes containing non-strictly aliased pointers, as the problem of pointer aliasing makes
very difficult to compute correctly the set of read and written variables.

6.3.1 Computing the Value of Predicates

The main overhead induced by predication is the re-computation of the p predicate when its value has
not been modified. To address this problem we decouple the computation stages of the predicate from its
evaluation. We first define the set of variables used to compute the predicate value. Let p be a predicate
used to guard a statement, Vp is the set of variables used to compute p. For instance, if we consider the
predicate p = x + 2 * y + b[i] (where i is the generated iterator name), then Vp = {x,y,b, i}.

The algorithm operates on the generated abstract syntax tree (AST), in a two-step process. The first
step consists in identifying the statements in the AST which compute the value of p, for each predicated
statement. To guarantee the optimality of the predicate computation placement, we ensure it is not
possible to execute p less frequently while preserving the program semantics. This is done by putting the
statement p at the highest tree level such that no statement dominated by p modifies any of the variables
in Vp. The second step consists in eliminating duplicated predicate computations when a given predicate
is used from multiple calling sites. We proceed by inspecting the AST for all p statements (involving
the same predicate p), and checking if any of the variables in Vp is ever assigned in any execution path
between two occurrences of p. If not, then the second occurrence can be safely removed.

As a result of this optimization, the computation of the value of each predicate is minimized in terms
of number of executions — again given the accuracy of Vp computation. The check of the predicate
value before each executed instance of a predicated statement is reduced to a simple test instruction over
a scalar, as shown in Figure 6.2(b).

6.3.2 Predicate Placement

The second critical optimization is to reduce the number of executed checks on the value of a predicate.
To do so, we hoist the conditional if (p) to the highest possible level in the AST, provided the location
of the computation of p. A typical example is the case of all reachable instances of a given loop being
predicated by the same p, which is never modified during the loop execution. The instruction if (p)
can then be hoisted outside the loop, dramatically reducing the control overhead. We proceed by merging
under a common conditional all consecutive statements (under the same loop) which involve the same
predicate, such that none of the statements modify the predicate value. Then, if all statements inside a
loop are under the same conditional and this conditional does not depend on neither the loop iterator nor
any of the statements under it, then the conditional can be safely moved around the loop instead. This
optimization is reminiscent of classical if-hoisting compiler techniques, and it is efficiently performed
as a code generation optimization pass. We extended the code generation tool CLooG [CB-Bas04a] to
support these extensions.

6.4. EXPERIMENTAL RESULTS 111

6.4 Experimental Results

6.4.1 Methodology and Setup

The extension and the associated algorithms presented in this chapter have been implemented in the
Polyhedral Compiler Collection framework PoCC (see Appendix A for information about tools). Specif-
ically, the implementation consisted in upgrading two modules: the irregulat extension of the polyhedral
model has been implemented in irClan, an extended version of the Clan tool to extract the polyhedral
representation, and in irCLooG built on the code generator CLooG.

To show the impact of our approach, we illustrate it with two of the state-of-the-art polyhedral opti-
mizers.

• LeTSeE is a complete platform for iterative compilation in the polyhedral model [CB-PBCC08a]
presented in Chapter 4. It leverages the algebraic properties of the polyhedral model to build
an expressive search space of affine schedules, encompassing only legal and distinct program
versions. It uses multiple heuristics to prune and search for a best program version within this
space. Its optimization goal is fine-grain parallelism for vectorization and locality enhancement,
see Appendix A.

• Pluto is an automatic parallelization tool based on the polyhedral model [BHRS08]. It optimizes
for coarse-grain parallelism and locality simultaneously, looking for complex affine transforma-
tions based on rectangular time-tiling [Gri04] and fusion. OpenMP parallel code can be automat-
ically generated from sequential C, together with finer grain register tiling and transformations to
enable automatic vectorization, see Appendix A.

Our goal is to experiment these existing optimization tools without any modification, demonstrating
the effectiveness of our extended approach on a set of irregular benchmarks. We also compare the perfor-
mance improvements considering only the regular parts of these programs, when applicable. Notice that
we did not implement a sophisticated analysis of the predicates themselves or a dynamic parallelization
scheme; this may significantly reduce conservativeness and allow to find better transformations. Hence,
we consider the following results as a lower bound of the extended framework’s potential.

Our experimental setup is a 2-socket Intel Quad-Core E5430 at 2.66 GHz with 16 GB of RAM, run-
ning Linux. We used the ICC compiler version 11.0, the best performing compiler on the benchmarks
considered. All programs were compiled with icc -fast -parallel -openmp (i.e., the baseline in-
cludes automatic parallelization in ICC). Because our goal is to demonstrate the relevance of the extended
model and not to present a new optimizing technique, we did not investigate various architectures.

6.4.2 Results

We studied typical kernels solving real computational problems that are not (partially or totally) amenable
to standard polyhedral representation because of control flow irregularities. 2strings is a program count-
ing the occurrences of two different strings in another string. It features a very data-dependent while-
loop typical of search and pattern-matching programs. sat-add is a saturated addition of two images
deblurred thanks to two stencil-based filters. It represents an example of saturated arithmetic, a very
common source of irregularity in numerical or image processing programs. QR is a QR decomposition
computed by Householder reflections on real data, featuring dynamic control flow in outer loops like the

112 6. APPLICABILITY: BEYOND STATIC CONTROL

outer product example in Figure 6.3 page 106. Other forms of outer loop irregularity are exhibited in two
additional benchmarks: ShortPath and TransClos, respectively a shortest-path and a transitive closure
kernel based on adjacency matrices. We also provide larger loop nests to exercise search space construc-
tion and code generation scalability: the Givens benchmark computes the R matrix of the QR decom-
position using Givens rotations on complex numbers; Dither is a kernel for error-distribution dithering;
Svdvar computes a covariance matrix; Svbksb solves A~x = B for a vector ~x where A is on a singular
value decomposition; Gauss-J is a Gauss-Jordan elimination finding a maximum pivot, pivoting being a
relevant source of data-dependent control flow; and PtIncluded checks if an integer point is included in a
polyhedron, involving a linked list traversal, another usual source of control-flow irregularity.

Figure 6.6 lists the main properties of these programs: their number of loops, their number of array
references, the maximum loop depth, the maximum loop depth of strictly affine SCoPs in the program
(to quantify the extra expressiveness offered by our extension), and the data-set size.

#loops #refs Max Depth SCoP Depth Data Size
2strings 4 15 2 0 1M
Dither 2 12 2 0 1024x1024
Gauss-J 4 14 2 1 1024x1024
Givens 5 64 3 1 1024x1024
PtIncluded 3 19 3 1 350 vars, 15000 csts
QR 6 29 3 2 1024x1024
Sat-add 6 27 2 2 1920x1080
ShortPath 3 6 3 0 1000 nodes
Svdksb 5 10 2 2 1024x1024
Svdvar 4 10 3 3 1024x1024
TransClos 3 3 3 0 1000 nodes

Figure 6.6: Kernel description

Our results are summarized in Figure 6.7. For each kernel, we provide the speedup achieved by
LeTSeE and Pluto5 when considering only the regular parts of the program, then when using the ex-
tended representation. We also provide the compilation time penalty when considering the extended
representation. N/A means that the benchmark cannot be handled in the specific context.

Speedup regular Speedup extended Compilation time penalty
LetSee Pluto LetSee Pluto LetSee Pluto

2strings N/A N/A 1.18× 1× N/A N/A
Dither N/A N/A 1× 5.42× N/A N/A
Gauss-J 1× 1.46× 1× 1.77× 2.51× 1.22×
Givens 1× 1× 1.03× 7.02× 21.23× 15.39×
PtIncluded 1× 1× 1× 1.44× 10.12× 1.44×
QR 1.04× 1.09× 1.04× 8.66× 9.56× 2.10×
Sat-add 1× 1.08× 1.51× 1.61× 1.22× 1.35×
ShortPath N/A N/A 1.53× 5.88× N/A N/A
Svbksb 1× 1× 1× 1.96× 2× 1.66×
Svdvar 1× 3.54× 1× 3.82× 1.93× 1.33×
TransClos N/A N/A 1.43× 2.27× N/A N/A

Figure 6.7: Performance and compilation time

The results show that for the programs we considered — spanning representative sources of irregu-
larity in loop-based computations — we are able to significantly improve performance.

5With or without tiling, whatever performs best.

6.4. EXPERIMENTAL RESULTS 113

On our target platform, applying existing polyhedral optimizers with the help of the proposed exten-
sion allows to achieve up to a 1.53× speedup for ShortPath when applying LeTSeE (single-threaded),
and up to a 8.66× speedup for QR when applying Pluto (multithreaded, on 8 cores). We were also able
to significantly improve performance for codes that were already partially regular.6 For those programs,
we obtained speedup reaching 1.51× using LeTSeE, and from 1.09× to 8.66× using Pluto.

Typically, the performance achieved using the LeTSeE algorithm comes from a better locality of the
memory accesses (with carefully crafted loop fusions) and compiler optimizations that have been enabled
(e.g. vectorization). On the other hand, our approach also exposes parallelization opportunities that are
exploited by Pluto with efficient tiling and coarse-grain parallelization, to combine both parallelization
and locality improvement.

We summarize our findings with more detailed insight about the transformations obtained by LeTSeE
and Pluto for our benchmark suite:

• 2Strings is composed of two distinct non-dependent while loops. Using our approach, LeTSeE is
able to fuse them leading to performance improvements. Pluto did not manage to parallelize the
benchmark.

• Dither is a code composed of a perfectly nested loop of depth 2 and with all the statements guarded
with various non-affine if conditionals. Relying on the extension, Pluto is able to identify paral-
lelism and to tile the loops, achieving a 5.42× speedup over the original code.

• Gauss-J is another code where parallelization and tiling of non SCoP part become possible on
Pluto with our approach, but where the SCoP part holds most of the computation time.

• Givens features at depth 2 a sequence of data-dependent conditions to separate different cases of
complex sine/cosine computations for Givens rotations. These conditions may prevent optimiza-
tion. Using the extensions discussed in this chapter, Pluto is able to parallelize the code. We show
in the appendix the result of the optimization achieved by Pluto with the help of our extended
framework. The result may be understood as a sequence of basic transformations such as skew-
ing, tiling or index-set-splitting to extract coarse grain parallelism and to improve data locality
[BHRS08]. The parallelism has been made explicit through OpenMP pragmas. The target code
shows a 7.02× speedup over the original code.

• PtIncluded is a routine that checks if an integer point is included in a polyhedron. It relies on a
linked list traversal, another usual source of control flow irregularity. Since there is no dependence
between iterations of the loop traversing the linked list, Pluto is able to parallelize it.

• QR is a code where most of the inner loops are guarded by non-affine if conditionals. All these
loops are regular, hence LeTSeE and Pluto are able to optimize and parallelize some of them,
leading to 1.04× and 1.09× speedup respectively. Nevertheless, the best performance is achieved
when relying on our extension, as Pluto may now parallelize and tile the full code. The super-linear
speedup is a consequence of SIMDization that has been enabled by the transformation.

• Sat-add could be divided into two parts, a static control part and a non-static control part. Both
parts are parallel. Without our approach, Pluto is able to detect parallelism in the static control
part only, yielding a performance improvement of 1.08× compared to the original code. Note that

6We call a program partially regular if it contains a SCoP depth of at least 1, i.e., if it has at least one purely static loop.

114 6. APPLICABILITY: BEYOND STATIC CONTROL

this parallelism was already found by ICC. However, through our extension, Pluto can handle and
parallelize the whole code, with a speedup of 1.61×.

• ShortPath is composed by a perfectly nested loop of depth 3 without any SCoP, dealing with
2-dimensional matrices. Using our approach, Pluto is able to parallelize the outer loop, hence
a significant 5.88× speedup; LeTSeE applies a loop interchange transformation on the original
code. These two optimizations were performed as well on TransClos providing 1.43× and 2.27×
speedup on LeTSeE and Pluto respectively.

• On Svbksb, on the extended framework, Pluto is able to parallelize the outermost loop, leading to
a speedup of 1.96× over the original code.

• Svdvar is a code composed of two perfectly nested loops, one of them is a SCoP. With the regular
framework, Pluto is able to parallelize this SCoP only. Using the extended framework, Pluto
performs a parallelization on both loops. Nevertheless, the same performance is achieved. This is
due to the amount of calculations the SCoP carries out in this code.

