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Abstract—Automatic parallel code generation from high-level
abstractions such as those manipulated by artificial intelligence
and deep learning (AI/DL) frameworks heavily rely on compiler
techniques for automatic parallelization and optimization. Many
recent advances rely on the polyhedral framework for this task
because of its ability to model and to apply a wide range of
loop transformations. However, modeling the complexity of the
target architecture and of efficient cost models to decide about
the best transformation is in general out of reach for a framework
based on linear/affine constraints. In this work, we propose to
decouple the polyhedral framework into linear and non-linear
components. We introduce the constraint tree abstraction which
may be generated by a non-linear optimizer and injected to
the polyhedral optimization process to build better solutions. We
present how to benefit from such a mechanism to generate efficient
codes for GPU in the context of AI/DL operators. Our constraint
injection allows to drive the polyhedral scheduler towards efficient
solutions for load/store vectorization relying both on memory
coalescing and vector types. We implemented our scheduler
supporting constraint injection and our constraint construction
system within a production AI/DL framework. Experiments on
well known neural networks show the efficiency of this approach
with respect to state-of-the-art polyhedral scheduling for GPU.

Index Terms—Polyhedral model, scheduling, vectorization

I. INTRODUCTION

Automatic parallelization and optimization play a significant
role in bridging the gap between high-level data/compu-
tation abstractions and their complex mapping to parallel
CPUs/accelerators. Many advances in this field have been
enabled using the polyhedral model, an algebraic representation
of programs that builds on linear algebra to analyze and
manipulate computational kernels [1]. Artificial intelligence
and deep learning (AI/DL) frameworks mostly manipulate
tensors and operators on those tensors that fit well the model.
It resulted in an increasing interest for this approach in that
context [2]-[6]. However, a limitation of the polyhedral model
is the need to rely on affine constraints and cost functions to
decide iteration-level scheduling, which may not be expressive
enough to handle the complexity of the target architecture.

Iteration-level scheduling is responsible for a variety of
critical optimization actions and decisions which may conflict
with each other. It achieves parallelism extraction, exposing
parallel blocks and loops, either coarse grain (external parallel
loops), or fine grain (internal parallel/vector loops), or both.
It performs permutability extraction, exposing loops that can
be partitioned into smaller chunks with a subsequent tiling

transformation. It takes the loop fusion/distribution decision,
handles data locality optimization, enforces specific data access
patterns to enable, e.g., vectorization, etc. Depending on
the input problem and target architecture, some scheduling
objectives may be more critical than others.

One of the polyhedral model’s strength is to deeply integrate
data dependencies, which allows to reason about a space of
scheduling solutions that preserve the computation semantics.
However the decision’s complexity makes it difficult to choose
the best solution relying only on models that translate well
into linear optimization problems. Load/store vectorization
on GPUs is an example of a key optimization which, in
general, is hard to model using affine constraints only. Modeling
decisions such as exploiting memory coalescing or using
explicit vector types, choosing the number of array dimensions
where consecutive accesses should be consecutive, or choosing
the sequence of loop dimensions to carry vectorized accesses
may be more appropriately handled by a non-linear approach
(e.g., an algorithm with a non affine cost model). Unfortunately
it would not fit the polyhedral model.

To solve this issue, we propose a general approach to
let a non-linear optimizer influence the construction of a
solution by a polyhedral scheduler thanks to constraint injection.
We introduce the influence constraint tree an abstraction
which specifies multiple prioritized optimization scenarios in
the form of desirable affine constraints that may span over
multiple scheduling dimensions. Influence constraint trees may
be generated by a non-linear optimizer and processed by
our polyhedral scheduler with an adapted algorithm, hence
benefiting from non-linear guidance in addition to polyhedral
model’s semantics preservation and linear cost functions.

We present a non-linear optimizer to generate influence
constraint trees that guide a polyhedral scheduler towards better
optimizations for AI/DL fused operators on GPU. Specifically,
the non-linear optimizer targets load/store vectorization which
is not well addressed by existing polyhedral schedulers.
Its strategy favors the usage of vector types over memory
coalescing and prepares computation mapping and explicit
vectorization by other compiler passes. We implemented both
the polyhedral scheduler supporting constraint injection and the
non-linear optimizer producing the constraints to be injected in
a production AI/DL framework. Performance evaluation shows
1.7x geomean improvement over state-of-the-art scheduling for
fused operators from various typical neural networks.
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Fig. 1. Integration and Architecture of a Polyhedral Scheduler Supporting Constraint Injection in the AI/DL Framework MindSpore

II. CONTEXT AND PROBLEM STATEMENT

AI/DL frameworks are complex software systems that take
as input a high-level description of Al models, then generate
code, deploy, manage and scale them for the target architecture.
Without loss of generality, in this work we consider the
Open Source project MindSpore [7], [8] as it is specifically
designed to address multiple scenarios, from edge to cloud,
and necessitates parallelization and optimization that should be
easily retargeted according to the hardware architecture, e.g.,
CPU, GPU or NPU accelerators.

Figure 1 presents an overview of our work integration from
the high-level vision of MindSpore, down to the architecture
of our polyhedral scheduler supporting constraint injection.
MindSpore (presented in Figure 1(a)) manipulates an inter-
mediate representation of a computation graph and applies a
series of processing to prepare efficient final code and runtime.
This process includes the decision to apply AI/DL operator
fusion (”Graph-kernel fusion” phase) to remove intermediate
allocations, improve computation sharing and enable more
optimization [9]-[11]. Code generation for fused operators is
delegated to the Automatic Kernel Generator (AKG, shown
in Figure 1(b)). AKG relies on the polyhedral compilation
approach to perform fused operator parallelization, tiling and
data management, then on lower-level code generation passes
to handle backend optimizations [6].

