
Efficient Code Generation for Automatic Parallelization and Optimization

Cédric Bastoul
Laboratoire PRiSM, Université de Versailles Saint Quentin
45 avenue deśEtats-Unis, 78035 Versailles Cedex, France

Email: cedric.bastoul@prism.uvsq.fr

Abstract

Supercompilers look for the best execution order of the
statement instances in the most compute intensive kernels.
It has been extensively shown that the polyhedral model
provides convenient abstractions to find and perform the
useful program transformations. Nevertheless, the current
polyhedral code generation algorithms lack for flexibilityby
adressing mainly unimodular or at least invertible transfor-
mation functions. Moreover, their complexity is challenging
for large problems (with many statements). In this paper,
we discuss a general transformation framework able to deal
with non-unimodular, non-invertible functions. A completed
and improved version of one of the best algorithms known
so far is presented to actually perform the code generation.
Experimental evidence proves the ability of our framework
to handle real-life problems.

I Introduction

The focus of recent compiler research is optimized code
generation. The reason is that, with a higher level of in-
tegration, modern processors have acquired high-level fea-
tures (vector processing, hidden and apparent parallelism,
memory hierarchies), which are not available in so-called
high-level languages, which were patterned after the much
simpler processors of the 1960’s. Hence, there is a seman-
tic gap which grows larger and larger with time. A striking
example is the Multimedia Instruction Set of many popu-
lar processors, which so far cannot be used directly in any
high-level language.

Simple optimizations, like constant folding, can be di-
rectly applied on the abstract syntax tree of the program, but
the most interesting ones (e.g. loop inversion) incur modify-
ing the execution order of the program, and this has nothing
to do with syntax. In many cases, optimization is done in
three steps: (1) select a new execution order, most of the
time the result is not a program, but a reordering function (a
schedule, or a placement, or a chunking function); (2) build

a loop nest (or a set of loop nests) which implement the ex-
ecution order implied by the reordering function; (3) apply
the local optimizations which have been enabled by the new
execution order: for instance, mark some loops for parallel
execution.

The main theme of this paper is the second step of the
above scheme. Finding suitable execution orders has been
the subject of most of the research on thepolytope model
[5, 9, 14, 16, 19] (an exhaustive related work can be found in
the long version of the paper [2]) and the post-processing is
easy in general. On the other hand, simple-minded schemes
for loop building have a tendency to generate inefficient
code, which may offset the optimization they are enabling.
In this paper, I will show that, starting from one of the best
algorithms known so far [15], one can generalize and im-
prove it in two directions:

• The quality of the target code is such that many loop
nests in familiar benchmarks can be regenerated opti-
mally.

• The implementation is efficient enough to handle prob-
lems with thousands of statements and tens of free pa-
rameters.

The paper is organized as follows. Section II introduces
some relevant definitions and shows the linear algebraic
representation that can be used for describing parts of a pro-
gram in optimizing or parallelizing compilers. Section III
presents the polyhedra scanning problem and in particular
a general program transformation framework in the poly-
hedral model. Section IV describes the code generation
algorithm and proposes new ways to achieve an efficient
target code. In section V, experimental results obtained
through the algorithm implementation are shown. Finally,
section VI summarizes the main contributions of this paper
then discusses future works.

II Background and Notations

The loops in every imperative languages like C or FOR-
TRAN can be represented using an-entry column vector

called itsiteration vector:

~x = (i1, i2, . . . , in)T ,

whereik is thekth loop index andn is the innermost loop.
The surrounding loops and conditionals of a statement de-
fine its iteration domain, i.e. for which values of the iter-
ation vector the statement has to be executed. When loop
bounds and conditionals only depend on surrounding loop
counters, formal parameters and constants, the iteration do-
main can always be specified by a set of linear inequalities
defining a polyhedron [12]. The termpolyhedronwill be
used in a broad sense to denote aconvex set of points in a
lattice (also calledZ-polyhedron or lattice-polyhedron), i.e.
a set of points in aZ vector space bounded by affine in-
equalities [17]. A maximal set of consecutive statements in
a program with such polyhedral iteration domains is called a
static control part(SCoP). The figure 1 illustrates the corre-
spondence between static control and polyhedral domains.

