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Abstract
Parallel architectures are now omnipresent in mainstream elec-
tronic devices and exploiting them efficiently is a challenge for all
developers. Hence, they need the support of languages, libraries
and tools to assist them in the optimization or parallelization task.
Compilers can provide a major help by automating this work. How-
ever they are very fragile black-boxes. A compiler may take a bad
optimization decision because of imprecise heuristics or may turn
off an optimization because of imprecise analyses, without provid-
ing much control or feedback to the end user. To address this issue,
we introduce mapping deviation, a new compiler technique that
aims at providing a useful feedback on the semantics of a given
program restructuring. Starting from a transformation intuition a
user or a compiler wants to apply, our algorithm studies its cor-
rectness and can suggest changes or conditions to make it possible
rather than being limited to the classical go/no-go answer. This al-
gorithm builds on state-of-the-art polyhedral representation of pro-
grams and provides a high flexibility. We present two example ap-
plications of this technique: improving semi-automatic optimiza-
tion tools for programmers and automatically designing runtime
tests to check the correctness of a transformation for compilers.

Categories and Subject Descriptors D 3.4 [Programming lan-
guages]: Processor — Compilers; Optimization

Keywords Compilation; Dependence Analysis; Loop Transfor-
mations; Polyhedral Model

1. Introduction
High-level loop transformations are a key tool to map efficiently
compute-intensive applications to multi-core systems which are
now powering most computing platforms. Finding the best trans-
formation for a given input code and a given target architecture
has been a business for experts and a major research field in com-
pilation for several decades [1, 7, 14, 25, 30, 33, 42]. The most
important constraint that experts and compilers are facing while
trying to find the best optimization is to preserve the original pro-
gram semantics. If it is proven to be too challenging for the expert
or if the analyses of the compiler are not powerful enough, the best

transformations may be discarded. Worse, the compiler most prob-
ably applied some irreversible preprocessing to ease its analyses for
nothing, while it may severely hamper performance.

Early compiler techniques were dealing with semantics preser-
vation by relying on so-called enabling transformations: a specific
pre-processing driven by a data dependence analysis to make the
desired transformation possible, e.g., loop skewing for Wolf and
Lam’s data locality optimization technique [41] or loop splitting for
Allen and Kennedy’s parallelization algorithm [1]. Modern com-
piler optimization techniques guarantee legality by construction:
data dependencies and causality conditions are encoded within the
algorithms that can issue only a legal sequence of transformations
[7, 14, 25, 31]. Hence, to maximize their efficiency, some pre-
processing is applied to the input program to remove as many data
dependencies as possible before the optimization step, e.g., privati-
zation, total memory expansion, static single assignment form [23],
index-set splitting [18] etc. Often, there is no easy way back from
those pre-processing techniques while they may have a serious im-
pact on memory use and/or control overhead.

In this paper we use a radically different (yet possibly comple-
mentary) transformation-centric approach. Starting from a trans-
formation an expert or a compiler would like to apply, we study its
impact with respect to data dependencies and we extend the limited
go/no-go answer of usual legality checking by trying, if necessary,
to suggest limited changes to the transformation to make it legal,
or conditions to ensure its legality at runtime. Our work builds on
the state-of-the-art, relation-based polyhedral representation of pro-
grams to target complex sequences of loop transformations and to
achieve precise analyses. Unlike existing transformation correction
schemes [5, 27, 36], we reason about any component of the pro-
gram representation, in their most general form.

Specifically, this paper brings three contributions:

• We revisit the formulation of violated dependence analysis in-
troduced by Vasilache et al. [35] with the relation-based poly-
hedral abstraction, which allows to consider more input codes,
more transformations and facilitates our strategy.

• We introduce mapping deviation, an original solution that
brings the ability to reason about the legality of transformations
when selected dimensions of selected relations of the program’s
polyhedral representation have been modified by adding spe-
cific deviation parameters. Compared to related work on loop
transformation semantic feedback, mapping deviation uses a
radically different approach based on safe-space manipulation
and offers a significantly wider application domain.

• We contribute two example applications of mapping devia-
tion: correcting a general polyhedral transformation for legal-
ity and generating an array overlapping test to check at runtime
whether a given transformation is legal or not, when the pointer
alias analysis is deficient.
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This paper is organized as follows. We present our motivation
through an example that illustrates the benefits of our approach in
Section 2. In Section 3, we introduce the useful background, in
particular the various elements of a relation-based polyhedral rep-
resentation of programs. We build on this background to introduce
our mapping deviation technique in Section 4 and we present two
example applications in Section 5. Finally, we discuss related work
in Section 6 and we conclude in Section 7.

2. Motivation
While compiler techniques typically reason about what they can
do with respect to data dependencies to optimize a given code,
we propose a very different approach by reasoning about what we
want to do to optimize that code. To illustrate our transformation-
centric approach and how it can be used, let us consider the code
in Figure 1. This program applies two classical image filters to an
image stored in the array Img and uses the array Tmp to store the
intermediate result. We will consider two scenarios.

/⇤ Mean Blur F i l t e r ⇤ /
f o r ( i = 1 ; i < L � 1 ; i ++)

f o r ( j = 1 ; j < W � 1 ; j ++)
S1 : Tmp[ i ] [ j ] =

( Img [ i �1][ j �1] + Img [ i �1][ j ] + Img [ i �1][ j +1] +
Img [ i ] [ j �1] + Img [ i ] [ j ] + Img [ i ] [ j +1] +
Img [ i + 1 ] [ j �1] + Img [ i + 1 ] [ j ] + Img [ i + 1 ] [ j + 1 ] ) / 9 ;

/⇤ R o b e r t s Edge D e t e c t i o n F i l t e r ⇤ /
f o r ( i = 1 ; i < L � 2 ; i ++)

f o r ( j = 2 ; j < W � 1 ; j ++)
S2 : Img [ i ] [ j ] = abs (Tmp[ i ] [ j ] � Tmp[ i + 1 ] [ j �1]) +

abs (Tmp[ i + 1 ] [ j ] � Tmp[ i ] [ j �1 ] ) ;

