Generation of Parallel Code

Cédric Bastoul

ALCHEMY Group
Laboratoire de Recherche en Informatique
University Paris-Sud 11 — INRIA Saclay Ile-de-France
Cedric.Bastoul@lri.fr

BYLINE

Cédric Bastoul

ALCHEMY Group

Laboratoire de Recherche en Informatique

University Paris-Sud 11 — INRIA Saclay Ile-de-France
Cedric.Bastoul@lri.fr

SYNONYMS

— Code Generation
— Polyhedra Scanning

DEFINITION

Parallel code generation is the action of building a parallel code from an in-
put sequential code according to some scheduling and placement information.
Scheduling specifies the desired order of the statement instances with respect to
each other in the target code. Placement specifies the desired target processor
for each statement instance.

DISCUSSION

1 Introduction

Exhibiting parallelism in a sequential code may require complex sequences of
transformations. When they come from an expert in program optimization, they
are usually expressed by way of directives like tile or fuse or skew. When they
come from a compiler, they are typically formulated as functions that map every
execution of every statement of the program in “time” (scheduling), to order them
in a convenient way, and in “space” (placement), to distribute them amongst
various processors.

Parallel code generation is the step in any program restructuring tool or
parallelizing compiler that actually generates a target code which implements
the user directives or the compiler mapping functions.

This task is challenging in many ways. Feasibility is the first challenge. Re-
constructing a program with respect to scheduling and placement information
at the statement execution level may seem an impossible problem at first sight.

It has been addressed by working on a convenient representation of the problem
itself, as it will be described momentarily. Scalability is another important issue.
As compiler vendors try to ensure that compile time is (almost) linear in the code
length, the code generation step must be fast enough to be integrated into pro-
duction tools. Quality of the generated code must be paramount. The generated
code should not be too long and should not include heavy control overhead that
may offset the optimization it is enabling. Finally, flexibility must be provided to
allow a large span of transformations on a large set of programs.

2 Representation of the Problem

To solve the code generation problem, it needs to be formalized in some way.
A mathematical representation, known as the polyhedral model (also referred
in the literature as the polytope model) is a convenient abstraction. It allows the
description of the problem in a compact and expressive way. This representation is
also the key to solving it efficiently thanks to powerful and scalable mathematical
libraries as described in Section @ This model, with slight variations, has been
used in most successful work on parallel code generation.

Two mathematical objects need to be defined for the parallel code genera-
tion problem. First, iteration domains provide the relevant information for code
generation from the input code, they are detailed in Section Second, space-
time mapping functions provide the ordering and placement information to be
implemented by the target code. They are described in Section [2.2

2.1 Representing Statement Instances: Iteration Domains

The key aspect of the polyhedral model is to consider statement instances. A
statement instance is one particular execution of a statement. Each instance of
a statement that is enclosed inside a loop can be associated with the value of
the outer loop counters (also called iterators). For instance, let us consider the
polynomial multiply code in Figure |1} the instance of statement S1 for ¢ = 2 is
z[2] = 0.

doi=1,n
z[il = 0 ! S1
doi=1,n
do j=1,n
z[i+j] = z[i+j] + x[i] = y[j] ' 82

Fig. 1. Polynomial Multiply Kernel

In the polyhedral model, statements are considered as functions of the outer
loop counters that may produce statement instances: instead of simply ”S1”, the
notation S1(i) is preferred. For instance, statement S1 for ¢ = 2 is written S1(2)
and statement S2 for ¢ = 4 and j = 2 is written Sl(;l). The vector of the iterator
values is called the iteration vector.

Obviously, dealing with statement instances does not mean that unrolling all
loops is necessary. First because there would probably be too many instances
to deal with, and second because the number of instances may not be known.
For instance, when the loops are bounded with constants that are unknown at
compile time (called “parameters”), e.g., n in the example code in Figure [1} A
compact way to represent all the instances of a given statement is to consider the
set of all possible values of its iteration vector. This set is called the statement’s
iteration domain. It can be conveniently described by all the constraints on the
various iterators that the statement depends on. When those constraints are
affine and depend only on the outer loop counters and some parameters, the set
of constraints defines a polyhedron (more precisely this is a Z-polyhedron, but
polyhedron is used for short). Hence the name “polyhedral model”. A matrix
representation with the following general form for any statement S is used to
facilitate the manipulation of the affine constraints:

Dg = {:BS e 7"s | Agsxs +ag > 0}

where xg is the ng-dimensional iteration vector, Ag is a constant matrix and
ag is a constant vector, possibly parametric. For instance, here are the iteration
domains for the polynomial multiply example in Figure

Dglz{(i)eZH_ﬂ (i)+<_71l)>0}
1 0 -1

— Dgp = (;)GZQ 7(1) (1) <;>+ _7; >0
0-1 n

2.2 Representing Order and Placement: Mapping Functions

Iteration domains do not provide any information about the order in which state-
ment instances have to be executed, nor do they inform about the processor that
has to execute them. Such information is provided by other mathematical objects
called space-time mapping functions. They associate each statement instance with
a logical date when it has to be executed and a processor coordinate where it
has to be executed. In the literature, the part of those functions dedicated to
time is called scheduling while the part dedicated to space is called placement
(or allocation, or distribution).

In the case of scheduling, the logical dates express at which time a statement
instance has to be executed, with respect to the other statement instances. It is
typically denoted Ag for a given statement S. For instance, let us consider the
three statements in Figure[2[a) and their scheduling functions in Figure[2b). The
first and third statements have to be executed both at logical date 1. This means
they can be executed in parallel at date 1 but they have to be executed before the
second statement since its logical date is 2. The target code implementing this
scheduling using OpenMP pragmas is shown in Figure c)7 where a fictitious
variable t stands for the time. It can be seen that at time ¢ = 1, both S1 and S3
are run in parallel, while S2 is executed afterward at time t = 2.

t=1

1$0MP SECTIONS
1$0MP SECTION
x=a+b! 81

x=a+Db! S1 fs1 =1
y-ordise ZSQ ff I$0MP SECTION
z=ax*xDb ! S3 g3 = 2z =a*b ! S3
1$0MP END SECTIONS
t =2
y=c+d ! S2
(a) Original Code (b) Scheduling (c) Target Code

Fig. 2. One-Dimensional Scheduling Example

Logical dates may be multidimensional, like clocks: the first dimension corre-
sponds to days (most significant), next one is hours (less significant), the third
to minutes and so on. The order of multidimensional dates with a decreasing
significance for each dimension is called the lexicographic order. Again, it is not
possible to assign one logical date to each statement instance for two reasons: this
would probably lead to an intractable number of logical dates and the number of
instances may not be known at compile time. Hence, a more compact represen-
tation called the scheduling function is used. A scheduling function associates a
logical date with each statement instance of a statement. They have the following
form for a statement S:

Os(xs) = Tsxs +ts,

where xg is the iteration vector, T is a constant matrix, and tg is a constant vec-
tor, possibly parametric. Scheduling functions can easily encode a wide range of
usual transformations such as skewing, interchange, reversal, shifting tiling etc.
Many program transformation frameworks have been proposed on top of such
functions, the first significant one being UTF (Unified Transformation Frame-
work) by Kelly and Pugh in 1993 [§].

Placement is similar to scheduling, only the semantics is different: instead of
logical dates, a placement function mg associates each instance of statement S
with a processor coordinate corresponding to the processor that has to execute
the instance.

A space-time mapping function og is a multidimensional function embedding
both space and time information for statement S: some dimensions are devoted
to scheduling while some others are dedicated to placement. For instance, a com-
piler may suggest the following space-time mapping for the polynomial multiply
code shown in Section Its first dimension is a placement that corresponds
to a wavefront parallelism for S2 and improves locality by executing the initial-
ization of an array element by S1 on the same processor where it is used by
S52. The second dimension is a very simple constant scheduling that ensures the

initialization of the array element is done before its use (it is usual to add the
identity schedule at the last dimensions, however this will not be necessary for
the continuation of this example):

et 0+ (1)

“os(5)=oa] (5)+ ()

While working in the polyhedral representation, the semantics of each dimen-
sion is not relevant: after code generation, each dimension will be translated to
some loops that can be post-processed to become parallel or sequential according
to their semantics (obviously semantics information can be used to generate a
better code, but this is out of the scope of this introduction).

