Efficient Code Generation for Automatic Parallelization and Optimization

Cédric Bastoul
Laboratoire PRiSM, Université de Versailles Saint Quenti
45 avenue deKtats-Unis, 78035 Versailles Cedex, France
Email: cedric.bastoul@prism.uvsq.fr

Abstract a loop nest (or a set of loop nests) which implement the ex-
ecution order implied by the reordering function; (3) apply
Supercompilers look for the best execution order of the the local optimizations which have been enabled by the new
statement instances in the most compute intensive kernelsexecution order: for instance, mark some loops for parallel
It has been extensively shown that the polyhedral modelexecution.
provides convenient abstractions to find and perform the The main theme of this paper is the second step of the
useful program transformations. Nevertheless, the ciirren above scheme. Finding suitable execution orders has been
polyhedral code generation algorithms lack for flexibility the subject of most of the research on i@ytope model
adressing mainly unimodular or at least invertible transfo [5, 9, 14, 16, 19] (an exhaustive related work can be found in
mation functions. Moreover, their complexity is challewgi the long version of the paper [2]) and the post-processing is
for large problems (with many statements). In this paper, easy in general. On the other hand, simple-minded schemes
we discuss a general transformation framework able to deal for loop building have a tendency to generate inefficient
with non-unimodular, non-invertible functions. Acomptet code, which may offset the optimization they are enabling.
and improved version of one of the best algorithms known In this paper, | will show that, starting from one of the best
so far is presented to actually perform the code generation. algorithms known so far [15], one can generalize and im-
Experimental evidence proves the ability of our framework prove it in two directions:

to handle real-life problems. e The quality of the target code is such that many loop

nests in familiar benchmarks can be regenerated opti-
mally.

| Intr ion
troductio e The implementation is efficient enough to handle prob-

lems with thousands of statements and tens of free pa-

The focus of recent compiler research is optimized code rameters.

generation. The reason is that, with a higher level of in-

tegration, modern processors have acquired high-level fea ~ The paper is organized as follows. Section Il introduces

tures (Vector processing’ hidden and apparent para”e"sm some relevant definitions and shows the linear algebl’aic

memory hierarchies), which are not available in so-called representation that can be used for describing parts of-a pro

high-level languages, which were patterned after the muchgram in optimizing or parallelizing compilers. Section IlI

simpler processors of the 1960's. Hence, there is a semanPresents the polyhedra scanning problem and in particular

tic gap which grows larger and larger with time. A striking @ general program transformation framework in the poly-

examp|e is the Multimedia Instruction Set of many popu- hedral model. Section IV describes the code generation

lar processors, which so far cannot be used directly in anyalgorithm and proposes new ways to achieve an efficient

high-level language. target code. In section V, experimental results obtained
Simple optimizations, like constant folding, can be di- through the algorithm implementation are shown. Finally,

recﬂy app“ed on the abstract Syntax tree of the program’ bu section VI summarizes the main contributions of this paper

the most interesting ones (e.g. loop inversion) incur medif ~ then discusses future works.

ing the execution order of the program, and this has nothing

to do with syntax. In many cases, optimization is done in Il Background and Notations

three steps: (1) select a new execution order, most of the

time the result is not a program, but a reordering function (a The loops in every imperative languages like C or FOR-

schedule, or a placement, or a chunking function); (2) build TRAN can be represented usingnaentry column vector

called itsiteration vector

T

T=(i1,02,-.-,0n)" ,

whereiy, is thek'" loop index andh is the innermost loop.

e A union of disjoint polyhedraeach polyhedron being
defined by a set of parameterized inequalities invthe
dimensional space:

D(p) = {7 |7 € Z", AT + A'j+ & > 0},

The surrounding loops and conditionals of a statement de-

fine itsiteration domaini.e. for which values of the iter-

ation vector the statement has to be executed. When loop
bounds and conditionals only depend on surrounding loop

counters, formal parameters and constants, the iteration d

main can always be specified by a set of linear inequalities

defining a polyhedron [12]. The terpolyhedronwill be
used in a broad sense to denotecavex set of points in a
lattice (also calledZ-polyhedron or lattice-polyhedron), i.e.

a set of points in & vector space bounded by affine in-
equalities [17]. A maximal set of consecutive statements in
a program with such polyhedraliteration domains s called a
static control part(SCoP). The figure 1 illustrates the corre-

spondence between static control and polyhedral domains.