Figure 1. Running Example: Mean-Roberts Edge-Detect Filter

1. First scenario, an optimization expert programmer notices
the high reuse of the array Tmp between the loops and wants to
achieve data locality by fusing them. To avoid writing the code
including a prologue and an epilogue due to non-matching loop
bounds, he/she uses a semi-automatic, script-based transforma-
tion tool such as UTF [22], URUK [16], CHiLL [8] or Clay
[2] to achieve that transformation and to generate the code. Un-
fortunately he/she gets a no-go from the data dependence anal-
ysis of the tool (or worse, a wrong code if no such analysis
is possible, like when using Goofi [28] or XLanguage [11])
because that transformation would violate data dependencies
(e.g., Tmp[i+1][j] would be used by the second statement
while it would not have been produced yet by the first state-
ment – which is only producing Tmp[i][j] during the same
iteration). Hence, the programmer has to redesign his optimiza-
tion.
The technique described in this paper goes beyond checking the
legality of the transformation by computing a limited deviation
to make it legal. In this case it would suggest to complement
the loop fusion with a minimal shifting to delay the execution of
the iterations of the second statement until each consumed value
has been produced. Most probably, the programmer would have
corrected his transformation in the same way, but our technique
computes and applies this deviation automatically.
Few previous works addressed this issue [5, 36], however, we
bring a different, general solution not tied to a specific opti-
mization family (as data locality optimization for [5]) or to a
representation structure (as the URUK representation for [36]).

2. Second scenario, an optimizing compiler with data locality
optimization strategy could compute the same loop fusion +

shifting transformation to exploit the data reuse that the op-
timization expert assisted by our technique could find, if its
pointer alias analysis is powerful enough to ensure that Img and
Tmp are pointing disjoint storage spaces. If it is not the case,
the transformation is not considered at all because the compiler
over-approximates data dependencies to guarantee the correct-
ness of the target program, and this discards the proposed trans-
formation. A recent work points out how relevant is such a sce-
nario for LLVM [10].
Our technique goes beyond naive conservative policies by com-
puting a test on Img and Tmp relatively to the desired transfor-
mation to ensure it is possible. In this case, the test would check
the array addresses are organized in the address space in a way
that guarantees the transformation does preserve the original
program semantics. The compiler can use this test to decide
whether to use the optimized version or the original version at
runtime.
To the best of our knowledge, no other work can address this
problem relatively to a given transformation. We solved it by
exploiting the polyhedral representation of input programs and
desired transformations.

3. Polyhedral Abstraction of Programs
The polyhedral model is a mathematical representation that en-
codes individual dynamic executions of statements (called state-
ment instances) of a subset of imperative programs [15]. It is an al-
ternative (complementary) abstraction to syntactic representations,
such as abstract syntax trees, which are closer to the structure of
the program rather than to its dynamic behavior. Its application do-
main is typically loop-based program parts where conditions, loop
bounds and array subscripts are affine forms of outer loop coun-
ters and fixed parameters, but extensions exist to support up to full
functions [6, 38]. Several compilers have the ability to raise such
static control program parts (SCoPs) to a polyhedral form such as
GCC [34], LLVM [19] or IBM XL [7]. Our work applies to any
SCoP, in their most general form.

Roughly, program restructuring in the polyhedral model is a
three step process. First, a program which can fit the model is raised
to a polyhedral representation using three main abstractions: itera-
tion domains which define the sets of statement instances, schedul-
ing which encodes their relative ordering and accesses which ex-
press their data accesses. Next, an optimizing algorithm [7, 14, 25]
or an expert [8, 16, 22] designs a new scheduling to reorder state-
ment instances while respecting data dependencies. Finally the
code implementing the new scheduling is generated by polyhedra
scanning [3, 32].

This model has two key properties for our transformation-
centric strategy. First, because it operates at the instance level, it
is expressive enough to encode and to apply arbitrarily complex
sequences of loop transformations [16]. Second, it makes possi-
ble an exact, instance-wise, data dependence analysis [14]. Hence,
building on the polyhedral model, our work can apply to a large
range of optimizations while trying to fix the exact, minimum set
of offending elements in the transformation sequence. To achieve
this goal, we build on its state-of-the art mathematical represen-
tation, based on polyhedral relations rather than on functions. It
allows to consider and/or to represent consistently more general
programs (supporting non-unit strides, OR conditions, general data
accesses through approximations etc.) and transformations (sup-
porting index-set splitting, stride transformation etc.) [4]. Such
relations are defined in Section 3.1, and we review the required
abstractions in the following sections.
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3.1 Polyhedral Relations
A relation is a mapping from a set of input coordinates in an
input space to a set of output coordinates in an output space.
A polyhedral relation R (~p) is a finite union of convex relations
R (~p) =

S
i R i(~p), each convex relation being a function associat-

ing to ~p a relation that can be represented using m affine constraints
in the following way:

R i(~p) =

8
>>><

>>>:
~xin!~xout

���������

9~li : Ri

0

BBB@

~xout
~xin
~li
~p
1

1

CCCA
�~0

9
>>>=

>>>;
,

where:
• ~xin 2 Zdim(~xin) is an input coordinate,
• ~xout 2 Zdim(~xout ) is an output coordinate,

• ~li 2 Zdim(~li) is the vector of local variables (also referred as set
variables or existentially quantified variables in the literature),

• ~p 2 Zdim(~p) is the vector of parameters (unknown but fixed
integer values, a.k.a. free variables),

• Ri 2 Zm⇥(dim(~xout )+dim(~xin)+dim(~li)+dim(~p)+1) is an integer ma-
trix.

Polyhedral relations were originally suggested by Kelly and
Pugh as a convenient object to represent programs and to compute
data dependencies [22]. However, they had to respect various con-
straints and could not be used directly to represent all aspects of
a SCoP (e.g., scheduling had to be invertible). Modern implemen-
tations of polyhedral relations such as isl [39] allow the use of
the full expressiveness of relations. In this work, we make an unre-
stricted use of this representation1. Without loss of generality, we
will only consider convex relations without local variables to sim-
plify notations.