do i = 1, n
do j = 1, n

if (i<=n+2-j)
S1

1

2

21 n

j

n+2

n

n+2 i

i>=1 i<=n

j>=1

j<=n

i<=n+2−j

2

6

6

6

4

1 0

−1 0

0 1

0 −1

−1 −1

3

7

7

7

5

„

i
j

«

≥

0

B

B

B

@

1

−n
1

−n
−n − 2

1

C

C

C

A

(a) enclosing control ofS1 (b) iteration domain ofS1

Figure 1. Static control example

The execution of the statement instances followslexico-
graphic order. This means in an-dimensional polyhedron,
the operation corresponding to the integral point defined
by the coordinates(a1...an) is executed before those cor-
responding to the coordinates(b1...bn) iff

∃i, 1 ≤ i < n, (a1...ai) = (b1...bi) ∧ ai+1 < bi+1.

III Polyhedra Scanning Problem

In the polyhedral model, code generation amounts to a
polyhedra scanning problem. We consider it as a two-part
specification for each statement

• A union of disjoint polyhedra, each polyhedron being
defined by a set of parameterized inequalities in then-
dimensional space:

D(~p) =
{

~x | ~x ∈ Z
n, A~x + A′~p + ~c ≥ ~0

}

,

where~x is the iteration vector,A andA′ are constant
matrices,~p represents the parameters, and~c is a con-
stant vector. Considering a statement in a depth-n loop
nest, the union of disjoint polyhedra defines the space
where the iteration domain is included. As regards the
vector ~p, it is a merging of the structure parameters
of the SCoP, i.e. the symbolic constants, mostly array
sizes or iteration bounds.

• A scheduling function, an affine function specifying a
scanning order for the integral points belonging to the
union of iteration domains:

θ(~x) = T~x + T ′~p + ~t,

whereT andT ′ are constant matrices, and~t is a con-
stant vector. Depending on the context, the scanning
function may have several interpretations: to distribute
the iterations across different processors, to order them
in time, or both (by composition), etc.

The problem boils down to finding a set of nested loops
visiting each integral point, once and only once, following
the scanning order. This is a generalization of the usual
polyhedra scanning problem since, to the author’s knowl-
edge, all previous works addressed the problem of scanning
polyhedra in theirlexicographicorder. These approaches
are inherently limited since they do not benefit from the
opportunities for optimization that arise when the scanning
order is only partially constrained. To actually perform a
program transformation, we consider the original iteration
domains of the statements as polyhedra with their original
scanning order, i.e. the lexicographic order. We then apply
the transformation by modifying their scanning order and
we eventually generate the target code. A useful analogy
is linear algebra: it is sometimes easier to change the basis
to make some calculations and then to return back to the
original basis.

Previous work on code generation in the polyhedral
model required severe limitations on the transformation
functions, e.g. to be unimodular [1, 13] (theT matrix has to
be square and has determinant±1) or at least to be invert-
ible [14, 19, 16, 5]. The underlying reason was, considering
an original polyhedron defined byA~x ≥ −~c and the trans-
formation functionT leading to the target index~y = T~x,
to find the transformed code is equivalent to scanning the
polyhedron defined by(AT−1)~y ≥ −~c.

We do not lay down any constraint on the transformation
functions in particular because we do not try to perform a

T (~p) =

{

(

~y

~x

)

∣

∣

∣

∣

∣

[

Id −T

0 A

] (

~y

~x

)

+

[

−T ′

A′

]

~p +

(

−~t

~c

)

=
≥

~0

}

(1)

change of basis of the original polyhedron to the target in-
dex. Instead, we apply a new scanning order to the polyhe-
dra by adding new dimensions in leading positions, i.e. in
order to change the lexicographic order. Thus, from each
polyhedronD(~p) and scheduling functionθ, we build an-
other polyhedronT (~p) with the desired lexicographic order
as shown in formula 1, where by definition,(~y, ~x) ∈ T (~p)
if and only if ~y = θ(~x). The new polyhedron has to
be scanned lexicographically until the last dimension of~y.
Then there is no particular order to respect for the remaining
dimensions.

