
Extended Static Control Programs as a Programming Model for Accelerators
A Case Study: Targetting ClearSpeed CSX700 with the R-Stream Compiler

Cédric Bastoul, Nicolas Vasilache, Allen Leung,
Benoı̂t Meister, David Wohlford, and Richard Lethin

Reservoir Labs, Inc.
{bastoul, vasilache, leunga, meister, wohlford, lethin}@reservoir.com

Abstract

Classical compiler technologies are failing to bridge the
gap between high performance and productivity in the mul-
ticore and massively parallel architecture era. This results
in two complementary trends. Firstly, the rise of many new
languages to allow the user to conveniently express paral-
lelism. However, those languages may be target-specific
like, e.g., CUDA or Cn, and they leave to the program-
mer the complex task of extracting parallelism even if ex-
pressing it may be more convenient using, e.g., Chapel or
X10. Secondly, new high-level abstractions like SPIRAL al-
low performance portability at the price of versatility. In
this paper we discuss an alternative way. We consider a
restricted class of classical programs known as Extended
Static Control Programs as a programming model. We show
that using simple rules while writing sequential programs
with usual languages like C, our R-Stream R© High-Level
Compiler can achieve complex mappings to parallel archi-
tectures in a fully automatic way. We present our effort to
target ClearSpeed CSX700 architecture with specific con-
tributions to avoid costly control overhead.

1 Introduction

Accelerators aim at providing new hardware features to
perform some specific functions much faster or at a much
lower energy cost than possible for general purpose proces-
sors. Main examples of hardware accelerators are graph-
ics accelerators dedicated to manipulating and displaying
computer graphics, floating-point accelerators designed to
issue at a high rate operations on floating point numbers,
and FPGAs that can be configured to accelerate a given
processing. While those accelerators may provide signif-
icant additional computing power, they also require a sig-
nificant additional work for engineers to learn and use their
specific application programming interfaces (APIs) or lan-

guages. In this paper, we present a compiler technology that
provides high productivity, allowing the programmers to fo-
cus on their high-level problems rather than understanding
deep language or architecture features. This productivity
is achieved provided the programmer writes the most com-
putation intensive parts of its application according to the
Static Control Program paradigm.

To achieve a reasonnable amount of the peak perfor-
mance on a given architecture, a programmer may choose
(1) to learn the details and specific language layers of the
target architecture, or (2) to rely on an optimizing com-
piler, or (3) to use high level abstractions and tools like SPI-
RAL [8] to automatically generate a target code. The draw-
backs of the first approach are well known: high learning
curve, slow and error-prone programming and lack of porta-
bility. The second solution raises the problem of the avail-
ability of a good enough optimizing compiler, usually sev-
eral years after a given architecture is available. The third
solution requires to learn a new abstraction model and is
typically domain-specific (as SPIRAL for DSP algorithms).

We investigate an alternative approach based on the
Polyhedral Model, which spans to both optimizing compil-
ers and high-level abstractions. This model is a well known
high-level abstraction that allowed many advances in auto-
matic program optimization and parallelization [5, 1, 7]. We
present the R-Stream High-Level Compiler, that builds over
this model to allow the programmers to write their code di-
rectly in a well known language (R-Stream supports C for
pragmatic, user convenience, reasons but there is no pratical
limitations to the input language). We rely on the compiler
infrastructure to automatically raise the abstraction level
and to achieve efficient mappings to supported target ar-
chitectures. We show that to benefit from the full power of
this compiler, the programmers have to use a subset of im-
perative languages called Static Control Programs as much
as possible, i.e., relying on regular loops and array access
constructs.