3.2 Abstracting Instances: Iteration Domains
The key aspect of the representation of programs in the polyhedral
model is to consider statement instances. A statement instance is
one particular execution of a statement.

Each instance of a statement enclosed inside a loop can be
associated with the value of its outer loop counters: its iteration
vector. Hence, a compact way to represent all the instances of
a given statement is to consider the set of all possible iteration
vectors. This set is called the statement’s iteration domain. It can
be conveniently described by all the constraints on the enclosing
loop iterators. When those constraints are affine and depend only on
the outer loop counters and some parameters, the set of constraints
defines a Z-polyhedron. The general form of the iteration domain of
a statement S is a degenerated relation without input dimensions (or
exactly, a constant input) and where output dimensions correspond
to the statement’s iteration space:

DS(~p) =

8
<

:()!~ıS

������
DS

0
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9
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where ~ıS 2 Zdim(~ıS) is the statement’s iteration vector and DS 2
ZmDS⇥(dim(~ıS)+dim(~p)+1) is an integer matrix where mDS is the num-
ber of constraints. For instance, the iteration domain of the first
statement in the code in Figure 1 is:

1 Note that while the general representation of convex relations shows only
inequalities, equalities (which may be obviously captured via inequalities)
are allowed as well.
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where each row of the DS1 matrix corresponds to a constraint on
the loop counters (here, simply the loop bounds).

3.3 Abstracting Ordering: Scheduling Relations
Iteration domains do not provide any information about the relative
execution order between statement instances. This information is
provided by scheduling relations. They describe a relation between
statement instances and logical dates in a logical time. It is denoted
qS for a given statement S. Logical dates may be multidimensional,
like clocks: the first dimension could correspond to days (most
significant), the next one to hours (less significant), the third one to
minutes and so on, a lexicographical order. A scheduling relation
for a statement S is a mapping where input dimensions correspond
to its iteration space and output dimensions correspond to the target
logical time:

qS(~p) =

8
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where~ıS 2 Zdim(~ıS) is the statement’s iteration vector in the origi-
nal code,~tS 2 Zdim(~tS) is the statement’s target logical scheduling
time, and TS 2 ZmqS⇥(dim(~ıS)+dim(~tS)+dim(~p)+1) is an integer matrix
where mqS is the number of constraints. For instance, the following
scheduling relations for the two statements of the code in Figure 1
model the same ordering as the original code:

qS1

✓
L
W

◆
=

8
>>>>>>>>><

>>>>>>>>>:

✓
i
j

◆
!

0

@
t1
t2
t3

1

A

���������������

2

4
�1 0 0 0 0 0 0 0

0 �1 0 1 0 0 0 0
0 0 �1 0 1 0 0 0

3

5

0

BBBBBBBBB@

t1
t2
t3
i
j
L
W
1

1

CCCCCCCCCA

=~0

9
>>>>>>>>>=

>>>>>>>>>;

,

qS2

✓
L
W

◆
=

8
>>>>>>>>><

>>>>>>>>>:

✓
i
j

◆
!

0

@
t1
t2
t3

1

A

���������������

2

4
�1 0 0 0 0 0 0 1

0 �1 0 1 0 0 0 0
0 0 �1 0 1 0 0 0

3

5

0

BBBBBBBBB@

t1
t2
t3
i
j
L
W
1

1

CCCCCCCCCA

=~0

9
>>>>>>>>>=

>>>>>>>>>;

.

Here the first scheduling dimension is 0 for the first statement and
1 for the second one, ensuring all instances of the first statement
are executed before any instance of the second one. The other
dimensions (set to i then j for both statements) express that the
target ordering follows the original lexicographic order for both
statements. Hence the order of the instances in the target time space
is the same as in the original code.

Scheduling relations can encode arbitrarily complex sequences
of loop transformations such as skewing, interchange, shifting,
tiling etc. Several automatic [7, 30, 40] or semi-automatic [8, 16,
22] program transformation frameworks have been proposed on top
of particular cases of such relations like scheduling functions.

3.4 Abstracting Memory Accesses: Access Relations
The access relation models the memory reference behavior for a
given access. It maps statement instances to memory cells for a
given statement and array reference. Hence, it is a relation where
input dimensions correspond to the iteration space of the statement
and the output dimensions are the accessed array dimensions:
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AS,r(~p) =
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where r is the memory reference number in the statement, ~ıS 2
Zdim(~ıS) is the statement’s iteration vector, ~aS,r 2 Zdim(~aS,r) is the
access vector where the ith element corresponds to the index of the
ith array dimension and AS,r 2 ZmAS,r⇥(dim(~aS,r)+dim(~ıS)+dim(~p)+1) is
an integer matrix where mAS,r is the number of constraints. For
instance, the access relation for the first access of the first statement
(Tmp[i][j]) in Figure 1 is:
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where each row of the AS1,1 matrix corresponds to the subscript of
a dimension of the array Tmp.

3.5 Abstracting Dependencies: Dependence Relations
Not all schedules do preserve the original program semantics.
Hence, it is critical to formalize the necessary information to pre-
serve it. This is done through the data dependency abstraction.
This abstraction characterizes the fact that some ordered statement
instances access the same memory location [43].

Several dependency abstractions have been proposed, with vari-
ous accuracy to support a given kind of transformation and/or some
constraints on the compilation time [20]. The most precise abstrac-
tion is the dependences between iterations, defined by Irigoin and
Triolet [21] since it encodes the exact set of dependent instances,
even when they are from different loop nests. For some subsets of
input codes and desired transformations, simple abstractions may
encode the exact information [43]. However, in our context of gen-
eral domain, access and scheduling relations, where the desired
transformation is unknown a priori, it is necessary to use the most
precise abstraction to avoid missing a deviation opportunity.