A key process within polyhedral compilation frameworks is
scheduling, which reorganizes statement executions to extract
parallelism, achieve data locality and enable tiling. State-of-the-
art polyhedral schedulers relying on pre-defined optimization
strategies may not optimize some AI/DL operators in the best
way for the desired target architecture. For instance, let us
consider the computational kernel shown in Figure 2(a). It
is a simplified version of a real-life fused operator submitted
to AKG that we will use as a running example throughout
this document. State-of-the-art polyhedral scheduler such as
isl scheduler [12], [13] (used natively in AKG) can analyze
the kernel and automatically parallelize and optimize it up to
the final version shown in Figure 2(b). While the polyhedral
scheduler successfully extracted parallel loops denoted by

“forall” keywords, the final code is far from optimal when
targeting GPU or AI/DL accelerators because (1) it is not a
perfectly nested loop and (2) the access to the main tensor
D is inefficient due to long jumps in the memory space at
every iteration of the innermost loop. The present work aims at
enabling fine control over the polyhedral scheduler to influence
it towards better solutions, e.g., to solve identified issues when
optimizing codes like in Figure 2.

for (i = 0;
for (k =
X: Bl[i][k]

i < N; i++)

0; k < N; k++)
= f(A[illk]);
for (i = 0; i

< N; i++)

for (j = 0; j < N; j++)
for (k = 0; k < N; k++)
Y: CLillj] = g(CLillj], BlLillk]l, DIKI[il[j1);

(a) Initial pseudo-code corresponding to the fused operator before polyhedral
scheduling for parallelism extraction and optimization

(i = 0; i <N; i++)
(k = 0; k < N; k++)
X: Blillk] = f(A[il[k]);
(i = 0; i <N; i++)
(5= 0; j <N j++)
for (k = 0; k < N; k++)
Y: Clillj]l = g(Clillj1, BLillk], DIkI[il[j1);

(b) Typical optimized version of the pseudo-code using polyhedral scheduling,
e.g., isl (version 0.22, default options) or Pluto (version 0.11.4, options
--parallel --nointratileopt to focus on initial scheduling), the
outermost loops marked with the keyword have been parallelized, loops
are split and the memory access of tensor D is inefficient

(i = 0; 1 <Nj; i++)
for (k = 0; k < N; k++) {

X: B[i][k] = f(A[i][k]);
forvec (j = 0; j < N; j++)
Y: ClLillj] = g(ClLill[j], Blillk], DIkI[il[j]1);

(c) Desired optimized version of the pseudo-code with external parallelism
marked with the keyword, inner vectorizable loop marked with the
forvec keyword, and efficient memory access patterns

Fig. 2. Running Example: simplified version (with abstracted computation
and lower tensor dimensionality, but same structure and issues for example
purpose) of a real fused operator from BERT natural language processing
network (named fused_mul_sub_mul_tensoradd in MindSpore/AKG),
both arrays B and C hold output values
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III. BACKGROUND AND NOTATIONS

Polyhedral schedulers are using linear algebra to model and
to compute an ordering for all iterations of a computational ker-
nel. This ordering is expressed, for each statement, in the form
of a multidimensional affine function which associates iterations
of the statement to a logical date. For a better understanding
of the present work, it is necessary to understand the two
main abstractions manipulated by polyhedral schedulers and
their notations: iteration domains which represent executions
of statements, and affine scheduling functions which encode
the ordering. In the following, ¥’ denotes a column vector while
bold v denotes a row vector. To simplify notations when writing
column vectors in-line with other text, we omit the transpose
operator and use commas to separate column vector elements:
(%) is equivalent to (a,b). The row vector corresponding to
the n'* row of a matrix M is noted M,, ,.

A. Iteration Domains

The application domain of polyhedral schedulers is loop-
based programs where the bounds of the loops and the
conditions of the tests are affine constraints on the loop iterators
and the global parameters (i.e., numbers that are not known
but have fixed value during the execution of the computational
kernel). The vector of all global parameters is noted p, e.g.,
for the program in Figure 2(a) we have p'= ().

In the target class of programs, a particular execution of
a statement can be totally determined by the value of the
surrounding loop iterators, called the iteration vector and noted
7, e.g., for the program in Figure 2(a), the execution of statement
X for i = 1 and k = 2 corresponds to the iteration vector 7x =
(1,2) and we note that execution X (1,2). We can represent
all the executions of a statement S of the computational kernel
with its set of all possible iteration vectors Dg(p) = {is}.

For instance let us consider the computational kernel shown
in Figure 2(a). The computational kernel has two statements
X and Y. Statement X is enclosed inside two loops and any
execution of the statement X is determined by the iteration
vector (7, k). Hence, all the executions of X can be modeled
by the set of all possible iteration vectors:

DX(N):{(]i)‘ogi<N,ogk<N},

Equivalently for statement Y we have:

o)

B. Affine Scheduling Functions

Affine scheduling functions aim at specifying the relative
ordering of all iterations of all iteration domains (note that
iteration domains do not encode ordering, they are only
sets in the mathematical sense). To model such ordering,
polyhedral schedulers use multidimensional affine functions
that associate every iteration of iteration domains to a logical
date. Each dimension of the function is an affine expression
of the iteration vector dimensions and the parameters. Logical
dates are multidimensional: they encode a date with several

O§i<N,0§j<N,0§k<N},

components in a lexicographic way (like days, hours, minutes,
seconds, etc.). It was soon shown that such affine scheduling
functions are expressive enough to model arbitrary sequences of
all classical loop transformations (loop fusion, fission, reversal,
interchange, skewing, strip-mining, tiling, shifting, etc.) [14]-
[16], hence the power of such abstraction.

For instance, the following scheduling functions are a (non
unique) way to encode the order of the iterations in the example
computational kernel in Figure 2(a):

. 0 3
i ; .
Hx(k)— k , Oy
N
0 N

In this example we have one scheduling function for each
statement, both are 4-dimensional and map iterations to the
same target time space. For instance it specifies that the iteration
i =2and k =1 of statement X, noted X (2,1) is executed at
logical date 6x (2,1, N) = (0,2, 1,0), in other words at “day
0, hour 2, minute 1, second 0”. Similarly it states that the
iteration ¢ = 2,5 = 0,k = 1 of statement Y, noted Y (2,0, 1),
is executed at logical date 8y (2,0,1, N) = (1,2,0, 1), in other
words at “day 1, hour 2, minute 0, second 1”. Hence X (2,1)
is executed before Y (2,0,1). We may note all iterations of X
are executed at “day 0” while all iterations of Y are executed
at “day 17, which models the separation of the two external
loops in the computational kernel. The second dimension of X
corresponds to expression ¢ (specifying that lower values of @
are executed before higher values of 7) which corresponds to the
first loop, and the same reasoning applies to all other scheduling
dimensions. Finally we may check that the scheduling functions
model a total order for all iterations and that it corresponds to
the iteration order in the example computational kernel.