In this paper, we describe our effort to target the Clear-
Speed CSX700 floating point accelerator [3] directly from

1

sequential loop nests in C. This architecture shows the typ-
ical challenges that arise when mapping for other accelera-
tors, e.g., GPGPUs. Those massively parallel architectures
expose many levels of mapping, deep memory hierarchy
with explicit data transfers, and multiple API/language lay-
ers. We demonstrate that it is possible to build over our
polyhedral framework to provide an optimizing compiler
infrastructure for such architecture and to offer high pro-
ductivity to programmers. We show that managing control
overhead is a priority in this architecture and present contri-
butions to minimize it.

This document is organized as follows. In Section 2, we
present the Extended Static Control Programs, in Section 3,
we present the main characteristics of the CSX700 archi-
tecture and its programming model. Section 4 describes the
different elements used by the R-Stream compiler to map
a sequential C code to those architecture and programming
model. In Section 5 we discuss solutions to minimize con-
trol overhead for this target before concluding in Section 6.

2 Extended Static Control Programs

Static Control Programs are a sub-class of imperative
programs that includes imperfectly nested loops such that:

• the loop counters are integers, and they are incre-
mented by constant steps,

• the loops are bounded, and each bound must be an
affine expression of the value of the outer loop coun-
ters and of the parameters (constant values that are un-
known at compile time, e.g., array sizes),

• the statements enclosed within the loops access multi-
dimensional arrays (this includes scalars and one-
dimensional arrays) through multi-dimensional affine
functions of the loop counters and the parameters.

When considering the loop counters as variables in a vector
space, the set of iterations of the loop nest is defined as a
parametric polyhedron. We use this property to automati-
cally raise such programs to the Polyhedral Model [5]. R-
Stream focuses on program parts that respect this definition
as well as extensions to data-dependent control flow (data-
dependent conditionals, useful for, e.g., saturation arith-
metics or pivoting) [7]. However, relying on irregular ex-
tensions may reduce the amount of extracted parallelism.

3 CSX700 Architecture and Programming

The ClearSpeed CSX700 processor is a floating-point
accelerator designed to enhance the global computing
power of a system at a very low energy cost (its energy ef-
ficiency for full precision is 3.84 Gflops per Watt, it may be

compared to the 1.11 of IBM PowerXCell 8i or the 0.42 of
the nVIDIA Tesla C1060). Its very low power dissipation
footprint makes it suitable for high-performance embedded
systems as well as power-efficient supercomputers. How-
ever, this processor shows specific architecture and pro-
gramming models a programmer or a high-level compiler
must address to generate efficient mappings.

3.1 A Three-Levels Mapping Architecture

CSX’s power-efficient floating-point acceleration results
from a massively parallel architecture. In this way, even
using a low frequency (hence saving energy), the processor
is able to issue a large number of operations every clock
cycle. The CSX700 processor is designed to take advantage
of multiple levels of parallelism, each corresponding to a
specific mapping level for the compiler. We can describe the
CSX700 accelerator as a three-levels mapping architecture:

1. System Level. Because the CSX700 is an accelerator,
it has been designed in such a way it is possible to add
many accelerators to a host system to improve its per-
formance. Furthermore, the CSX700 chipset is a two
core processor. Each core has a 1GB memory. This is
depicted in Figure 1(a). Hence a first level of mapping
is to provide tasks to all the accelerator cores. We refer
to it as the System Mapping Level.

2. Processor Level. Each CSX700 core, related as either
mono core or MTAP core (for Multi-Threaded Array
Processor), is a SIMD engine driving 96 Processing El-
ements (PEs) called poly processors. The poly proces-
sors share the same control flow (including predication
that may disable some of them temporarily), managed
by the mono core. Each PE has a 6KB local mem-
ory. Figure 1(b) depicts the MTAP core architecture.
Thus, keeping the 96 poly processors busy with differ-
ent data with a mono control flow is the second level
of mapping. We refer to it as the Processor Mapping
Level.