These results were achieved without modifying either LeTSeE or Pluto and using a conservative
dependence analysis. They demonstrate the power of this approach, finding new or better opportunities
for deep optimizations in the polyhedral model.

The price to pay for these improvements is a longer compilation time as we consider larger kernels,
up to a factor 20 for LeTSeE due to its iterative nature. This remains practical in our experiments as
the compilation time is at worse a matter of seconds. As the applicability of the polyhedral grows with
our extended framework, so is the problem size for the optimizations. Our extended model raises the
question of designing novel, highly scalable polyhedral optimization algorithms, which is ongoing work.

6.5 Related Work

Most irregular polyhedral techniques were developed in the context of while loop parallelization. Col-
lard explored a speculative approach to parallelize loops nests with while loops [Col95, Col94]. The
idea is to allow a speculative execution of iterations which are not in the iteration domain of the original
program. This method leads to more potential parallelism than with traditional polyhedral methods, at
the expense of an invalid space-time mapping, which is fixed thanks to a backtracking policy. In contrast
to the speculative approach, Griebl et al. explore a conservative one. They try to enumerate a superset of
the target execution space, and propose solutions to eliminate iterations that are not in the target execu-
tion space and to take care of the termination condition. For the first problem, they define what they call
execution determination where they introduce a predicate to determine if a point in the iteration space
can be executed or not. For the second point, they define and compute termination detection. Griebl
and Lengauer [GL94] propose another solution using a communication scheme in a distributed-memory
model to determine the upper bounds of the target loops, but this solution increases the execution time
of the scanning. For the same problem, but on shared-memory models, Griebl and Collard [GC95] de-
scribe a so-called counter scheme. Griebl et al. [GGL98, GGL99] present another one called maximum
scheme.

Other authors concentrated on extending the expressiveness of the polyhedral model in special cases;
these efforts are complementary to our conservative yet general approach. Palkovič wrote the most
comprehensive monograph on the topic [Pal07]. In contrast, our approach handles any function body

6.6. CONCLUSION 115

and transparently inherits all existing optimization and parallelization techniques based on the polyhedral
model.

In addition, our extended model opens the door to important loop transformations targeted to data-
dependent control flow. For example, Decoupled Software Pipelining (DSWP) [RVVA04] extracts and
exploits pipeline parallelism from irregular codes involving complex control flow and data structures.
Full automation of DSWP remains a challenge, due to the intricacy of the transformations involved and
their interplay with other optimizations. Another example is Deep Jam [CCJ05], a generalization of loop
fusion and unroll-and-jam to dynamic control flow, targeted at instruction-level and vector parallelism.
Deep Jam is at least as complex as DSWP to automate.

Previously related work and our approach are static techniques, which analyse programs at compile
time. Several works aim at performing runtime analyses, e.g., to detect parallel loops [RP95, RRH03,
RR03, RPR07, RVRA08]. Unfortunately, they are mostly used to expose parallelism without transform-
ing the code, while restructuring is in general useful either to extract parallelism or to translate it to
performance. Jimborean et al. proposed the very first dynamic approach based on the polyhedral model
to speculate at runtime the existence of a static control loop and to transform it using a state-of-the-art al-
gorithm [JCP+12]. We are currently investigating such a dynamic approach to complete our conservative
analysis at runtime.

6.6 Conclusion

The study presented in this chapter overcomes the control-flow limitations of the polyhedral model in
an intraprocedural setting. The solution comes from a sleek and natural modeling of control-flow pred-
icates at all stages of a polyhedral compilation framework. This extension goes far beyond the state-
of-the-art which only addresses special non-affine cases as they misleaded the control-flow management
from the data-flow one. The main difficulty resides in the design of an extended code generation al-
gorithm supporting those extensions while limiting control-flow overhead. Several subtle difficulties
also trickle down to the extraction of the polyhedral representation and the storage mapping of control
predicates (privatization). We experimentally validated our approach, demonstrating new optimization
opportunities for irregular programs as well as improvements over previous results on partially-regular
applications.

The static control limitations of the polyhedral model are now history. Research may now concen-
trate on accurate static/dynamic analysis, and complementing speculative optimization and paralleliza-
tion techniques with aggressive program transformations. However, an important limitation stressed by
this approach is the high complexity of the algorithms supporting polyhedral operations — typically
exponential in the number of statements and/or the number of array references and/or the loop nesting
depth, see Chapter 5. Enlarging its application domain stresses the scalability of these algorithms even
further. In this context, we are working on macro-block and region formation heuristics, as well as novel
polyhedral optimizations that could scale to full functions.

116 6. APPLICABILITY: BEYOND STATIC CONTROL

117

Chapter 7

Conclusion and Perspectives

Programmers should not be heroes for reaching a decent part of an architecture’s peak performance.
Unfortunately this is the situation today as chipmakers are relying on users to find ways to exploit the
many hardware resources they are providing. There is little hope for this to change anytime soon as next
generation processors are planned to bring more and more cores while there is no general easy way to
exploit them efficiently yet. Hence, software industry is under pressure to provide better tools, languages,
libraries and compilers to help the users to make an effective use of the available resources. This thesis
presents some contributions towards meeting this challenge.

Our strategy relies on high-level compilation. It is the most promising since it does not require the
user to learn about a new language or new abstractions or the target architecture details. But it is also the
most challenging since an automatic tool has to deeply analyse programmer’s code and to take the best
decisions for optimizing and parallelizing.

We rely on the polyhedral model to benefit from its analysis power and its transformation expres-
siveness. We contributed to the collective effort on generalizing the model to unions of relations. We
designed scalable techniques for code generation and data dependence analysis and demonstrated they
could be applied on complex real-world situations. We extended the polyhedral model to support ir-
regular extensions for both access and control structures. All those advances enabled the support for
polyhedral techniques on more general programs requiring more complex transformations. We designed
two optimization strategies. The first approach is semi-automatic and is based on the violated depen-
dence analysis to provide semantic feedback to the user. The second approach is a unique high-level
iterative compilation technique based on the space of legal transformations. Reported experimental re-
sults consistently outperform production compilers on sequential codes. We also coupled this technique
to state-of-the-art model-driven parallelization techniques to achieve, to the best of our knowledge, un-
precedented performance for a fully automatic system.

Significant steps forward have been made during the last decade on automatic parallelization and
optimization in the polyhedral model, on both the theoretical and the practical sides. The polyhedral
model is now considered as a viable strategy and is reaching production compilers as demonstrated
by related frameworks on GCC, LLVM, IBM XL or ACE CoSy. However, many problems remain
open or need better solutions. Perspectives with respect to the work presented in this thesis aim at
making high-level compilers better at their primary task of automatic optimization and at making them
play a key role to help users to design their own optimizations. First, many other dimensions can be
investigated in our high-level iterative compilation framework, such as low-level compiler options or

118 7. CONCLUSION AND PERSPECTIVES

data layout. Another follow-up is to build on our experience at optimizing with different approaches
to target architectures with multiple parallelism levels explicitly. Next, our extension to irregular codes
suggests to investigate combined static/dynamic approaches for a more precise analysis of the properties
of the programs and to allow them to adapt to their environment. Finally, research must be continued
on better approaches for semi-automatic optimization, from new optimization-centric directives to long
term graphical manipulation of programs.

New Dimensions for Iterative Compilation Our high-level iterative compilation approach presented
in Chapter 4 is based on mapping selection. Others complementary dimensions can be explored together
with the mapping. First, all elements of the target platform, i.e., the architecture, the low-level compiler
and its options [KHW+05, CGH+05, TVA05] can be investigated. Another promising dimension is the
data layout.

Current architectures include complex memory features such as deep memory hierarchies, shared
caches between cores, memory controller parallelism, data alignment constraints etc. As a result, choos-
ing a good data layout is critical to achieve high performance on such systems. Many data layout trans-
formation techniques have been developed for that purpose, including recent efforts on improving data
locality [LAB+09], performing vectorization [HSP+11, JMS+10], benefiting from interleaved DRAM
banks [SSH10] or managing of-chip memory bandwidth [BBK+08a]. Because data layout transforma-
tions are always legal, the layout can be used together with the mapping selection just as a promising
additional dimension of the search space.

Hierarchical Optimization Both supercomputers and modern workstation architectures show several
parallelism layers. Basically, they have at least three levels. The first one corresponds to vector units
(SIMD), able to apply simultaneously the same processing to a small data set. The second one cor-
responds to processor cores, which may execute several threads or processes in parallel while sharing
a part of the memory hierarchy. The third level corresponds to multi-processor, distributed memory
architectures which are able to execute several tasks in parallel relying on distributed memory.

Those parallelism levels have major differences from the compilation point of view. The first dif-
ference is programming. Vector units are typically used through dedicated instructions called intrinsics.
Multicore programming is done using threads directly or through OpenMP. Lastly, MPI is typically used
for the last level. The second difference comes from the performance properties. Optimizations on the
first level are very fragile: a slight difference in the source code can have a dramatic impact on perfor-
mances [CB-PBCV07]. The second level is more robust, but complex interactions between architecture
features and the complexity of the compilers makes the performance hardly predictable (see Chapter 4).
The third level is more stable on this respect.

Most polyhedral compilation techniques target directly only one parallelism level. Most of the time,
they focus on the intermediate level, i.e., thread-level parallelism. Benefiting from the composition prop-
erties of the polyhedral mappings, and building on our experience on different optimization approaches,
new hierarchical strategies can be derived. Aggressive iterative techniques [CB-PBCV07] should be used
to find the very best internal loops, since the overall performance is bounded by the fastest element. Ma-
chine learning strategy [CB-PBCC08b] is appropriate to design the intermediate level and model-driven
techniques [CB-BF03a, CB-PBB+10] are convenient for the most stable performance. Hence, mapping
composition using well suited strategies, is a promising way to address the global optimization problem.

7. CONCLUSION AND PERSPECTIVES 119

Speculative Parallelization Static control programs are an optimal input for optimization techniques
in the polyhedral model. However, we have shown in Chapter 6 that despite the use of conservative
analyses, polyhedral mapping is keeping its expressiveness on irregular programs. The consequence is, it
is possible to benefit from polyhedral optimization techniques in the general case, and to apply adequate
optimizations, provided the conservative information from static analysis is known more precisely at
some point. This can be done by the programmer, e.g., on request by the compiler, or during execution,
using a dynamic analysis that remains to be built.

Usual speculative parallelization approaches optimistically decide that a given loop is parallel when
static analyses are not sufficient to make a decision. It is possible to go further, relying on the polyhedral
model to transform the irregular codes, ignoring some well chosen conservative dependences, and to
generate most interesting program versions. The challenge is to design an efficient runtime analysis
computing the missing information to decide which code version can be used. This problem is currently
under investigation.

Dynamic Program Tuning Parallel applications used to be executed alone until their termination on
partitions of supercomputers. The recent shift to multicore architectures for desktop and embedded
systems is raising the problem of the coexistence of several parallel programs. Operating systems already
take into account the affinity mechanism to ensure a thread will run only onto a subset of available
processors (e.g., to reuse data remaining in the cache since its previous execution). But this is not
enough, as demonstrated by the large performance gaps between executions of a given parallel program
on desktop computers (running several processes). To support many parallel applications, advances
must be made on the system side (scheduling policies, runtimes, memory management...). However,
automatic optimization and parallelization can play a role by generating programs with dynamic-auto-
tuning capabilities to adapt themselves to the system load.

Human-Compiler Interface Using the polyhedral model directly to optimize a code, e.g., through
mappings, is very counter-intuitive for a programmer. The reason is that the structure of the original
program is totally removed. There are no more loops or syntactic ordering between statements, only the
data dependences remain. We are developing two strategies to let a user benefit from its power. First,
fully automatic techniques as the iterative approach described in Chapter 4. This approach is successful
with respect to performance improvements [CB-PBB+10, CB-PBCC08a] and to ongoing integration onto
production compilers. The second strategy is to provide high-level directives, allowing the user to use
a polyhedral engine transparently, e.g., using URUK [CB-GVB+06], Clay (see Chapter 2.1.4) or other
alternatives such as UTF [Kel96] or CHiLL [CCH08]. Unfortunately those semi-automatic methods are
arduous and still require a significant expertise from the programmer. All in all, high-level transformation
script systems have not generated a significant interest from users yet.