42 i>=1 i<=n

doi =1, n j<=n

doj =1, n n ¢
if (i<=n+2-j) ¢ -

31 2 e o o o

1 . j>:1

i<=n+2-

12 n n+2 i

1 0 1

—1 0 . —-n

0 1 <1> > 1

0o -1\ —n

-1 -1 —n—2

(a) enclosing control of (b) iteration domain o6,

Figure 1. Static control example

The execution of the statement instances folltexsco-
graphic order This means in a-dimensional polyhedron,
the operation corresponding to the integral point defined
by the coordinate$a; ...a,,) is executed before those cor-
responding to the coordinatés ...b,,) iff

32., 1<i<n, (al...ai) = (blbl) Nair1 < bfL'Jrl.

Il Polyhedra Scanning Problem

whereZ is the iteration vectord and A’ are constant
matrices,p’ represents the parameters, ahid a con-
stant vector. Considering a statement in a depkhep
nest, the union of disjoint polyhedra defines the space
where the iteration domain is included. As regards the
vector p, it is a merging of the structure parameters
of the SCoP, i.e. the symbolic constants, mostly array
sizes or iteration bounds.

A scheduling functionan affine function specifying a
scanning order for the integral points belonging to the
union of iteration domains:

0(Z) =TZ+T'p+1,

whereT and7” are constant matrices, amds a con-
stant vector. Depending on the context, the scanning
function may have several interpretations: to distribute
the iterations across different processors, to order them
in time, or both (by composition), etc.

The problem boils down to finding a set of nested loops
visiting each integral point, once and only once, following
the scanning order. This is a generalization of the usual
polyhedra scanning problem since, to the author’'s knowl-
edge, all previous works addressed the problem of scanning
polyhedra in theidexicographicorder. These approaches
are inherently limited since they do not benefit from the
opportunities for optimization that arise when the scagnin
order is only partially constrained. To actually perform a
program transformation, we consider the original itenatio
domains of the statements as polyhedra with their original
scanning order, i.e. the lexicographic order. We then apply
the transformation by modifying their scanning order and
we eventually generate the target code. A useful analogy
is linear algebra: it is sometimes easier to change the basis
to make some calculations and then to return back to the
original basis.

Previous work on code generation in the polyhedral
model required severe limitations on the transformation
functions, e.g. to be unimodular [1, 13] (tliematrix has to
be square and has determinatit) or at least to be invert-
ible [14, 19, 16, 5]. The underlying reason was, considering
an original polyhedron defined bz > —¢ and the trans-
formation functionT’ leading to the target indeX = T'Z,
to find the transformed code is equivalent to scanning the

In the polyhedral model, code generation amounts to apolyhedron defined byAT 1) > —¢.

polyhedra scanning problem\\e consider it as a two-part
specification for each statement

We do not lay down any constraint on the transformation
functions in particular because we do not try to perform a

{8 BEHE) EHe ()2

change of basis of the original polyhedron to the target in- IV-A Code Generation Algorithm

dex. Instead, we apply a new scanning order to the polyhe-

dra by adding new dimensions in leading positions, i.e. in ~ The main part of the algorithm is a recursive generation
order to change the lexicographic order. Thus, from each of the scanning code, maintaining a list of polyhedra from
polyhedronD(p) and scheduling functiofl, we build an- the outermost to the innermost loops. It makes a strong
other polyhedror? (p) with the desired lexicographic order use of polyhedral operations that can be achieved by e.g.
as shown in formula 1, where by definitiofy,) € 7 (p) PolyLib! [18]. The basic idea is to generate loop levels by
if and only if ¥ = 6(&). The new polyhedron has to projecting the polyhedra onto the corresponding dimension
be scanned lexicographically until the last dimensiog.of ~ Then by splitting the projections into disjoint polyhedrala
Thenthere is no particular order to respect for the remaginin sorting the resulting polyhedra in order to respect the-lexi
dimensions. cographic order. Lastly, by recursively generating theploo