3. Pipeline Level. Each poly processor may issue two
double floating-point operations every cycle thanks to
its multiply-accumulate functional unit. The poly pro-
cessor architecture is summarized in Figure 1(c). How-
ever, to achieve the best use of its pipeline, we must
use short-vector operations that pack 4 operations to-
gether, hence, we need to benefit from an additional
level of parallelism to achieve the vectorization, known
in the litterature as SIMDization. We refer to SIMDiza-
tion as the Pipeline Mapping Level.

In this document, we only address the processor and
pipeline levels. We consider the program data have been

CSX700...

CSX700

MTAP

SRAM SRAM

MTAPRAM

DMA

RAM

DMA

On Chip Network

DMA

CSX700

Host Interface

PE PE

Programmable I/O

...

Poly Controller

Cache
Instruction

Cache
Data

Controller

Mono

PE
0 1 95

MTAP PE

MAC

FP MUL

FP ADD

FP DIV SQRT

ALU

Register File

I/O Buffer

SRAM

(a) System Level (b) Processor Level (c) Pipeline Level

Figure 1. The Three Levels of Mapping of the CSX700 Architecture

migrated to the device memory of a given mono core. Sys-
tem level mapping, in which the program’s data is in the
main memory of a system and has to be explicitly trans-
ferred to and from the accelerator, is a generalization of the
work discussed in this paper.

3.2 Programming Model

Each mapping level described in Section 3.1 requires a
specific language or language extension at the output of R-
Stream. The system level is programmed in C with an API
called CSAPI for managing data transfers between host and
mono memories and for managing computing tasks to be
run on mono-cores [4]. The processor level is programmed
using a new language called Cn [2]. The pipeline level re-
lies on vector types and ultimately on ClearSpeed assembly
for the best performance [3].

The Cn language is a programming language based on C
that expresses parallelism in an implicit way, depending on
the type of the operands. Cn introduces two new type at-
tributes: mono and poly. Variables with the type attribute
mono are declared in the mono memory space while vari-
ables with the type attibute poly are declared in the poly
memory (there exists one version of this variable for each
poly processor). When an instruction has to be executed, if
all its operands are mono then the instruction is executed
on the mono processor. If one of the operands is poly,
then the operation is run on all the poly processor (mono
variables are broadcasted to poly processors if necessary).
Hence both mono and poly codes are intimately mixed in a
single source code.

4 CSX700 Mapping in R-Stream

R-Stream is Reservoir Lab’s proprietary compiler.
DARPA funded development of R-Stream by Reservoir be-
tween 2003 and 2007 in the Polymorphous Computing Ar-
chitectures (PCA) Program [7]. It differs from most existing

compilers for three main reasons:

1. Its input includes a Hierarchical Machine Model as
well as an input code. This machine model describes,
thanks to a set of XML files, the critical features of
the target architecture (e.g., number of PEs, sizes and
types of the memories, SIMD widths, relative commu-
nication layer speeds etc.), in such a way that the target
architecture is described in a precise enough way for
generating an efficient mapping as well as providing
an easy way for the compiler to target new architec-
tures.

2. It is a High-Level Compiler, that does not output an
object code directly but another source code with high-
level constructs (OpenMP pragmas, threads, Cn paral-
lelism, DMA calls, vector operations etc.) to be com-
piled by a low-level compiler, ensuring portability and
benefiting from low-level optimizations of the target
compilers.

3. It is based on the Polyhedral Model, an algebraic rep-
resentation that allows deep and complex code restruc-
turing while ensuring the original program semantics
is not altered. The polyhedral representation is modi-
fied to map the target architecture along several phases
that may be shared by every targets or dedicated to a
given subset of the targets.

A high-level view of the R-Stream compiler when targetting
CSX700 architecture is shown in Figure 2. The input code
is first parsed then translated (if possible, see Section 2) in
the internal polyhedral representation, then it is modified
along several phases in the Polyhedral Mapper before being
translated back to a Cn source code that will be compiled
by the low-level ClearSpeed cscn compiler (cscn has no
automatic parallelization facility).