Existing scripting systems try to mimic classical loop transformations. While this approach may be
useful in some cases, loop transformations are usually not the goal, but the consequence of an optimizing
action. For instance, loop fusion is often the consequence of the action of bringing several accesses to
the same reference closer to each other. Hence, we need to design a new set of directives, based on
the optimization the user is looking for, rather than manipulating syntactic constructions. Because long
transformation scripts are complex to generate, automatic parallelization can be used as a first step by
translating a set of mapping relations generated with an optimizing algorithm to a transformation script.
Then, the user can modify this first “optimization draft” to improve it.

120 7. CONCLUSION AND PERSPECTIVES

Another approach is to exploit the geometrical representation of the polyhedral model which has
never been used as a support for designing optimizations. It could abstract programs graphically and
could allow to achieve restructuring through interactions with this graphical representation. Using this
side of the polyhedral model would require less expertise from the user while using the polyhedral engine
with an unprecedented ease. Such interactions necessitate a deep study on the various ways to interact
and to expose useful information to the user. We believe this approach has potential to enable semi-
automatic optimization where transformation scripts partially failed.

121

Appendix A

Related Tools

There is a lot of pragmatism and no result without a corresponding implementation in this document,
some of them with a significant number of users. I believe that tools are a good support for disseminating
our research work and, above all, that like in other domains where Science is close to Engineering,
better tools lead to new research directions and new research results. Hence there is both Science and
Engineering in this thesis. As a matter of a fact, the availability of CLooG that I first released during my
PhD thesis had a significant impact on the high-level compilation community. It was suddenly possible
to apply easily complex mappings to complex programs at a new milestone of efficiency and robustness.
Hence we could build on the many fundamental studies on, e.g., optimal parallelism extraction or data
reuse, to convert parallelism and data reuse into performance using more complex and more numerous
mappings, putting more stress on code generation in return. Pluto [BHRS08] (up to fifteen mapping
dimensions and counting) and LeTSeE [CB-PBCV07, CB-PBCC08b] (millions of generated codes for
the empirical studies) are great examples of this virtuous circle.

This appendix provides information about the tools and libraries related in this document, with more
details on those where I have been involved for research and/or development.

A.1 Candl

Address http://www.lri.fr/~bastoul/development/candl

References [CB-BP12]

Description Candl is a free software and a library devoted to data dependences computation. It
has been developed to be a basic bloc of our optimizing compilation tool chain in
the polyhedral model. From a polyhedral representation of a static control part of a
program, it is able to compute exactly the set of statement instances in dependence
relation. Hence, its output is useful to build program transformations respecting the
original program semantics. This tool has been designed to be robust and precise.
It implements some usual techniques for data dependence removal, as array privati-
zation or array expansion, offers simplified abstractions like dependence vectors and
performs violation dependence analysis. Main authors include Cédric Bastoul and
Louis-Noël Pouchet.

http://www.lri.fr/~bastoul/development/candl

122 A. RELATED TOOLS

A.2 Clan

Address http://www.lri.fr/~bastoul/development/clan

References [CB-Bas08]

Description Clan is a free software and library that translates some particular parts of high level
programs written in C, C++, C# or Java into a polyhedral representation (strict or ex-
tended to irregular control flow –still experimental at this document redaction time).
This representation may be manipulated by other tools to, e.g., achieve complex pro-
gram restructuring (for optimization, parallelization or any other kind of manipula-
tion). Main authors include Cédric Bastoul and Louis-Noël Pouchet, irregular exten-
sions by Mohamed-Walid Benabderrahmane.

A.3 Clay

Address http://www.lri.fr/~bastoul/development/clay

References [CB-Bas12]

Description Clay is a free software and library devoted to semi-automatic optimization using the
polyhedral model. It can input a high-level program or its polyhedral representation
and transform it according to a transformation script. Classic loop transformations
primitives are provided. Clay is able to check for the legality of the complete se-
quence of transformation and to suggest corrections to the user if the original seman-
tics is not preserved (experimental at this document redaction time). Main authors
include Joël Poudroux and Cédric Bastoul.

A.4 CLooG

Address http://www.cloog.org

References [CB-Bas03, CB-Bas04a, CB-VBC06, CB-Bas02a]

Description CLooG is a free software and library to generate code for scanning Z-polyhedra.
That is, it finds a code (e.g. in C, FORTRAN...) that reaches each integral point of
one or more parameterized polyhedra. CLooG has been originally written to solve
the code generation problem for optimizing compilers based on the polytope model.
Nevertheless it is used now in various area e.g. to build control automata for high-
level synthesis or to find the best polynomial approximation of a function. CLooG
may help in any situation where scanning polyhedra matters. While the user has
full control on generated code quality, CLooG is designed to avoid control overhead
and to produce a very effective code. Main authors include Cédric Bastoul and Sven
Verdoolaege, irregular extensions by Mohamed-Walid Benabderrahmane.

http://www.lri.fr/~bastoul/development/clan
http://www.lri.fr/~bastoul/development/clay
http://www.cloog.org

A.7. PIPLIB 123

A.5 LeTSeE

Address http://www.cse.ohio-state.edu/~pouchet/software/letsee

References [CB-PBCV07, CB-PBCC08b, CB-PBCC08a]

Description LeTSeE is a platform dedicated to computing and exploring the legal affine schedul-
ing space of a statically controlled program. It is programmed as a library, offering
services such as: (1) a tunable algorithm for legal transformation space construction,
(2) various heuristics to traverse legal spaces, (3) many auxiliary functions (graph
manipulation, transformation generation, etc.). Author is Louis-Noël Pouchet.

A.6 OpenScop (Formerly SCoPLib)

Address http://www.lri.fr/~bastoul/development/openscop

References [CB-Bas11b]

Description OpenScop is an open specification that defines a file format and a set of data struc-
tures to represent a static control part (SCoP for short), i.e., a program part that can be
represented in the polyhedral model. The goal of OpenScop is to provide a common
interface to the different polyhedral compilation tools in order to simplify their inter-
action. To help the tool developers to adopt this specification, OpenScop comes with
an example library (under 3-clause BSD license) that provides an implementation of
the most important functionalities necessary to work with OpenScop. Main authors
include Cédric Bastoul and Louis-Noël Pouchet.

A.7 PipLib

Address http://www.piplib.org

References [Fea88a, CB-FcCB02]

Description PIP/PipLib is Paul Feautrier’s parametric integer linear programming solver. PIP is
a software that finds the lexicographic minimum (or maximum) in the set of integer
points belonging to a convex polyhedron. The very big difference with well known
integer programming tools like lp_solve or CPLEX is the polyhedron may depend
linearly on one or more integral parameters. If the user asks for a non integral solu-
tion, PIP can give the exact solution as an integral quotient. The heart of PIP is the
parametrized Gomory’s cuts algorithm followed by the parameterized dual simplex
method. The PIP Library (PipLib for short) was implemented to allow the user to
call PIP directly from his programs, without file accesses or system calls. The user
only needs to link his programs with C libraries. Main authors include Paul Feautrier,
Cédric Bastoul and Sven Verdoolaege.

http://www.cse.ohio-state.edu/~pouchet/software/letsee
http://www.lri.fr/~bastoul/development/openscop
http://www.piplib.org

124 A. RELATED TOOLS

A.8 PoCC

Address http://pocc.sf.net

References [CB-PBB+10, CB-PBB+11, PPC+11]

Description PoCC is a flexible source-to-source iterative and model-driven compiler, embedding
most of the state-of-the-art tools for polyhedral compilation. The main features are:
(1) a full-flavored compiler, from C code to optimized C code, and to binary; (2) the
state-of-the art techniques in polyhedral optimization (iterative search among legal
schedules, powerful model-driven tiling and parallelization); (3) a flexible platform
to quickly prototype and develop optimizations leveraging the polyhedral model; (4)
modular design, configuration files-oriented. PoCC embeds powerful Free software
for polyhedral compilation. This software is accessible from the main driver, and
several IR conversion functions allows to communicate easily between passes of the
compiler. Main author is Louis-Noël Pouchet.

A.9 R-Stream

Address https://www.reservoir.com/?q=rstream

References [MVW+11, CB-MLV+09, CB-BVL+09, CB-LVM+10]

Description R-Stream is a multi-target high-level compiler developed by Reservoir Labs Inc. and
specialized in the efficient mapping of high-performance applications to modern par-
allel architectures. R-Stream supports heterogeneous multi and manycore architec-
tures with several levels of parallelism, deep memory hierarchies, explicitly managed
memory management and communications. It offers high retargetability through
user-defined machine models. R-Stream relies on a polyhedral mapping engine to
automatically translate sequential programs written in C to parallel high-level codes
e.g., in C with OpenMP for shared memory architectures, C with convenient APIs
for Cell or Tilera, CUDA for GPGPUs, Cn for ClearSpeed accelerators or dataflow
assembly for FPGA targets.

A.10 Other Related Tools

GRAPHITE

Address http://gcc.gnu.org/wiki/Graphite

References [CB-PCB+06, TCE+10]

Description Polyhedral compilation framework for GCC

FM

Address http://www.cse.ohio-state.edu/~pouchet/software/fm

References [Pou10]

Description Fourier-Motzkin library

http://pocc.sf.net
https://www.reservoir.com/?q=rstream
http://gcc.gnu.org/wiki/Graphite
http://www.cse.ohio-state.edu/~pouchet/software/fm

A.10. OTHER RELATED TOOLS 125

isl

Address http://freecode.com/projects/isl

References [Ver10]

Description Integet set library, data dependence analysis and mapping

PolyLib

Address http://icps.u-strasbg.fr/polylib

References [Wil93, LW97]

Description General polyhedral library

Omega Library

Address http://www.cs.umd.edu/projects/omega

References [KMP+96]

Description General polyhedral library, data dependence analysis and code generation

Pet

Address http://freecode.com/projects/libpet

References [Ver12]

Description Direct raising tool and library

Pluto

Address http://pluto-compiler.sf.net

References [BHRS08, BBK+08b, BGDR10]

Description High-level optimizing and parallelizing compiler

PPL

Address http://bugseng.com/products/ppl

References [BHZ08]

Description General polyhedral library

Polly

Address http://polly.llvm.org

References [GZA+11]

Description Polyhedral compilation framework for LLVM

http://freecode.com/projects/isl
http://icps.u-strasbg.fr/polylib
http://www.cs.umd.edu/projects/omega
http://freecode.com/projects/libpet
http://pluto-compiler.sf.net
http://bugseng.com/products/ppl
http://polly.llvm.org

126 A. RELATED TOOLS

PolyBench

Address http://www.cse.ohio-state.edu/~pouchet/software/polybench

References Pouchet 2011

Description Static control benchmark collection

WRAP-IT

Address N/A

References [CB-BCG+03a, CB-GVB+06, Gir05]

Description Polyhedral compilation framework for ORC

http://www.cse.ohio-state.edu/~pouchet/software/polybench
N/A

127

Appendix B

CV (French)

Informations personnelles Informations de contact
Date de naissance 26 novembre 1975 Adresse 12 rue Hélène Boucher
Lieu de naissance Saint Dizier, France 78960 Voisins-le-Bretonneux
Nationalité Française France
Situation familiale Marié, trois enfants Téléphone +33 1 72 92 59 65
Page web www.lri.fr/~bastoul Email Cedric.Bastoul@u-psud.fr

B.1 Expérience professionnelle

2005-Présent MAÎTRE DE CONFÉRENCES, UNIVERSITÉ PARIS-SUD

Chercheur dans l’équipe de compilation et d’architecture du laboratoire LRI, en-
seignant en informatique à l’IUT d’Orsay, délégation CNRS en 2011-2012
. Addresse :Faculté des sciences, F-91405 Orsay Cedex

. Dates d’emploi : du 1er octobre 2005 à nos jours

. Superviseur : Pr. Brigitte Rozoy

2009
(mission longue
durée)

VISITING PROFESSOR, RESERVOIR LABS INC.
Recherche et développement de techniques d’optimisation à la compilation dans le
compilateur R-Stream, développé par la société
. Addresse : Reservoir Labs Inc., 632 Broadway Suite 803, New York, NY 10012