By using such a transformation policy, the data of both Nests that scan each polyhedron for the next dimensions.
original iteration domain and transformation are included The algorithmis described in figure 2. The considered poly-
in the new polyhedron. The additional dimensions do not hedraD are not only a set of constraints: they may carry
change the number of integral points but carry the trans- €ither a statement body; (notationD*) or a polyhedra
formation data. This is helpful since we have to update list (notationD* — (...)). The algorithm is started with
the references to the iterators in the loop body, aed- input: (1) the list of transformed polyhedra to be scanned
essarywhen the transformation is not invertible. Moreover, (7°",...,75"); (2) the context, i.e. the set of constraints on
the additional dimensions carry the loop strides (the step o the global parameters; (3) the first dimensibe: 1.

the iterator after one iteration); this will be detailed #cs This algorithm is slightly different from the one pre-
tion IV-B. sented by Quilleré et al. in [15]; our two main contribution

are the following: the support for non-unit strides (step 5a
see section 1V-B) and the exploitation of freedom degrees

IV Extended Quiller & et al. Method (i.e. when some operations do not have a complete sched-
ule) to produce a more effective code (step 5c, see sec-
tion IV-C).

Once the transformations have been app“ed to the Orig- Let us describe this algorithm with a non-trivial example.
inal polyhedra, it remains to generate an efficient scanningVWe propose to scan the two polyhedral domains presented
code. The generated code quality can be assessed by usiri§ Figure 3(a). The iteration vector {8, j, k) and the pa-
two valuations: the most important is the amount of dupli- rameter vector ign). We first compute the intersections
cated control in the final code; second, the code size, sincaVith the context (i.e., at this point, the constraints on the
a large code may pollute the instruction cache. Both valu- Parameters, supposed tobe> 6). We project the polyhe-
ations are contradictory, but the simplest solutions lead t dra onto the first dimension, then we separate them into

a large amount of redundant control, especially when moredisjoint polyhedra. This means that we compute the do-
than one polyhedron is considered. mains where there are points to scan fot* alone, both

75 and7 %2, and7 2 alone (as shown in Figure 3(b), this

At present, the Quilleré et al. method give the best re-I td .). H tice there | traint
sults when we have to generate a scanning code for severafor domainis emp y). Here, we notice there is a constrain

polyhedra [15]. This technique is guaranteed to avoid re- on an inner dimension implying a non-unit stride; we can

dundant control while scanning the scheduled dimensions.cIetermlne this stride and_update the Iovx_/er_boun_d. We_ fi-
However, it suffers from some limitations, e.g. high com- nally generate the scanning code for this first dimension.

plexity, code generation with unit strides only and unop- We n]?w recErsel Or? t:e nlgxtt Q|r?r$n5|on, relpe?r:mg the pro-
timized code when the scheduling only partially constrains cess for each polyhedron st (in this example, there are now

the scanning order. In the following, we propose some solu-tWOtI'StS:honeI |rr115|ge eac_?hgtehnerated ou:c{ertloop). :/k\]/e mtier-

tions to these drawbacks. We present the general algorithrT]SeC _eiac t-po)(; edron V\f{'h € new _co?tﬁx ' nov;/t_ N OL: er

with some adaptations to our purpose in section IV-A. We 0op iteration domains, then we project the resutting poly-
hedra on the outer dimensions, and finally we separate these

address the non-unit strides problem in section IV-B. Fi- L
nally in section IV-C we show how it is possible to benefit projections into disjoint polyhedra. This last processiis t

from a relaxed scheduling. 1polyLibis available aht t p: / /i cps. u-strasbg. fr/ Pol yLi b

CODEGENERATION : Build a polyhedra scanning code without redundant control

Input: a polyhedron list i st , a contexiC, the current dimensiod.
Output: the writing of the scanning code for the polyhedra indidest .