There is no limit to the number of scheduling dimensions, but
the expression for each dimension must be an affine expression
of the iteration vector dimensions and the parameters. Under
this assumption, we may rely on existing algorithms and tools
to generate a code that implements any ordering modeled in
this way [17]-[19]. Hence the general form of scheduling
functions for a statement S is 0s(is,p) = Ts(vs, P, 1), where
T is the transformation matrix for S. E.g., for our example
the scheduling function for statement X is:

. i
K3

Ox | k| =Tx J@
N 1

In the particular case of one-dimensional scheduling func-
tions, we use the notation ¢ instead of 6: the d** dimension
of the scheduling function for statement S is ¢g,4(2s,D) =
Ts.4.e(ts,p,1). E.g., for our example, dimension 1 of the
scheduling function for statement X is:

N
ox1 | k| =Tx,1,0 N
N 1

The role of the polyhedral scheduler is to compute scheduling
functions, which corresponds to finding the various scheduling

o~ .
IS S

Tx 0,3
Tx 1,3

Tx,0,2
Tx,1,2

Tx,0,1
Tx1,1

Tx 0,0 i
Tx 1,0 k
Txno Txni Txnz Txnz|\1
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coefficients of the transformation matrix for all statements
(e.g., T'x,0,0 denoting the scheduling coefficient multiplying
1 at dimension O for statement X). State-of-the-art scheduling
algorithms are able to compute the coefficients in a systematic
way. The present work aims at computing them in a controlled
way to achieve better optimizations.

IV. SCHEDULING WITH CONSTRAINT INJECTION

The automatic construction of optimizing affine scheduling
functions is typically an iterative process where scheduling
dimensions are computed one after the other, from the outer-
most to the innermost, until we get enough dimensions. At
each step, we compute the scheduling coefficients of a given
dimension for all statements. The computation itself is an
integer linear optimization problem built from a variety of
linear constraints and objective functions depending on the
desired optimization properties. This process derives from the
seminal work of Feautrier [20], [21] which has been the basis
for many subsequent advances proposing adaptations and/or
extensions to achieve specific goals [12], [22]-[25].

Differently from related work, our construction algorithm
decouples constraint construction from constraint expression to
enable non-linear optimization strategies in a linear scheduling
framework. Furthermore, while backtracking to come back to
outermost dimension construction is only a particular case in
existing frameworks (e.g., isl scheduling may come back to the
computation of the immediate previous scheduling dimension
to replace the Pluto strategy with the Feautrier strategy [12]),
our work deeply relies on backtracking to any dimension and
inter-dimension constraints in its construction mechanism.

To provide more control over our scheduling construction
algorithm, we distinguish different sets of constraints (which
restrict the space of solutions of the linear problem) and cost
functions (which provide guidance to decide about the best
solution within the space), and we assign them a priority
that will affect the algorithm backtracking process. They are
generated by specific constraint builders that are detailed in
Section IV-A. In particular, we present our specific influence
constraint tree abstraction, designed to influence the scheduling
construction process in multiple linked dimensions. Then we
present our influenced scheduling construction algorithm in
Section IV-B.

A. Constraint Builders

1) Validity Constraints: The most important property of a
scheduling function is to respect the original program semantics.
Validity constraints restrict the solution space to only such
scheduling functions. Their construction has been introduced
by Feautrier [20]. It derives from the fact that a sufficient
constraint for validity is the preservation of the original relative
ordering of any pair of statement executions that depend on
each other. E.g., if a ”source” statement iteration (for instance,
iteration X (1,2) in Figure 2(a)) produces a data which is used
by another “farget” statement iteration (for instance, iteration
Y'(1,0,2)), then the logical date of the source iteration must
be lower than that of the target iteration.

We use the dependence relation abstraction (also called
dependence between iterations) to model sets of pairs of
statements in dependence relation in the most precise way [20],
[26]. We note such set of pairs of iterations ¢ from a target
statement T that depend on iterations s from a source statement
S: 6s7(p) = {(5,1)}. The dependence relation captures
the constraints met by statement executions when they are
dependent. First, source and target statement executions must
actually exist, i.e., they have to belong to their corresponding
iteration domains. Then, they must access the same memory
cell, one of these accesses being a write. Hence they must
access the same scalar or array, and in the later case, array
indices must be equal. Finally, the source must be executed
before the target in the original code, i.e. when considering
the initial statement execution ordering of the input code, the
source execution order must be lower than that of the target.
In our application domain, all those constraints translate to
affine (in)equalities, and all dependencies can be captured by
a set of dependence relations [20]. E.g., in Figure 2(a)) the
dependence relation modeling the flow dependencies (read-
after-write) between source iterations of statement X and target
iterations of statement Y accessing the same array B is:

0< ix <N

0< kx <N

; iy 0< iy <N

dxoy(N) = <<k))((>’ Jy > 0< jy <N
ky 0< ky <N

It

kx = ky

It follows, for a one-dimensional scheduling to be valid, that
the validity constraint is:

VS, VT, ¥(5,t) € Ss7(P), ¢s(5,0) < ¢r(t,p). (1)

Intuitively it means that the source iteration has to be scheduled
before (or at the same time as) the target iteration. When we
have ¢5(5,p) < ér(t,p), we say that the dependence relation
is strongly satisfied. When we have ¢s(3,p) < or(L,p) (ie.,
the logical dates are the same for at least one (5, %)), we say that
the dependence relation is weakly satisfied. Multi-dimensional
scheduling may be necessary to strongly satisfy all dependence
relations at most at the last dimension.

The validity constraint as formulated in equation 1 is not
affine because unknowns (elements of the transformation matrix
Ts) multiply variables (elements of the vector (7s,p,1)).
However Feautrier showed how to rewrite it as a set of affine
constraints thanks to the affine form of Farkas’ lemma [20].
For space reason we do not detail the process here and point
to reader, e.g., to Bondhugula’s PhD document for detailed
examples [27]. Every dependence relation may contribute a set
of validity constraints. The validity constraint builder aims at
providing them for a set of dependence relations.