. Dates d’emploi : du 2 février 2009 au 22 décembre 2009

. Superviseur : Dr. Richard Lethin

2004-2005 ASSISTANT TEMPORAIRE D’ENSEIGNEMENT ET DE RECHERCHE, UNIVERSITÉ

D’AUVERGNE

Chercheur dans l’équipe d’algorithmique du laboratoire LAIC, enseignant à l’IUT de
Clermont-Ferrand
. Addresse : Ensemble universitaire des Cézeaux, F-63172 Aubière

. Dates d’emploi : du 1er septembre 2004 au 31 août 2005

. Pr. Jean-Pierre Reveillès

www.lri.fr/~bastoul
Cedric.Bastoul@u-psud.fr

128 B. CV (FRENCH)

2003-2004 ASSISTANT TEMPORAIRE D’ENSEIGNEMENT ET DE RECHERCHE, UNIVERSITÉ

DE VERSAILLES SAINT-QUENTIN-EN-YVELINES

Chercheur dans l’équipe d’architecture et parallélisme du laboratoire PRiSM, en-
seignant au département informatique de l’UFR Sciences
. Addresse : UFR Sciences, 45 avenue des États-Unis, 78035 Versailles Cedex

. Dates d’emploi : du 1er octobre 2003 au 31 octobre 2004

. Superviseur : Pr. William Jalby

B.2 Formation

2000-2004 DOCTORAT SYSTÈMES INFORMATIQUES RÉPARTIS, UNIVERSITÉ PARIS 6
PIERRE ET MARIE CURIE

Dirigé par Pr. Paul Feautrier. Titre de la thèse : amélioration de la localité dans les
programmes à contrôle statique, soutenue le 7 décembre 2004
. Titulaire d’une bourse MESR, moniteur de l’université Paris 6

. Jury de thèse :
• Claude GIRAULT, professeur université Paris 6, président
• Philippe CLAUSS, professeur université de Strasbourg, rapporteur
• Christian LENGAUER, professeur universität Passau, rapporteur
• Paul FEAUTRIER, professeur ENS Lyon, directeur
• Nathalie DRACH-TEMAM, professeur université Paris 6, examinateur
• Patrice QUINTON, professeur IRISA Rennes, examinateur

. Mention “Très Honorable” (plus haute mention décernée à l’université Paris 6)

1999-2000 DEA SYSTÈMES INFORMATIQUES RÉPARTIS, UNIVERSITÉ PARIS 6 PIERRE ET

MARIE CURIE

Obtenu avec mention Bien
. Stage de 6 mois au laboratoire PRiSM, université de Versailles Saint-Quentin-

en-Yvelines, dirigé par Pr. Paul Feautrier sur les techniques d’optimisation à la
compilation

1998-1999 MAÎTRISE INFORMATIQUE, UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE

Obtenu avec mention Bien, major de promotion
. Stage de deux mois à l’institut Gaspard Monge, université de Marne-la-Vallée,

dirigé par Pr. Éric Laporte sur la manipulation d’automates finis pour la synthèse
de langage parlé

B.3 Compétences techniques

Programmation
Système
Bureautique

C/C++, Java, OpenMP, Cuda, Cn, Programmation système, Shell, PHP, SQL
Linux / Unix, OSX, Windows XP/7
LATEX, Microsoft Office

B.4. LANGUES 129

B.4 Langues

Français
Anglais

Langue maternelle
Lu, écrit, parlé. Pratique quotidienne, travail aux USA durant un an

B.5 Recherche et développement

Spécialité Optimisation et parallélisation automatiques des programmes à la compilation
. Représentation formelle des programmes à travers le modèle polyédrique
. Optimisation de la localité des données
. Extraction de parallélisme de haut niveau dans les programmes séquentiels
. Génération de code dans le modèle polyédrique
. Compilation pour les GPGPUs
. Compilation itérative et par machine learning
. Optimisation assistée par ordinateur
. Calcul polyédrique

Publications Auteur ou co-auteur de plus de 30 publications parmi les journaux et conférences
internationaux les plus prestigieux en compilation (liste complète en section Bibliog-
raphy)
. ACM PLDI, ACM PoPL, ACM CGO, ACM ICS, IEEE PACT, Kluwer IJPP etc.

CLooG
www.cloog.org

Créateur du générateur de code polyédrique le plus avancé actuellement, reconnu
comme un standard de fait pour la compilation de haut niveau
. Plusieurs dizaines de sociétés et laboratoires comme utilisateurs directs
. Utilisé comme bibliothèque par le compilateur GCC

PipLib
www.piplib.org

Co-mainteneur du résolveur de problèmes de programmation linéaires paramétriques
en nombres entiers PIP
. Plus d’une dizaine de sociétés et laboratoires comme utilisateurs directs

B.6 Distinctions

HiPEAC 2011 HiPEAC European Network of Excellence Paper Award pour le papier Loop Trans-
formations: Convexity, Pruning and Optimization à ACM PoPL 2011

HiPEAC 2008 HiPEAC European Network of Excellence Paper Award pour le papier Iterative op-
timization in the polyhedral model: Part II, multidimensional time à la conférence
ACM PLDI 2008

Euro-Par 2004 Distinguished Paper Award pour le papier More legal transformations for locality à
la conférence Euro-Par 2004

PACT 2004 Student Award pour le papier Code generation in the polyhedral model is easier than
you think à la conférence ACM PACT 2004

www.cloog.org
www.piplib.org

130 B. CV (FRENCH)

B.7 Coordination et participation à des projets scientifiques

MANY
2011-2014

Projet ITEA2 de recherche d’outils pour la programmation et la gestion des
ressources sur les architectures multicœurs embarquées haute performance
. Rôle : coordinateur local
. Large consortium européen à dominante industrielle
. http://www.eurekamany.org

OpenGPU
2010-2012

Projet Systematics pour le développement d’une plateforme logicielle libre d’aide à
la parallélisation et à l’évaluation des architectures GPGPU
. Rôle : coordinateur local à la suite d’Albert Cohen en 2011
. Large consortium représentant les acteurs français industriels ou académiques
. http://www.opengpu.net

PolyMorph
2008-2009

Projet interne INRIA (suport ingénieur durant deux ans) pour le développement d’un
système de manipulation graphique des programmes
. Rôle : coordinateur

Participations . ANR PetaQCD 2008-2012, création d’outils et de matériels pour atteindre le
petaflop pour la simulation de chromodynamique quantique.

. FP6 ACOTES 2006-2009, recherche de techniques de compilation avancée pour le
streaming embarqué.

. ANR PARA 2006-2008, optimisation à la compilation des codes de chromody-
namique quantique.

B.8 Enseignement

2005-Présent Enseignant titulaire à l’IUT d’Orsay (243h/an en moyenne, encadrement compris),
vacataire à l’École Polytechnique (36h/an de 2007 à 2008, interventions en 2009),
échange de service à l’UFR Sciences de l’Université Paris-Sud (13,5h/an de 2005 à
2008)
. Thèmes principaux : système, Java, architecture et réseaux. Niveau licence (IUT

et UFR) et niveau master (système et architecture à l’École Polytechnique)
. Responsable de trois cours de système (1ère et seconde année DUT Informatique)
. Responsable cours de Java (seconde année par apprentissage DUT Informatique)
. Responsable cours de programmation orientée objet (L2 Math-Info)
. Responsable cours de sécurite informatique (formation continue)

2004-2005 ATER à temps complet à l’IUT de Clermont-Ferrand (192h)
. Thèmes principaux : système, réseaux et structures de données. Niveau licence
. Responsable cours de structures de données (seconde année DUT Informatique)

2003-2004 ATER à mi-temps à l’UFR Sciences de l’université de Versailles Saint-Quentin-en-
Yvelines (96h)
. Thème principal : administration système. Niveau master

http://www.eurekamany.org
http://www.opengpu.net

B.9. ENCADREMENT 131

2000-2003 Moniteur à l’université Paris 6 Pierre et Marie Curie (64h/an)
. Thèmes principaux : algorithmique et programmation. Niveau licence

B.9 Encadrement

Doctorants . Lénaïc Bagnères, sujet optimisation et parallélisation automatiques pour les archi-
tectures many-cœurs début octobre 2012, soutenance prévue en décembre 2015.

. Mohamed-Walid Benabderrahmane (direction par dérogation de HDR), sujet ma-
nipulation de codes irréguliers dans le modèle polyédrique, début octobre 2008,
arrêt pour raisons personnelles en 2010, 1 publication co-signé (rang A). Actuelle-
ment ingénieur sécurité informatique.

. Louis-Noël Pouchet, sujet optimisation itérative dans le modèle polyédrique, début
septembre 2006, soutenue en janvier 2010, 10 publications co-signées (7 de rang
A). Actuellement chercheur à University of California at Los Angeles (UCLA).

. Nicolas Vasilache, sujet techniques scalables d’optimisation des programmes dans
le modèle polyédrique, début septembre 2004, soutenue en septembre 2007, 11
publications co-signées (5 de rang A). Actuellement ingénieur de recherche à
Reservoir Labs Inc.

Ingénieurs . Taj Khan (encadrement 100%), ingénieur spécialiste recherche et développement,
financé sur projet européen (ITEA2 MANY), CDD de septembre 2012 à août 2014.

. Abdelfetteh Louati (encadrement 100%), ingénieur de recherche et développement
sur projet, CDD d’octobre 2008 à février 2010.

Master
Recherche

. Stage M2R Soufiane Baghdadi et Gilles Duboscq, mars à août 2011.

. Stage M2R Mohamed-Walid Benabderrahmane, mars à septembre 2008.

. Stage M2R Louis-Noël Pouchet, mars à août 2006.

B.10 Fonctions d’intérêt collectif

Expertise Membre du Conseil Consultatif des Spécialistes de l’Université Paris-Sud pour la
27ème section depuis 2010
. Membre de la Commission Mixte de Spécialistes à l’IUT d’Orsay de 2006 à 2009

. Membre du jury ITRF BAP E à l’université Paris-Sud 2010

Vie du
laboratoire

Responsable de l’équipe Architectures Parallèles au LRI en 2011 et 2012
. Membre catégorie B au Conseil de Laboratoire LRI depuis 2006

. Membre au LRI des commissions Web, Valorisation et Locaux travaillant à dif-
férents aspects de la vie et la politique du laboratoire

132 B. CV (FRENCH)

Vie scientifique . Membre des comités de programme des conférences internationales PACT (Par-
allel Architectures and Compilation Techniques), Computing Frontiers, DATE
(Design Automation and Test in Europe) et SSS (Symposium on Stabilization,
Safety and Security of Distributed Systems), ainsi que des workshops interna-
tionaux IMPACT (International Workshop on Polyhedral Compilation Techniques)
et PARMA (Parallel Programming and Run-Time Management Techniques for
Many-core Architectures)

. Organisateur et co-chair du premier workshop sur les techniques d’optimisation
polyédriques http://impact2011.inrialpes.fr

. Relectures pour 20+ journaux et conférences internationaux et plusieurs dizaines
d’articles

Responsabilités
pédagogiques

. Responsable de la Licence Professionnelle de Programmation en Environnement
Réparti à l’IUT d’Orsay depuis 2012 (formation par apprentissage accueillant
chaque année 24 étudiants)

. Responsable de la Licence Professionnelle de Sécurité des Réseaux et Systèmes
Informatiques à l’IUT d’Orsay de 2007 à 2011 (formation par apprentissage ac-
cueillant chaque année 30 étudiants)

. Membre du Bureau du Département Informatique de 2007 à 2011

. Interface équipe enseignante – Centre Commun de Ressources Informatiques de
2006 à 2010

. Responsable de plusieurs cours à l’IUT d’Orsay (animation d’équipes péda-
gogiques jusqu’à une dizaine d’intervenants)

B.11 Intérêts personnels

Sports
Loisirs
Vie associative

Judo
Programmation, peinture sur figurines
Membre fondateur et ancien membre du bureau de l’ATSIR : Association des
Troisième Cycle en Systèmes Informatiques Répartis

B.12 Publications

La section Bibliography de ce document commence par ma bibliographie personnelle. Les différentes
publications sont annotées par le classement ARC (classement arrêté en 2011 mais utilisé ici à titre
d’information : http://www.arc.gov.au/era/journal_list_dev.htm) du journal ou de la con-
férence correspondante.

http://impact2011.inrialpes.fr
http://www.arc.gov.au/era/journal_list_dev.htm

133

Bibliography

Personal Bibliography

— PhD Thesis —

[CB-Bas04b] Cédric Bastoul. Improving Data Locality in Static Control Programs. PhD thesis,
University Paris 6, Pierre et Marie Curie, France, December 2004.

