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Abstract

While compilers offer a fair trade-off between productiv-
ity and executable performance in single-threaded execu-
tion, their optimizations remain fragile when addressing
compute-intensive code for parallel architectures with deep
memory hierarchies. Moreover, these optimizations operate
as black boxes, impenetrable for the user, leaving them with
no alternative to time-consuming and error-prone manual
optimization in cases where an imprecise cost model or a
weak analysis resulted in a bad optimization decision. To
address this issue, we propose a technique allowing to au-
tomatically translate an arbitrary polyhedral optimization,
used internally by loop-level optimization frameworks of
several modern compilers, into a sequence of comprehensi-
ble syntactic transformations as long as this optimization fo-
cuses on scheduling loop iterations. This approach opens the
black box of the polyhedral frameworks, enabling users to
examine, refine, replay and even design complex optimiza-
tions semi-automatically in partnership with the compiler.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors — Compilers; Optimization

Keywords Interactive Compilation; Loop Transformations

1. Introduction

Compiler/programmer interaction is a key tool to sustain
high productivity and performance while developing appli-
cations for modern architectures. On one hand, compiler
techniques may help programmers at rapidly writing correct
codes through, e.g., automatic completion or as-you-write
error detection. On the other hand, programmers may help
compilers at generating efficient codes by providing addi-
tional information to complete their analyses through, e.g.,
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options, specific keywords (such as restrict) or language
extensions (such as OpenMP) supported by most compilers.

Most compiler optimizations are processed in an auto-
matic way and/or are driven by heuristics offering little con-
trol to the developer. As a result, any lack of precision and
analysis power may result in dramatic performance losses.
Moreover, the compiler may diverge from user’s intention
and jeopardize manual optimizations. While existing inter-
active techniques focus on helping the programmer to write a
code the compiler can handle [10, 12, 15], we present a novel
approach to compiler feedback and control in the context of
polyhedral frameworks, which power production compilers
such as GCC [17], LLVM [11] or IBM XL [4].

Polyhedral frameworks operate on a mathematical repre-
sentation of loop-based programs: each execution of a state-
ment nested in loops is scheduled according to a system
of (in)equalities. Once the code is raised to the polyhedral
model, it may be restructured by modifying this system with-
out any syntactic meaning until the final code generation.
Thanks to its algebraic nature, the polyhedral model enables
precise and deep analysis of loop-based programs that re-
sulted in major advances in loop-level optimization over the
last two decades [3, 7, 18]. However, polyhedral optimiza-
tion remains a black box inside the compiler with no connec-
tion to the observable code transformations. In our work, we
enable automatic translation from the state-of-the-art poly-
hedral representation to understandable syntactic transfor-
mation primitives and back.

Our paper brings two main contributions. First, we re-
visit the classical syntactic loop transformations (e.g., loop
fusion or tiling) in the light of a new polyhedral formalism
by expressing them as modifications of the scheduling rela-
tion only, ensuring their composability. Our transformation
set is the first to allow representing arbitrary polyhedral op-
timizations. Second, we present an algorithm that translates
scheduling relations to a sequence of syntactic loop transfor-
mations. These two contributions together virtually open the
polyhedral framework’s black box by making syntactic loop
transformation the language for developer-compiler commu-
nication. The developer obtains precise feedback and full
control over the polyhedral engine enabling him to create,
analyze and refine loop-level optimizations.



2. Motivating Example

Polyhedral compilation frameworks provide state-of-the-art
yet not flawless automatic optimization and parallelization
of loop-based program parts. Our work aims at enabling
an efficient interaction loop with such optimizers through
sequences of comprehensible syntactic transformations. To
illustrate our approach, we consider the main computational
kernel of a conventional beamforming radar application
shown in Fig. 1 and we parallelize it with the Pluto tool' [3].
The transformed code (Fig. 2) indeed contains parallel loops
annotated with OpenMP directives. But surprisingly, on the
target architecture’, the original code takes 2.37 seconds
while the transformed code takes 3.32 seconds, a slowdown.

#pragma omp parallel for
for (i =0; i <= N - 1; i++) {
a_r[i] = 0; a_i[i] = 0;
for (j =0; j <= M- 1; j++) {
a_r[i] += s_r[jl*m_r[i]1[j] - s_il[jl*m_i[il[j1;
a_ili] += s_il[jl*m_r[i][j] + s_r[jl*m_il[il[(jl; } }
t = 0; t_val = DBL_MIN;
for (1 = 0; 1 <= N - 1; i++) {
val = a_r[il*a_r[i] + a_il[il*a_i[i];
t = (val >= t_val)? (t_val = val, i) : t; }

// LO
= (08 // SO
t_val = DBL_MIN; // S1
for (i = 0; i < N; i++) { // L1

a_i[i] = 0; // S2
a_r[i] = 0; // 83
for (j = 0; j < M; j++) { // L2

a_r[i] += s_r[jl*m_r[i]1[j] - s_i[jl*m_i[i]1[jl; // s4
a_il[i]l += s_i[jl*m_r[i]1[j] + s_r[jl*m_i[il[jl1;}// S5
val = a_r[il*a_r[i] + a_il[il*a_i[il; // S6
t = (val >= t_val)? (t_val = val, i) : t; } // ST

Fig. 1: Conventional Beamforming Original Kernel

#pragma omp parallel for
for (i = 0; i <= N - 1; i++)
a_r[i] = 0;
#pragma omp parallel for
for (i = 0; i <= N - 1; i++)
for (j = 0; j <= M-1; j++)
a_r[i] += s_r[jl*m_r[i]1[j] - s_il[jl*m_i[i][j];
#pragma omp parallel for
for (i = 0; i <= N - 1; i++)
a_i[i] = 0;
#pragma omp parallel for
for (i = 0; i <= N - 1; i++)
for (j =0; j <=M - 1; j++)
a_i[i] += s_i[jl*m_r[i]1[j] + s_r[jl*m_i[i][j];
t = 0; t_val = DBL_MIN;
for (i = 0; i <= N - 1; i++) {
val = a_r[il*a_r[i] + a_il[il*a_i[i];
t = (val >= t_val)? (t_val = val, i) : t; }

Fig. 2: Pluto Automatically Generated Code

At this point, a user may either stick with the original
sequential code or, if he is an expert, rework Pluto’s output or
use it as a feedback to manually optimize the original code.