1. Intersect each polyhedréi®: in the list withC' in order to restrict the scanning code to the context of its
ownloopnesti i st := intersection(list,C

2. Compute for each polyhedrdh®: its projectionP* onto the outermosd dimensions and consider the
new listof P* — 75: i st := projection(list,d)

3. Separate the projections into a new list of disjoint pelyta: given a list of» polyhedra, we have to
compute(P* — P?) — 751, (P! NnP?) — (T5,7%) and(P? — P') — 752, then to do the same
for each resulting polyhedron with® — 752, etc.:l i st : = separate(list)

4. Sort the list such that a polyhedron is before another bite $canning code has to precede the other to
respect the lexicographic orddri st : = sort(list)

5. For each polyhedro® — (75, ..., 75" inthe list: For each pol yhedron in list do

(a) Compute the stride that the inner dimensions imposegatinrent one, and find the lower bound
by looking for stride constraints in thg 5™, ..., 75) list (see section IV-B):
stride = findstride(pol yhedron)

(b) Write the scanning informations for the dimensiérii.e. guards, loop lower and upper bounds)
from the constraints in the polyhedr@nsimplified in the context o
wri t e_.scanni ng_code(pol yhedron, C, stri de, d)
(c) While there is a polyhedron if7 5™, ..., 75):
whi I e (inner_polyhedron in inner_ist)
i. Merge successive polyhedra with another dimension to 8ta new list:
new. i st := merging-non_termnal (inner.ist)
ii. Recurse for the next dimensiah+ 1 with the new loop context” N P:
CodeGenerati on(newlist,intersection(pol yhedron, C), d+1)
iii. Ifthere is a7 in the list, write the statement bod:
if (inner_polyhedron) wite_body(inner_polyhedron)

(d) Close the open braces of the loap:i t e_.end_scanni ng_code(d)

Figure 2. Extended Quiller € et al. Algorithm

ial for the second list but yields several domains for the firs the polyhedron in figure 4(a) by the functiéfi) = i + 2j
list, as shown in Figure 3(c). Eventually, we generate the (the corresponding transformation matfix— [1 2] is
code associated with the new dimension, and since this isnot invertible, but it can be extendedTo= } (2)). The

the last one, the scanning code is fully generated. target polyhedronis shown in figure 4(a). The integer points

_ _ without heavy dots have no images in the original polyhe-
IV-B Non-Unit Strides dron. The original coordinates can be determined from the
target ones byriginal = T~ 'target. Becausd is non-

To scan a transformed polyhedron it may be necessaryUnimodular,7—! has rational elements. Thus some inte-
to avoid some values in some dimensions. This happen<Jer target points have a rational image in the original space
when there exists a set of dimensions such that the transihey are calledholes To avoid scanning the holes, the loop
formed polyhedron projection onto these dimensions hasStrides (the steps the iterators make at the end of the loop

integer points without a corresponding image in the origi- 20dy) and the loop lower bounds had to be found. Many
nal space. works proposed to use the Hermite Normal Form [17] in

Previous works were challenged by this problem, which differentways to solve the problem.
occurs when the transformation function is non-unimodular In this paper we do not change the basis of the origi-
(i.e. the transformation matrik has non unit determinant). nal polyhedra, but we only change their scanning order as
We can observe the phenomenon with the transformation ofdiscussed in section Ill. As a consequence, our target sys-

j o Operation of S1

]