— Patents —

[CB-LMV+10] Allen Leung, Benoît Meister, Nicolas Vasilache, David Wohlford, Cédric Bastoul, Peter
Szilagyi, and Richard Lethin. System, methods and apparatus for program optimization
for multi-threaded processor architectures. In Patent number US20100218196, June
2010.

— International Journals and Book Chapters —

[CB-Bas11a] Cédric Bastoul. Encyclopedia of Parallel Computing, chapter Parallel Code Genera-
tion. Springer-Verlag, 2011. To appear, 8 double column pages.

[CB-BF05] Cédric Bastoul and Paul Feautrier. Adjusting a program transformation for legality.
Parallel processing letters, 15(1):3–17, March 2005. 15 pages. ARC Ranking: B.

[CB-GVB+06] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David Parello, Marc
Sigler, and Olivier Temam. Semi-automatic composition of loop transformations for
deep parallelism and memory hierarchies. International Journal of Parallel Program-
ming, 34(3):261–317, June 2006. 57 pages. ARC Ranking: A.

[CB-MAB+10] Harm Munk, Eduard Ayguadé, Cédric Bastoul, Paul Carpenter, Zbigniew Chamski,
Albert Cohen, Marco Cornero, Philippe Dumont, Marc Duranton, Mohammed Fellahi,
Roger Ferrer, Razya Ladelsky, Menno Lindwer, Xavier Martorell, Cupertino Miranda,
Dorit Nuzman, Andrea Ornstein, Antoniu Pop, Sebastian Pop, Louis-Noël Pouchet,
Alex Ramírez, David Ródenas, Erven Rohou, Ira Rosen, Uzi Shvadron, Konrad Tri-
funović, and Ayal Zaks. Acotes project: Advanced compiler technologies for embed-
ded streaming. International Journal of Parallel Programming, 39(3):397–450, June
2010. 54 pages. ARC Ranking: A.

[CB-PCP+12] Eunjung Park, John Cavazos, Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and
P. Sadayappan. Predictive modeling in a polyhedral optimization space. International

134 BIBLIOGRAPHY

Journal of Parallel Programming, 2012. Accepted for publication. 39 pages. ARC
Ranking: A.

— International Conferences with Program Committee —

[CB-Bas03] Cédric Bastoul. Efficient code generation for automatic parallelization and optimiza-
tion. In ISPDC’2 IEEE International Symposium on Parallel and Distributed Com-
puting, pages 23–30. Ljubljana, Slovenia, October 2003. 8 double column pages.
Accepted papers: 40, Submitted: 60 (rate 67%). ARC Ranking: C.

[CB-Bas04a] Cédric Bastoul. Code generation in the polyhedral model is easier than you think.
In PACT’13 IEEE International Conference on Parallel Architecture and Compilation
Techniques, pages 7–16. Juan-les-Pins, France, September 2004. 10 double column
pages. Accepted papers: 23, Submitted: 122 (rate 19%). ARC Ranking: A. Student
Award.

[CB-BF03a] Cédric Bastoul and Paul Feautrier. Improving data locality by chunking. In CC’12
International Conference on Compiler Construction, LNCS 2622, pages 320–335. War-
saw, Poland, April 2003. 15 pages. Accepted papers: 21, Submitted: 83 (rate 25%).
ARC Ranking: A.

[CB-BF04] Cédric Bastoul and Paul Feautrier. More legal transformations for locality. In Euro-
Par’10 International Euro-Par conference, LNCS 3149, pages 272–283. Springer-
Verlag, Pisa, Italy, August 2004. 12 pages. Accepted papers: 124, Submitted: 352
(rate 35%). ARC Ranking: A. Distinguished Paper Award.

[CB-BPCB10] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric
Bastoul. The polyhedral model is more widely applicable than you think. In Pro-
ceedings of the International Conference on Compiler Construction (ETAPS CC’10),
LNCS, pages 283–303. Springer-Verlag, Paphos, Cyprus, March 2010. 20 pages.
Accepted papers: 16, Submitted: 56 (rate 28%). ARC Ranking: A.

[CB-HBB+09] Albert Hartono, Muthu Baskaran, Cédric Bastoul, Albert Cohen, Sriram Krishnamoor-
thy, Boyana Norris, J. Ramanujam, and P. Sadayappan. Parametric multi-level tiling
of imperfectly nested loops. In Proceedings of the ACM International Conference on
Supercomputing (ICS’09), pages 147–157. Yorktown Heights, New York, June 2009.
11 double column pages. Accepted papers: 47, Submitted: 191 (rate 24%). ARC Rank-
ing: A.

[CB-PBB+10] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
and P. Sadayappan. Combined iterative and model-driven optimization in an automatic
parallelization framework. In Conference on Supercomputing (SC’10). New Orleans,
LA, November 2010. 11 double column pages. Accepted papers: 51, Submitted: 253
(rate 20%). ARC Ranking: A.

[CB-PBB+11] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanujam,
P. Sadayappan, and Nicolas Vasilache. Loop transformations: Convexity, pruning and
optimization. In 38th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (PoPL’11), pages 549–562. Austin, TX, January 2011. 14 double
column pages. Accepted papers: 49, Submitted: 209 (rate 23%). ARC Ranking: A.
HiPEAC Award.

135

[CB-PBCC08a] L.-N. Pouchet, C. Bastoul, A. Cohen, and S. Cavazos. Iterative optimization in the
polyhedral model: Part II, multidimensional time. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’08), pages 90–100. Tuc-
son, Arizona, June 2008. 11 double column pages. Accepted papers: 34, Submit-
ted: 184 (rate 18%). ARC Ranking: A. HiPEAC Award.

[CB-PBCV07] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and Nicolas Vasilache. Iterative
optimization in the polyhedral model: Part I, one-dimensional time. In ACM Interna-
tional Conference on Code Generation and Optimization (CGO’07), pages 144–156.
San Jose, California, March 2007. 13 double column pages. Accepted papers: 27,
Submitted: 84 (rate 32%). ARC Ranking: A.

[CB-PCB+06] Sébastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, P. Jouvelot, G.-A. Silber,
and N. Vasilache. GRAPHITE: Loop optimizations based on the polyhedral model for
GCC. In Proc. of the 4th GCC Developper’s Summit, pages 179–198. Ottawa, Canada,
June 2006. 18 double column pages. ARC Ranking: unrated.

[CB-VBC06] Nicolas Vasilache, Cédric Bastoul, and Albert Cohen. Polyhedral code generation in
the real world. In Proceedings of the International Conference on Compiler Construc-
tion (ETAPS CC’06), LNCS 3923, pages 185–201. Springer-Verlag, Vienna, Austria,
March 2006. 15 pages. Accepted papers: 20, Submitted: 71 (rate 28%). ARC Rank-
ing: A.

[CB-VBGC06] Nicolas Vasilache, Cédric Bastoul, Sylvain Girbal, and Albert Cohen. Violated depen-
dence analysis. In Proceedings of the ACM International Conference on Supercomput-
ing (ICS’06), pages 335–344. Cairns, Australia, June 2006. 10 double column pages.
Accepted papers: 37, Submitted: 141 (rate 26%). ARC Ranking: A.

— International Workshops with Program Committee —

[CB-BCB+10] Riyadh Baghdadi, Albert Cohen, Cédric Bastoul, Louis-Noël Pouchet, and Lawrence
Rauchwerger. The potential of synergistic static, dynamic and speculative loop nest
optimizations for automatic parallelization. In Workshop on Parallel Execution of
Sequential Programs on Multi-core Architectures (PESPMA’10). Saint-Malo, France,
June 2010. 5 double column pages. ARC Ranking: unrated.

[CB-BCG+03a] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier Temam.
Putting polyhedral loop transformations to work. In Workshop on Languages and Com-
pilers for Parallel Computing (LCPC’03), LNCS, pages 209–225. Springer-Verlag,
College Station, Texas, October 2003. 15 pages. Accepted papers: 35, Submitted: 48
(rate 73%). ARC Ranking: unrated.

[CB-BVL+09] Cédric Bastoul, Nicolas Vasilache, Allen Leung, Benoît Meister, David Wohlford, and
Richard Lethin. Extended static control programs as a programming model for accel-
erators, a case study: Targetting ClearSpeed CSX700 with the R-Stream Compiler. In
PMEA’09 Workshop on Programming Models for Emerging Architectures, pages 45–
52. Raleigh, North Carolina, September 2009. 8 double column pages. Accepted
papers: 10, Submitted: 18 (rate 55%). ARC Ranking: unrated.

136 BIBLIOGRAPHY

[CB-HVB+10] Albert Hartono, Nicolas Vasilache, Cédric Bastoul, Allen Leung, Benoît Meister, Richard
Lethin, and Peter Vouras. Automatic parallelization and locality optimization of beam-
forming algorithms. In High Performance Embedded Computing Workshop (HPEC).
MIT Lincoln Laboratory, Lexington, Massachusetts, September 2010. 2 pages doble
colonnes. ARC Ranking: unrated.

[CB-LVM+10] Allen Leung, Nicolas Vasilache, Benoît Meister, Muthu Manikandan Baskaran, David
Wohlford, Cédric Bastoul, and Richard Lethin. A mapping path for multi-GPGPU
accelerated computers from a portable high level programming abstraction. In Pro-
ceedings of 3rd Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU 2010, volume 425 of ACM International Conference Proceeding Se-
ries, pages 51–61. Pittsburgh, Pennsylvania, March 2010. 11 double column pages.
ARC Ranking: unrated.

[CB-MLV+09] Benoît Meister, Allen Leung, Nicolas Vasilache, David Wohlford, Cédric Bastoul, and
Richard Lethin. Productivity via automatic code generation for PGAS platforms with
the R-Stream Compiler. In APGAS’09 Workshop on Asynchrony in the PGAS Pro-
gramming Model. Yorktown Heights, New York, June 2009. 15 pages. ARC Rank-
ing: unrated.

[CB-PBCC08b] Louis-Noël Pouchet, Cédric Bastoul, John Cavazos, and Albert Cohen. A note on the
performance distribution of affine schedules. In 2nd Workshop on Statistical and Ma-
chine learning approaches to ARchitectures and compilaTion (SMART’08). Göteborg,
Sweden, January 2008. 15 pages. ARC Ranking: unrated.

[CB-SDB07] Sébastien Salva, Clément Delamare, and Cédric Bastoul. Web service call paralleliza-
tion using OpenMP. In 3rd International Workshop on OpenMP, LNCS, pages 185–
194. Springer-Verlag, Beijing, China, June 2007. 10 pages. Accepted papers: 14,
Submitted: 28 (rate 50%), ARC Ranking: unrated.

— International Workshops without Program Committee —

[CB-BF03b] Cédric Bastoul and Paul Feautrier. Reordering methods for data locality improve-
ment. In CPC’10 Compilers for Parallel Computers, pages 187–196. Amsterdam, The
Netherlands, January 2003. 10 double column pages. ARC Ranking: unrated.

[CB-PBC07] Louis-Noël Pouchet, Cédric Bastoul, and Albert Cohen. LetSee: the LEgal Transfor-
mation SpacE Explorator. Third International Summer School on Advanced Computer
Architecture and Compilation for Embedded Systems (ACACES’07), L’Aquila, Italia,
July 2007. pages 247–251. ARC Ranking: unrated.

— National Conferences with Program Committee —

[CB-Bas02b] Cédric Bastoul. Une méthode d’amélioration de la localité basée sur des estimations
asymptotiques du trafic. In RENPAR’14, pages 127–134. Hammamet, Tunisia, Avril
2002. 8 pages. ARC Ranking: unrated.

— Tool-Related Technical Reports —

[CB-ABB+01] Jaume Abella, Cédric Bastoul, Jean-Luc Béchennec, Nathalie Drach, Christine Eisen-
beis, Paul Feautrier, Bjoern Franke, Grigori Fursin, Antonio Gonzalez, Toru Kisku, Pe-
ter Knijnenburg, Josep Llosa, Michael O’Boyle, Julien Sebot, and Xavier Vera. Guided

137

transformations. Technical Report M3.D2, MHAOTEU ESPRIT project No 24942,
february 2001. Related to the MHAOTEU toolset.