We propose a new alternative to time-consuming and
error-prone manual code modification: the polyhedral frame-
work reports the sequence of loop transformations corre-
sponding to the optimization for the user to review and to

'Pluto 0.11.0 http: //pluto-compiler.sf.net

2 Experimental setup: 6-core Intel Xeon X5650 2.67GHz architecture, GNU
GCC 4.8.2 compiler with options -03 -fopenmp, and program parameters
N and M set to 1000.

Fig. 3: Manually Refined Generated Code

modify. The sequence corresponding to Pluto’s optimiza-
tion is shown in Fig. 4. Its detailed semantics is presented
in Section 5. The user may notice that Pluto has been overly
aggressive at loop distribution, reducing data locality and
adding thread synchronization costs. Hence, he may sim-
ply modify the sequence to keep only the distribution that
extracts the non-parallel part of the L1 loop. Automatic se-
mantics preservation check is then performed, and the final
automatically generated code (Fig. 3) requires only 0.81 sec-
ond to execute on the target architecture.

Our approach is supported by (1) a complete mapping
between classical and polyhedral transformations and (2) an
algorithm to express a polyhedral optimization as a sequence
of such transformations. It enables programmer-compiler
partnership in code optimization that benefits from polyhe-
dral representation and avoids manual code modification.

distribute((2), 3) reorder((), (4,5,2,0,1,3,6))
distribute((2), 2) parallelize((0))
distribute((2), 1) parallelize((1))
distribute((4, 0), 1) | parallelize((2))
distribute((4), 1) parallelize((3))

Fig. 4: Transformations Generated for Pluto Optimized Code

3. Polyhedral Compilation

Modern compilers perform multiple optimization passes to
ultimately generate an efficient code. Loop nest optimization
passes, which typically include loop vectorization and paral-
lelization, often rely on the polyhedral model [4, 11, 17]. Its
key aspect is to raise some program parts to an algebraic
representation that enables both precise data dependence
analysis and complex program restructuring. This model is
applicable to parts of the program in which loop bounds,
branch conditions and array subscripts are affine expressions
of outer loop iteration variables and constant parameters.
Despite these limitations, the model allows to capture ma-
jor parts of compute-intensive loops used in scientific code
eager for performance, for example the code in Fig. 1. More-
over, the model was extended to cover non-static control
loops, up to full functions [2]. In this paper, we use the
state-of-the-art union of relations abstraction for the poly-
hedral model [21]. It defines all components of the represen-
tation as unions of multidimensional relations that, contrary
to the conventional scheduling functions, capture non-unit




loop strides, disjunctive conditions and over-approximated
data dependences.

Because loop boundaries and conditions that surround a
statement are linear expressions, the iteration domain of that
statement can be expressed as a system of linear inequali-
ties. It defines a polyhedron in the multidimensional space.
Integer points inside this iteration domain polyhedron repre-
sent a particular execution of the statement, or statement in-
stance, in the surrounding loop nest. Their coordinates corre-
spond to the loop iteration variables. For example the state-
ment S4 on the Fig. 1 is enclosed by two loops, first on i
from 0 to N, second on j from O to M. Its iteration domain is
thus two-dimensional on (i, j) and it is defined as shown in
Fig. 5. Although the iteration domain is a set, it is treated as
a degenerate relation without input dimensions for the sake
of consistency with other components of the model.

par = {0 ()] 02550

Fig. 5: Iteration Domain

A disjunction in the control structure condition results
in an iteration domain described by a union of relations
rather than by a single one. Each component of the union
corresponds to a term of disjunction.

The order in which statement instances are executed is
defined by the scheduling relation. It maps each point of the
iteration domain (input dimensions) to a multidimensional
logical date (output dimensions). In the target code, state-
ment instances are executed according to the lexicographi-
cal order of the logical date dimensions. Output dimensions
may carry semantic information useful for further steps, for
example being parallel, vectorizable or unrolled. We also use
a specific structure of output dimensions (Fig. 6): even out-
put dimensions, denoted «, represent the resulting loop iter-
ation variables, and odd output dimensions, denoted (3, en-
code statement ordering and loop nesting (see Section 4.2).

If different instances of the same statement are to be
executed in different order, the scheduling is described by
a union of relations. Each relation in this union may have
supplementary inequalities that limit its applicability to a
particular subset of instances. In the following section, we
discuss the constraints on the scheduling relations that allow
them to remain applicable to any compatible domain.

Bo Bo =2
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Fig. 6: Scheduling Relation

In the polyhedral model, a change in the scheduling re-
lation corresponds to a program transformation. For exam-
ple, to reverse the inner loop enclosing the statement S4,

we can simply change the sign of ¢ in the scheduling rela-
tion in Fig. 6. In this case, the iterations with higher values
of i are scheduled before those with lower values, a loop
reversal. By using unions of relations, we are able to en-
code in the scheduling the loop transformations that previ-
ously required iteration domain modifications, such as strip-
mining and index-set splitting. Polyhedral optimizer’s work
in this case is to construct scheduling relations that reach
the optimization objectives, e.g., parallelization or improved
memory access locality, while ensuring that the transforma-
tion preserves the original program semantics. It functions
by solving systems of inequalities that model every aspect
of the program and of the optimization objective functions
since there is no syntactic equivalent of the statement in-
stance [3, 7, 18]. It rarely, if ever, operates using classical
loop transformations.

Eventually, a code generation step builds a code that
implements the new scheduling [1]. Only at this step the
syntactic nature of the transformation may appear. However
the model neither explains how the code was obtained, nor
does give any control in case the heuristic failed or an expert
user wants to suggest a refinement.

4. Analysis of Scheduling Relation

In order to establish a correspondence between scheduling
relations and syntactic transformations, we discuss the limi-
tations allowing to keep these schedulings applicable to any
iteration domain within the polyhedral framework.