o Operation of S1

j o Operation of S1

e Operation of S2 e Operation of S2 e Operation of S2
S1and S2 S1
n4{ o o o o o <b 77777777 o o | o o n 4 o o o
E* (o] (o] (o] o o o o o o (o] * o o (o]
741 o o o o o o o o o o 7 A o o o
61 o® o o e] o » o o o o 6 1 o o o
b o (o] (o] o o le.d o o o (o] o o (o]
o® o® o o o » o® o o o foxd o o
o o o o o » o» o o o o» o o
o o o o o e o o o o o o o
o o o o o o o o o o o o o
12 ... 67-.-n 12 ... 6/7...n 12 . el7oal
doi =1, 6, 2 doi =1, 6, 2
i=2k+1 doj =1, 7-i
Tlsl(n):{ 1<i<n T (n) : {1 <j<n} s1
1<j<n S2
i=2k+1 ORI R @ 131_ o
7132(n):{1<i<6 doi =7, n, 2 doi =7, n,
1<j<T—i s . doj =1, n
T3 (n) {1 <j <n} s1

(a) Initial domains to scan

(b) Projection and separation
on the first dimension

(c) Recursion on next
dimension

Figure 3. Step by step code generation example

tems are always integral and there are no holes in the cor-by PipLib? [8]. For our example, the stride of thidoop is
responding polyhedra. As an illustration, the target poly- 2, directly given by the equality constraint, and the lower
hedron given by our transformation policy is shown in fig- bound is the minimum value dfin the polyhedron defined
ure 4(c). The stride informations are explicitly contained l<i
in the constraint systems thanks to the equalities. Without z;ﬁf;j
the step 5a in the code generation algorithm, the successolution given by PipLib as a quasi affine selection tree is
sive projections lead to the equality constraints, as shownshown in the optimized final code in figure 5(b).
in figure 5(a) for our example. This leads to an inefficient \ynen there is a set of polyhedfd to scan, for each
scanning code since heavy guards (with modulo operationskjimension: we have to consider a set of striding constraints
are inside the loops. y® = s524n5. Like in [11], the greatest common stgps

is given by:

and under the contest < i < 9. The

We solve this problem by finding the stride for the cur- S
rent dimensionz and the new lower bound, i.e. the first gcs = ged({s™
value in the dimension with an integral point to scan (for

instance if we want to scan only odd or even points onto \we then have to find the lower bound, i.e. the first value
a dimension, the stride is the same but we need to start theyi .. where an integer point has to be scanned. This can be
loop from a convenient odd or even point). The stride can be 5chieved in the same way as for one polyhedron by merging
directly read from the equality constraing§ = sz + n® all the constraints of the different polyhedra for the dimen
of the transformed polyhedra, where for the polyhedson sjon . We have successfully implemented this method with
y® is the striding dimension;® is the stridey is the strided the restriction that the has to be constant. The problem

dimension, anch” is a merging of the parameters (OUter g find theges when then® are parameterized is under in-
dimensions, structure parameters and constant). The loweestigation.

bound has to be found under the context of the outermost
loop counters and the structure parameters. This is a prob-
lem in parametric integer programming, that can be solved

S; € K}, {n”—n%1S;,S; € KNi # j}).

2pPipLib is available aht t p: / / www. pri sm uvsq. fr/ ~cedb

i

3
- 2
7 1

1§

pl

BN W —
BN W —

. 1 ol i
— — > 2 o
1 2 3 456 7 8 91 1 23 456 7 8 911 3 [EE
¥ 123456789
i = 0
1 0 1 -1/2 1/2 1 = ;
-1 0 i -3 1/2 —1/2 i’ -3
|: 0) ‘| (])>(1) { 0 : ‘| (j/ >>(1) j 2 _?
0 -1 -3 0 -1 -3

(a) original polyhedromz > —¢

Figure 4. Non-unimodular transformation with

do i'=3, 9
do i =MAX(1,i’-6), MN(i'-2,3)
if (MOD(i'-i,2) == 0) then
i=(i"-i)/2
S1
(a) guarded version
do i’=3, 9
if (i'<=7)
lower =i’ - 2*((i’+1)/2) + 2
el se
lower =i’ - 6
do i=lower, MN(i'-2,3), 2
j = (i'-i)/2
S1

(b) strided version

Figure 5. Scanning codes for the polyhedron
in figure 4(c)