2) Proximity Cost Functions: While validity constraints are
fundamental to guarantee the scheduling correctness, other
constraints and cost functions are necessary to choose good
optimizing scheduling amongst the space of all legal solutions.
Proximity cost model has been introduced by Bondhugula
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et al. to extract coarse-grain parallelism and maximize data
locality [23]. It aims at minimizing the data reuse distance,

e., the difference between logical dates of two statement
executions accessing the same memory cell: for every (3, f} €
ds_,7, where we may also consider input (read-after-read)
dependencies, the reuse distance is the quantity qu(ﬁm —
¢s (§' ’ ﬁ)

To express the reuse distance minimization objective, we
first define a bound of the reuse distance as an affine function
of the global parameters: u.p'+ w. Then, we rely on (possibly
lexicographic) linear optimization to minimize the coefficients
(elements of w and w) of this affine function. We note the
lexicographic minimization operator minimize~. The ability
to define an affine bound is directly related to the application
domain where iterators are themselves bounded with affine
functions of the parameters. The general expression of the
proximity cost function is:

VS, VT7 v<§‘at‘> c 55’—>T(ﬁ)a ¢T(§7ﬁ> - ¢S(£ﬁ> S uﬁ—l—w
2)

Where fproximity (€, w) is a possibly multidimensional vector
of linear expressions on the elements of w and w. Let
us note u; the i™ element of w. The original work de-
scribing proximity cost function suggests fproximity (4, w) =
(ug, u1, .-, w) [23] while implementation in isl

Udim(u)— :
library proposes’ foroximity (U, w) = (Z?ino(u)ﬂ w) [13].

As our reference in this work is isl implementation, our work
uses the later form of cost function.

An extreme way to force the reuse distance to be minimal
is to force it to be zero. In this case the constraint is
simply ¢s(5,7) = ér(t,7). Lim and Lam introduced this
constraint, named space-partition constraint (a.k.a. coincidence
constraint in isl scheduling implementation [13]), to extract
synchronization-free parallelism [28]. Such constraint severely
restrict the space of legal solutions and may not be satisfied,
requiring to backtrack to a less constrained problem.

In the same way as validity constraints, the formulation of
the bound on reuse distance is not an affine expression, but it
can be rewritten using affine constraints by exploiting the affine
form of Farkas’ lemma. Hence the proximity cost function
builder aims at producing the affine constraints to express the
reuse distance bounds for a set of dependence relations and
those forming the cost function to minimize.

minimize~ fproximity (4, W)

3) Progression Constraints: A scheduling is complete when
it defines a total order on all statement executions that are
dependent on each other. In other words, all dependencies
should be strongly satisfied by the final multidimensional
scheduling: for each dependence relation, there must exist a
scheduling dimension d that strongly satisfies the dependence
relation while preceding dimensions only weakly satisfies it.

To ensure the scheduling construction is a finite process,
every scheduling dimension should contribute to the construc-
tion of the total order. Non-contributing scheduling dimensions

'We omit here isl’s decomposition of u; into positive and negative parts.

may either be trivial” ones where all iterations are scheduled
at the same date, or dimensions that are linearly dependent on
preceding dimensions because they would specify a redundant
ordering with respect to preceding dimensions. In particular,
the zero solution where all scheduling coefficients are zero is
a trivial solution to the validity constraint (1) which achieves
the ideal proximity cost (2). Avoiding the zero solution and
linearly dependent dimensions guarantees progression.

Several solutions have been suggested in previous work
to ensure progression depending on whether the scheduling
coefficients are all positive, bounded or unrestricted.

When we restrict scheduling coefficients to be positive,
we may miss scheduling solutions that would correspond to
code transformations involving loop reversal and loop skewing
with negative factors. Such transformations may be useful
in some cases, e.g., to optimize inter-nest locality [29] or
to optimize stencil computation on periodic domains [24].
However, missing them is not detrimental to performance in
general, as shown by the effectiveness of the Pluto algorithm
that makes this assumption [23]. Considering only positive
scheduling coefficients greatly simplifies progression constraint
construction. In this case, requiring the sum of the iteration
vector scheduling coefficients to be greater or equal to 1
is a sufficient condition. Hence, when constructing the dm
scheduling dimension, we should have [23]:

dim(7s)—1

Z Ts.a; > 1

To guarantee linear independence of the d® scheduling
dimension with respect to preceding dimensions, we may
compute a basis of the subspace orthogonal to those preceding
dimensions and derive constraints that the new dimension
must respect to belong to that subspace [23]. Let us consider
the already computed first dimensions of the scheduling
function 6 (7s,p) and decompose it in the following way:
0s(vs,p) = Hsls —|—Ggp—|—f5 We note H the matrix where
each row corresponds to an component of the basis orthogonal
to the row vectors of Hg. Various ways exist to construct H 1
e.g., Pluto algorithm uses Hg = I — HY (HsHL) 'Hg [23],
[30], while isl scheduling relies on the decomposition on
Hermite normal form [13], [31]. For a given vector hs, we
have é‘ hs =0 1ff either hg is linearly dependent on row
vectors of Hg or hS =0. Hence making sure one component
of H hs is not zero and hs is not the zero vector guarantees
hnear independence. Pluto’s practical solution is to consider
the subspace where all constraints are non-negative [23]:

VS, 3)

VS, |Vd Hggohs >0 | A (> Hgyohs>1) ()
d

Equations (3) and (4) provide sufficient constraints to

guarantee progression. However they both over-constrain the

problem and may disable profitable solutions, e.g., including

negative scheduling coefficients. While there exist solutions to

address negative coefficients [13], [24], in our AI/DL context

we did not observe any case where negative coefficients were
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(a) Abstract Structure Of An Influence Constraint Tree

Fig. 3.