4.1 Scheduling Equivalence

Since the schedule represents the order of execution, the
logical execution dates may take arbitrary numerical values
as long as the order is preserved. We consider equivalent
scheduling relations that yield the schedules with identi-
cal execution order, and we consider equal relations that
yield the schedules with identical dates. Equal schedul-
ing relations may include different (in)equalities, for ex-
ample ((Z,j) — (Oél,ag) tapta =1+ jAas :j) is
equal to ((4,7) — (a1, a2) : @1 =i A ag = j) even though
the equations are different. One may suggest a “normalized
form” based on, e.g., Gaussian elimination, in which equal
relations are defined by identical (in)equalities.

A change to the scheduling relation union that results in
an equivalent schedule is called equivalent transformation,
while the change resulting in an equal schedule is invariant
transformation. Any algorithm operating within the polyhe-
dral representation is free to perform invariant transforma-
tions for its needs. Equivalent transformations are allowed as
long as no subsequent step operates on the numerical value
of the date, for example the code generation algorithm may
omit empty loop iterations by introducing a loop stride as
in [1], but is not obliged to do so.



If scheduling relations are equal for all statements, so is
the program scheduling, but it is not guaranteed for equiva-
lent relations due to the relative nature of the definition.

4.2 Capturing and Recovering Lexical Order

We use a specific form of scheduling relations to capture the
lexical order of statements, first suggested by Feautrier [8]
and common to many polyhedral frameworks [5, 9]. Each
odd output dimension, also called [-dimension, in the
scheduling relation is a constant representing the order of
statements in the loop of corresponding depth.

A B-vector of a scheduling relation is a vector composed
from constant values of the -dimensions in this relation,
(2,2,0) for the Fig. 6. S-vectors are unique across all re-
lations in the scheduling and must not be prefixes of other
(B-vectors. On the contrary, one statement has as much -
vectors as it has relations in its scheduling union.

Like all output dimensions, S-dimensions define the or-
der of execution rather than exact statement positions. For
the sake of simplicity, we assume all 3-vectors to be in the
normal form with minimal non-negative values on each di-
mension that preserve the order. For example, the normal
form of the S-vector set {(0,1),(2,1)} is {(0,0),(1,0)}.
The B-normalization is an equivalent transformation that
does not affect other dimensions.

When the polyhedral analysis is applied to the syntacti-
cal representation, such as the source code or a syntax tree,
we use a polyhedral raising tool, such as Clan 3, that gener-
ates normalized (3-vectors for each scheduling relation. Al-
though polyhedral optimizers do not necessarily respect the
[B-dimensions structure, we may recover them thanks to their
semantics by recreating the loop structure with the code gen-
eration algorithm, e. g., CLooG [1], and then assign the -
vectors respecting the lexical order [8].

4.3 Ensuring Scheduling Validity

All transformation-related information is embedded into the
scheduling relation, leaving the iteration domain immutable
and allowing us to (1) reapply the precomputed transforma-
tion to domains of different shape and size, (2) delay seman-
tics preservation checks until after the transformation. To en-
sure these properties, the scheduling relation must guaran-
tee the existence of a unique integer execution date for each
point in any domain by respecting the following constraints.

Equal input dimensionality — all relations in the schedul-
ing union define the logical execution dates for the same iter-
ation domain. We thus require all relations to have the num-
ber of input dimensions d equal to the dimensionality of the
iteration domain. We refer to such relations as d-compatible.

Schedule existence — any d-compatible scheduling rela-
tion union must define a date for any d-dimensional integer
point. An individual relation may include inequalities that

3http://icps.u-strasbg.fr/ bastoul/development/clan/
index.html

restrict its applicability to the part of the iteration domain as
long as the whole union maps the entire integer space Z¢ to
the corresponding logical dates.

Logical date integrality — all dates defined by the
scheduling relation must be integer. Considered separately,
the equations in the scheduling relation definition form a lin-
ear system with two logically distinct groups of unknowns
that correspond to input or output dimensions. Solving this
system for either of the groups results in the input or output
form respectively where one dimension group is expressed
as linear functions of another group. Linear functions with
integer coefficients in the definition of the output dimensions
guarantee date integrality for any domain.

If the scheduling relation has more output dimensions
than input dimensions, some of the output dimensions do not
have an explicit definition in terms of input dimensions. We
allow such implicitly defined dimensions as long as they are
bounded by inequalities, in which case the logical date for
a statement instance comprises all the integer points within
these bounds.

Logical date uniqueness — each instance in the d-
dimensional iteration domain must be executed exactly once
and its logical execution date should remain unique through-
out the entire schedule of the program. Thanks to unique -
vectors in each relation, it is sufficient to ensure date unique-
ness within an individual relation.

We refer to the scheduling relation unions that respect all
these conditions as globally valid in the sense they can be
used to schedule any compatible domain. When a relation
violates one of these constraints, it may still remain con-
ditionally valid if it respects them for domains that satisfy
particular conditions. Finally, a relation is invalid if there is
no domain for which it respects all the conditions. To avoid
analyzing the iteration domain, scheduling relations should
remain globally valid throughout the optimization process.

For example a one-dimensional scheduling that assigns
execution dates only for the first ten iterations is condi-
tionally valid since it fails to schedule all iterations of a
larger domain (existence constraint). A relation with implic-
itly defined dimension bounded by two different explicitly
defined dimensions is invalid since it assigns multiple dates
for the same point (uniqueness constraint). Even though
some polyhedral frameworks allow fractional explicitly de-
fined dimensions, we consider them invalid (integrality con-
straint). We suggest they do not improve expressive power
of the scheduling as an equivalent transformation that mul-
tiplies all fractional dates by a constant factor makes them
integer.

Parallelism may be expressed by adding “parallel” se-
mantics to a dimension, meaning that the actual dates on
this dimension may be ignored. Assigning identical dates as
a means to express parallelism, in addition to being invalid,
does not express all forms of parallelism.