Hence, in this work we rely on dependences between iterations,
however we will use the term dependence relations for consistency
and to highlight the fact that unlike most existing work, we use
access relations instead of access functions to describe them. A de-
pendence relation d

S,rS
d!T,rT

(~p) is a mapping from instances and
accessed memory locations of a source statement S to instances
and accessed memory locations of a target statement T , at a given
dependence depth d (defined below), for a given pair of memory
references rS and rT . The dependence relation is not empty for two
instances iff they access the same memory locations and the source
instance accesses the memory locations first. The dependence rela-
tion is built using three sub-relations:

1. Existence condition of the instances: the instances must belong
to the iteration domains of their respective statements. The
constraints involved are those of the iteration domains, see
Section 3.2.

2. Conflict condition of the memory locations: the memory lo-
cations must belong to the access relation of their respective
accesses and they must refer to the same locations. The con-
straints involved are those of the access relations, see Section
3.4, plus the equality of the access dimensions.

3. Causality condition of the instances: the instances of the
source statement in the dependence relation are executed be-
fore the corresponding instances of the target statement. The
constraints involved in this condition depend on the situation.

They can be separated into a disjunction with as many parts
as common loops to both S and T . Each part corresponds to
a common loop depth called a dependence depth. For a given
dependence depth d > 0, the causality condition has two parts:
• the equality of the iteration vector elements at depth less

than d: ixS = ixT for x < d,

• idT � idS if S is textually before T , idT > idS otherwise.
If no loop is shared by S and T , there is no causality constraint
and the dependency may only exist if S is textually before T .

Figure 2 shows the general form of a dependence relation with
causality constraints. We use the notation M~v for the submatrix
of M made of the columns of M to be multiplied with the vector
elements of ~v, and I rows,• for the matrix made of selected rows of
the identity matrix.

The complete information about data dependencies of an input
program is stored in the data dependence graph. In this directed
graph, each program statement is represented using a unique ver-
tex, and the existing dependence relations between statement in-
stances are represented using edges. Each vertex is labelled with
the iteration domain of the corresponding statement and the edges
are labelled with the dependence relation between the source and
destination statements.

4. Removing Dependence Violations
The heart of our approach is to study the impact of a program
transformation with respect to data dependencies. This is done
through violated dependence analysis detailed in Section 4.1. We
build on this analysis to propose our mapping deviation technique
to find corrections or conditions to guarantee the legality of a
transformation. We present this approach in Section 4.2 and useful
variations of the base algorithm in Section 4.3.

4.1 Abstracting Violations: Violation Relations
Data dependence relations provide the exact sets of instance cou-
ples such that their relative order must be preserved by a program
transformation. In the relation formalism, the legality of a transfor-
mation is guaranteed if, for any couple of iteration vectors~ıS and
~ıT involved in a dependence relation d

S,rS
d!T,rT

(~p),
qS(~ıS)� qT (~ıT ),

where � denotes the lexicographical order. Intuitively, this means
that the source instance has to be executed before the target instance
after the scheduling has been applied.

Violation relations aim at encoding the exact sets of instance
couples in dependence relation such that the relative order has been
reversed by a given transformation. We revisit here the formulation
of Vasilache et al. to benefit from the more general relational repre-
sentation which allows to support more codes and transformations
than the function-based original characterization [35].

A violation relation u
S,rS

d,v!T,rT
(~p) is a mapping from scheduled

instances and accessed memory locations of a source statement S
to scheduled instances and accessed memory locations of a target
statement T , at a given dependence depth d and a violation depth v
(defined below), for a given pair of memory references rS and rT .
The violation relation is not empty for two scheduled instances iff
they are involved in a dependence relation and the source instance
is scheduled after or at the same time as the target instance. The
violation relation is built using three subrelations:

1. Dependency existence condition between the instances, see
Section 3.5.

2. Scheduling condition of the instances, see Section 3.3.
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Figure 2. Data Dependence Relation – Exact set of instances of a target statement T accessing data through a target reference rT that depend
on instances of a source statement S accessing data through a source reference rS, at loop depth d. The top part of the constraint matrix
corresponds to the existence condition, the middle part to the conflict condition and the bottom one to the causality condition.
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Figure 3. Dependence Violation Relation – Exact set of instances of a target statement T accessing data through a target reference rT that
have been scheduled before, or at the same time than, instances of a source statement S accessing data through a source reference rS at
scheduling dimension v, although they are in dependence relation at loop depth d. The top part of the constraint matrix corresponds to the
dependency existence condition, the middle part to the scheduling condition and the bottom one to the causality violation condition.

3. Causality violation condition of the scheduled instances: the
scheduled instances of the source statement in the violation
relation are executed after or at the same time as the corre-
sponding scheduled instances of the target statement. The con-
straints involved in this condition depend on the situation. They
can be separated into a disjunction with as many components
as scheduling dimensions in both S and T (i.e. the minimum
scheduling depth between S and T ). Each component corre-
sponds to a given scheduling depth and is called a violation
depth. For a given violation depth v > 0, the causality violation
condition is made of two parts:
• the equality of the scheduling elements at depth less than v:

tx
S = tx

T for x < v,
• tv

T < tv
S if v is less than the minimum number of scheduling

dimensions between S and T ,
tv
T  tv

S if v is equal to the minimum number of scheduling
dimensions between S and T .

If the minimum number of scheduling dimensions is zero, there
is no causality violation condition and the violation may only
exist if a dependency exists.

Figure 3 shows the general form of a violation relation, where
D

S,rS
d!T,rT

is the dependence constraint matrix (see Section 3.5)
where additional columns set to zero have been added for the
corresponding~tS and~tT dimensions.

Note that we consider here potential violations as violations.
For instance, when two instances in a dependence relation have the
same scheduling, the violation exists since it is not possible to know
which one will be executed first from the scheduling. However, the
code generation step may still generate (by chance) a correct code.
To compute only definite violations, simply consider that there is
no violation if the minimum number of scheduling dimension is
zero and that the second part of the causality violation condition is
always tT,v < tS,v. Finally, if the scheduling relation is a union, the
violation analysis has to be performed on each component of the
union.