IV-C Exploitation of Freedom Degrees

The polyhedron scanning orders specified by the

(b) usual transformatiofAT~1)§ > —¢

(c) our transformatior? (p)
0(i)=1+2j

trol management are the most disturbing. For instance let
us consider the matrix multiply codes in figure 6. These tar-
get codes can result from a generation where the scheduling
functions ared' (Z) = ¢ andf%2 (&) = { (this is possible
since the computations on remaining dimensions are fully
parallel).

do t=1, n
do i=1, n
do j=1, n
c1(i,j)+=al(i,t)*bi(t,])
do i=1, n
do j=1, n
c2(i,j)+=a2(i,t)*b2(t,])
(a) splitted version (iteration@n® + 2n? + n)
do t=1, n
do i=1, n
do j=1, n
c1(i,j)+=al(i,t)*bi(t,])
c2(i,j)+=a2(i,t)*b2(t,])
(b) merged version (iterations:® + n? 4 n)

Figure 6. Equivalent target codes for matrix
multiplies

scheduling functions may leave some dimensions unspec-

ified. This means that the code generator is free to choose We have tested these simple codes on a x86 architecture
their scanning order. Basically, this can happen when theat 1 GHz, compiled with the GCC 3.2.2 compiler and the
operations are parallel onto these dimensions, and wheroption -O3. Fom = 500 the code in figure 6(a) takés31s
there is no dependences between the considered statementshile the code in figure 6(b) takels75s, a 15% improve-

Then it is the code generator responsibility to provide the
best target code i.e. with the minimum control overhead.

ment. The code in figure 6(c) can be generated by perform-
ing the Quilleré et al. recursion for every free dimensiofis

This work is essential since it concerns the innermost loopsthe polyhedra. After each recursion, if some polyhedra are
of the generated code, where the consequences of a bad coffdlly scanned, the corresponding statement bodies have to

be printed out. A new list with the remaining polyhedra is global parameter. In brackets is shown the maximum num-
created to continue the recursion. This is the aim of step 5cber of parameters among the SCoPs. Not surprisingly, the
of the algorithm. Unfortunately this solution is only par- set of problems appears to be heavily parametric, supgprtin
tial, since it allows us to reduce the control overhead only the works on fully parametric methods, but challenging the
according to the original lexicographic order. code generators since free parameters are the main source
The compulsory control for a polyhedra scanning prob- of memory explosions. Thieration Domainssection de-
lem without scheduling constraints is the number of itera- scribes the shape of the polyhedrap@int means that the
tions necessary to scan the biggest polyhedra in term of in-corresponding statement is executed only oncegctan-
tegral points. The control is minimum when it is limited to gleis an iteration domain bounded by constantgriamis
this compulsory control. We are free to modify the scanning bounded by constants except for one bound, andthar
orders to achieve this goal. Formally, the general problem has more than one varying bound. Lastly, thede Gen-
is to find for each polyhedron defined by 7 > _JSanin- eration section describes the code generator’s behavior on
vertible transformation matriZ ¥ and a translation vector @ x86 architecture at 1 GHz with 256 MB RAM. The first
25 such that the number of integral points in the intersec- column shows how many SCoPs have to be regenerated in
tion of all the polyhedrang(ASZ5z > 25 CS) is max- a suboptimal way because of a memory explosion on the
imum. Because of th&* matrices, the general problem testing system. The three challengmg problems have the
is not affine. Then we simplify it by considering only the COMmon property to be heavily parametric3 (or 14 free
translation vector s, parameters). Thé)uph.cz_:\tlon column shows thg duplica-
Counting integer points inside a parameterized polyhe- tion factor between original and target codes, it appears to

dron is possible using Ehrhart polynomials [6]. These poly- _T_.Ot be :/ery h'ﬁh i(.4trf]ort.the Who'? (;)epchrt’?]ark sdet), The
nomials can have periodic coefficients when a vertex of imecoiumn shows the time spent during the code genera-

the counted polyhedron is not integral. In a code genera—t'or_}ﬁrocessmﬁ‘ . . th d
tion framework this case is rare, but when this happens we ESE resulls are very encouraging since the code gener-
ator proved its ability to regenerate real-life problemshwi

are not able to use this method for our purpose. Once the
pup hundreds of statements and a lot of free parameters. Both