5. Syntactic Transformations to Relations

The polyhedral scheduling relation abstraction is too com-
plex to be used directly while classical loop transformation
directives like tile or fuse or skew offer decent understand-
ability. Combining them, programmers would benefit both
from the exact instance-wise data dependence analysis and
the automatic code generation of polyhedral frameworks and
from the concise expressivity of directives.

We present a new revisiting of classical loop transforma-
tions in the polyhedral model, called after its implementa-
tion Clay. Contrary to existing approaches that also expose
high-level transformation directives on top of a polyhedral
engine such as UTF [13], URUK [9] or CHIiLL [5], it is
based on the more general scheduling relation abstraction
rather than scheduling functions. It also relaxes unimodu-
larity and invertibility limitations present in the previous
work as long as relations respect the conditions listed in Sec-
tion 4.3. Clay embeds the complete scheduling information
in a single relation union per statement, even for the transfor-
mations previously requiring iteration domain modifications
(STRIPMINE and INDEXSETSPLIT), thus removing the pre-
viously necessary intermediate data dependence graph up-
dates and checks.

Clay relies on the loop-capturing scheduling structure
with 3-dimensions described in Section 4.2. Even schedul-
ing dimensions, denoted «, define the execution order within
the loop. Hence, the general form of the scheduling output

dimension vectoris & = (Bg, 1, 1, @2« - -, Bu1, W, Bn) L.

The original scheduling of a program can be constructed as
follows. For a statement enclosed in an n-dimensional loop,
we introduce (2n + 1) logical time dimensions. The 3; di-
mension denotes the lexical position of the statement at the
i™ nesting level, while the «; is equal to the i dimension of
the iteration space.

To express classical loop transformations using the re-
lation formalism and our scheduling relation structure, we
use notations and operators shown in Figure 7. They are
used to represent specific subsets of scheduling union com-
ponents and relation dimensions. The notion of S-prefix is
paramount. It is used to select specific subsets of relations
to be affected by the transformation. From a syntactic point
of view, a S-prefix addresses a specific loop (or, equivalently,
the set of statements enclosed in that loop). The empty vector
is a particular S-prefix used to select all scheduling relations,
or, from a syntactic point of view, the root of the program.
In order to apply a transformation to an individual statement
inside the loop, this statement should be extracted into a loop
with distinct S-prefix and fused back with its original after
transformation. Although one may suggest transformation
primitives that operate on individual statements, they con-
tradict to the idea of using loop transformations to express
polyhedral schedules.

0 scheduling relation 6(p) = |, T;

T scheduling union component

P vector of program parameters

Ur vector of input dimensions of 7~

or vector of output dimensions of 7

ar a-vector of T, i.e., the vector of even dimen-
sions of a7

Br [-vector of T, i.e., the vector of odd dimensions
of 57—

) B-prefix, if empty it corresponds to the root
level

O symbolic i" element of any a-vector

P set of all union components of all scheduling
relations

Tz subset of 7, restricted to union components

such that p'is a B-prefix, i. e. B’T,l.__dimﬁ =p
subset of 7, such that §'1__4im 71 is the B-prefix
and 37 dim 5 = Paim 57 + 1; denotes all schedul-
ing relations inside the loop that is immediately
following the one defined by p

Ts> subset of T, restricted to union components
such that /'y gimp—1 is the [-prefix and
B dim5 > Pdim 53 denotes all scheduling rela-
tions for statements and loops following the one
defined by p within the same enclosing loop
substitution operator: replaces all occurrences
of a with b throughout scheduling relations

a—b

Fig. 7: Notations and Operators used in the Clay Formalism

5.1 Revisiting Classical Transformations in Clay

We revisit classical loop transformations [22] using the
union of relations abstraction and notations in Fig 7. Each
transformation is presented as a primitive, arguments of
which can be integers, integer vectors or affine constraints
satisfying the preconditions in order to enforce global va-
lidity of the scheduling after the transformation if the initial
scheduling respected it (Fig. 8).

REORDER(p, ¥) reorganizes statements and loops inside
the loop defined by 5 according to the vector #. The i ele-
ment of ¥ corresponds to the new position of i-th statement
(loop), sorted lexically.

FUSENEXT(p) fuses the loop corresponding to p’ with its
direct successor. Keeps the original order of nested loops
and statements.

DISTRIBUTE(p, n) distributes statements in the loop be-
tween two succeeding loops, the first containing first n state-
ment of the original loop, i. e. those with B_'T}dim sl <n

SHIFT(p, i, amount) moves all instances of statements
with S-prefix p'in the iteration space by constant (paramet-
ric) amount in the i output loop. For relations with only
explicitly defined dimensions, it may be performed by mod-
ifying the parameters and the constant in the definition by
—amount. Substitution is required to preserve inequalities,
including those implicitly defining the dimension.



Transformation

Effect, Condition

REORDER

VT € Tp, B7dimpt1 & U

.7 BT dim F+1

Py where dim # = max7c 7 (ﬁrmmﬁﬂ) +1:Vi 1<i<dim@, 0< (¥); <dim&—1:Vi,j i#7j, (¥): # (D),
FUSENEXT VT € Tpnexts BT.amp+1 < BT dim 1 + maxreT, (5T,<um 5+1) + 13VT € Tp,>, Bramp ¢ BT gimp — 1
» where 357 1 (B7)1. dimp—1 = (P)1..dim5—1 and BT dim 5 = (P)aim 5 + 1 and dim S > dim o

DISTRIBUTE VT € Tz : B1,dimps+1 <1y BT dimj5 < BT ,dim 5 + 1 ; and normalize B-vectors as in Section 4.2.