Root
T'x,0,0 =Tv0,0
Tx 01 ="Typz
Tx02="Ty03 Typ1 =0
Tx0,3 =Tv0a
Ts, 0.4) >0 Ty, =0
\
Tx10="Tv10
Tx11=Tv1z2
Txa2="Tvas Typ1=0
Txi13=Tvia
Ty =0
\
Tys1 =1 Typ1=1
(b) Example Influence Constraint Tree

Influence Constraint Tree General Form And Example: example may influence scheduling of program in Figure 2. T's 4 . is the c" scheduling

coefficient at dimension d for statement S. Scheduling coefficients are associated to (ix,kx, N, 1) for statement X and to (iy, jy, ky, N, 1) for ¥

computed by isl, and equations (3) and (4) are adequate. Hence
the role of the progression constraint builder is to provide those
constraints thanks to (e.g.,) equations (3) and (4) according to
the already computed scheduling dimensions.

4) Influence Constraint Trees: Our work acknowledges the
fact that polyhedral scheduling is expressive enough to model
and to apply sufficiently complex loop transformations, but
that not any objective function may be modeled using an affine
representation. Instead, we provide a way to inject constraints
to the scheduling algorithm with enough flexibility to handle
many cases: influence constraint trees. The goal of influence
constraint trees is to provide multiple optimization scenarios
built by a non-linear optimizer with better vision about the
optimization goals but no, or incomplete, vision about data
dependencies and how to construct a complete scheduling
that respects the original program semantics. This approach is
transformation-centric: the non-linear optimizer will provide
the linear polyhedral scheduler with desirable properties of
the transformation to influence the construction of the final
scheduling. Then the scheduling algorithm will build correct
scheduling functions that respect the most profitable scenario
according to the non-linear optimizer. If for some reason no
optimization scenario is feasible, the scheduler output will be
no different than a usual polyhedral scheduler.

An influence constraint tree specifies inter-statement and
inter-dimension prioritized constraints on multidimensional
scheduling function coefficients using an ordered tree abstrac-
tion. Each node at the d depth may contain a set of linear
constraints on the scheduling coefficients of all statements from
the first scheduling dimension to the d. Edges from one node
at depth d to nodes at depth d 4+ 1 model different constraint
alternatives. The ordering between siblings is significant and
models the priority between alternatives. Figure 3(a) presents an
abstract structure of an influence constraint tree for a program
with n statements from S; to S,,. In each node, a matrix
C4q,p, where d corresponds to the depth and p to the priority
at that depth, stores the constraint information. Priorities are
unique at a given depth and simply correspond to the left-to-
right node ordering at a given depth of the ordered tree. Each

row vector of C' matrices corresponds to an affine inequality.
Our implementation also supports the specification of new
objective functions in each node (introducing new variables
corresponding to each additional optimization objective and
priorities to weight/order them in the possibly lexicographic
optimization process), however it is not used in the constraint
tree construction presented in Section V, hence we do not
discuss them further.

The purpose of constraints specified in the influence con-
straint tree is to be injected during the scheduling construction
process to influence it at a given depth. Depth of the tree
corresponds in general to the construction of the correspond-
ing scheduling dimension. As some constraints may be too
restrictive for the construction to succeed, the structure of the
tree proposes alternatives to be visited according to depth-first-
search traversal. Once the construction successfully reaches a
leaf, the contribution of the influence constraint tree terminates.
Section IV-B describes the scheduling construction algorithm
integrating constraint tree and appropriate backtracking mecha-
nism.

While the constraint tree holds affine constraints, it may not
be generated using an affine approach and its construction
is prepared outside the affine scheduling algorithm. E.g.,
Section V presents such non-linear optimizer to improve
mapping of AI/DL fused operators with efficient load/store
vectorization on GPUs. Intuitively, the non-linear optimizer
suggests desirable scheduling properties based on its own
decision mechanism and lets the affine scheduler build the
scheduling according to both those constraints and internal
(validity, proximity, etc.) affine constraints.

For instance, an optimizer may analyze the code in Fig-
ure 2(a) and decide that (1) because of the data reuse on
reference B, iterations accessing the same location should be
scheduled together, (2) achieving vectorization on statement Y
is important and (3) that vectorization is the most important
optimization objective with respect to the architecture target.
While the data reuse may be easily modeled with affine
constraints such as proximity, vectorization requires non-affine
decision in general (e.g., to address contiguous access on
multiple array dimensions with understanding of the array size
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and memory layout) and inter-scheduling-dimension constraints
(e.g., to guarantee a given number of innermost loops access
same or contiguous data). Furthermore, a mechanism to specify
priorities is required.

Figure 3(b) shows an example of influence constraint tree to
influence scheduling construction towards such requirements.
The first branch suggests to schedule the two statements in
the same way in the first two dimensions to influence data
reuse, and to remain independent on jx on the first two
dimensions while having exactly a coefficient 1 for jx on
the third dimension to prepare vectorization. A second branch
only keeps constraints related to vectorization to leave more
freedom to the scheduling algorithm in case the first branch
in not feasible. Ultimately the scheduler can build a solution
while respecting constraints of the first branch, leading to final
code in Figure 2(c).

Each constraint set may be augmented with constraints on
meta-information such as considering the computation of a
dimension is successful only if it is parallel, permutable, etc.
Hence the role of the influence constraint tree builder is to
build the constraint tree abstraction based on possibly non-
linear optimization according to knowledge on both the input
problem and the target architecture.

B. Influenced Scheduling Construction

Algorithm 1 presents our influenced scheduling construction.
It is a modified version of the Pluto algorithm [23] with the
integration of the support for influence constraint tree and with
more explicit contributions of the various constraint builders
to support different backtracking scenarios. Pluto algorithm
computes a scheduling iteratively on each dimension, from
the outermost to the innermost. Its goal is to build outermost
sequences of parallel and permutable dimensions while improv-
ing data locality (permutability aiming at enabling subsequent
tiling transformation). Intuitively a parallel dimension is found
if for that dimension the reuse distance is zero (relates
to the proximity cost function), a sequence of permutable
dimensions is found if they satisfy the same set of dependence
relations (relates to the validity constraints), and data locality is
optimized if the reuse distance is minimized (again relating to
the proximity cost function). The algorithm is pushed towards
termination thanks to the progression constraints.