[CB-Bas02a] Cédric Bastoul. Generating loops for scanning polyhedra. Technical Report 2002/23,
PRiSM, Versailles University, 2002. Related to the CLooG tool.

[CB-Bas08] Cédric Bastoul. Extracting polyhedral representation from high level languages. Tech-
nical report, LRI, Paris-Sud University, 2008. Related to the Clan tool.

[CB-Bas11b] Cédric Bastoul. OpenScop: A specification and a library for data exchange in polyhe-
dral compilation tools. Technical report, LRI, Paris-Sud University, France, September
2011.

[CB-Bas12] Cédric Bastoul. Clay: the chunky loop alteration wizardry. Technical report, LRI,
Paris-Sud University, 2012. Related to the Clay tool.

[CB-BCG+03b] Cédric Bastoul, Albert Cohen, Sylvain Girbal, Saurabh Sharma, and Olivier Temam.
Putting polyhedral loop transformations to work. Technical Report 4902, INRIA Roc-
quencourt, 2003. Related to the WRAP-IT tool.

[CB-BP12] Cédric Bastoul and Louis-Noël Pouchet. Candl: the chunky analyzer for dependences
in loops. Technical report, LRI, Paris-Sud University, 2012. Related to the Candl tool.

[CB-FcCB02] Paul Feautrier, Jean-François Collard, and Cédric Bastoul. Solving systems of affine
(in)equalities. Technical report, PRiSM, Versailles University, 2002. Related to the
PIP/PipLib tool.

General Bibliography

[ABC+06] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle, J. Thomson,
M. Toussaint, and C. K. I. Williams. Using machine learning to focus iterative opti-
mization. In IEEE/ACM Intl. Symp. on Code Generation and Optimization (CGO’06),
pages 295–305. IEEE Computer Society, Washington, DC, USA, 2006.

[ACG+04] L. Almagor, K. Cooper, A. Grosul, T. Harvey, S. Reeves, D. Subramanian, L. Torczon,
and T. Waterman. Finding effective compilation sequences. In Languages, Compilers,
and Tools for Embedded Systems (LCTES), pages 231–239. New York, 2004.

[AI91] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In 3rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 39–50, June
1991.

[AK87] J. Allen and K. Kennedy. Automatic translation of FORTRAN programs to vector
form. ACM Transactions on Programming Languages and Systems, 9(4):491–542,
October 1987.

[AK02] J. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures. Morgan
Kaufmann Publishers, 2002.

138 BIBLIOGRAPHY

[Ban76] U. Banerjee. Data dependence in ordinary programs. Master’s thesis, Dept. of
Computer Science, University of Illinois at Urbana-Champaign, November 1976.

[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
Boston, 1988.

[Ban90] U. Banerjee. Unimodular transformations of double loops. In Advances in Languages
and Compilers for Parallel Processing, pages 192–219. Irvine, august 1990.

[Ban93] U. Banerjee. Loop Transformations for Restructuring Compilers. Kluwer Academic,
1993.

[Bar98] D. Barthou. Array Dataflow Analysis in Presence of Non-affine Constraints. PhD
thesis, Université de Versailles Saint-Quentin, France, February 1998.

[BBK+08a] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ramanu-
jam, Atanas Rountev, and P. Sadayappan. A compiler framework for optimization of
affine loop nests for gpgpus. In Proceedings of the 22nd annual international confer-
ence on Supercomputing, ICS’08, pages 225–234. Island of Kos, Greece, 2008.

[BBK+08b] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, A. Roun-
tev, and P. Sadayappan. Automatic transformations for communication-minimized
parallelization and locality optimization in the polyhedral model. In Intl. Conf. on
Compiler Construction (ETAPS CC 17). Budapest, Hungary, April 2008.

[BCC98] Denis Barthou, Albert Cohen, and Jean-François Collard. Maximal static expansion.
In ACM Symp. on Principles of Programming Languages (PoPL’98). San Diego, Cali-
fornia, 1998.

[BDD+07] Denis Barthou, Sebastien Donadio, Alexandre Duchateau, Patrick Carribault, and William
Jalby. Loop optimization using adaptive compilation and kernel decomposition. In
ACM/IEEE Int. Symp. on Code Optimization and Generation, pages 170–184. IEEE
Computer Society, San Jose, California, March 2007.

[BDSV98] P. Boulet, A. Darte, G-A. Silber, and F. Vivien. Loop parallelization algorithms: From
parallelism extraction to code generation. Parallel Computing, 24(3):421–444, 1998.

[Ber66] A. Bernstein. Analysis of programs for parallel processing. IEEE Trans. on Electronic
Computers, 15(5):757–763, October 1966.

[BF98] Pierre Boulet and Paul Feautrier. Scanning polyhedra without do-loops. In IEEE Inter-
national Conference on Parallel Architectures and Compilation Techniques (PACT’98),
pages 4–11. Paris, France, October 1998.

[BGDR10] Uday Bondhugula, Oktay Günlük, Sanjeeb Dash, and Lakshminarayanan Renganarayanan.
A model for fusion and code motion in an automatic parallelizing compiler. In Pro-
ceedings of the 19th international conference on Parallel architectures and compilation
techniques, PACT’10, pages 343–352. ACM, Vienna, Austria, September 2010.

[BHRS08] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A practical
automatic polyhedral parallelizer and locality optimizer. In Proc. of the 2008 ACM
Conf. on Programming language design and implementation (PLDI’08). Tucson, AZ,
USA, June 2008.

139

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. The parma polyhedra library:
Toward a complete set of numerical abstractions for the analysis and verification of
hardware and software systems. Sci. Comput. Program., 72(1-2):3–21, 2008.

[BKK+98] F. Bodin, T. Kisuki, P. M. W. Knijnenburg, M. F. P. O’Boyle, and E. Rohou. Iterative
compilation in a non-linear optimisation space. In W. on Profile and Feedback Directed
Compilation. Paris, October 1998.

[CBF95] Jean-François Collard, Denis Barthou, and Paul Feautrier. Fuzzy array dataflow anal-
ysis. In ACM Symp. on Principles and practice of parallel programming (PPoPP’95),
pages 92–101. Santa Barbara, California, 1995.

[CCH08] Chun Chen, Jacqueline Chame, and Mary Hall. A framework for composing high-level
loop transformations. Technical Report 08-897, USC Computer Science, June 2008.

[CCJ05] P. Carribault, A. Cohen, and W. Jalby. Deep Jam: Conversion of coarse-grain par-
allelism to instruction-level and vector parallelism for irregular applications. In Intl.
Conf. on Parallel Architectures and Compilation Techniques (PACT’05), pages 291–
300. St-Louis, Missouri, September 2005.

[CGH+05] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven Reeves, Devika Sub-
ramanian, Linda Torczon, and Todd Waterman. ACME: adaptive compilation made
efficient. In ACM SIGLPAN/SIGBED Conf. on Languages, Compilers, and Tools for
Embedded Systems (LCTES’05), pages 69–77. ACM Press, Chicago, IL, USA, 2005.

[CGP+05] A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N. Vasilache. Facilitating
the search for compositions of program transformations. In ICS’05, pages 151–160.
Boston, Massachusetts, June 2005.

[Che12] Chun Chen. Polyhedra scanning revisited. In Proceedings of the 33rd ACM SIGPLAN
conference on Programming Language Design and Implementation, PLDI ’12, pages
499–508. ACM, Beijing, China, 2012.

[Cho04] F. Chow. Maximizing application performance through interprocedural optimization
with the PathScale EKO compiler suite, August 2004.

[CI96] Béatrice Creusillet and François Irigoin. Exact versus approximate array region anal-
yses, lncs 1239. In LCPC’96 9th Annual Workshop on Programming Languages and
Compilers for Parallel Computing, pages 86–100, 1996.

[Cle08a] ClearSpeed Inc. Cn Standard Libraries Reference Manual, Document 06-RM-1139.
2008.

[Cle08b] ClearSpeed Inc. CSX700 Floating Point Processor Datasheet, Document 06-PD-1425.
2008.

[CMO06] J. Cavazos, J. E. Moss, and M. F. P. O’Boyle. Hybrid optimizations: Which optimiza-
tion algorithm to use. In (ETAPS CC 16). Vienna, Austria, April 2006.

[Col94] Jean-François Collard. Space-time transformation of while-loops using speculative
execution. In In Proc. of the 1994 Scalable High Performance Computing Conf, 1994.

140 BIBLIOGRAPHY

[Col95] Jean-François Collard. Automatic parallelization of while-loops using speculative ex-
ecution. Int. J. Parallel Program., 23(2):191–219, 1995.

[CSS99] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for reduced
code space using genetic algorithms. In Workshop on Languages, Compilers, and Tools
for Embedded Systems, pages 1–9. ACM Press, Atlanta, GA, USA, July 1999.

[CST02] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive optimizing com-
pilers for the 21st century. J. Supercomputing, 23(1):7–22, 2002.

[CW99] K. Chow and Y. Wu. Feedback-directed selection and characterization of compiler
optimizations. In 2nd Workshop on Feedback-Directed Optimization. Israel, November
1999.

[Dan51] G. Dantzig. Maximization of a linear function of variables subject to linear inequali-
ties. In T.C. Koopmans, editor, Activity Analysis of Production and Allocation, Cowles
Commission Monograph No. 13, pages 339–347. John Wiley & Sons, Inc., New York,
1951.

[Dar00] A. Darte. On the complexity of loop fusion. Parallel Computing, 26(9):1175–1193,
2000.

[DR94] A. Darte and Y. Robert. Mapping uniform loop nests onto distributed memory archi-
tectures. Parallel Computing, 20(5):679–710, 1994.

[DRV00] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. Birkhauser,
2000.

[ES92] Christine Eisenbeis and Jean-Claude Sogno. A general algorithm for data dependence
analysis. In ICS ’92: Proceedings of the 6th international conference on Supercomput-
ing, pages 292–302. ACM Press, Washington, D. C., United States, 1992.

[FCOT05] Grigori Fursin, Albert Cohen, M. O’Boyle, and Olivier Temam. A practical method
for quickly evaluating program optimizations. In Intl. Conf. on High Performance
Embedded Architectures and Compilers (HiPEAC’05), number 3793 in LNCS, pages
29–46. Springer-Verlag, Barcelona, November 2005.

[Fea88a] P. Feautrier. Parametric integer programming. RAIRO Recherche Opérationnelle, 22
(3):243–268, 1988.

[Fea88b] Paul Feautrier. Array expansion. In ICS, pages 429–441. St Malo, France, July 1988.

[Fea91] P. Feautrier. Dataflow analysis of scalar and array references. International Journal of
Parallel Programming, 20(1):23–53, February 1991.

[Fea92a] P. Feautrier. Some efficient solutions to the affine scheduling problem: one dimensional
time. International Journal of Parallel Programming, 21(5):313–348, october 1992.

[Fea92b] P. Feautrier. Some efficient solutions to the affine scheduling problem, part II: mul-
tidimensional time. International Journal of Parallel Programming, 21(6):389–420,
December 1992.

141

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation of fftw3. Pro-
ceedings of the IEEE, 93(2):216–231, 2005.

[FO03] B. Franke and M. O’Boyle. Array recovery and high level transformations for dsp
applications. In CPC’10 Intl. Workshop on Compilers for Parallel Computers, pages
29–38. Amsterdam, January 2003.

[FO05] B. Franke and M. O’Boyle. A complete compiler approach to auto-parallelizing c
programs for Multi-DSP systems. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 16(3):234–245, march 2005.

[GC95] Martin Griebl and Jean-François Collard. Generation of synchronous code for au-
tomatic parallelization of while loops. In Euro-PAR’95, LNCS 966, pages 315–326,
1995.

[GFL00] M. Griebl, P. Feautrier, and C. Lengauer. Index set splitting. Int. Journal of Parallel
Programming, 28(6):607–631, 2000.

[GFL04] M. Griebl, P. Faber, and C. Lengauer. Space-time mapping and tiling – a helpful
combination. Concurrency and Computation: Practice and Experience, 16(3):221–
246, March 2004.

[GGL98] Max Geigl, Martin Griebl, and Christian Lengauer. A scheme for detecting the termi-
nation of a parallel loop nest. In Proc. GI/ITG FG PARS’98, 1998.

[GGL99] Max Geigl, Martin Griebl, and Christian Lengauer. Termination detection in parallel
loop nests with while loops. Parallel Comput., 25(12):1489–1510, 1999.