To add the support of the CSX700 architecture in R-
Stream, we need a Machine Model that describes this ar-
chitecture. Next, we need to be able to output efficient

MTAP

SRAM SRAM

MTAPRAM

DMA

RAM

DMA

On Chip Network

DMA

CSX700

Host Interface

for (i = 0; i < N; i++) {

 for (j = 0; j < N; j++) {

 C[i][j] = 0;

 for (k = 0; k < N; k++) {

 C[i][j] += A[i][k] * B[j][k];

 }

 }

}

Compiler infrastructure

Polyhedral Mapper

Thread Generation

Communication

Memory Promotion

Tiling

Affine Scheduling

C
S

C
N

 C
o

m
p

iler

A
P

I

CSX700 Processor

IS
O

 C
 F

ro
n
ten

d

C
o
d
e G

en
/B

ack
 en

d

R−Stream

DMA Optimization

CSX700

Input Code

Machine Model

SIMDization

PROC poly

geometry=[96]

SIMD width=256 bits

SIMD alignment=256 bits

int registers=8

fp registers=8

funit types=[MEM, INT, FP4, FP8]

funit issue rates=[1.0, 1.0, 1.0, 1.0]

instr. size=4 byte(s)

addr. unit=8 bit(s)

MEM local

size=[6KB]

banks=[none]

speed=5

data only

LINK PIO

strided_cost(n)=256+n*1024

indexed_cost(n)=256+n*256

local_strides=false

PROC mono

geometry=[1]

SIMD width=32 bits

SIMD alignment=32 bits

int registers=8

fp registers=8

funit types=[MEM, INT, FP4, FP8]

funit issue rates=[1.0, 1.0, 0.25, 0.25]

instr. size=4 byte(s)

addr. unit=8 bit(s)

MEM I

size=[8KB]

banks=[none]

cache_level=1

cache_line_size=16B

tlb_miss_cost=0

speed=10

instructions only

MEM D

size=[4KB]

banks=[none]

cache_level=1

cache_line_size=16B

tlb_miss_cost=0

speed=10

data only

MEM onboard

size=[1GB]

banks=[none]

speed=1

unified

1−1

control

thread 1−1 1−1

control

1−1many−1

1−1 1−1

Figure 2. R-Stream for CSX700 Mapping

high-level Cn codes thanks to existing (and possibly new
dedicated) compiler phases and an extended code genera-
tion scheme. Our strategy to map sequential C programs to
a mono core of the CSX700 processor is decomposed in the
following phases:

1. Expose parallelism via affine scheduling. The first
step of the mapping process is to expose all the avail-
able parallelism in the program, including both coarse-
grained and fine-grained parallelism. Generally speak-
ing, our strategy consists into transforming coarse-
grained parallelism into Cn implicit threads, and fine-
grained parallelism into SIMD parallelism within a
thread block. We use a unified formulation of paral-
lelism and fusion/distribution profitability to derive the
optimal tradeoff between parallelism and locality. This
formulation is a generalization of the work of Bond-
hugula et al. [1] and is out of the scope of this paper.

2. Use tiling (aka blocking)to divide the statement in-
stances into blocks, such that each block fits within
the constraints of a thread block (in particular, the data
footprint of one block must not exceed the poly mem-
ory size) and such that the tile size balances the amount
of computation and communication (between tiles).

3. Promote variables in mono memory to poly memory
via memory promotion then generate communications
to copy variables from mono memory to poly memory
and conversely via communication generation.

4. Transform the explicit parallelism to implicit Cn-like
parallelism via thread generation. To match the Cn

programming model, the parallel loop that distributes
tasks to the poly processor must be implicit as ex-
plained in Section 3.2.

5. Optimize data transfers by grouping memory commu-
nications via DMA optimization. We use a generaliza-
tion of Schreiber et al. work [9] to the ensure only
useful data are transferred.