3 Putting Everything Together

Iteration domains can be extracted directly by analysing of the input code. They
represent for each statement the set of their instances. In particular they do not
encode any ordering information: iteration domains are nothing but “bags” of
unordered statement instances. On the opposite, the space/time mapping func-
tions, typically computed by an optimizing or parallelizing algorithm, provide the
ordering information for each statement instance. It is necessary to collect all this
information into a polyhedral representation before the actual code generation.
There exist two ways to achieve this task. Let us consider an iteration domain
defined by the system of affine constraints Az + a > 0 and the transformation
function leading to a target index y = Tx. Any of the following formulas can be
chosen to build the target polyhedron 7 that embeds both instance and ordering
information:

Inverse Transformation By noticing that = T~ 'y it follows that the trans-
formed polyhedron in the new coordinate system can be defined by:

T :{y|[AT 'y +a > 0}.

Generalized Change of Basis Alternatively, new dimensions corresponding
to the ordering in leading positions can be introduced (note that in the fol-
lowing formula, constraints “above” the line are equalities while constraints
“under” the line are inequalities):

(Y =T\ (y) (=t\=
@) | [@)+ (@) 50
The inverse transformation solution has been introduced since the seminal
work on parallel code generation by Ancourt and Irigoin [I]. It is simple and
compact but has several issues: the transformation matrix must be invertible, and

even when it is invertible, the target polyhedra may embed some integer points
that have no corresponding elements in the iteration domain (this happens when

the transformation matrix is not unimodular, i.e., whose determinant is neither
+1 or —1). This necessitates specific code generation processing, briefly discussed
in Section [II] The second formula is attributed to Le Verge, who named it
the Generalized Change of Basis [I1]. It does not require any property on the
transformation matrix. Nevertheless, the additional dimensions may increase the
complexity of the code generation process. It has been rediscovered independently
from Le Verge’s work and used in production code generators only recently [2].
Both formulas are used, and possibly mixed, in current code generation tools,
depending on the desired transformation properties. For instance, to apply the
space-time mapping of the polynomial multiply proposed in Section [2.2] it is
convenient to use the Generalized Change of Basis because the transformation
matrices are not invertible:

» [10]-1 » 0
01| 0 0] =
— — 2 _ —_— R
Ts1 % €L ool 1 % + = 20
[00]-1 n
[10]—-1 -1 0
P 010 0F fp -1
)t 51|00 1T 0| ¢ -1|=
“T2=017 % |ool-1 ol [T|T| n|=°
j 00 0 1] \j -1
100] 0-1 n

In the target polyhedra, whatever the chosen formula, the order of the di-
mensions is meaningful: the ordering is encoded as the lexicographic order of the
integer points. Thus, the parallel code generation problem is reduced to generat-
ing a code that enumerates the integer points of several polyhedra, with respect
to the lexicographic ordering.

4 Scanning Polyhedra

Once the target code information has been encoded into some polyhedra that em-
bed the iteration spaces as well as the scheduling and placement constraints, the
code generation problem translates to a polyhedra scanning problem. The prob-
lem here is to find a code (preferably efficient) visiting each integral point of each
polyhedra, once and only once, with respect to the lexicographic order. Three
main methods have been successful in doing this. Fourier-Motzkin elimination-
based techniques have been the very first, introduced by the seminal work of
Ancourt and Irigoin [I]. They are discussed briefly in Section While Fourier-
Motzkin-based techniques aim at generating loop nests, an alternative method
based on Parametric Integer Programming has been suggested by Boulet and
Feautrier to generate lower-level codes [3]. This method is discussed briefly in
Section Lastly, Quilleré, Rajopadhye and Wilde showed how to take advan-
tage of high-level polyhedral operations to generate efficient codes directly [I4].
As this later technique is now widely adopted in production environments, it is
discussed in some depth in Section [4-3]

4.1 Fourier-Motzkin Elimination-Based Scanning Method

Ancourt and Irigoin [I] proposed in 1991 the first solution to the polyhedron scan-
ning problem. Their work is based on the Fourier-Motzkin pair-wise elimination
technique [I5]. The scope of their method was quite restrictive since it could be
applied to only one polyhedron, with unimodular transformation matrices. The
basic idea was, for each dimension from the first one (outermost) to the last one
(innermost), to project the polyhedron onto the axis and to deduce the corre-
sponding loop bounds. For a given dimension iz, the Fourier-Motzkin algorithm
can establish that L(é1,...,45—1) + 1 < exiy and cpix < U(iq, ..., 7k—1) + u, where
L and U are constant matrices, I and u are constant vectors of size m; and m,,
respectively, and ¢y, is a constant. Thus, the corresponding scanning code for the
dimension 7; can be derived:

do ir = MAXT, [(L

= j(il,...,ik,1)+lj)/ck.|,
iy < MINT [(U;(

Ty Bh—1) + Uj)/CkJ

Body
The main drawback of this method is the large amount of redundant control since
eliminating a variable with the Fourier-Motzkin algorithm may generate up to
n?/4 constraints for the loop bounds where n is the initial number of constraints.
Many of those constraints are redundant and it is necessary to remove them for
efficiency.