Ehrhart polynomials are calculated, it is not hard to find for d tion i d ; i :
which translation the maximum number of integral point in code generation time and memory requirement are accept-
able in spite of a worst-case exponential algorithm com-

the intersection is achieved. Then we can apply the transla- lexity. Previously related experiences with Om 111 or
tion to the corresponding polyhedra and generate a scannin Exity. Previously related experiences wr ega .]0
ooPo [10] showed how it was challenging to producing

code optimized in control. This technique is guaranteed to Hicient code iust for t vhed hithout i
reduce the control overhead, at worst, it will leave the -orig etncient code just forten or so polyhedra whithout time or
memory explosion.

inal polyhedra intact. Using® to find new solutions to the
polyhedron overlapping problem is left for future works. _
VI Conclusion

V Experimental Results
The complexity of code generation has long been a de-

terrent for using polyhedral representations in optinggzin

chunkv L G t d iqinallv desianed f parallelizing compilers. Moreover, most existing solago
(Chunky Loop Generator) and was originally designed for only address a subset of the possible polyhedral transfor-

a locality-improvement algorithm and software (Chunky) . o)) .
[4]. Thanks to an implementation of a SCoP extraction matlons. The contribution of this paper is twofold. First,

algorithm into Open64 [3], a study on the applicability of I pre;ents a.general transforma_xﬂon framgwprk. This re-
the presented framework to several benchmarks has beer"?UItS in opening new opportunities to optimize the target

achieved. The chosen methodology was to perform the COdéJ:OQI'?rI’]n e % toEt;Efenefltt frolmtmorehfreedbom while gendert—
regeneration of all static control parts of a representagiat ating the code icient solutions have been proposed to

of benchmarks. usetth?m. Szcond, it deglonlstrat?s tlhe ablllfyl_](c)f a cobo:e gen-
Figure 7 summarizes the results for a set of SpecFPera orto produce an optimal control on real-iiie probliems,

2000 and PerfectClub benchmarks. The first three columns with ? possibly verythllgh statlemtent number, in spite of a
shows some general informations about the SCoPs: the firstVOrst-case exponential complexity

one gives the total number of SCoPs in the correspond- ¢ rOntgmgg worlfitalm_?wat fr':qmrg rr:e\;\lllrr:]prove;mtents ?\? t?ﬁ
ing benchmark, the next two columns give some precisions arget code quality. Two major chaflenges are 1o solve he

about how many of them arich, i.e. enclose at least one general greatest common step problem for parameterized

loop, and count the number dth SCoPs with at least one non-unit _strlde, ar_1d to find new answers to the polyhedra
overlapping question. There are still challenging protdem

3CL00G is available at t p: / / wmw. pri sm uvsg. fr/ ~cedb leading to time or memory explosion. Pattern matching, i.e.

Our implementation of this algorithm is called CLo®G

SCoPs Iteration Domains Code Generation

All Rich Parametric|/ All Point Rectangle Prism Other Suboptimal Duplication Time (s
applu 25 19 15(6)| 757 233 506 4 2 0 1.5 32
apsi 109 80 80(14)| 2192 1156 1036 0 a 1 4.1 58
art 62 28 27(8)| 499 331 142 0 0 0 1.9 2
lucas 11 4 4(13) | 2070 317 1753 0 (0 1 3.3 127
mgrid 12 12 12(4)| 369 314 55 0 0 0 1.2 5
quake 40 20 14(7)| 639 367 216 9 0 0 11 8
swim 6 6 6(3) | 123 63 60 0 0 0 1 1
adm 109 80 80(14)| 2260 1224 1036 0 a 1 4.1 59
dyfesm | 112 75 70(4)| 1497 880 540 33 1 0 1.3 18
mdg 33 17 17(6)| 530 358 167 5 0 0 1.1 5
mg3d 63 39 39(11)| 1442 561 856 0 0 0 1.2 21
gcd 74 30 23(8)| 819 458 361 0 0 0 14.6 69