By using such a transformation policy, the data of both
original iteration domain and transformation are included
in the new polyhedron. The additional dimensions do not
change the number of integral points but carry the trans-
formation data. This is helpful since we have to update
the references to the iterators in the loop body, andnec-
essarywhen the transformation is not invertible. Moreover,
the additional dimensions carry the loop strides (the step of
the iterator after one iteration); this will be detailed in sec-
tion IV-B.

IV Extended Quiller é et al. Method

Once the transformations have been applied to the orig-
inal polyhedra, it remains to generate an efficient scanning
code. The generated code quality can be assessed by using
two valuations: the most important is the amount of dupli-
cated control in the final code; second, the code size, since
a large code may pollute the instruction cache. Both valu-
ations are contradictory, but the simplest solutions lead to
a large amount of redundant control, especially when more
than one polyhedron is considered.

At present, the Quilleré et al. method give the best re-
sults when we have to generate a scanning code for several
polyhedra [15]. This technique is guaranteed to avoid re-
dundant control while scanning the scheduled dimensions.
However, it suffers from some limitations, e.g. high com-
plexity, code generation with unit strides only and unop-
timized code when the scheduling only partially constrains
the scanning order. In the following, we propose some solu-
tions to these drawbacks. We present the general algorithm
with some adaptations to our purpose in section IV-A. We
address the non-unit strides problem in section IV-B. Fi-
nally in section IV-C we show how it is possible to benefit
from a relaxed scheduling.

IV-A Code Generation Algorithm

The main part of the algorithm is a recursive generation
of the scanning code, maintaining a list of polyhedra from
the outermost to the innermost loops. It makes a strong
use of polyhedral operations that can be achieved by e.g.
PolyLib1 [18]. The basic idea is to generate loop levels by
projecting the polyhedra onto the corresponding dimension.
Then by splitting the projections into disjoint polyhedra and
sorting the resulting polyhedra in order to respect the lexi-
cographic order. Lastly, by recursively generating the loop
nests that scan each polyhedron for the next dimensions.
The algorithm is described in figure 2. The considered poly-
hedraD are not only a set of constraints: they may carry
either a statement bodySi (notationDSi) or a polyhedra
list (notationDi → (...)). The algorithm is started with
input: (1) the list of transformed polyhedra to be scanned
(T S1 , ..., T Sn); (2) the context, i.e. the set of constraints on
the global parameters; (3) the first dimensiond = 1.

This algorithm is slightly different from the one pre-
sented by Quilleré et al. in [15]; our two main contributions
are the following: the support for non-unit strides (step 5a,
see section IV-B) and the exploitation of freedom degrees
(i.e. when some operations do not have a complete sched-
ule) to produce a more effective code (step 5c, see sec-
tion IV-C).

Let us describe this algorithm with a non-trivial example.
We propose to scan the two polyhedral domains presented
in Figure 3(a). The iteration vector is(i, j, k) and the pa-
rameter vector is(n). We first compute the intersections
with the context (i.e., at this point, the constraints on the
parameters, supposed to ben ≥ 6). We project the polyhe-
dra onto the first dimension,i, then we separate them into
disjoint polyhedra. This means that we compute the do-
mains where there are points to scan forT S1 alone, both
T S1 andT S2 , andT S2 alone (as shown in Figure 3(b), this
last domain is empty). Here, we notice there is a constraint
on an inner dimension implying a non-unit stride; we can
determine this stride and update the lower bound. We fi-
nally generate the scanning code for this first dimension.
We now recurse on the next dimension, repeating the pro-
cess for each polyhedron list (in this example, there are now
two lists: one inside each generated outer loop). We inter-
sect each polyhedron with the new context, now the outer
loop iteration domains; then we project the resulting poly-
hedra on the outer dimensions, and finally we separate these
projections into disjoint polyhedra. This last process is triv-

1PolyLib is available athttp://icps.u-strasbg.fr/PolyLib

CODEGENERATION : Build a polyhedra scanning code without redundant control.