6. Achieve pipeline-level mapping by extracting high-
level vector operations via SIMDization. R-Stream in-
vestigates two complementary strategies for SIMDiza-
tion. (1) Short Vector SIMDization aims at promoting
accessed variables to a vector type that is supported
by the architecture. This strategy provides the largest
flexibility since any statement that satisfies the SIMD
constraints may be promoted this way. However the
provided performance highly depends on the low-level
compiler. (2) Long Vector SIMDization aims at relying
on a library function to achieve a long vector operation.
This strategy offers the best performance as the library
function may be written directly in efficient assembly
code. However it is only possible to target vector state-
ments in the restricted scope of the long-vector library.

The result of the whole mapping process is shown on a
simple yet meaningful matrix-multiply kernel shown in Fig-
ure 3(a). An example target code without multi-buffering
to hide memory latency is presented in Figure 3(b). This
example shows that even for such simple program, com-
plex and error-prone transformations have to be achieved
to benefit from the architecture. First, we can notice the
local arrays declared in the poly domain. Our Polyhedral
Mapper computed iteration space tiles in such a way that
the arrays can fit together in the poly memory. The state-
ment t1=get penum() stands for the implicit Cn par-
allel loop on the 96 PEs. Memory copy functions achieve
asynchronous transfers and are part of the R-Stream run-
time. Their first parameter is a tag used by the waiting
functions to ensure the memory transfers have been pro-
cessed before starting computations. Lastly, a long-vector
instruction is used in the innermost loop to benefit from the
pipeline mapping level.

The target code in Figure 3(b), while not including com-
munication optimization runs at 1.86Gflops (or 2.65Gflops
when using a simpler runtime, not suitable for further com-
munication optimizations). While this may be a significant
acceleration for the host system at a very low energy cost,
this is still one order of magnitude from the best perfor-
mance of the processor (48Gflops for one core). However,
there exists significant rooms for performance improve-
ment. First of all the communication generation scheme
we discuss in this paper is still synchronous while a double
or triple buffering may hide communication latency. We
simulated a perfect communication scheme by removing
all memory transfers statements and achieved 12.02Gflops.
Second, some tuning about, e.g., the tile size should be
done to better exploit the Pipeline Mapping Level. Us-
ing perfect communications and a tile size of 2 × 2 × 256
reaches 16.49Gflops, hence we target 30% of the peak per-
formance and 50% of the proprietary BLAS library perfor-
mance (34Gflops).

#define N 1024
float A[N][N], B[N][N], C[N][N];
void kernel() {
for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {
C[i][j] = 0;
for (k = 0; k < N; k++)

C[i][j] = C[i][j] + A[i][k] * B[j][k];
}

}
}

(a) Input Matrix-Multiply Kernel (B is transposed)

float A[1024][1024], B[1024][1024], C[1024][1024];
float poly A l[4][64], B l[8][64], C l[4][8];

void kernel(void) {
int poly t1, t2;
int i;
dcache flush();
for (t1 = get penum(), t2 = (polymins 32(2, (- t1 + 255) / 96)), i = 0; i <= t2; i++) {
int j;
for (j = 0; j <= 127; j++) {
int k, k 1;
for (k = 0; k <= 3; k++) {

int i1;
for (i1 = 0; i1 <= 7; i1++)
C l[k][i1] = 0.0f;

}
for (k 1 = 0; k 1 <= 15; k 1++) {

int i1, i1 1, i1 2, i1 3;
for (i1 = 0; i1 <= 7; i1++)
rstream csx memcpym2p(0, B l[i1] + 0, B[8*j + i1] + 64*k 1, 64*4);

for (i1 1 = 0; i1 1 <= 3; i1 1++)
rstream csx memcpym2p(0, A l[i1 1] + 0, A[384*i + (i1 1 + 4* t1)] + 64*k 1, 64*4);

rstream csx wait(0);
for (i1 2 = 0; i1 2 <= 3; i1 2++) {
int j1;
for (j1 = 0; j1 <= 7; j1++)
rstream csx vector fmulacc reduce(C l[i1 2] + j1, A l[i1 2] + 0, B l[j1] + 0, 64);