(P, m) where 1 < n < maxyc7, BT dim 541

SHIFT VT € Tz, dT,i = a1, + amount

(p, i, amount)

where 1 < i < dim§ < dim @7 and amount = 7 -+ C, v € Z9P C € Z

SKEW

VT € Tp, G7 gimp = AT dmp + k- A1

(B.ir k) where 1 < i < dimdr Ai#dmjAk e Z*
REVERSE VT € Tz, &T,d,mﬁ_»ﬁ — 0T dim 5
p) where dim g < dim 81
INTERCHANGE VT € Tz, aT1,i+— A7 dmp N GT aimp — A7 if both substitutions are done simultaneously
(7, 1) where 1 < ¢ < dim g
RESHAPE VT € 7}, &’T,dimﬁ = aT,dimE + k- 1?7'7,5 .
(P, 1, k) where Either avy ; or avg g4im 5. Or both are implicitly defined. Alternatively, for explicitly defined o ; = U '+ f1(P) + C1 and g gim F=
@ - T+ fo(P) + Co, (ﬁd i d = %V} # i) \Y, (171# # d). For explicitly defined oy gim 5 = w - Ui + f2(P) + C2, w # —k,
) 0jTRY ’
INDEXSETSPLIT | VT € T5, T = T'UT",T' = TNconstraint, T = TN=constraint OBy gm 11 < Bt gim g1 +maxTe 75 (BT dim 1) +1

( p, constraint)

where constraint = @ X a1 + 0 X i + 0 X p+ C it € 29™% 5 e 729" 5 e 7297 C ez

COLLAPSE Vj—/’ T'" € Ts: T =T nNconstraint AT =T N =constraint A Brs 1. gmp = ET//deim,; =pA ET’,dim sp1 1=
(2] By dim 51 (T"UT") =T o o o

where constraint =@ - &7 +7-ir +@-F+C, 7 €2, 7M™ G z™P Cc
GRAIN VT € Ty, V(in)equality (a Gt fEp +C > o) €T :@; #0, replace it by (gﬁ & — (g —V)@d; +g- f(T,F) + gC > o)
(P, 1, 9) where 1 < i < dim g < dimd&7 and g > 1
DENSIFY Jg € N: g > 1,VT € Tp, V(in)equality <g7z-aT — (g — V)@;&; +g- f(&P) +9C > 0) € T,d € 299 C € Z, f is an integer
20 linear function, replace this (in)equality by (E A+ @)+ 0> 0)

where 1 < ¢ < dim g < dimd
STRIPMINE i dimp VT € Tz, T < ((1s (T)) N (size-d7 i < &7 ,i41 < size- A7 ; + size — 1)) with unary operator T; (7) inserts a new
(p, size) «a-dimension and a new 3-dimension before the i™ o-dimension

where size € N
LINEARIZE i+ dimp; VT € T5, T + (4 (T)) with unary operator J.; (7') removes the a-dimension and the 3-dimension before the 4 + 1™ ar-dimension
() and removes all (in)equations which contains the old i" a-dimension

where VT € 75, (size - a7 < d7ip1 < size-dg,; +size—1) C T
PARALLELIZE Add semantic information
(7.1) where 1 < ¢ < dim g < dima

Fig. 8: Clay Transformation Directives allow for encoding an arbitrary schedule

SKEW(p, i, k) makes the loop iterator at depth dim g
traverse the values of the loop iterator at depth ¢ with a coef-
ficient k (skew factor). This operation takes into account the
output dimension, i.e. the ™ loop iteration variable in the
transformed code.

REVERSE(p) reverses the iteration order of the loop at
depth dim p'for all statement instances with [3-prefix p.

INTERCHANGE(p, 7) in a loop nest including statements
with -prefix g, swaps the loop at depth ¢ with the loop at
depth dim p.

RESHAPE(p, i, k) reshapes the iteration space so that the
loop iterator at depth dim g depends on the original loop it-
erator at depth ¢ with a coefficient k (reshape factor). This
reshape operation takes into account the input dimension,
i.e. the i loop iteration variable as it was present in the
original code. Useful for expressing complex transforma-
tions, such as skewing inner loop by a fraction of the outer
loop, preserving the number of points. The conditions pre-
vent originally explicitly defined dimensions from becom-
ing linearly dependent or constant, which would violate the
scheduling existence constraint since the transformed loop
would no longer fully traverse explicitly associated input di-
mensions.

INDEXSETSPLIT(p, constraint) replaces every schedul-
ing relation with S-prefix o' by a union of two disjoint rela-
tions depending on the constraint and having unique /-
vectors; further transformations may target either relation.

COLLAPSE(p) squashes immediately following state-
ments with S-prefix p scheduled identically by a disjoint
pair of relations, replacing it with a single relation.

GRAIN(p, i, grain) changes, for each statement with /3-
prefix p, the number of iterations n between two consecutive
executions of the statement along the &7 ; to n X grain.

DENSIFY(, 1) removes, for each statement with S-prefix
P, the gap between two consecutive executions of the state-
ment along the & ;.

STRIPMINE(p, size) decomposes the loop at depth
dim g, for all statement instances with S-prefix p, into two
nested loops such that, for each iteration of the first loop, the
second loop iterates over a chunk of at most size consecu-
tive iterations of the original loop.

LINEARIZE(p, i) integrates iterations of the nested loop
into the host loop by extending its iteration variable span.
This transformation remains globally valid only if applied to
implicitly defined dimensions with non-parametric bounds,
e.g. a dimension created by stripmine, since it effectively



multiplies loop bounds.

PARALLELIZE(p, 7) is an example of pseudo-transformation

adding semantic information to the i** output dimension
of scheduling relations for each statement with S-prefix p.
Other semantic information may allow code generator to un-
roll loops or introduce vector operations.

For our motivating example, the user may either reorder
parallel loops and fuse them together applying the trans-
formations listed in Fig. 9,left to the transformed code in
Fig. 2, or manually optimize the original code in Fig. 1 with
transformations listed in Fig. 9,right.