Input: a polyhedron listlist, a contextC, the current dimensiond.

Output: the writing of the scanning code for the polyhedra insidelist.

1. Intersect each polyhedronT Si in the list withC in order to restrict the scanning code to the context of its
own loop nest:list := intersection(list,C)

2. Compute for each polyhedronT Si its projectionPi onto the outermostd dimensions and consider the
new list ofPi → T Si : list := projection(list,d)

3. Separate the projections into a new list of disjoint polyhedra: given a list ofn polyhedra, we have to
compute(P1 − P2) → T S1 , (P1 ∩ P2) → (T S1 , T S2) and(P2 − P1) → T S2 , then to do the same
for each resulting polyhedron withP3 → T S3 , etc.:list := separate(list)

4. Sort the list such that a polyhedron is before another one if its scanning code has to precede the other to
respect the lexicographic order:list := sort(list)

5. For each polyhedronP → (T Sm , ..., T Sn) in the list:For each polyhedron in list do

(a) Compute the stride that the inner dimensions impose to the current one, and find the lower bound
by looking for stride constraints in the(T Sm , ..., T Sn) list (see section IV-B):
stride = find stride(polyhedron)

(b) Write the scanning informations for the dimensiond (i.e. guards, loop lower and upper bounds)
from the constraints in the polyhedronP simplified in the context ofC:
write scanning code(polyhedron,C,stride,d)

(c) While there is a polyhedron in(T Sm , ..., T Sn):
while (inner polyhedron in inner list)

i. Merge successive polyhedra with another dimension to scan in a new list:
new list := merging non terminal(inner list)

ii. Recurse for the next dimensiond + 1 with the new loop contextC ∩ P :
CodeGeneration(new list,intersection(polyhedron,C),d+1)

iii. If there is aT Si in the list, write the statement bodySi:
if (inner polyhedron) write body(inner polyhedron)

(d) Close the open braces of the loop:write end scanning code(d)

Figure 2. Extended Quiller é et al. Algorithm

ial for the second list but yields several domains for the first
list, as shown in Figure 3(c). Eventually, we generate the
code associated with the new dimension, and since this is
the last one, the scanning code is fully generated.

IV-B Non-Unit Strides

To scan a transformed polyhedron it may be necessary
to avoid some values in some dimensions. This happens
when there exists a set of dimensions such that the trans-
formed polyhedron projection onto these dimensions has
integer points without a corresponding image in the origi-
nal space.

Previous works were challenged by this problem, which
occurs when the transformation function is non-unimodular
(i.e. the transformation matrixT has non unit determinant).
We can observe the phenomenon with the transformation of

the polyhedron in figure 4(a) by the functionθ(i) = i + 2j

(the corresponding transformation matrixT =
[

1 2
]

is

not invertible, but it can be extended toT =
»

1 2

1 0

–

). The

target polyhedron is shown in figure 4(a). The integer points
without heavy dots have no images in the original polyhe-
dron. The original coordinates can be determined from the
target ones by ~original = T−1 ~target. BecauseT is non-
unimodular,T−1 has rational elements. Thus some inte-
ger target points have a rational image in the original space;
they are calledholes. To avoid scanning the holes, the loop
strides (the steps the iterators make at the end of the loop
body) and the loop lower bounds had to be found. Many
works proposed to use the Hermite Normal Form [17] in
different ways to solve the problem.

In this paper we do not change the basis of the origi-
nal polyhedra, but we only change their scanning order as
discussed in section III. As a consequence, our target sys-

.

.

.

.

.

.

21

j

i
6. . . 7 . . . n

1

2

6

7

Operation of S2

Operation of S1

n

.

.

.

.

.

.

21

j

i
6. . . 7 . . . n

1

2

6

7

Operation of S2

Operation of S1

n
S1 and S2 S1

.