}
for (i1 3 = 0; i1 3 <= 3; i1 3++)
rstream csx memcpyp2m(1, C[384*i + (i1 3 + 4* t1)] + 8*j, C l[i1 3] + 0, 8*4);

rstream csx wait(1);
}

}
}

}

(b) Example of R-Stream Output for Matrix-Multiply Kernel (no multi-buffering)

Figure 3. Example of CSX700 Mapping of a Matrix Multiply Kernel

5 Control Overhead Minimization

The SIMD architecture model of the CSX700 has a sig-
nificant impact on control overhead management. Auto-
matic parallelization quite often generates a costly control
overhead (complex if conditions or loop bounds) because
sophisticated transformations have to be done to extract or
to set the granularity of the parallelism. The tiling transfor-
mation we use is a good example: it generates from a loop
nest with a given depth a new, deeper, loop nest with more
complex bounds to ensure the global number of iterations
does not change. Usually, unless positive cache effects oc-
cur, this reduces performance when the parallel code runs
on a one-core target. This overhead disappears when tar-

getting multi-core or multi-processor because the control is
shared and the benefit of the parallelization hides its cost.

This is not true for SIMD engines like the CSX700. For
each MTAP core, the whole control flow is computed by
the mono processor only. Hence the control overhead is not
shared between the various PEs as it would be in MIMD
architectures like, e.g., IBM Cell. It follows that it is nec-
essary to limit the global control overhead. This statement
is even stronger when we rely on predication. To provide
a maximum flexibility despite the single control flow for
each MTAP core, the CSX700 architecture supports predi-
cation. This means some PEs may be deactivated and may
temporarily not participate in the computation or the data
transfers while others do. Each branch whose condition in-

volves a poly variable implies predicated statements. For
instance a condition such as if(get penum()!=95)
disables the 95th PE for all the instructions guarded by this
condition. However this is quite costly. We measured that
the penalty to use a poly if/else conditional is typically a
factor 2 when both branches are balanced and slightly more
costly than a classical condition when there is no else
branch (we assume simple conditions). Relying on loops
with a poly counter or a poly bound (referred as poly loops)
is even more critical since it can impact performance up
to a factor 4 if the loop is at the innermost level. We ex-
pose three solutions to avoid these situations, namely SIMD
width reduction, domain simplification and full-tile extrac-
tion & normalization.

5.1 SIMD Width Reduction

Our mapping strategy described in Section 4 aims at dis-
tributing the workload to all the PEs. Typically, predica-
tion is necessary when all the PEs do not achieve the same
amount of work, i.e., when it is not possible to distribute the
workload in exactly the same way between the processing
elements. When the challenge comes from the amount of
workload only, we can artificially reduce the SIMD width
of the CSX700 cores in such a way that the workload may
be perfectly distributed. This amounts simply to adding a
global outermost poly condition that has nearly no impact
on the processing time (no else branch). Hence in the
case of the CSX700, reducing the number of working PEs
may improve overall performance.

5.2 Transformation Simplification

Once a transformation has been computed to optimize
a program, it is possible to find another, equivalent trans-
formation, such that the relative order between the various
iterations is not modified [10]. R-Stream uses this property
to iteratively compute an equivalent transformations (based
on compositions of shifting and skewing transformations)
in order to simplify the subscript functions of the array ac-
cessed inside a loop. This phase relies on a cost model to
find the best simplification. For ClearSpeed, because of the
performance penalty, we extended the cost model to avoid
expressions involving the PE number. The matrix-multiply
example described in Section 4 already used this optimiza-
tion. Without this optimization, the internal kernel would
have been the one in Figure 4(a), where PROC0 stands for
the PE number. Thanks to the simplification, it can be trans-
formed to the one in Figure 4(b).