For a given set of scheduling relations and a data dependence
graph, violations relations form a violated dependence graph that
we use as a basis for strategies to make a given transformation legal.

4.2 Mapping Deviation
When a violated dependence graph has been computed for a given
scheduling, it is possible to reason about it to modify either the
input program or the transformation to avoid violations. Some
transformations like, e.g., privatization, or array expansion [13, 23],
do not generate new violations, but can remove some of them at the
price of a higher memory footprint. If they are enough to enable
a scheduling, applying them after violated dependence analysis
ensures the minimal expansion is used.

Another way is to modify the scheduling itself. Starting from an
incorrect transformation sequence, the goal is to restore the original
program semantics for the final program while deviating from the
desired transformation as little as possible. To solve this problem,
we propose the mapping deviation approach. It aims at comput-
ing safe spaces where no dependence violation exist, with respect
to parametric changes (mapping deviations) in any dimension of
any relation of the polyhedral representation. When applied only
to the scheduling relations, it shares the same goal as Vasilache et
al.’s algorithm [36], i.e., starting from an illegal scheduling, find
a constant (possibly parametric) shifting with minimal deviation.
However the two techniques are quite different. Contrary to Vasi-
lache et al. the algorithm presented here is not iterative on depth
(however it can be modified in this way to reduce its complexity,
see the depth-by-depth variant in Section 4.3), and not tied to the
scheduling only. The most fundamental difference is that, rather
than reasoning about the space where a violation exists (to find the
extremal amount of time units between a source instance and a tar-
get instance), we work on the space where no violation exists. This
strategy is the key for the flexibility of our technique which can be
used to reason about any component of the polyhedral representa-
tion. In addition, it also makes its implementation much easier.

The algorithm to compute safe spaces and solutions to mapping
deviations is depicted in Figure 4. We use the general term ”map-
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MAPPING DEVIATION ALGORITHM

• Input: M: original mapping relation set; DDG: data dependence graph; V DG: violated dependence graph
• Output: Mshift : set of corrected mapping relations

1. choose the set of mapping relations Mshift to correct by shifting (at least one mapping from each violated dependence in V DG)

2. for each mapping relation M in Mshift do

(a) extend M with p deviation parameters, where p is the maximal violation depth of all the violations where M is involved

(b) shift the ith mapping dimension of M with the ith deviation parameter, 0  i  p (i.e., in all constraints, substitute the ith mapping
dimension ti with ti�Ci, where Ci is the ith deviation parameter).

3. build the list V of dependence violation relations which have to be recomputed with respect to the modified mappings
4. Dshift  universe

5. for each dependence violation relation V in V do
(a) replace the original mapping(s) with the shifted mapping(s) in V (i.e., introduce the deviation parameters as in step 2)
(b) compute solutions to V as a quast on deviation and global parameters using, e.g., PIP

(c) build a union of polyhedra V such that each union component corresponds to the parametric conditions leading to no solution (bottom
or? in PIP) in the quast; in those polyhedra, deviation parameters are promoted to variables while global parameters remain parameters

(d) Dshift  Dshift \V
6. if Dshift is empty then

(a) return /0
else
(a) choose a low deviation solution to Dshift (computed using, e.g., PIP), i.e., a correcting value for each deviation parameter (possibly

parametric itself)
(b) replace the deviation parameters in Mshift with their corresponding correcting value and remove the deviation parameters
(c) return Mshift

Figure 4. An Algorithm to Compute the Safe Space of a Transformation Relatively to a Mapping Deviation

ping” (a relation being a mapping) to highlight the fact that we can
apply the same methodology to study any component of the poly-
hedral representation. The intuitive idea is the following:

• First, we introduce new deviation parameters and we use them
to shift the mapping dimensions to be corrected. A deviation
parameter is specific to a given dimension of a given mapping
relation. We create one deviation parameter per dimension to
be corrected in each statement in a violation (even transitively).
Then we shift each dimension to correct with its own deviation
parameter (i.e., we substitute t with t�C in the relation if t is
the dimension to correct and C is its deviation parameter).

• Next, we find the constraints on the deviation parameters such
that no violation exists. We rely on Parametric Integer Program-
ming (using the PIP tool) for this task [12]. For this we express
the violation relations using the shifted mapping and we ask
PIP for a solution. The solution is provided as a quasi-affine se-
lection tree, or quast, i.e., a selection tree based on constraints
on parameters. Each path to ? (no solution) in the quast cor-
responds to a part of the parameter space where the violation
does not exist. We gather all those parts in a union of polyhedra
defining the “safe” part of the space with respect to parameters
for a given violation relation. Lastly we intersect all the unions
for all the violation relations.

• Finally, we select a solution in the “safe” part of the space (if it
exists) such that it has a minimum deviation from the original
mapping. This selection highly depends on the structure of
the mapping (are there dimensions more/less important than
others, e.g., beta dimensions [16]?). Our general strategy is
to minimize the absolute value of deviations with decreasing

priority, from the first to the last mapping dimensions. It is again
an optimization problem where we use PIP. It is easy to adapt
the strategy to any mapping structure that is known.

Relation parametric shifting is a very expressive transformation.
From a syntactic point of view, the effect of a successful scheduling
correction on the generated code may correspond, in the case of a
large deviation, up to a long sequence of loop shifting, fusion, dis-
tribution, peeling, index set splitting and code motion. Hence, this
strategy allows a large range of possible corrections while targeting
the scheduling part. Pouchet et al. showed that this class of transfor-
mations has, in general, the minimal impact on performance [29].
As a result, it is expected to generate only a limited offset to the
desired optimization.

THEOREM 1. (completeness) The Mapping Deviation Algorithm
finds deviations to correct a set of mapping relations if and only
if such deviations exist.