.

.

.

.

.

21

j

i
6. . . 7 . . . n

1

2

6

7

Operation of S2

Operation of S1

n

T S1

1
(n) :

8

<

:

i = 2k + 1
1 ≤ i ≤ n

1 ≤ j ≤ n

T S2

1
(n) :

8

<

:

i = 2k + 1
1 ≤ i ≤ 6
1 ≤ j ≤ 7 − i

do i = 1, 6, 2

T S1

1,1 (n) : {1 ≤ j ≤ n}

T S2

1,1 (n) : {1 ≤ j ≤ 7 − i}

do i = 7, n, 2

T S1

1,2 (n) : {1 ≤ j ≤ n}

do i = 1, 6, 2
do j = 1, 7-i

S1
S2

do j = 8-i, n
S1

do i = 7, n, 2
do j = 1, n

S1

(a) Initial domains to scan (b) Projection and separation
on the first dimension

(c) Recursion on next
dimension

Figure 3. Step by step code generation example

tems are always integral and there are no holes in the cor-
responding polyhedra. As an illustration, the target poly-
hedron given by our transformation policy is shown in fig-
ure 4(c). The stride informations are explicitly contained
in the constraint systems thanks to the equalities. Without
the step 5a in the code generation algorithm, the succes-
sive projections lead to the equality constraints, as shown
in figure 5(a) for our example. This leads to an inefficient
scanning code since heavy guards (with modulo operations)
are inside the loops.

We solve this problem by finding the stride for the cur-
rent dimensionx and the new lower bound, i.e. the first
value in the dimension with an integral point to scan (for
instance if we want to scan only odd or even points onto
a dimension, the stride is the same but we need to start the
loop from a convenient odd or even point). The stride can be
directly read from the equality constraintsyS = sSx + nS

of the transformed polyhedra, where for the polyhedronS,
yS is the striding dimension,sS is the stride,x is the strided
dimension, andnS is a merging of the parameters (outer
dimensions, structure parameters and constant). The lower
bound has to be found under the context of the outermost
loop counters and the structure parameters. This is a prob-
lem in parametric integer programming, that can be solved

by PipLib2 [8]. For our example, the stride of thei loop is
2, directly given by the equality constraint, and the lower
bound is the minimum value ofi in the polyhedron defined

by

8

<

:

1 ≤ i
i′ − 6 ≤ i
i = i′ − 2j

and under the context3 ≤ i′ ≤ 9. The

solution given by PipLib as a quasi affine selection tree is
shown in the optimized final code in figure 5(b).

When there is a set of polyhedraK to scan, for each
dimensionx we have to consider a set of striding constraints
yS = sSx+nS . Like in [11], the greatest common stepgcs

is given by:

gcs = gcd({sSi |Si ∈ K}, {nSi−nSj |Si, Sj ∈ K∧i 6= j}).

We then have to find the lower bound, i.e. the first value
of x where an integer point has to be scanned. This can be
achieved in the same way as for one polyhedron by merging
all the constraints of the different polyhedra for the dimen-
sionx. We have successfully implemented this method with
the restriction that thenS has to be constant. The problem
to find thegcs when thenS are parameterized is under in-
vestigation.

2PipLib is available athttp://www.prism.uvsq.fr/∼cedb

1

2

3

654321 87 9 i

j

1

2

3

i’654321 87 9

j’

1

2

3

i

2
3

1

654321j

i’

87 9

2

6

4

1 0

−1 0

0 1

0 −1

3

7

5

„

i
j

«

≥

0

B

@

1

−3

1

−3

1

C

A

2

6

4

−1/2 1/2

1/2 −1/2

0 1

0 −1

3

7

5

„

i′

j′

«

≥

0

B

@

1

−3

1

−3

1

C

A

2

6

6

6

4

1 −1 −2

0 1 0

0 −1 0

0 0 1

0 0 −1

3

7

7

7

5

0

B

B

B

@

i′

i
j

1

C

C

C

A

=

≥

0

B

B

B

@

0

1

−3

1

−3

1

C

C

C

A

(a) original polyhedronA~x ≥ −~c (b) usual transformation(AT−1)~y ≥ −~c (c) our transformationT (~p)