Most further works tried to extend this first technique in order to reduce
the redundant control and to deal with more general transformations. Le Fur
presented a new redundant constraint elimination policy by using the simplex
method [I0]. Li and Pingali [I3] as well as several other authors proposed to
relax the unimodularity constraint of the transformation to an invertibility con-
straint by using the Hermite Normal Form [I5] to avoid scanning “holes” in the
polyhedron. Griebl, Lengauer and Wetzel [5] relaxed the constraints of code gen-
eration further to transformation matrices with non-full rank, and also presented
preliminary techniques for scanning several polyhedra using a single loop nest.
Finally, Kelly, Pugh and Rosser showed how to scan several polyhedra in the
same code by generating a naive perfectly nested code and then (partly) elimi-
nating redundant conditionals [9]. Their implementation relies on an extension
of the Fourier-Motzkin technique called the Omega test. The implementation of
their algorithm within the Omega Calculator is one of the most popular parallel
code generators [7].

4.2 Parametric Integer Programming-Based Scanning Method

Boulet and Feautrier proposed in 1998 a parallel code generation technique which
relies on Parametric Integer Programming (PIP for short) to build a code for
scanning polyhedra [3]. The PIP algorithm computes the lexicographic minimal
integer point of a polyhedron. Because the minimum point may not be the same
depending on the parameter values, it is returned as a tree of conditions on the

parameters where each leaf is either the solution for the corresponding parameter
constraints or L (called bottom), i.e., no solution for those parameter constraints.

The basic idea of the Boulet and Feautrier algorithm (in the simplified case
of scanning one polyhedron) is to find the first integer point of the polyhedron,
called first, then to build a function next which for a given integer point returns
the next integer point in the polyhedron according to the lexicographic ordering.
Both first and next computations can be expressed as a problem of finding the
lexicographic minimum in a polyhedron. Finally, the code can be built accord-
ing to the following canvas, where = is an integer point of the polyhedron that
represents the iteration domain:

xr = first
1 if x = L1 then goto 2
Body
T = next
goto 1

Generalizing this method to many polyhedra implies combining the different
trees of conditions and subsequent additional control cost and code duplication.
While this technique has no widely used implementation, it is quite different than
the others since it does not aim at generating high-level loop statements. This
property may be relevant for specific targets, e.g., when the generated code is
not the input of a compiler but of a high-level synthesis tool.

4.3 QRW-Based Scanning Method

Quilleré, Rajopadhye and Wilde proposed in 2000 the first code generation al-
gorithm that builds a target code without redundant control directly [14]. While
previous schemes started from a generated code with some redundant control and
then tried to improve it, their technique (referred as the QRW algorithm) never
fails at removing control, and the processing is easier. Eventually it generates a
better code more efficiently.

The QRW algorithm is a generalization to several polyhedra of the work of
Le Verge, Van Dongen and Wilde on loop nest synthesis using polyhedral op-
erations [I2]. It relies on high-level polyhedral operations (like polyhedral inter-
section, union, projection etc.) which are available in various existing polyhedral
libraries. The basic mechanism is, starting from (1) the list of polyhedra to scan
and (2) a polyhedron encoding the constraints on the parameters called the con-
text, to recursively generate each level of the abstract syntax tree of the scanning
code (AST).

The algorithm is sketched in Figure [3] and a simplified example is shown in
Figures and [6] It corresponds to the generation of the code implementing
the polynomial multiply space-time mapping introduced in Section Its input
is the list of polyhedra to scan, the context and the first dimension to scan. This
corresponds to Figure [4] in our example, with the first dimension to scan being
p. The first step of the algorithm intersects the polyhedra with the context to

QRW: build a polyhedron scanning code AST without redundant control.

Input: a polyhedron list, a context C, the current dimension d.
Output: the AST of the code scanning the input polyhedra.