[Gir05] Sylvain Girbal. Optimisation d’applications - Composition de transformations de pro-
gramme: modle et outils. Phd thesis, University Paris-Sud 11, Orsay, France, Septem-
ber 2005.

[GKT91] G. Goff, K. Kennedy, and C. Tseng. Practical dependence testing. In Proceedings of
the ACM SIGPLAN’91 Conference on Programming Language Design and Implemen-
tation, pages 15–29. New York, june 1991.

[GL94] Martin Griebl and Christian Lengauer. On scanning space-time mapped while loops.
In CONPAR 94 - VAPP VI: Proceedings of the Third Joint International Conference on
Vector and Parallel Processing, pages 677–688. London, UK, 1994.

[GLW98] Martin Griebl, Christian Lengauer, and Sabine Wetzel. Code generation in the polytope
model. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (PACT’98), pages 106–111, 1998.

[Gol89] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 1989.

[GR07] Gautam Gupta and Sanjay V. Rajopadhye. The z-polyhedral model. In Proceedings of
the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP’07, pages 237–248. ACM, San Jose, California, USA, March 2007.

142 BIBLIOGRAPHY

[Gri04] M. Griebl. Automatic parallelization of loop programs for distributed memory ar-
chitectures. Habilitation thesis. Facultät für Mathematik und Informatik, Universität
Passau, 2004.

[GZA+11] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin Grösslinger,
and Louis-Noël Pouchet. Polly-polyhedral optimization in llvm. In IMPACT 2011 First
International Workshop on Polyhedral Compilation Techniques. Chamonix, France,
2011.

[HAI+05] I. Hurbain, C. Ancourt, F. Irigoin, M. Barreteau, J. Mattioli, and F. Paquier. A
case study of design space exploration for embedded multimedia applications in SoCs.
Technical Report A-361, CRI – École des Mines de Paris, february 2005.

[HKL73] R. J. Hanson, F. T. Krogh, and C. L. Lawson. A proposal for standard linear algebra
subprograms. ACM Signum Newsletter, 8(16), 1973.

[HSP+11] Tom Henretty, Kevin Stock, Louis-Noël Pouchet, Franz Franchetti, J. Ramanujam, and
P. Sadayappan. Data layout transformation for stencil computations on short-vector
simd architectures. In Proceedings of the 20th international conference on Compiler
construction: part of the joint European conferences on theory and practice of soft-
ware, CC’11/ETAPS’11, pages 225–245. Saarbrücken, Germany, 2011.

[Iri11] François Irigoin. Dependence abstractions. In Encyclopedia of Parallel Computing,
pages 552–556. 2011.

[IT87] F. Irigoin and R. Triolet. Computing dependence direction vectors and dependence
cones with linear systems. Technical Report ENSMP-CAI-87-E94, Ecole des Mines
de Paris, Fontainebleau (France), 1987.

[IT88] F. Irigoin and R. Triolet. Supernode partitioning. In Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 319–
329. San Diego, California, United States, 1988.

[JCP+12] Alexandra Jimborean, Philippe Clauss, Benoît Pradelle, Luis Mastrangelo, and Vincent
Loechner. Adapting the polyhedral model as a framework for efficient speculative
parallelization. In Proceedings of the 17th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, PPoPP ’12, pages 295–296. New Orleans,
Louisiana, USA, 2012.

[JMS+10] Byunghyun Jang, Perhaad Mistry, Dana Schaa, Rodrigo Dominguez, and David Kaeli.
Data transformations enabling loop vectorization on multithreaded data parallel archi-
tectures. SIGPLAN Not., 45(5):353–354, January 2010.

[KAP97] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In ACM
SIGPLAN’97 Conf. on Programming Language Design and Implementation, pages
346–357. Las Vegas, June 1997.

[Kel96] W. Kelly. Optimization within a Unified Transformation Framework. doctoral thesis,
University of Maryland, 1996.

143

[KHW+05] Prasad A. Kulkarni, Stephen R. Hines, David B. Whalley, Jason D. Hiser, Jack W.
Davidson, and Douglas L. Jones. Fast and efficient searches for effective optimization-
phase sequences. ACM Trans. on Architecture and Code Optimization, 2(2):165–198,
2005.

[KKO00] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle. Combined selection of tile
sizes and unroll factors using iterative compilation. In IEEE Intl. Conf. on Parallel Ar-
chitectures and Compilation Techniques (PACT’00), pages 237–246. IEEE Computer
Society, Philadelphia, PA, USA, 2000.

[KKP90] X. Kong, D. Klappholz, and K. Psarris. The i test: A new test for subscript data
dependence. In ICPP’90 International Conference on Parallel Processing, pages 204–
211. St. Charles, August 1990.

[KMP+96] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott. The Omega
library. Technical report, University of Maryland, November 1996.

[KMW67] R. Karp, R. Miller, and S. Winograd. The organization of computations for uniform
recurrence equations. J. ACM, 14(3):563–590, july 1967.

[KP93] W. Kelly and W. Pugh. A framework for unifying reordering transformations. Tech-
nical Report UMIACS-TR-92-126.1, University of Maryland Institute for Advanced
Computer Studies, 1993.

[KP95] W. Kelly and W. Pugh. A unifying framework for iteration reordering transforma-
tions. In IEEE Intl. Conf. on Algorithms and Architectures for Parallel Processing
(ICAPP’95), pages 153–162, April 1995.

[KPR95] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. In Fron-
tiers’95 Symposium on the frontiers of massively parallel computation. McLean, 1995.

[KS98] Kathleen Knobe and Vivek Sarkar. Array ssa form and its use in parallelization. In
ACM Symp. on Principles of Programming Languages (PoPL’98). California, 1998.

[KZM+03] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley,
Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effective
optimization phase sequences. In LCTES ’03: Proc. of the 2003 ACM SIGPLAN Conf.
on Language, compiler, and tool for embedded systems, pages 12–23. ACM Press, San
Diego, California, USA, 2003.

[LAB+09] Qingda Lu, Christophe Alias, Uday Bondhugula, Thomas Henretty, Sriram Krish-
namoorthy, J. Ramanujam, Atanas Rountev, P. Sadayappan, Yongjian Chen, Haibo Lin,
and Tin fook Ngai. Data layout transformation for enhancing data locality on nuca chip
multiprocessors. In PACT 2009, Proceedings of the 18th International Conference on
Parallel Architectures and Compilation Techniques, pages 348–357. Raleigh, North
Carolina, USA, September 2009.

[Lam74] Leslie Lamport. The parallel execution of do loops. Communications of ACM, 17(2):
83–93, 1974.

[Le 92] H. Le Verge. A note on Chernikova’s algorithm. Technical Report 635, IRISA, 1992.

144 BIBLIOGRAPHY

[Le 95] H. Le Verge. Recurrences on lattice polyhedra and their applications, April 1995. Un-
published work based on a manuscript written by H. Le Verge just before his untimely
death in 1994.

[Le 96] M. Le Fur. Scanning parameterized polyhedron using Fourier-Motzkin elimination.
Concurrency - Practice and Experience, 8(6):445–460, 1996.

[Lee98] Corinna Lee. UTDSP benchmark suite, 1998.
http://www.eecg.toronto.edu/~corinna/DSP.

[Len93] Christian Lengauer. Loop parallelization in the polytope model. In Int. Conf. on
Concurrency Theory, LNCS 715, pages 398–416. Hildesheim, August 1993.

[LF98] V. Lefebvre and P. Feautrier. Automatic storage management for parallel programs.
Parallel Computing, 24(3–4):649–671, 1998.

[LF05] Shun Long and Grigori Fursin. A heuristic search algorithm based on unified transfor-
mation framework. In ICPPW ’05: Proc. of the 2005 Intl. Conf. on Parallel Processing
Workshops (ICPPW’05), pages 137–144. IEEE Computer Society, Washington, DC,
USA, 2005.

[LF06] Shun Long and Grigori Fursin. Systematic search within an optimisation space based
on unified transformation framework. IJCSE Intl. J. of Computational Science and
Engineering, 2006.

[Lim01] A. Lim. Improving Parallelism and Data Locality with Affine Partitioning. PhD thesis,
Stanford University, 2001.

[LL97] A. W. Lim and M. S. Lam. Communication-free parallelization via affine transfor-
mations. In 24th ACM Symposium on Principles of Programming Languages, pages
201–214. Paris, France, January 1997.

[LO04] S. Long and M.F.P. O’Boyle. Adaptive Java optimisation using instance-based learn-
ing. In ACM Intl. Conf. on Supercomputing (ICS’04), pages 237–246. Saint-Malo,
France, June 2004.

[LP94] W. Li and K. Pingali. A singular loop transformation framework based on non-singular
matrices. International Journal of Parallel Programming, 22(2):183–205, April 1994.

[LVW94] H. Le Verge, V. Van Dongen, and D. Wilde. Loop nest synthesis using the polyhedral
library. Technical Report 830, IRISA, 1994.

[LW97] Vincent Loechner and Doran K. Wilde. Parameterized polyhedra and their vertices.
International Journal of Parallel Programming, 25(6):525–549, 1997.

[LYZ89] Z. Li, P. Yew, and C. Zhu. Data dependence analysis on multi-dimensional array
references. In ICS’3 ACM International Conference on Supercomputing, pages 215–
224. Heraklion, June 1989.

[MAL93] D. E. Maydan, S. P. Amarasinghe, and M. S. Lam. Array dataflow analysis and its use
in array privatization. In 20þACM Symp. on Principles of Programming Languages
(PoPL), pages 2–15. Charleston, South Carolina, January 1993.

145

[McBQ02] Antoine Monsifrot, François Bodin, and Rene Quiniou. A machine learning approach
to automatic production of compiler heuristics. In AIMSA ’02: Proc. of the 10th Intl.
Conf. on Artificial Intelligence: Methodology, Systems, and Applications, pages 41–50.
Springer-Verlag, London, UK, 2002.

[MHL91] Dror E. Maydan, John L. Hennessy, and Monica S. Lam. Efficient and exact data de-
pendence analysis. In PLDI ’91: Proceedings of the ACM SIGPLAN 1991 conference
on Programming language design and implementation, pages 1–14. New York, NY,
USA, 1991.

[MPNT04] R. MÃ 1
4 ller-Pfefferkorn, W. Nagel, and B. Trenkler. Optimizing cache access: A

tool for source-to-source transformations and real-life compiler tests. In Euro-Par
2004 Parallel Processing, 10th International Euro-Par Conference, pages 72–81. Pisa,
august 2004.

[MVW+11] Benoît Meister, Nicolas Vasilache, David Wohlford, Muthu Manikandan Baskaran,
Allen Leung, and Richard Lethin. R-stream compiler. In Encyclopedia of Parallel
Computing, pages 1756–1765. 2011.

[Nis98] Andy Nisbet. GAPS: A compiler framework for genetic algorithm (GA) optimised
parallelisation. In HPCN Europe 1998: Proc. of the Intl. Conf. and Exhibition on High-
Performance Computing and Networking, pages 987–989. Springer-Verlag, London,
UK, 1998.

[nVi12] nVidia. CUDA Compute Unified Device Architecture C Programming Guide (version
4.2). 2012.

[Pal07] M. Palkovič. Enhanced Applicability of Loop Transformations. PhD thesis, T. U.
Eindhoven, The Netherlands, September 2007.

[PK04] K. Psarris and K. Kyriakopoulos. An experimental evaluation of data dependence
analysis techniques. IEEE Transactions on Parallel and Distributed Systems, 15(3):
196–213, March 2004.

[Pop06] Sebastian Pop. The SSA Representation Framework: Semantics, Analyses and GCC
Implementation. doctoral thesis, École des Mines de Paris, 2006.

[Pou10] Louis-Noël Pouchet. Interative Optimization in the Polyhedral Model. PhD thesis,
University of Paris-Sud 11, Orsay, France, January 2010.

[PP91] P. Petersen and D. Padua. Experimental evaluation of some data dependence tests.
Technical Report CSRD 1080, University of Illinois at Urbana-Champaign, February
1991.

[PP96] P. Petersen and D. Padua. Static and dynamic evaluation of data dependence analysis
techniques. IEEE Transactions on Parallel and Distributed Systems, 7(11):1121–1132,
november 1996.