Figure 7. Coverage of static control parts in high-performa

to short-cut the general polyhedral calculations for senpl
cases (e.g. rectangular domains), seems to be a promising
way to reduce the time spent in code generation. It has been [7]
shown in this paper that the main explosion factor is the
number of free parameters, since the variability of parame-

ter interactions leads to an exponential growth of the gener 8]
ated code. Upstream from code generation, it is possible for

compilers to reduce both complexity and code duplication

by finding linear relations among variables [7].

Acknowledgments

The author would like to thank Paul Feautrier and
Francois Thomasset for their valuable help and suggestion
Many thanks also to Albert Cohen and Saurabh Sharma for[11]
having made possible the experiments on benchmark sets.

References

(1]

(2]

(3]

(4]

(5]

(6]

C. Ancourt and F. Irigoin. Scanning polyhedra with DO
loops. In3rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programmingpages 39-50, june 1991.
C. Bastoul. Efficient code generation for automatic para
lelization and optimization (long version). Technical Re&p
2003/43, PRIiSM, Versailles University, october 2003.

(9]

[10]

[12]

[13]

[14]

[15]

C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam.

Putting polyhedral transformations to work. Technical Re-
port 4902, INRIA, july 2003.

C. Bastoul and P. Feautrier. Improving data locality by
chunking. InCC’12 Int. Conf. on Compiler Construction,
LNCS 2622pages 320-335, Warsaw, april 2003.

P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop par
allelization algorithms: From parallelism extraction tode
generation. volume 24, pages 421-444, 1998.

P. Clauss. Counting solutions to linear and nonlinear-co
straints through Ehrhart polynomials: applications to an-
alyze and transform scientific programs. Ihternational

[16]
[17]
[18]

[19]

nce applications

Conference on Supercomputjngages 278-285, Philadel-
phia, may 1996.

P. Cousot and N. Halbwachs. Automatic discovery of Iimea
restraints among variables of a programHfth ACM Sym-
posium on Principles of Programming Languagemges
84-97, Tucson, Jan. 1978.

P. Feautrier. Parametric integer programmindRAIRO
Recherche Opérationne|lg2(3):243-268, 1988.

P. Feautrier. Some efficient solutions to the affine scahed
ing problem, part II: multidimensional timelnternational
Journal of Parallel Programming21(6):389—-420, decem-
ber 1992.

M. Griebl, C. Lengauer, and S. Wetzel. Code generation
in the polytope model. IHPACT’'98 International Confer-
ence on Parallel Architectures and Compilation Techniques
pages 106-111, 1998.

W. Kelly, W. Pugh, and E. Rosser. Code generation formul
tiple mappings. IrFrontiers’95 Symposium on the frontiers
of massively parallel computatipMcLean, 1995.

D. Kuck. The Structure of Computers and Computations
John Wiley & Sons, Inc., 1978.

M. Le Fur. Parcours de polyedres paramétrées avec
I'elimination de Fourier-Motzkin. Technical Report 2358
INRIA, 1994.

W. Li and K. Pingali. A singular loop transformation free-
work based on non-singular matricésternational Journal

of Parallel Programming22(2):183-205, April 1994.

F. Quilleré, S. Rajopadhye, and D. Wilde. Generatién o
efficient nested loops from polyheduaternational Journal

of Parallel Programming28(5):469—498, october 2000.

J. Ramanujam. Beyond unimodular transformatiofiie
Journal of Supercomputin®(4):365—-389, 1995.

A. Schrijver. Theory of linear and integer programming
John Wiley & Sons, Inc., 1986.

D. Wilde. A library for doing polyhedral operations. die
nical report, IRISA, 1993.

J. Xue. Automating non-unimodular loop transformaso
for massive parallelism.Parallel Computing 20(5):711—
728, 1994.