5.2 Transforming between Arbitrary Scheduling
Relations in Clay

Clay transformation set was designed to enable converting
any globally valid scheduling to any other globally valid
scheduling. This conversion implies changing both «, in-
volved in equations and inequalities, and -dimensions ar-
bitrarily within the limits of global validity described above.

reorder((), (0,2,1,3,4,5,6))
fuse_next ((0))

fuse_next ((0))

fuse_next ((0))

fuse_next ((0, 2))

distribute((2), 3)
reorder((), (1,2,0,3))
reorder ((0), (1,0,2))
parallelize((0))

Fig. 9: (left) transformations added by the user instead
of rewriting the code; (right) optimizing transformation se-
quence created from scratch

Changing equations — we may transform the scheduling
relation to its output form as described in Section 4.3. After
this equivalent transformation, each explicitly defined di-
mension will be involved in exactly one equation (its defini-
tion) of the form cegpricit = ﬁdiTmplicit +7- T +w-pT +C.
RESHAPE transformation allows to arbitrarily change coef-
ficients in ¥ and SHIFT coefficients in «w and C. Non-zero 4
coefficients may appear after SKEW by an implicitly defined
dimension replacing the unique appearance of cvepiicit by
(Qewplicit — U - Gimplicit)- 1t suffices to take a difference be-
tween the existing and the target value before applying the
transformation. Note that SKEW preconditions forbid sub-
stituting an implicitly defined dimension by a linear form in-
volving an explicitly defined dimension that results in break-
ing the definition of the latter. Since the output form contains
all the equations, we are able to change the equations arbi-
trarily with Clay.

Changing inequalities — existence and uniqueness con-
straints significantly reduce the structure of inequalities
defining the scheduling relation. An arbitrary inequality
makes the scheduling conditionally valid unless other re-
lations in the scheduling union cover the remainder of the
iteration domain. INDEXSETSPLIT adds an arbitrary in-
equality and enforces the existence constraint. Sequencing
such transformations allows to build an arbitrary disjoint
scheduling union. COLLAPSE transformation, on the other
hand, joins two disjoint parts preserving domain coverage. A

combination of these transformations may be used to redis-
tribute domain points between scheduling relations. Implic-
itly defined dimensions are another source of inequalities.
However, the only dimensions that enforce uniqueness for
all compatible domains, are those created to express integer
division as suggested by Bastoul [1]. STRIPMINE allows
to create such dimensions that do not omit or duplicate in-
stances, and LINEARIZE allows to undo it. Inequalities that
are not involved in extra relations or dimensions render the
scheduling conditionally valid. Hence Clay transformations
suffice to express globally valid operations on inequalities.
Changing [-vectors — statement position encoded by -
vectors may be presented as an ordered forest. Each tree in
the forest defines a loop nest. Nodes in the tree correspond to
loops, and leaves correspond to statements. The depth of the
leaf corresponds to the number of loops surrounding the re-
spective statement. INDEXSETSPLIT and COLLAPSE trans-
formation allow to increase or decrease the set of leaves.
DISTRIBUTE transformation allows to split a node at any
level into two separate nodes, each of which retains part of
the original node’s leaves. Applying this transformation to
all nodes that have more than one child repeatedly will result
in the forest of degenerate trees, where each node has exactly
one child. It allows to reduce the lexicographic ordering of
[-vectors into the simple ordering of first components of the
[-vectors and use REORDER once to establish an arbitrary
total order. At this point, one may add or remove nodes us-
ing StripMine or Linearize. Finally, FUSENEXT transforma-
tion allows to either merge the tree roots, or merge adjacent
nodes inside one tree so that children of both nodes become
children of the new merged node. Being applied to the forest
of degenerate trees, it allows to establish any parent-child
links. Therefore Clay allows to modify arbitrarily the num-
ber of leaves, nodes and the parent-child links that, together,
fully define the forest. When [3-forest represents a real pro-
gram, all transformations are only applicable if the resulting
scheduling remains valid.

5.3 Discussion of the Transformation Set

Redundancy - analyzing the transformation effects, one
may notice that Reverse and Grain are, in fact, variations
of Skew of a dimension by itself with coefficients —2 and
(k — 1)/k. Except these cases, Skew by itself results in frac-
tional explicit definitions violating the schedule existence
requirement. Since Reverse and Grain feature substantially
different semantics and own preconditions, they were made
transformations on their own.

Skew compared to Reshape — while Skew by an explicitly
defined dimension may be expressed as a sequence of Re-
shapes involving coefficients in this explicit definition, Skew
by an implicitly defined dimension remains a specific trans-
formation on its own. It also offers powerful semantics for
the end user.

Dimension independence — the corollary of schedule exis-
tence and integrality constraints requires explicitly defined



dimensions to be linearly independent. This results in Re-
shape and Skew transformations having no effects beyond
involved dimensions and makes them easily composable.
Higher-level transformations — higher-level syntactic trans-
formations may be obtained combining Clay transforma-
tions. For instance, tiling is a classical composition of Strip-
Mine and interchange while rotation transformation that
aligns a dependence vector along certain loop corresponds
to the composition of grain and reshape.

Beyond global validity — in order to avoid analyzing itera-
tion domain, Clay requires all transformations to be globally
valid. However, this constraint may be relaxed in the future
by explicitly computing the validity conditions and verifying
the domain against them before transformations.

6. Relations to Syntactic Transformations

Having established the mapping between loop transforma-
tions and unions of scheduling relations, we may propose an
algorithm that represents such a union as a sequence of loop
transformations. We exploit the properties of Clay transfor-
mations and our specific relation structure as described in
Sections 6.1, 6.2 in order to create the final algorithm.

6.1 Detecting Complementary Transformations

Clay features pairs of complementary transformations that
ensure invertibility as shown in Table 1. In each pair, one
transformation has less arguments as it deduces them from
its preconditions to properly undo the effect. We leverage
this property in procedure COMPLEMENTARY that searches
for transformations with smaller arity in both the original
and transformed schedulings. If preconditions for the trans-
formation with less arguments are met by the transformed re-
lation, it means that the complementary transformation was
applied to the original scheduling with arguments deducible
from preconditions. For example, COLLAPSE identifies the
separation inequality required for INDEXSETSPLIT. In order
to support COLLAPSE that operates on a pair of scheduling
relations, the procedure iterates over all pairs of relations in-
stead of individual relations.

Table 1: Inverse transformations take only dimension index
1 as non-deducible parameter, if any.

Direct Inverse Deducible  Others
INDEXSETSPLIT COLLAPSE  condition [
STRIPMINE LINEARIZE size Dy
GRAIN DENSIFY grain 0,1
DISTRIBUTE FUSENEXT ¢ 0

As Table 1 suggests, several inverse transformation re-
quire dimension index as an non-deducible argument. We
may iterate through all possible values, verifying precondi-
tion each time, since they are limited by the nesting of the
loop in the source code that rarely exceeds 10.