Proof. The proof of completeness lies in the manipulation of
exact violation spaces by the algorithm. On one hand, it choses
a solution in the space that is complementary to the exact instance-
wise violation space, hence if a solution exists then the deviated
relations are legal. On the other hand, if correct solutions exist then
they belong to that space, otherwise they would violate at least one
dependency.

A complete example of scheduling correction using this algo-
rithm is presented in Figure 5. We use a simplified version of the
running example introduced in Section 2: a user wishes to trans-
form the original program in 5(a) using the scheduling relation in
5(b), most probably to improve locality for the array A. Using this
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scheduling, a code generator could generate the code in 5(c), it cor-
responds to a loop fusion. Unfortunately it is easy to see that in the
target code, S2 is now consuming data before S1 produces them: a
violation analysis would show that °

S1,10,2!S2,2
is not empty. We can

try to correct this scheduling.
Because there are only two statements, it is not necessary to shift

both. We choose to apply a deviation to the scheduling of S1. This
translates to a parametric shifting that impacts the dependence vio-
lation relation °

S1,10,2!S2,2
, but also °

S1,10,1!S2,2
. Hence it is necessary

to consider both, as shown in Figure 5(e) and 5(f) where we applied
the deviation to both relations. Next, for each relation, we compute
the “safe” space where, depending on the deviation parameters, no
violation exists. This is done using PIP [12] on the violation re-
lation constraints. The quasts and their conversion to “safe” spaces
are shown in 5(g) and 5(h). The intersection of the violation-relative
“safe” spaces gives the global “safe” space shown in 5(i).

Each part of the “safe” space union contains possible solutions.
Moreover, constraints on global parameters forces versioning: dif-
ferent corrections may be applied depending on the global parame-
ter values. In our example, we can see from 5(i), that any correction
is correct for N < 1 (because the dependency does not exist), but not
for N >= 1. We are free to chose any solution for N >= 1. How-
ever they are not equivalent with respect to deviation from the orig-
inal scheduling. For instance two possible corrections are shown in
5(j) and 5(k). One of them totally cancels the loop fusion, while
the other slightly modifies it. Our general approach is to apply the
smallest possible shifting, lexicographically. Hence we achieve the
correction shown in 5(k). If the correction algorithm fails, then the
scheduling is considered as illegal and is simply discarded.

4.3 Variations of the Mapping Deviation Algorithm
Mapping deviation has been implemented in Candl2, a tool ded-
icated to data dependence analysis. The base algorithm proposes
to restrict the number of shifted dimensions for a given mapping
to the maximum violation depth where it is involved (see Step 2 of
Figure 4). However it is easy to derive useful variants from the base
algorithm to fit different polyhedral framework implementations.

Full-Depth Variant A depth-by-depth approach is possible by
adding an outer loop on mapping depth to the algorithm. At
the nth iteration, only the correcting parameter for the nth di-
mension is added to all mappings involved in a dependence
relation, and the correcting values of the n�1 first dimensions
are integrated for violation relation construction.

Depth-by-Depth Variant Shifting at depth d can generate viola-
tions at depth d0 > d (e.g., when shifting results in a loop fu-
sion). While we can try to solve it at depth < d, we can allow
to correct it at a further depth. To enable this, we simply need
to add correcting parameters to all dimensions.

5. Applications
5.1 Correcting Transformation Scripts
The scheduling relation abstraction is too complex to be used di-
rectly by end-users that are not very familiar with the polyhedral
model. However, optimization experts can strongly benefit from its
ability to compute exact data dependence analysis to check or (us-
ing our work) to correct their transformations, and from automatic
code generation to handle the complex and error-prone optimiza-
tion implementation in a transparent way. Several frameworks have
been proposed to provide a high-level interface on top of a polyhe-
dral engine, UTF [22] being arguably the very first of them. The

2 http://periscop.github.io

URUK [16], the CHiLL [8] and the Clay [2] frameworks allow
the composition of any complex sequence of classical loop trans-
formations (without necessary intermediate legality tests for, e.g.,
URUK or Clay). All these frameworks translate internally a trans-
formation script composed with high-level syntactic transformation
primitives (like skew, or interchange or tile) to a set of scheduling
relations, or to a simpler form, e.g., scheduling functions.

Using mapping deviation on the scheduling relations as shown
in Figures 4 and 5, it is possible to correct them in the same way as
general scheduling. However either UTF, URUK, CHiLL or Clay is
relying on a specific scheduling structure with special dimensions
which must be preserved during the process of combining transfor-
mations, and consequently, during correction.

In all these frameworks, odd scheduling dimensions (the first
dimension being 1) express the lexicographic ordering of loops and
statements. They are called b in URUK or Clay and auxiliary loops
in CHiLL or UTF. We use here the name b for short. If we call a
the even dimensions, the general form of the scheduling vector is
(b1,a1,b2,a2 . . . ,bn,an,bn+1)

T . b-like dimensions are restricted
to be non-parametric constant values. The vector formed from b
values for a given scheduling union component is called a b-vector.
Each b-vector must be unique and cannot be a prefix of other b-
vectors. These invariants must hold after a correction process.

LEMMA 1. The correction algorithm based on mapping deviation
preserves the scheduling structure based on b, except for the last b
dimension which can be updated to respect that structure.

Proof. The correction algorithm may change the scheduling only
by adding a parametric constant to each dimension. Such shifting
cannot generate new iterations. Moreover, in the case of b-like
dimensions, the deviation constant cannot be parametric because
those dimensions are not linked directly or indirectly to parameters.
Hence, PIP cannot issue parametric conditions involving b-like
dimensions, and they remain constant after correction.

b-vector uniqueness is not guaranteed to be preserved by the
correction algorithm. However, two iterations cannot share the
same scheduling because it is considered as a violation in the
violated dependence analysis. Thus, the last b-like dimension of
statements with the same b-vector (or one b-vector and some b-
prefix) is not meaningful for ordering (it is a free dimension). It
follows they can be updated in such a way that each b vector is
unique and is not the prefix of other b-vectors, provided other b
values are updated to respect the relative orders, if necessary.