The heart of the construction system is solving integer linear
programming problems composed with adequate constraints.
We rely on lexicographic optimization offered by the isl library
to address multiple objectives, configured in the same way as
the isl scheduler to allow comparisons with the only addition
of the influence constraints and processing [13]. Note that
isl scheduler works in a different way than Pluto’s: if it fails
to find a solution with zero reuse distance, it changes the
scheduling strategy for that dimension to Feautrier’s [20], [21]
to generate a sequential dimension strongly satisfying as many
dependencies as possible and let more chance to find zero
reuse distance solution at the next dimension [12]. We may
use this mechanism as well but it was not necessary in the

Algorithm 1: Influenced Scheduling Construction

Data: Dependence relations D, constraint tree C
Result: Transformation matrices T's V.S
1d:=0;
2 node := first branch of C' root node;
Initialize T's,0,e to 0 row-vector V.S,

“w

4 repeat

5 Backup[d] = D;

6 P := progression constraints for Ts;

7 V' := validity constraints for D;

8 R := reuse distance bounding constraints for D;
9 I := influence constraints related to node;

10 T’s,q,e := solution to constraint system PAV ARAT
optimizing proximity function;

1 if No solution was found then

12 if D = () then

13 P :=0;

14 goto line 7;

15 end

16 if 3 a right sibling to node then

17 node := right sibling to node;

18 D = Backupld];

19 goto line 9;

20 end

21 if 3 an elt of D strongly satisfied by Ts then

22 D :=elts of D not strongly satisfied by T's;

23 goto line 7;

24 end

25 if 3 a right sibling to ancestor then

26 node := closest right sibling to ancestor;

27 d := depth of node;

28 D := Backupld];

29 withdraw dimensions of Ts that are > d;

30 goto line 6;

31 end

32 Select two or more strongly connected components in
the dependence graph formed with elements of D
and order them by inserting scalar dimensions in
Ts;

33 D :=elts of D not strongly satisfied by T's;

34 else

35 \ Append the solution as a new dimension of T’s;

36 end

37 d:=d+1;

38 node := node left child if it exists, NULL otherwise;

39 until D = () and node is a leaf;

context of our experimental study, as fused AI/DL operators
offer enough parallelism, hence we do not expose it.

If the ILP solver cannot find a solution for the desired
dimension, a fallback mechanism is triggered to look for
less desirable but semantically correct solution. We have
implemented a customizable constraint de-activation process
which turns off the lowest priority constraint set and restarts the
solver, in the hope of finding a solution. The structure of the
influence constraint tree holds priorities by design. Furthermore
each contribution to the constraint system is assigned a priority.
Algorithm 1 shows the configuration used in this work: when
no solution is found, first we check whether influence is asking
for a supplementary dimension and in this case we remove the
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progression constraints (line 12), second we try to integrate
less desirable influence constraint for the same dimension (line
16), third we try to discard permutability property (line 21),
fourth we backtrack to a previous dimension (line 295), fifth we
separate strongly connected components (line 32). Ultimately
if no influence scenario is feasible, the algorithm runs without
any influence constraint.

Our design choice in this work is to rely on injected
constraints rather than objective functions even though our
implementation enables it. Objective functions are softer as
they do not restrict the solution space. However as our purpose
is to cover multidimensional scenarios (e.g., if a constraint
is not met at a given depth d, some constraints at further
depths may not be relevant anymore, as constraints related to
vectorization in Figure 3(b)) they would necessitate a more
complex fallback mechanism. Moreover, they require more
variables in the ILP problem which may challenge scalability.
Finally, in the context of AI/DL fused operators with usually
limited/simple data dependencies we could observe only few
activation of the backtracking, validating the design.

V. APPLICATION TO GPU AI/DL OPERATORS

Many AI/DL operators such as element-wise operators, have
low computational intensity but may process large tensors,
hence memory bandwidth is often a limiting factor in that
context. Load/store vectorization is a key optimization on GPU
to minimize the number of memory transactions and to increase
the bandwidth utilization. It can be achieved through two main
mechanisms on CUDA GPU architectures: memory coalescing
and the usage of vector types. On one hand, memory coalescing
combines simultaneous accesses to adjacent memory locations
by adjacent threads to reduce the number of memory transaction.
Indeed, threads are processed per groups of 32 called warps.
A warp is the basic unit of execution in a GPU, hence the
presence of a warp scheduler instead of what could seemingly
be a thread scheduler in a streaming multiprocessor. Proper
grouping and alignment of data directly impacts the number
of transactions required to transfer data at the warp level. On
the other hand, as all registers on a GPU are four-vectors, it is
more advantageous to use vector types to load and store data
through blocks of 64 or 128 bits. Both mechanisms are crucial
to reduce latency and improve bandwidth utilization.

To this end, we automatically build influence constraint trees
discussed in Section IV with different goals: (i) exhibit an
innermost loop dimension purposefully prepared to be rewritten
using explicit vector types by a backend pass, (ii) arrange
enough following dimensions to maximize coalescing and (iii)
enable freedom of scheduling choices on remaining dimensions.
Hence we are looking for the shortest ordered list of innermost
dimensions that minimizes the number of memory transactions.
We call such a list an influenced dimension scenario. As some
scenarios may not be feasible, we may consider several of
them. A set of scenarios will be translated to an influence
constraint tree to be processed by the scheduler.

A dimension suitable for load/store vectorization with
explicit vector types must meet several conditions: (a) it should

be the innermost dimension of the loop nest; (b) its size must
be 2 or 4 (3 is not supported yet and is left for future work) and
(c) some (as many as possible) memory accesses are aligned
and either constant or contiguous. Such conditions are softer
than those to vectorize computation as we only target load/store
operations: we may mix vector types with scalar types.

Algorihtm 2 depicts how to search for the set of influenced
dimension scenarios I using the set of dimensions to schedule
D for every statement in S. It starts with an empty set .
Influenced dimension scenarios I are progressively built from
innermost to outermost (Lines 7 and 11) for each statement s €
S. At Line 8, best() returns the dimension d,d € D Ad ¢ I
with the highest score according to the cost() function which
is detailed below. The selected dimension is added as the head
of the list of dimensions I, and the algorithm proceeds with
the next outer dimension if necessary. Once enough scheduling
dimensions have been added, I, is added to the set I. The set
I will then be used to build the constraint tree.