Figure 4. Non-unimodular transformation with θ(i) = i + 2j

do i’=3, 9
do i=MAX(1,i’-6), MIN(i’-2,3)
if (MOD(i’-i,2) == 0) then

j=(i’-i)/2
S1

(a) guarded version

do i’=3, 9
if (i’<=7)
lower = i’ - 2*((i’+1)/2) + 2

else
lower = i’ - 6

do i=lower, MIN(i’-2,3), 2
j = (i’-i)/2
S1

(b) strided version

Figure 5. Scanning codes for the polyhedron
in figure 4(c)

IV-C Exploitation of Freedom Degrees

The polyhedron scanning orders specified by the
scheduling functions may leave some dimensions unspec-
ified. This means that the code generator is free to choose
their scanning order. Basically, this can happen when the
operations are parallel onto these dimensions, and when
there is no dependences between the considered statements.
Then it is the code generator responsibility to provide the
best target code i.e. with the minimum control overhead.
This work is essential since it concerns the innermost loops
of the generated code, where the consequences of a bad con-

trol management are the most disturbing. For instance let
us consider the matrix multiply codes in figure 6. These tar-
get codes can result from a generation where the scheduling
functions areθS1(~x) = ~t andθS2(~x) = ~t (this is possible
since the computations on remaining dimensions are fully
parallel).

do t=1, n
do i=1, n

do j=1, n
c1(i,j)+=a1(i,t)*b1(t,j)

do i=1, n
do j=1, n
c2(i,j)+=a2(i,t)*b2(t,j)

(a) splitted version (iterations:2n3 + 2n2 + n)

do t=1, n
do i=1, n

do j=1, n
c1(i,j)+=a1(i,t)*b1(t,j)
c2(i,j)+=a2(i,t)*b2(t,j)

(b) merged version (iterations:n3 + n2 + n)

Figure 6. Equivalent target codes for matrix
multiplies

We have tested these simple codes on a x86 architecture
at 1 GHz, compiled with the GCC 3.2.2 compiler and the
option -O3. Forn = 500 the code in figure 6(a) takes5.31s

while the code in figure 6(b) takes4.75s, a 15% improve-
ment. The code in figure 6(c) can be generated by perform-
ing the Quilleré et al. recursion for every free dimensionsof
the polyhedra. After each recursion, if some polyhedra are
fully scanned, the corresponding statement bodies have to

be printed out. A new list with the remaining polyhedra is
created to continue the recursion. This is the aim of step 5c
of the algorithm. Unfortunately this solution is only par-
tial, since it allows us to reduce the control overhead only
according to the original lexicographic order.

The compulsory control for a polyhedra scanning prob-
lem without scheduling constraints is the number of itera-
tions necessary to scan the biggest polyhedra in term of in-
tegral points. The control is minimum when it is limited to
this compulsory control. We are free to modify the scanning
orders to achieve this goal. Formally, the general problem
is to find for each polyhedron defined byAS~x ≥ − ~cS an in-
vertible transformation matrixZS and a translation vector
~zS such that the number of integral points in the intersec-
tion of all the polyhedra∩S(ASZS~x ≥ ~zS − ~cS) is max-
imum. Because of theZS matrices, the general problem
is not affine. Then we simplify it by considering only the
translation vector~zS.

Counting integer points inside a parameterized polyhe-
dron is possible using Ehrhart polynomials [6]. These poly-
nomials can have periodic coefficients when a vertex of
the counted polyhedron is not integral. In a code genera-
tion framework this case is rare, but when this happens we
are not able to use this method for our purpose. Once the
Ehrhart polynomials are calculated, it is not hard to find for
which translation the maximum number of integral point in
the intersection is achieved. Then we can apply the transla-
tion to the corresponding polyhedra and generate a scanning
code optimized in control. This technique is guaranteed to
reduce the control overhead, at worst, it will leave the orig-
inal polyhedra intact. UsingZS to find new solutions to the
polyhedron overlapping problem is left for future works.