6.2 Aligning Relations and Matching Beta-vectors

Given an initial and a target 5-vector identifying the relation,
we may compute a transformation sequence converting the
former to the latter by first separating the statement in ques-
tion into a loop that does not contain any other statements at
a given depth, then reordering loops and fusing back if nec-
essary following the algorithm 1. This algorithm operates on
the entire set of statements, recursing by S-prefix depth. Af-
ter each recursive step is completed, the values of 3-vectors
with the given prefix are equal to the target ones until the
current depth. Note that after fusion, all the 3-vectors that do
not belong to the target prefix are immediately split away.

Algorithm 1 requires knowing the one-to-one mapping
between original and target 5-vectors for each relation. Yet
scheduling unions may not have the same structure: IN-
DEXSETSPLIT may have changed the union cardinality and
STRIPMINE may have changed each relation dimensional-
ity. We propose to add dummy transformations that will
match the scheduling structure, INDEXSETSPLIT with al-
ways false condition and pseudo-STRIPMINE that creates a
constant dimension. We then match relations following the
order in which they appear in the union. Even if the op-
timizer breaks this order, we will find a (longer) transfor-
mation sequence by changing definitions arbitrarily. Once
an actual INDEXSETSPLIT or STRIPMINE transformation is
found, it replaces the dummy one in the sequence.

Algorithm 1: MATCHBETAS

1 let g'be the current S-prefix ;

2 letd =dimpg+1;

3 let n = maxrcg ﬁd where ﬁd is the -vector of T ;

4 letn’ = maxregzﬂ_zi where B; is the B-vector of 77 ;
s while 35,3 : 34 # (3, B4 — min do

/* split away until depth d */
6 for : = dim ﬁ downto d do
7 REORDER(ﬁl,..(i_l), put Ed last) ;
8 DISTRIBUTE(E, 1)
9 ifggd < n then
10 REORDER(Elm(d,l), put 3, right after Eg) ;
1 FUSENEXT(El.,_d) ;
/* split away betas that do not belong to
the same transformed prefix */
12 foreach 53, 3’ : By # ﬁ& do
13 REORDER(B_’l.._(i_l), put Ed last) ;
14 DISTRIBUTE(E, 1),
15 else
16 | REORDER(G,...(4—1). put Ay at 1) ;

/* n = n’ at this point; recurse to sub-prefixes */
17 for i = 0 to n do

18 L recurse with o' < (01, P2, - . -, Pdim > %) 3




6.3 Generating Transformation Sequence

Once the one-to-one matching between relations is estab-
lished, we use the algorithm 2 to find the requested Clay
transformation sequence. It builds on the observation that
adding explicit dimension definitions corresponds to SKEW
transformation and uses Gaussian elimination to coerce lin-
ear system partly defining the scheduling relation into a
triangular form, after which it modifies individual coeffi-
cients with RESHAPE. After each transformation, it veri-
fies if substitutions in inequalities enabled other transforma-
tions, thus performing structure-modifying transformation
as soon as possible. It also leverages the fact that substitut-
ing implicitly-defined dimension will introduce equal coef-
ficients into inequalities bounding it on both sides. When
triangulating the transformed relation, the algorithm records
inverse transformations (including SKEW with inverted co-
efficient) as though they have been applied to the original
scheduling.

For our motivating example, the sequence of transforma-
tions between the original code (Fig. 1) and the optimized
one (Fig. 2) generated by our algorithm consists only of loop
distributions and reordering as shown in Fig. 4. The user may
complete this sequence by their transformations (Fig. 9,left)
in order to obtain the faster code.

6.4 Discussion of the Whiteboxing Algorithm

The proposed algorithm finds one sequence correspond-
ing to the scheduling transformation out of infinite pos-
sibilities with no guarantees on its length or composition.
Since a SKEW-like transformation may hinder COLLAPSE
and LINEARIZE preconditions, the latter transformations are
detected as soon as possible. It may result in more com-
plex conditions that could have been avoided had the SKEW
come first. Using triangulization allows to prefer SKEW,
having stronger semantics, to RESHAPE at a cost of longer
transformation sequences. In practice, Pluto rarely generates
schedules with lots of non-zero coefficients thus reducing
the sequence length. Future work should concentrate on in-
troducing a post-processing step to simplify the sequence by
reordering transformations and exploiting complementary
transformations.

If the algorithm fails to detect an INDEXSETSPLIT con-
dition, one may introduce a step that rendres two condition
inequalities identical by modifying their parameters with
SKEW and RESHAPE. In practice, we did not observe such
situtation that corresponds to the algorithm leaving the main
loop without having made the two schedulings equivalent.

We implemented the algorithm in Chlore project* reusing
the Clay transformation set. We applied the transformation
sequence recovery algorithm to Pluto-optimized codes from
the Polybench suite>. Our implementation successfully re-
covered transformation sequences for all 30 benchmarks. It

4 https://periscop.github.io/chlore/
5 Polybench/C 4.1, http://sourceforge.net/projects/polybench/

Algorithm 2: WHITEBOXING

1 Transform all relations in both the original and
optimized scheduling unions to the output form.;

2 repeat
3 restart iteration after each step with O;
4 MATCHBETAS (7 < ());
5 foreach statement S do
6 foreach implicitly defined dimension d do
7 L COMPLEMENTARY(STRIPMINE) O;
8 COMPLEMENTARY (INDEXSETSPLIT) O;
9 foreach dimension d do
10 L COMPLEMENTARY(GRAIN) O;
11 foreach &;, i — max, explicitly defined by
{a =TT +@-pT +ClinT orinT' do
12 foreach j <~ 1..(i — 1) - v; # 0 do
13 let ; be the v; value in the explicit
definition of «; ;
14 use inverse transformation if €60’ ;
15 GRAIN(['BTJ._Z‘, lcm(xj,vj)/vj) 5
16 SKEW(ﬁ’T71_i,j, flcm(xj,vj)/xj) )
17 DENSIFY(B71,1..5) O3
18 if 7; < 0 then
19 | REVERSE(A71.) O;
20 foreach &;, &, both explicitly defined by
{a;=0- " +@d-pT +C}inT, T’ do
21 foreach v; # ¥; do
2 L RESHAPE(BT,1..i, T — T;) O3
23 repeat step 22 for « and C' with SHIFT ;
24 foreach &;, & both implicitly defined by
{@-aT+v-iT +@-pT +C >0} inT, T do
25 foreach u; # i; do
26 L SKEW(BT 1.4, j, Wy — ;) O;
27 repeat step 26 for v with RESHAPE ;
28 repeat step 26 for « and C' with SHIFT ;