Hence, by analyzing parametric constants which have been
added to some scheduling dimensions, corrections can translate
to a sequence of shifting (for a dimensions) and reordering (for b
dimensions) as defined in UTF, URUK, CHiLL or Clay. Note that
the minimum deviation from the original transformation may undo
it entirely if no better solution is found.

To illustrate how mapping deviation can concretely assist users
in designing optimizations, we present how it is used in Clint, a
loop-transformation environment based on direct manipulation of
iteration domain visualization [44]. Clint has three synchronized
interactive panels shown in Figure 6: (1) is the visualization where
iteration domains can be direclty moved, cut, skewed etc. (2) is the
transformation script depicting user’s actions in a textual way and
(3) is the original or the target source code with colors mapped
similarly to the visualization. Here, the code panel contains the
original code of our running example described in Section 2.

In Clint, the expert’s intuition about a profitable loop fusion sim-
ply translates into selecting (click) and moving (drag) an iteration
domain visualization onto the other one, which corresponds to ac-
tion (a): the original loop is shaded out while the intended position
is light dashed green overlay. This action generates the two first
lines of the transformation script in panel (2) where each primitive
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f o r ( i = 0 ; i <= N; i ++)
S1 : A[ i ] = B[ i ] ;

f o r ( i = 0 ; i <= N; i ++)
S2 : C[ i ] = A[ i + 1 ] ;
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f o r ( i = 0 ; i <= N; i ++) {
S1 : A[ i ] = B[ i ] ;
S2 : C[ i ] = A[ i + 1 ] ;

}

(a) Original Program (b) Illegal scheduling (c) Illegal Target Code
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(e) Violated Dependencies With Deviated qS1 (f) Potential Violations With Deviated qS1
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f o r ( i = 0 ; i <= N; i ++)
S1 : A[ i ] = B[ i ] ;

f o r ( i = 0 ; i <= N; i ++)
S2 : C[ i ] = A[ i + 1 ] ;
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S1 : A[ 0 ] = B [ 0 ] ;
f o r ( i = 0 ; i < N; i ++) {

S1 : A[ i +1] = B[ i + 1 ] ;
S2 : C[ i ] = A[ i + 1 ] ;

}
S2 : C[N] = A[N+ 1 ] ;

(j) High Deviation Depth 1 Correction (k) Low Deviation Depth 2 Correction

Figure 5. Example of Scheduling Correction
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targets the loop or the statement indexed by its b-vector. Unfortu-
nately, the transformation is not legal: thin red arrows depict depen-
dencies violated by the intended transformation. Mapping deviation
automatically computes in real time the minimal shifting transfor-
mation to make the transformation legal and generates the two last
lines of the transformation script in panel (2). The correction trans-
lates visually to action (b): the iteration domain is automatically
moved to the closest place where the transformation is legal. The
corrected position is light solid green polygon. The final situation
preserves the expert’s intuition and optimization benefits as much
as possible while making the transformation legal.

Figure 6. Automatic Correction by Mapping Deviation in Clint

In the context of semi-automatic tools for code manipulation,
mapping deviation enables an elaborated semantic feedback in ad-
dition to the go/no-go answer provided by dependence analysis and
to the syntactic help provided by automatic code generation. It is
a significant step forward because trying to rework an automati-
cally generated incorrect version of a code (e.g., after an inade-
quate tiling) is often even more complex than trying to optimize
the original code directly. Instead, users can provide a general in-
tuition about the best optimization strategy and the algorithm can
check and adjust it to keep the intuition while ensuring legality.

5.2 Creating Runtime Array Overlapping Tests
Compiler alias analysis tries to determine whether two pointers ac-
cess the same memory location or not. If the analysis is unable
to decide, compilers use a conservative strategy and suppose they
may alias. The consequence is to consider over-approximated data
dependencies and to discard a large range of optimization opportu-
nities. Doerfert et al. show it is one of the main reasons, if not the
main reason, why LLVM’s polyhedral framework is rejecting can-
didate code regions in SPEC 2000 and the PolyBench suite (their
study states, e.g., that possible aliasing is a cause of rejection for
1093 regions over 1862 candidate regions in SPEC 2000) [10].
They propose a runtime test based on the computation of access
ranges to ensure no conflict is possible at runtime with significant
speedups on the PolyBench suite. However their technique does not
depend of the transformation itself, while it may tolerate harmless
aliasing and overlapping.

Using mapping deviation on the access relation, it is possible
to derive a runtime test to check the exact necessary and sufficient
conditions on array overlapping for a given transformation to be
legal. The limit of our solution, shared with Doerfert et al.’s work,
is that multidimensional arrays must use a consecutive space in
memory, with no overlapping between different dimensions. To
simplify, we also consider that all array elements are of the same
type.

The technique is the following. First we consider a transforma-
tion, e.g., the fusion + shifting of the code in Figure 1, with the
hypothesis that if two arrays have different names, then they do not
overlap. The transformation should be legal within this hypothesis,
i.e., each violation relation should define an empty space. We adapt
the safe-space computation algorithm of Figure 4 in this way: at
step 1, we select all access relations except those of one arbitrar-
ily chosen array (choosing the one with the highest number of ac-
cesses is better for performance). Let us call the chosen array A. At
step 2.(a) the deviation for all selected access relations is to add a
deviation parameter specific to each array to their first access di-
mension only, and to consider the access is now to the array A (i.e.,
the deviation would change an access to B[i][j] into an access to
A[i+CB][j] where CB is the deviation parameter for the array B).
Then at step 6, there is no need to choose a solution to Dshift : its
constraints form the test we are looking for (union parts are linked
with logical OR while constraints in sets are composed with logical
AND).

Intuitively, we are considering that all references are to possi-
bly different parts of the same array (seen as the global storage
space). Each deviation parameter represents the relative position of
its corresponding array inside the reference array (or equivalently,
its position in the global storage space). Original violation rela-
tions were known to be empty spaces because the transformation
was legal, irrespectively from array overlapping. Hence the algo-
rithm computes the conditions, with respect to the relative position
of each array for the violation relations to remain empty spaces.
These conditions can be trivially translated to runtime tests: each
deviation parameter is translated to the relative position of its cor-
responding array with respect to the reference array (CB becomes
A-B) and other values are multiplied by the size of one dimension
of the reference array.