V Experimental Results

Our implementation of this algorithm is called CLooG3

(Chunky Loop Generator) and was originally designed for
a locality-improvement algorithm and software (Chunky)
[4]. Thanks to an implementation of a SCoP extraction
algorithm into Open64 [3], a study on the applicability of
the presented framework to several benchmarks has been
achieved. The chosen methodology was to perform the code
regeneration of all static control parts of a representative set
of benchmarks.

Figure 7 summarizes the results for a set of SpecFP
2000 and PerfectClub benchmarks. The first three columns
shows some general informations about the SCoPs: the first
one gives the total number of SCoPs in the correspond-
ing benchmark, the next two columns give some precisions
about how many of them arerich, i.e. enclose at least one
loop, and count the number ofrich SCoPs with at least one

3CLooG is available athttp://www.prism.uvsq.fr/∼cedb

global parameter. In brackets is shown the maximum num-
ber of parameters among the SCoPs. Not surprisingly, the
set of problems appears to be heavily parametric, supporting
the works on fully parametric methods, but challenging the
code generators since free parameters are the main source
of memory explosions. TheIteration Domainssection de-
scribes the shape of the polyhedra: apoint means that the
corresponding statement is executed only once, arectan-
gle is an iteration domain bounded by constants, aprism is
bounded by constants except for one bound, and another
has more than one varying bound. Lastly, theCode Gen-
erationsection describes the code generator’s behavior on
a x86 architecture at 1 GHz with 256 MB RAM. The first
column shows how many SCoPs have to be regenerated in
a suboptimal way because of a memory explosion on the
testing system. The three challenging problems have the
common property to be heavily parametric (13 or 14 free
parameters). TheDuplication column shows the duplica-
tion factor between original and target codes, it appears to
not be very high (3.4 for the whole benchmark set), The
Timecolumn shows the time spent during the code genera-
tion processing.

These results are very encouraging since the code gener-
ator proved its ability to regenerate real-life problems with
hundreds of statements and a lot of free parameters. Both
code generation time and memory requirement are accept-
able in spite of a worst-case exponential algorithm com-
plexity. Previously related experiences with Omega [11] or
LooPo [10] showed how it was challenging to producing
efficient code just for ten or so polyhedra whithout time or
memory explosion.

VI Conclusion

The complexity of code generation has long been a de-
terrent for using polyhedral representations in optimizing or
parallelizing compilers. Moreover, most existing solutions
only address a subset of the possible polyhedral transfor-
mations. The contribution of this paper is twofold. First,
it presents a general transformation framework. This re-
sults in opening new opportunities to optimize the target
program, e.g. to benefit from more freedom while gener-
ating the code. Efficient solutions have been proposed to
use them. Second, it demonstrates the ability of a code gen-
erator to produce an optimal control on real-life problems,
with a possibly very high statement number, in spite of a
worst-case exponential complexity.

Ongoing work aims at finding new improvements on the
target code quality. Two major challenges are to solve the
general greatest common step problem for parameterized
non-unit stride, and to find new answers to the polyhedra
overlapping question. There are still challenging problems
leading to time or memory explosion. Pattern matching, i.e.

SCoPs Iteration Domains Code Generation
All Rich Parametric All Point Rectangle Prism Other Suboptimal Duplication Time (s)

applu 25 19 15(6) 757 233 506 4 2 0 1.5 32
apsi 109 80 80(14) 2192 1156 1036 0 0 1 4.1 58
art 62 28 27(8) 499 331 142 0 0 0 1.9 2
lucas 11 4 4(13) 2070 317 1753 0 0 1 3.3 127
mgrid 12 12 12(4) 369 314 55 0 0 0 1.2 5
quake 40 20 14(7) 639 367 216 9 0 0 1.1 8
swim 6 6 6(3) 123 63 60 0 0 0 1 1

adm 109 80 80(14) 2260 1224 1036 0 0 1 4.1 59
dyfesm 112 75 70(4) 1497 880 540 33 1 0 1.3 18
mdg 33 17 17(6) 530 358 167 5 0 0 1.1 5
mg3d 63 39 39(11) 1442 561 856 0 0 0 1.2 21
qcd 74 30 23(8) 819 458 361 0 0 0 14.6 69