1. Intersect each polyhedron in the list with the context C,

2. Project the polyhedra onto the outermost d dimensions;

3. Separate these projections into disjoint polyhedra (this generates loops
for dimension d and new lists for dimension d 4 1);

4. Sort the loops to respect the lexicographic order;

5. Recursively generate loop nests that scan each new list with dimension
d + 1, under the context of the dimension d;

6. Return the AST for dimension d.

Fig. 3. Sketch of the QRW Code Generation Algorithm

ensure no instance outside the context will be executed. Then it projects them
onto the first dimension and separates the projections into disjoint polyhedra.
For instance, for two polyhedra, this could correspond to one domain where the
first polyhedron is “alone”, one domain where the second polyhedron is “alone”
and one domain where the two polyhedra coexist. This is depicted in the Figure
for our example: it depicts the projection onto the p axis and the separation (it
can be seen here that the domain where Sy is “alone” is empty). The constraints
on dimension p for the resulting polyhedra give directly the loop bounds. As the
semantics of the placement dimension is to distribute instances across different
processors, this loop is parallel. Then the algorithm recursively generates the
next dimension loops for each disjoint polyhedron separately. The final result is
shown in Figure [6] for our example.

The QRW algorithm is simple and efficient in practice, despite the high the-
oretical complexity of most polyhedral operations. However, in its basic form, it
tends to generate codes with costly modulo operations, and the separation pro-
cess is likely to result in very long codes. Several extensions to this algorithm have
been proposed to overcome those issues [2}[16]. CLooG, a popular implementation
of the extended QRW technique demonstrated effectiveness of the algorithm [2].
It is now used in production environments such as in GCC or IBM XL.

5 Parallel Code Generation Today

For a long time, scheduling and placement techniques were many steps forward
code generation capabilities. In 1992, Feautrier provided a general scheduling
technique for multiple polyhedra and general affine functions [4]. At this time,
the only code generation algorithm available had been designed in 1991 by An-
court and Irigoin and supported only one polyhedron and unimodular scheduling
functions [I]. Some scheduling functions had to wait for nearly one decade to be
successfully applied by a code generator.

Since then, the challenge of feasibility has been tackled: state of the art parallel
code generators can handle any affine transformation for many iteration domains.

Context: n > 3

— N D e
.

. 1
L e 1 ® p=1
‘1}31 > 7?9’13 t=
b P 1<i<2n
p=i+j
Te: 417
$2:)1<i<n
1<5<n

Fig. 4. QWR Code Generation Example (1/3): Polyhedra to Scan and Con-
text Information. The graphical representation does not show the degenerated
scheduling dimension ¢.

doall p=1, 1
, Jt=0
Slﬂone S1°)4i=1
Projection ! _ SlandS2 doall p = 2, 2*n
onto (p) P ! n.) t= 0
e e S \i=p
O oy T t=1
| p>=2 p<=2n L<i<n
L /. S1s
p=l1 $:°Y1<j<n
1+j3=0p

Fig. 5. QWR Code Generation Example (2/3): Intersection with the Context,
Projection and Separation onto the First Dimension. Two disjoint polyhedra are
created: one where S; is alone on p (it has only one integer point but a loop is
generated to scan it, for consistency) and one where S; and Ss are together on
p. In the right side, the new polyhedra to scan have been intersected with the
context (for the next step, p is a parameter as well as n).

Moreover, the scalability of code generators is good enough to enable parallel code
generation as an option in production compilers. However, the quality of the
generated code is still not guaranteed. Summarily, code generators are very good
for simple (unimodular) transformations, reasonably good when the coefficients
of the transformation functions are small and unpredictable in the general case.
The flexibility challenge is also solved only partly because only regular codes that
fit the polyhedral model can be processed and only affine transformations can be
applied.

10

Projectiqn p=1 p>=2 p<=2n dot =0, 0
onto (p,i) iy /, b doi=1,1
A T z[i] = 0 ! st
el doall p = 2, 2%n
n/--4f--X3- d0t=0, 0
S doi=p,p
’ ,’/Slalone z[i]l] = 0 1 81
~ dot=1, 1
do i = max(1,p-n), min(p-1,n)

n

do j = p-i, p-i
z[i+j] += x[i] * y[j] ! S2

Fig. 6. QWR Code Generation Example (3/3): Recursion on the Next Dimen-
sions. First, the projection/separation on (p,t) is done. It is trivial because t is
a constant in every polyhedron: it only enforces disjonction and ordering of the
polyhedra inside the second doall loop. Next the same processing is applied for
(p,t,7): the loop bounds of the remaining dimensions can be deduced from the
graphical representation (the trivial dimension ¢ is not shown).