Back to the running example, let us suppose we would like to
apply the corrected transformation shown in Figure 6 while being
unsure about array overlapping. We chose to apply deviation on
the array Tmp (e.g, Tmp[i][j] is considered as Img[i+C][j])
and the deviation analysis is performed for each violation relation
impacted by this change. The safe space we get from the algorithm
is C � L[C  �L. Let us suppose the type of Img is int(*)[W],
then the runtime test to ensure the correctness of the transformation
with respect to array overlapping is shown in Figure 7. It is used
to select either the optimized or the original version at runtime3.
While the running example is very simple for clarity and space
reasons (yet, note that generating the test doesn’t require the array
sizes which may not be known at compile time), let us recall that
the mapping deviation algorithm is exact and complete: it can
create necessary and sufficient runtime tests for any SCoP and any
scheduling relation.

i f ( ( Tmp >= Img + L ⇤ W) | | ( Img >= Tmp + L ⇤ W) ) {
/ / Here u s i n g t h e t r a n s f o r m e d k e r n e l i s s a f e

} e l s e {
/ / O t h e r w i s e we can use t h e o r i g i n a l k e r n e l t h e r e

}

Figure 7. Generated Runtime Test for Versioning Figure 1

Evaluating the benefits of mapping deviation has to be done on a
case by case basis with respect to the optimization strategy because
it works with respect to a given transformation: a study on one

3 In general, a special care should be taken when generating high-level
runtime tests such as in Figure 7 since, e.g., pointer arithmetic between
pointers to different segments is undefined in C. Hence additional tests may
be necessary to ensure the semantics of the pointer arithmetic. Since it is a
technical, language dependent issue, we do not address it in this paper.
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strategy says little about how relevant it may be for another one. We
present here the general theory of mapping deviation. Evaluating it
on various strategies is left for a separate study.

In the context of static optimization, when the exact memory
mapping of data is not known, mapping deviation provides a new
static/dynamic solution for SCoPs. It may enable complex opti-
mization and parallelization at the price of a test to be evaluated at
runtime outside computational loops, hence with an arguably neg-
ligible overhead with respect to the kernel execution time. While
its benefits depend on the optimization strategy, it is both more
precise and less restrictive than existing ones because it ensures
that the necessary requirements are met specifically for the desired
transformation and hence tolerating safe aliasing or overlapping.
Moreover, its algorithm uses classical polyhedral operations which
are already integrated in production compilers or available through
robust libraries (through, e.g., isl [39] in GCC 5 or LLVM 3.6)
which makes it easy to implement.

6. Related Work
Enabling transformations is a specialized form of reasoning on the
correctness for a given program transformation. They have been
used widely to enable specific syntactic transformations, e.g., Wolf
and Lam rely on loop skewing and reversal to enable loop tiling for
optimizing data locality [41], Allen and Kennedy use loop splitting
to enable loop interchange to expose parallel loops [1]. McKinley
et al. exploit loop splitting similarly to maximize data locality [26].

Several techniques have been proposed to complete affine
schedules to produce a legal transformation. Some of them address
specifically the completion of the constant part: in the context of the
UTF framework, Kelly and Pugh apply schedule alignment where
the alignment technique completely set the constant part of the
schedules [22]. Also addressing the constant part of the schedule,
Darte et al. use retiming to enable their parallelizing transformation
[9]. More generally, Li and Pingali [24] and Griebl et al. [17] com-
plete the last dimensions of a partially defined legal transformation
which does not violate dependencies such that it stays legal.

The first work on correcting a general transformation to respect
legality has been proposed by Bastoul and Feautrier [5]. Their tech-
nique can complete partially defined affine schedules, not only the
constant part, and apply complex corrections in the specific con-
text of data locality optimizing schedules. However, the complex-
ity of the technique makes it impractical even for moderately large
multidimensional problems. In comparison, our technique is scal-
able since it reasons on each violation relation separately, which is
known to scale well [35] (basically, it has the same complexity as an
exact data dependence test, already in use in production compilers).
Vasilache et al. also proposed a scalable correction technique for
fully specified illegal transformations [36]. While we focus on the
same type of adjustment, Vasilache et al. s technique is dedicated
to the correction of scheduling functions with a specific structure.
Mapping deviation is much more general because it can reason on
any part of the polyhedral representation. Moreover, it addresses
general, relation-based abstractions without specific structure.

Morvan et al. propose, instead of correcting the transformation
itself, to insert wait states in the target code to correct dependencies
violated by their loop coalescing transformation [27]. While it
has a different goal than our technique, it offers an interesting
complementary way to consider for more general corrections.

Several tools have been released to bring semantic feedback
to users for debugging or loop-level optimization purpose such as
Pareon from VectorFabrics [37]. Our work is different because it
corrects automatically the user’s (or compiler’s) intuition instead
of providing intuition about how to correct or to optimize.

7. Conclusion
In this paper, we presented a transformation-centric approach to
optimization. It has the potential to avoid discarding too early a de-
sirable, efficient solution, and to avoid applying counter-productive
pre-processing to remove harmless data dependencies. We intro-
duced mapping deviation, a new methodology to reason about the
legality of a transformation, while considering parametric devia-
tions of any dimension of any element of the polyhedral represen-
tation of a program and of its transformation. We derived from map-
ping deviation a transformation correction technique that achieves a
new milestone in flexibility, capable of addressing general schedul-
ing relations without any particular structure. We also showed that
reasoning on access relations, mapping deviation can be used to
complement alias analysis, bringing the first method to build run-
time tests to check the legality of a desired transformation with
respect to array overlapping.

Ongoing work aims at studying other applications of mapping
deviation, e.g., to minimize the memory footprint of a running
application by maximizing safe array overlapping.
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