Figure 7. Coverage of static control parts in high-performa nce applications

to short-cut the general polyhedral calculations for simple
cases (e.g. rectangular domains), seems to be a promising
way to reduce the time spent in code generation. It has been
shown in this paper that the main explosion factor is the
number of free parameters, since the variability of parame-
ter interactions leads to an exponential growth of the gener-
ated code. Upstream from code generation, it is possible for
compilers to reduce both complexity and code duplication
by finding linear relations among variables [7].

Acknowledgments

The author would like to thank Paul Feautrier and
François Thomasset for their valuable help and suggestions.
Many thanks also to Albert Cohen and Saurabh Sharma for
having made possible the experiments on benchmark sets.

References

[1] C. Ancourt and F. Irigoin. Scanning polyhedra with DO
loops. In3rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 39–50, june 1991.

[2] C. Bastoul. Efficient code generation for automatic paral-
lelization and optimization (long version). Technical Report
2003/43, PRiSM, Versailles University, october 2003.

[3] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam.
Putting polyhedral transformations to work. Technical Re-
port 4902, INRIA, july 2003.

[4] C. Bastoul and P. Feautrier. Improving data locality by
chunking. InCC’12 Int. Conf. on Compiler Construction,
LNCS 2622, pages 320–335, Warsaw, april 2003.

[5] P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop par-
allelization algorithms: From parallelism extraction to code
generation. volume 24, pages 421–444, 1998.

[6] P. Clauss. Counting solutions to linear and nonlinear con-
straints through Ehrhart polynomials: applications to an-
alyze and transform scientific programs. InInternational

Conference on Supercomputing, pages 278–285, Philadel-
phia, may 1996.

[7] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. InFifth ACM Sym-
posium on Principles of Programming Languages, pages
84–97, Tucson, Jan. 1978.

[8] P. Feautrier. Parametric integer programming.RAIRO
Recherche Opérationnelle, 22(3):243–268, 1988.

[9] P. Feautrier. Some efficient solutions to the affine schedul-
ing problem, part II: multidimensional time.International
Journal of Parallel Programming, 21(6):389–420, decem-
ber 1992.

[10] M. Griebl, C. Lengauer, and S. Wetzel. Code generation
in the polytope model. InPACT’98 International Confer-
ence on Parallel Architectures and Compilation Techniques,
pages 106–111, 1998.

[11] W. Kelly, W. Pugh, and E. Rosser. Code generation for mul-
tiple mappings. InFrontiers’95 Symposium on the frontiers
of massively parallel computation, McLean, 1995.

[12] D. Kuck. The Structure of Computers and Computations.
John Wiley & Sons, Inc., 1978.

[13] M. Le Fur. Parcours de polyèdres paramétrés avec
l’élimination de Fourier-Motzkin. Technical Report 2358,
INRIA, 1994.

[14] W. Li and K. Pingali. A singular loop transformation frame-
work based on non-singular matrices.International Journal
of Parallel Programming, 22(2):183–205, April 1994.

[15] F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of
efficient nested loops from polyhedra.International Journal
of Parallel Programming, 28(5):469–498, october 2000.

[16] J. Ramanujam. Beyond unimodular transformations.The
Journal of Supercomputing, 9(4):365–389, 1995.

[17] A. Schrijver. Theory of linear and integer programming.
John Wiley & Sons, Inc., 1986.

[18] D. Wilde. A library for doing polyhedral operations. Tech-
nical report, IRISA, 1993.

[19] J. Xue. Automating non-unimodular loop transformations
for massive parallelism.Parallel Computing, 20(5):711–
728, 1994.