6 Future Directions

Two challenges of parallel code generation are partly solved: quality and flexibil-
ity. To achieve the best results, autoparallelizers have to take into account some
constraints related to code generation that may conflict with the extraction of
parallelism, e.g., limiting the absolute value of the transformation coefficients
or relying on unimodular transformations. However, there exists an infinity of
transformations that implement the same mapping but have different properties
with respect to code generation. Finding “code generation friendly” equivalent
transformations is a promising solution to enhance the generated code quality.
Several directions are under investigation to provide parallel code generation
with more flexibility. Irregular extensions have been successfully implemented to
some polyhedral code generators and ambitious techniques based on polynomials
instead of affine expressions may be the next step for parallel code generation [6].

RELATED ENTRIES

— Omega Test

— Automatic Parallelization

— Loop Nest Parallelization

— The Wolfe and Lam Algorithm
— Unimodular Transformations
Scheduling Algorithms

BIBLIOGRAPHIC NOTES AND FURTHER READING

We detailed in Section [] the three main techniques designed for parallel code
generation. The reader will find a deeper level of details in the related papers.

11

Kelly, Pugh and Rosser’s paper on code generation for multiple mappings pro-
vides the extensive description of the techniques behind the Omega Code Gener-
ator [9]. Boulet and Feautrier’s paper on code generation without do-loops gives
thorough depiction of the PIP-based code generation technique [3]. Finally, the
details of the most powerful code generation technique known so far are provided
in Quilleré, Rajopadhye and Wilde’s paper on generation of efficient nested loops
from polyhedra [14]. This reading is complemented by Bastoul’s paper, which
details several extensions to their algorithm and demonstrates robustness of the
extended technique for production compilers [2].

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In 3rd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pages 39-50, June 1991.

[2] C.Bastoul. Code generation in the polyhedral model is easier than you think.
In IEEF International Conference on Parallel Architectures and Compilation
Techniques (PACT’04), pages 7-16, Juan-les-Pins, September 2004.

[3] P. Boulet and P. Feautrier. Scanning polyhedra without do-loops. In IEEE
International Conference on Parallel Architectures and Compilation Tech-
niques (PACT’98), pages 4-11, Paris, France, October 1998.

[4] P. Feautrier. Some efficient solutions to the affine scheduling problem, part
IT: multidimensional time. International Journal of Parallel Programming,
21(6):389-420, Dec. 1992.

[6] M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytope
model. In Proceedings of the International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’98), pages 106111, 1998.

[6] A. GroBlinger. The Challenges of Non-linear Parameters and Variables in
Automatic Loop Parallelisation. doctoral thesis, Department of Informatics
and Mathematics, University of Passau, Dec. 2009.

[7] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonnacott.
The Omega library. Technical report, University of Maryland, Nov. 1996.

[8] W. Kelly and W. Pugh. A framework for unifying reordering transforma-
tions. Technical Report UMIACS-TR-92-126.1, University of Maryland In-
stitute for Advanced Computer Studies, 1993.

[9] W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings.
In Frontiers’95 Symposium on the frontiers of massively parallel computa-
tion, McLean, 1995.

[10] M. Le Fur. Scanning parameterized polyhedron using Fourier-Motzkin elim-
ination. Concurrency - Practice and Experience, 8(6):445-460, 1996.

[11] H. Le Verge. Recurrences on lattice polyhedra and their applications, April
1995. Unpublished work based on a manuscript written by H. Le Verge just
before his untimely death in 1994.

[12] H. Le Verge, V. Van Dongen, and D. Wilde. Loop nest synthesis using the
polyhedral library. Technical Report 830, IRISA, 1994.

[13] W. Li and K. Pingali. A singular loop transformation framework based
on non-singular matrices. International Journal of Parallel Programming,
22(2):183-205, April 1994.

12

[14]

[15]

[16]

F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested
loops from polyhedra. International Journal of Parallel Programming,
28(5):469-498, Oct. 2000.

A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1986.

N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code generation in
the real world. In Proceedings of the International Conference on Compiler
Construction (ETAPS CC’06), LNCS 3923, pages 185-201, Vienna, Austria,
Mar. 2006.

13

	 Parallel Code Generation
	Cédric Bastoul