29 until no transformation happened in the loop;

took on average 64 ms (SD = 85) per benchmark, ranging
from 14 ms for floyd-warshall to 463 ms for deriche
given that no optimization was applied to the implementa-
tion. The resulting transformation sequence contains 22 di-
rectives on average (SD = 25), ranging from 1 to 122 for
the same benchmarks. Normalizing the number of transfor-
mations to the number of statements in the benchmark, the
resulting sequence features a mean of 5 transformations per
statements (SD = 5.34). These results suggest that, despite
the computational complexity of the proposed transforma-
tion recovery algorithm, it may be used in an dialog inter-
action with the developer without substantial delays. How-
ever, more scrutiny is required to evaluate the developers’
understanding of long transformation sequences or transfor-
mations of individual statements in large code blocks.



7. Interacting with a Polyhedral Compiler

Our approach introduces more interaction points between
the optimizing polyhedral compiler and the developer. A
typical standalone polyhedral compiler, such as Pluto, usu-
ally works on the source-to-source level presenting user with
the automatically generated code while calling raising and
code generation algorithms internally (see black and dashed
red parts of the Fig. 10). From the user’s point of view, the
entire process happens in a single interaction step.

User Polyhedral Framework

User-accessible
high-level tools

Compiler
low-level tools

source code

‘transformed
code

o

directives Dependence
Analyzer

legality feedback polyhedra

transformed code

Fig. 10: Points of Interaction with the Polyhedral Frame-
work: dashed parts were removed and lighter solid parts are
added with Clay

By adding the transformation directive recovery algo-
rithm and the transformation engine to the framework (light
blue parts on the Fig. 10), we enable an iterative interac-
tion: (1) the framework suggests an automatically generated
transformation sequence for the user to review; (2) the user
either accepts the sequence as is or modifies it before sub-
mitting to the transformation engine; (3) the latter reports
on the semantics preservation and generates the final code if
required. The user is free to keep modifying the sequence,
repeating the two last steps and forming the interaction loop
with the compiler where transformation directives and de-
pendency graphs are used as a means for communication.
They can also invoke the transformation engine directly,
without relying on the automatic optimizer or completely
ignoring the suggested transformation sequence, and con-
tinue interacting with the framework. We thus open a way for
interaction between the developer and the polyhedral com-
piler, which can be leveraged in more efficient tools for semi-
automatic compiler-assisted program optimization featuring
visual representations [24] or a domain-specific language for
optimizer fine-tuning.

8. Related Work

High-Level Loop Transformation Frameworks Several
frameworks expose a high-level interface on top of a polyhe-
dral engine, UTF [13] being arguably the very first of them.
The URUK framework [9] features loop transformation se-
quences with unimodular schedules while CHiLL [5, 19] in-
volves schedules defined by invertible relations thanks to di-
mensionality extension during preprocessing step. Clay re-
laxes both unimodularity and invertibility constraints and
avoids intermediate sanity checks by maintaining the iter-
ation domain immutable.

Other directive-based tools were proposed to implement
high-level loop transformations. Xlanguage [6] uses com-
piler pragmas for syntactic loop transformations in the C
source code. A scripting language POET [23] stores and pa-
rameterizes AST-based transformations. Goofi [16] features
visual interface for transforming loops in FORTRAN code.
None of them benefit from the precise data dependence anal-
ysis enabled by the polyhedral model, which is critical when
designing complex transformation sequences.

Developer/Compiler Interaction for Optimization To
the best of our knowledge, no other work addresses the in-
teraction with a compiler for loop-level optimization. How-
ever, several works propose complementary approaches to
interact with a compiler for better optimizations. The Paralax
infrastructure [20] allows for completing compiler analyses
by annotations and uses compiler feedback to suggest them.
Larsen et.al. [15] instrument a production compiler to pro-
vide feedback as to why an automatic loop parallelization
was not possible. Jensen et.al. [12] propose an IDE plug-in
incorporating feedback from compiler optimization passes.
A tool by Gohringer and Tepelmann [10] gives feedback on
the fitness of compute-intensive loops to the polyhedral rep-
resentation. Prospector [14] uses dynamic profiling to dis-
cover loop-level parallelism and provide feedback. Contrary
to these tools, our approach avoids manual code modifica-
tion, relying on high-level interface to express transforma-
tions and on polyhedral frameworks for code generation.

9. Conclusion

In this paper, we presented a new way to interact with a com-
piler. It enables a complete feedback and control over loop-
level optimizations which are critical when targeting mod-
ern multicore architectures. We introduced a new formalism
to translate extended versions of classical syntactic transfor-
mations to the state-of-the-art mathematical representation
of programs used in compiler polyhedral frameworks. This
formalism features a unique capacity at composing com-
plex sequences of transformations to a single abstraction,
which allows polyhedral frameworks to check the legality
of the whole sequence and to generate the final code au-
tomatically. We also presented arguably the first algorithm
to retrieve a high-level transformation sequence from the
scheduling abstraction. These contributions together virtu-



ally open the polyhedral compiler black-box, offering means
to polish compiler optimizations or to set user-defined opti-
mizations or to freeze a given optimization strategy.

Ongoing work aims at translating scheduling relations to
shorter transformation sequences that would better mimic a
manual optimization. We are also using the proposed formal-
ism to design visual program manipulations to help users at
designing or refining transformation sequences.
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