[PPC+11] Eunjung Park, Louis-Noël Pouchet, John Cavazos, Albert Cohen, and P. Sadayappan.
Predictive modeling in a polyhedral optimization space. In CGO’11 Proceedings of the
9th Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, pages 119–129. Chamonix, France, 2011.

146 BIBLIOGRAPHY

[PSX+04] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua, M. Veloso, and R. W.
Johnson. SPIRAL: A generator for platform-adapted libraries of signal processing
algorithms. J. of High Performance Computing and Applications, special issue on
Automatic Performance Tuning, 18(1):21–45, 2004.

[Pug91a] W. Pugh. The omega test: a fast and practical integer programming algorithm for
dependence analysis. In Proceedings of the third ACM/IEEE conference on Supercom-
puting, pages 4–13. Albuquerque, August 1991.

[Pug91b] W. Pugh. Uniform techniques for loop optimization. In ICS’91, pages 341–352.
Cologne, Germany, June 1991.

[PW93] William Pugh and David Wonnacott. An exact method for analysis of value-based array
data dependences. In LCPC’93 Sixth Annual Workshop on Programming Languages
and Compilers for Parallel Computing, LNCS 768, pages 546–566, 1993.

[QD89] P. Quinton and V. Van Dongen. The mapping of linear recurrence equations on regular
arrays. The Journal of VLSI Signal Processing, 1(2):95–113, October 1989.

[QR00] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the polyhedral model.
ACM Transactions on Programming Languages and Systems, 22(5):773–815, Septem-
ber 2000.

[QRW00] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from
polyhedra. International Journal of Parallel Programming, 28(5):469–498, October
2000.

[Qui84] Patrice Quinton. Automatic synthesis of systolic arrays from uniform recurrent equa-
tions. In Proceedings of the 11th Annual Symposium on Computer Architecture, pages
208–214. Ann Arbor, USA, June 1984.

[Ram95] J. Ramanujam. Beyond unimodular transformations. J. of Supercomputing, 9(4):
365–389, 1995.

[RK88] S. K. Rao and T. Kailath. Regular iterative algorithms and their implementations on
processor arrays. Proc. IEEE, 76(3):259–282, March 1988.

[RKRS07] Lakshminarayanan Renganarayanan, DaeGon Kim, Sanjay Rajopadhye, and Michelle Mills
Strout. Parameterized tiled loops for free. SIGPLAN Notices, Proc. of the 2007 PLDI
Conf., 42(6):405–414, 2007.

[RP95] Lawrence Rauchwerger and David A. Padua. The LRPD test: Speculative run-time
parallelization of loops with privatization and reduction parallelization. In ACM Conf.
on Programming Language Design and Implementation (PLDI’95), June 1995.

[RPF86] Sanjay V. Rajopadhye, S. Purushothaman, and Richard Fujimoto. On synthesizing
systolic arrays from recurrence equations with linear dependencies. In FSTTCS Foun-
dations of Software Technology and Theoretical Computer Science, Sixth Conference,
pages 488–503. New Delhi, India, December 1986.

147

[RPR07] Silvius Rus, Maikel Pennings, and Lawrence Rauchwerger. Sensitivity analysis for
automatic parallelization on multi-cores. In ACM Intl. Conf. Supercomputing (ICS’07),
2007.

[RR03] Silvius Rus and Lawrence Rauchwerger. Hybrid dependence analysis for automatic
parallelization. Technical report, Parasol Laboratory, Texas A&M University, 2003.

[RRH03] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid analysis: Static &
dynamic memory reference analysis. Intl. J. of Parallel Programming, 31(4), 2003.

[RVRA08] Easwaran Raman, Neil Vachharajani, Ram Rangan, and David I. August. Spice: spec-
ulative parallel iteration chunk execution. In Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and optimization, CGO ’08, pages 175–
184. Boston, MA, USA, 2008.

[RVVA04] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. Decou-
pled software pipelining with the synchronization array. In Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT’04), September 2004.

[SAMO03] Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. Meta
optimization: improving compiler heuristics with machine learning. SIGPLAN Notices,
38(5):77–90, 2003.

[Sch86] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1986.

[SLM12] Rachid Seghir, Vincent Loechner, and Benoît Meister. Integer affine transformations
of parametric z-polytopes and applications to loop nest optimization. TACO, 9(2):8,
2012.

[SSH10] I-Jui Sung, John A. Stratton, and Wen-Mei W. Hwu. Data layout transformation ex-
ploiting memory-level parallelism in structured grid many-core applications. In Pro-
ceedings of the 19th international conference on Parallel architectures and compilation
techniques, PACT ’10, pages 513–522. Vienna, Austria, 2010.

[ST92] Vivek Sarkar and Radhika Thekkath. A general framework for iteration-reordering
loop transformations. In Proceedings of the ACM SIGPLAN 1992 conference on Pro-
gramming language design and implementation, PLDI ’92, pages 175–187. San Fran-
cisco, California, United States, 1992.

[TCE+10] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias Grosser, Har-
sha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjödin, and Ramakrishna Upadrasta.
Graphite two years after: First lessons learned from real-world polyhedral compilation.
In GCC Research Opportunities Workshop (GROW’10). Pisa, Italy, 2010.

[TNC+09] Konrad Trifunovic, Dorit Nuzman, Albert Cohen, Ayal Zaks, and Ira Rosen. Polyhedral-
model guided loop-nest auto-vectorization. In PACT ’09: Proceedings of the 2009 18th
International Conference on Parallel Architectures and Compilation Techniques, pages
327–337. IEEE Computer Society, Washington, DC, USA, 2009.

[Tri11] Konrad Trifunovic. Efficient search-based strategies for polyhedral compilation: al-
gorithms and experience in a production compiler. doctoral thesis, University of Paris-
Sud, 2011.

148 BIBLIOGRAPHY

[TVA05] S. Triantafyllis, M. Vachharajani, and D. I. August. Compiler optimization-space
exploration. In J. of Instruction-level Parallelism, volume 7, January 2005.

[TVVA03] Spyridon Triantafyllis, Manish Vachharajani, Neil Vachharajani, and David I. August.
Compiler optimization-space exploration. In IEEE/ACM Intl. Symp. on Code genera-
tion and optimization (CGO’03), pages 204–215. IEEE Computer Society, Washing-
ton, DC, USA, 2003.

[Vas07] Nicolas Vasilache. Scalable optimization techniques in the polyhedral model. Phd
thesis, University Paris-Sud 11, Orsay, France, September 2007.

[VCP07] Nicolas Vasilache, Albert Cohen, and Louis-Noël Pouchet. Automatic correction of
loop transformations. In PACT, pages 292–304. Brasov, Romania, September 2007.

[Ver10] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Mathemat-
ical Software - ICMS 2010, Third International Congress on Mathematical Software,
pages 299–302. Kobe, Japan, September 2010.

[Ver12] Sven Verdoolaege. Polyhedral extraction tool. In IMPACT’12 International Workshop
on Polyhedral Compilation Techniques. Paris, France, January 2012.

[Viv02] Frédéric Vivien. On the optimality of Feautrier’s scheduling algorithm. In Intl. Euro-
Par Conf. on Parallel Processing (EURO-PAR’02), pages 299–308. Springer-Verlag,
London, UK, 2002.

[WB87] Michael Wolfe and Utpal Banerjee. Data dependence and its application to parallel
processing. International Journal of Parallel Programming, 16(2):137–178, 1987.

[Wil93] D. Wilde. A library for doing polyhedral operations. Technical report, IRISA, 1993.

[WL91] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize
parallelism. IEEE Trans. Parallel Distrib. Syst., 2(4):452–471, October 1991.

[Wol82] Michael Joseph Wolfe. Optimizing supercompilers for supercomputers. PhD thesis,
University of Illinois at Urbana-Champaign, October 1982.

[Wol87] M. Wolfe. Iteration space tiling for memory hierarchies. In 3rd SIAM Conference on
Parallel Processing for Scientific Computing, pages 357–361, december 1987.

[Wol92] M. Wolf. Improving Locality and Parallelism in Nested Loops. PhD thesis, Dept. of
computer science, Stanford University, California, 1992.

[Wol95] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley
Publishing Company, 1995.

[Won95] D. G. Wonnacott. Constraint-Based Array Dependence Analysis. PhD thesis, Univer-
sity of Maryland, 1995.

[WPD00] Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimization
of software and the atlas project. Parallel Computing, 27(1–2):3–35, 2000.

[WT92] M. Wolfe and C. W. Tseng. The power test for data dependence. IEEE Transactions
on Parallel and Distributed Systems, 3(5):591–601, 1992.

149

[Xue94] J. Xue. Automating non-unimodular loop transformations for massive parallelism.
Parallel Computing, 20(5):711–728, 1994.

[YAI95] Yi-Qing Yang, Corinne Ancourt, and Francois Irigoin. Minimal data dependence ab-
stractions for loop transformations. International Journal of Parallel Programming, 23
(4):359–388, 1995.

	Contents
	Introduction
	The Programming Wall
	Limits of Program Optimization Tools
	High-Level Optimizations for High-Level Programs
	Challenges Addressed in this Document
	Habilitation Thesis Overview

	The Polyhedral Path
	Polyhedral Representation of Programs
	Polyhedral Relations
	Representing Statement Instances: Iteration Domains
	Representing Order and Placement: Mapping Relations
	Representing Memory Accesses: Access Relations

	Applying a Mapping in the Polyhedral Model
	Transformation in the Model
	Expressing Data Dependences

	Scanning Polyhedra
	Fourier-Motzkin Elimination-Based Scanning Method
	Parametric Integer Programming-Based Scanning Method
	QRW-Based Scanning Method

	Conclusion

	User Accessibility
	Syntactic Feedback: Static Control as a Programming Model
	Semantic Feedback: the Violation Analysis Approach
	On the Need For Instance-wise Data Dependence Analysis
	Characterization of Violated Dependences
	Removing Data Dependence Violations

	Semi-Automatic Mapping Construction
	Clay Mapping Structure, Notations and Operators
	Revisiting Classical Transformations in Clay
	Correcting Transformation Scripts

	Easing Polyhedral Framework Integration: the OpenScop Initiative
	Conclusion

	Optimization Quality: An Iterative Approach
	Legal Transformation Spaces
	One-Dimensional Schedules
	Multidimensional Schedules

	Practical Search Space
	Mapping Coefficient Bounding
	Search Space Construction

	Legal Space Traversal
	Exhaustive Search
	Heuristic Traversal
	Evolutionary Traversal

	Overview of the Experimental Platform
	Lessons Learned from Experiments
	Search Space Construction Cannot Avoid Legality
	Exhaustive Search Is Out of Reach In General
	Model-Based Performance Models Are Not Enough
	The Compiler Is a Part of the Experimental Platform
	All Mapping Coefficients Are Not Equal With Respect to Performance
	Performance Distribution Is Not Random
	Bad Solutions Are Close to Good Ones
	Random Search Is Not Likely to Provide Good Results
	Benefits Are Significant

	Coupling Model-Based and Iterative-Based Optimizations
	Related Work
	Conclusion

	Scalability: Facing the Real World
	Data Dependence Analysis Scalability
	Fast Data Dependence Violation Check
	Transitively-Covered Dependences
	Scalability
	Related Work

	Code Generation Scalability
	Reducing Code Generation Time
	Preserving Generated Code Quality
	Putting it All Together
	Related Work

	Conclusion

	Applicability: Beyond Static Control
	Relaxing the Static Control Constraints
	Modeling Arbitrary Loop Structure
	Modeling Arbitrary Conditionals

	Revisiting the Polyhedral Framework
	Program Analysis
	Program Transformation
	Code Generation

	Reducing Control Overhead
	Computing the Value of Predicates
	Predicate Placement

	Experimental Results
	Methodology and Setup
	Results

	Related Work
	Conclusion

	Conclusion and Perspectives
	Related Tools
	Candl
	Clan
	Clay
	CLooG
	LeTSeE
	OpenScop (Formerly SCoPLib)
	PipLib
	PoCC
	R-Stream
	Other Related Tools

	CV (French)
	Expérience professionnelle
	Formation
	Compétences techniques
	Langues
	Recherche et développement
	Distinctions
	Coordination et participation à des projets scientifiques
	Enseignement
	Encadrement
	Fonctions d'intérêt collectif
	Intérêts personnels
	Publications

	Bibliography