Algorithm 2: Build Influenced Dimension Scenarios

Data: set of statements S, set of dimensions to schedule D,
weight vector W, thread limit L
Result: set of influenced dimension scenarios I
1 I:=0;
2 forall s in S do

3 A := accesses of statement s ;
4 =] ];

5 depth := |D| ;

6 Ls:=1L;

7 while |I;| < 3A || < |D| do
8 b = best(W,D, A, L, I,,depth) ;
9 I, =1[b1];

10 L := L/size(b) ;

11 depth := depth — 1 ;

12 end

13 I =TUl;g

14 end

The cost() function to be used in best() is:

w5FL
N

w3

M

cost(W,D, A, L,d) = wi|Vi| + wa|V:| + + w4 |C| +

where:

e wi,...,w, are coefficients from the weight vector W,

e NN is the number of iterations for dimension d,

o Vi, C A (respectively V. C A) is 0 if d < |D| or the
subset of vectorizable store accesses (respectively load
accesses) otherwise (favors store or load vectorization),

e M is the minimum stride on all accesses in A by
dimension d (favors short memory jumps),

o C C A is the subset of accesses with the minimum stride
M at dimension d (favors as many references as possible
with short memory jumps),

e Fis1lif N <L, 0 otherwise (last cost term favors high
contribution to the number of threads not exceeding L).

The V.. and V,, subsets are used to favor load/store vector-
ization at the innermost dimension. In cases where only partial
load/store vectorization is amenable, we favor coalescing by
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minimizing the strides of accesses on remaining dimensions
to schedule, while controlling the number of threads.

Through empirical studies, we observed better results when
prioritizing vector types on write accesses over vector types on
read accesses. The best weights configuration in our context is
achieved with w; = 5, wy = 3 and other weight set to 1. wl
and w2 have higher values because load/store vectorization
is the priority. To avoid big jumps in memory, w3 = 1 is
sufficient as w3/M quickly decreases as M grows. If multiple
candidate dimensions enable strides of size 1, we favor the
one with more accesses with stride 1. w4 = 1 is enough to
order these dimensions. The same applies to w5 = 1 to order
dimensions depending on thread use.

The next step is to build the constraints tree from the set of
scenarios. Translating a given scenario to affine constraints for
integration to the influence constraint tree is a straightforward
process. Innermost scheduling coefficients corresponding to
loop iterators should be equal to their coefficients in the last
access function, while other coefficients are free (in our context,
access functions are extremely simple, being either a constant
or an affine form where only one loop iterator is present with
coefficient 1, which further simplifies the process). Following
scheduling dimensions should make sure scheduling coefficients
corresponding to the same previously fixed coefficients are zero,
while other coefficients are free, etc. Exploring all possible
scenarios may lead to a combinatorial explosion. Our strategy
is to select only few of the most profitable solutions (set to 8
in our experiments). Then for each scenario, we build higher
priority variants influencing towards loop fusion (injecting
constraints equating scheduling coefficients on first dimensions
over multiple statements) and lower priority variants integrating
less constraints (leaving free some scheduling functions for
some statements). Finally the tree is built by considering
common constraints to different scenarios, and using the cost
function to order siblings.

In addition to constraint construction and constraint injection,
our modified AKG version required two modifications.First,
the mapping pass which decides about dimensions to be
mapped to CUDA blocks and threads has been modified to
avoid considering dimensions marked as vectorized. Second, a
backend vectorization pass was added to actually translate the
load/store vector loop to a version using explicit vector types.

VI. EXPERIMENTAL EVALUATION

Our approach was implemented inside the tensor compiler
AKG [6] and a modified version of the isl scheduler [32].
Experiments were conducted using MindSpore [7] rl.1, We
compare our method to AKG using unmodified isl-0.22

scheduling, and the manual scheduling approach of TVM [33].

Tile sizes are selected by respective tool auto-tuners.

The experimental platform consists of an Intel Xeon CPU
E5-2680 v4 (14 cores, 28 threads, clocked @ 2.40GHz,
756GB RAM), and a Nvidia Tesla V100 for PCle (clocked
@ 1245MHz, 16GB RAM), running Linux 4.15.0 on Ubuntu
18.04.5 LTS with CUDA 10.1 drivers. Linux FIFO scheduling
is enabled and priority is set to 85. We profiled fused operators

using nvprof. Experiments were executed 10 times and we
use the corresponding mean values. Standard deviation for all
reported values is below 5% of the corresponding mean values.

Table I lists the target end-to-end workloads we used to
evaluate our method. The target end-to-end workload are from
the ModelZoo of MindSpore. We limited ourselves to 5 epochs
to avoid long run times.

TABLE I
TARGET END-TO-END WORKLOADS

Network Type  Dataset
BERT [34] nlp zhwiki
LSTM [35] nlp ACLIMDB [35], GloVe [36]

MobileNetv2 [37] cv
ResNet-50 [39] cv
ResNet-101 [39] cv
ResNeXt50 [41] cv
VGGI16 [42] cv

ImageNet [38]
CIFAR-10 [40]
ImageNet [38]
ImageNet [38]
CIFAR-10 [40]

We compared four versions of the target end-to-end work-
loads: fused operators scheduled with standard isl scheduling
(isl), fused operators optimized with TVM (tvm), influenced
fused operators without enabling explicit load/store vectoriza-
tion (novec) and influenced fused operators with vectorization
(infl). We focus on total execution time of fused operators.

Table II reports fused operators statistics. Fused operator
counts are shown in the corresponding columns: total is the
total number of fused operators. vec refers to influenced fused
operators eligible for load-store vectorization and infl is the total
number of influenced fused operators. The seven next columns
correspond to statistics when considering all operators while
the remaining columns focus only on fused operators where
our influence approach actually modified the scheduling with
respect to isl’s solution. Speedups are execution time speedups
over fused operators scheduled with standard isl scheduling.

Our method does not impact all fused operators: it may
happen that even without additional constraints, isl’s solution
is the same as ours, by chance or because of a limited solution
space. From about half (on BERT) to about 90% (NASNet) of
fused operators are influenced. Most of the influenced operators
are eligible for explicit load/store vectorization. Our results
show explicit load/store vectorization enabled by the influenced
scheduling is consistently beneficial.

We can observe that our approach outperforms the reference
on all networks with speedups up to 7.70x on overall fused
operators or even 12.53x if only influenced operators are
considered. Detailed analysis of fused operators show that
networks with the highest speedups (e.g., resnet50, resnet101)
are those involving many transpose operations. Those cases
are challenging for the original isl scheduling that lacks cost
models to take good scheduling decisions. They also correspond
to cases where memory coalescing and explicit use of vector
types mix well together. All in all, our approach shows positive
effects and enables from modest to significant speedups on
fused operators, contributing to exceed the performance of
TVM’s manual hand-tuned scheduling approach.
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TABLE II
FUSED OPERATORS EXECUTION TIMES

All Fused Operators

Influenced Fused Operators

Operator Count Execution Time (ms) Speedup Execution Time (ms) Speedup
Network total vec infl sl tvm novec infl tvm novec infl isl tvim novec infl tvim novec infl
BERT 109 53 53 33.63 183.83 35.58 32.05 0.18 0.95 1.05 1241 12.31 14.37 10.81 1.01 0.86 1.15
LSTM 4 3 3 0.11  0.12 0.11 0.11 0.94 1.00 1.05 0.11 0.12 0.11 0.11 0.94 1.00 1.05
MobileNetv2 18 16 16 254 257 257 250 0.99 0.99 1.02 240 2.43 2.43 2.35 099  0.99 1.02
ResNet50 17 10 12 168 0.55 0.55 0.49 3.07 3.05 3.43 143 0.28 0.30 0.24 5.14 4.72 5.93
ResNet101 22 14 16 5.67 0.82 0.84 0.74 6.94 6.75 7.70 5.36 047  0.53 0.43 11.31 10.07 12.53
ResNeXt50 33 21 22 1.78 1.57 1.44 1.30 1.13 1.23 1.36 1.31 1.10 0.98 0.84 1.19 1.35 1.56
VGGI16 14 9 10 3.22 296 2.55 2.27  1.09 1.26 1.42 3.08 2.81 2.41 2.12 1.09 1.28 1.45

VII. RELATED WORK

Automatic parallelization in the polyhedral model has been
introduced by the seminal work of Feautrier on solving the
affine scheduling problem to extract fine-grain parallelism [20],
[21]. His integration of data dependencies and use of Farkas’
lemma to linearize the problem remain strong foundations to
subsequent work in the field. Lim and Lam built on his solution
to extract coarse grain parallelism with outermost permutable
loops [22]. Bondhugula et al. introduced the Pluto algorithm
and its subsequent extension Pluto+, including an efficient linear
cost function and an iterative construction to produce parallel,
tilable codes that optimize data locality [23], [24]. Pouchet
et al. proposed a different construction approach building
on Vasilache’s convex modeling of the semantically correct
solution space [43], [44], allowing to build multidimensional
scheduling in one step rather than using an iterative approach.
Verdoolaege et al. proposed to mix Feautrier’s approach with
Pluto by using the former as a fallback to the latter when it
fails at achieving perfect reuse distance optimization [12]. A
number of efforts proposed to improve polyhedral scheduling by
considering different cost models. Kong and Pouchet proposed
a comprehensive set of linear cost functions to address various
goals [45]. Several works addresses data access patterns,
Vasilache et al.’s contiguity constraints for vectorization [46],
Kong et al. to maximize stride-0/1 references [47], Zinenko et
al. to exploit spatial locality [25], or Verdoolaege and Isoard
consecutivity constraint [48]. With the exception to Zinenko
et al.’s work which allows a non-linear decision on the cost
function ordering [25], previous works make the best efforts
and trade-offs to translate the objective function to affine
constraints. Differently, we acknowledge non-linear decisions
may provide useful guidance and means to dissociate non-
affine decisions from affine result of the decision communicated
though influence constraint trees.

Not integrated to the affine scheduling problem, other solu-
tions addressing vectorization suggest, e.g., to drive directive-
based loop transformations with a cost model [49] or to apply
post-scheduling optimization [50]. Differently, our solution
incorporates non-linear optimization criteria in a structured
manner within polyhedral scheduling’s global approach.

A number of frameworks have been developed to generate
optimized codes for tensor computation on GPUs. Solutions
such as TVM [33] or Tiramisu [51] decouple tensor com-

putation from its scheduling while others integrate automatic
scheduling approaches. Polyhedral scheduling integrated within
the isl library [13], [32] and developed for the PPCG CUDA
compiler [12] rely on a modified version of the Pluto algorithm
and has been the foundation for several tensor compilers.
Tensor Comprehensions [2] was arguably the first of them,
building on Halide [52] and a modified version of PPCG
to generate CUDA codes for tensor graphs. Both Diesel [3]
and AKG [6] also build on isl scheduling used but provide
specialized subsequent optimization passes to generate efficient
codes. R-Stream [53] embeds a modified version of the Pluto
algorithm with modification to benefit from tensor computation
application domain properties. All those works may directly
benefit from our approach and integrate additional objectives
driving the scheduling construction rather than, e.g., developing
specialized passes to solve issues. PolyAST+GPU [54] has its
own particular polyhedral scheduling strategy to generate two
levels of parallelism to address GPU architecture and uses a
non-linear cost-model to reorder loops for memory coalescing.
We believe the PolyAST+GPU strategy could be reproduced
with constraint injection mechanism with the benefit of using a
more versatile scheduling approach. Finally, cited related work
address load/store vectorization using memory coalescing only
while our approach also profitably exploit explicit vector types.

VIII. CONCLUSIONS AND FUTURE WORK

We presented an approach to better schedule instruction
executions of AI/DL operators on GPU. To increase control over
automatic polyhedral scheduling, we introduced the influence
constraint tree abstraction that aims at providing multiple
optimization scenarios decided by a non-linear optimizer freed
of polyhedral model limitations. We modified a polyhedral
scheduling algorithm to generate semantically correct solutions
with the most profitable scenario. We built on this mechanism to
improve scheduling quality in a production AI/DL framework
when targeting GPU, by introducing load/store vectorization
constraints exploiting both memory coalescing and vector
types. Experimental results demonstrate the effectiveness of the
approach, enabling performance speedups from few percents
to significant improvements on all fused operators of typical
DNNs. Ongoing work aims at leveraging constraint injection
to optimize codes for NPU accelerators and to exploit cost
function injection to further improve scheduling quality.
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