5.3 Full-Tile Extraction & Normalization

It may happen that the workload cannot be distributed in
a perfect way between the PEs because it is not possible to

doall (l = 384*i+4*PROC0; l <= 384*i+4*PROC0+3; l++)
doall (m = 8*j; m <= 8*j+7; m++)
reduction for (n = 64*k; n <= 64*k+63; n++)
C l[-384*i+l-4*PROC0][-8*j+m] +=

A l[-384*i+l-4*PROC0][-64*k+n] *
B l[-8*j+m][-64*k+n];

(a) Internal Kernel Without Simplification

doall (l = 0; l <= 3; l++)
doall (m = 0; m <= 7; m++)

reduction for (n = 0; n <= 63; n++)
C l[l,m] += A l[l,n] * B l[m,n];

(b) Simplified Internal Kernel (no SIMDization)

Figure 4. Example of Transformation Simpli-
fication For Matrix-Multiply Kernel

build tiles all of the same shape. This may happen because
either the original iteration domain is complex or it has to be
transformed to extract parallelism. In such a case, a given
PE may have to execute a tile of a different shape than other
PEs. This phenomenon is illustrated in Figure 5. The figure
shows a very simple polynomial multiplication kernel with
a rectangular iteration domain (Figure 5(a)) that requires a
transformation of its iteration space called skewing to ex-
pose parallelism (Figure 5(b)). Then we use the extracted
parallelism to create blocks of workload to be distributed
across the PEs thanks to the tiling transformation. The tiled
code is shown in Figure 5(c) (for clarity reasons we keep the
outer loop on the PEs visible and we do not show explicit
memory transfers). The outermost loop on the iterator i is
the parallel loop on the 96 PEs. Hence i is a poly variable
and all expressions using i are poly expressions. It follows
that due to a snowball effect, all loops in this tiled code are
inefficient poly loops.

The reason for this situation is that the same code is used
to perform the workload of the full tiles (that have a fixed
size determined by the compiler) as well as the partial tiles.
Because the compiler knows which loops iterate over the
tiles and which loops actually achieve the workload inside a
tile, it is possible to separate the processing of the full tiles
and the partial tiles.

This separation is done at the code generation step [11].
For each statement, we start by determining a set of condi-
tions (a lower bound and an upper bound) on each intra-tile
dimension that ensures a constant number of iterations are
spanned by the given intra-tile dimension. We perform this
extraction for each intra-tile dimension. We subsequently
perform projections to derive the necessary conditions ex-
clusively on the inter-tile dimensions to derive a full tile.
These necessary conditions are attached to each statement
as a predicate at the start of polyhedral scanning. When
the first inter-tile dimension is reached during scanning,
the predicates for all statements are combined and sepa-

for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
C[i+j] += A[i] * B[j];

}
}

i

j

(a) Original Kernel with Rectangular Iteration Domain

doall (i = 0; i <= 2*n-2; i++) {
for (j = max(0, i-n+1); j <= min(n-1, i); j++) {
C[i] += A[j] * B[i - j];

}
}

i

j

(b) Extraction of a Parallel Loop (doall) by Iteration Domain Skewing

doall (i = 0; i <= 95; i++) {
doall (j = (95 - i) / 96;

j <= floorDiv(-116 * i + n - 1, 11136); j++) {
for (k = max((232*i + 22272*j - n + 1) / 152, 0);

k <= min(floorDiv(n - 1, 152),
(29*i + 2784*j + 2821) / 19 - 147); k++) {

doall (l = max(232*i + 22272*j, 152*k);
l <= min(2*n + -2, 152*k + n + 150,

232*i + 22272*j + 231); l++) {
for (m = max(152*k, l - n + 1);

m <= min(n - 1, 152*k + 151, l); m++) {
C[l] += A[m] * B[l - m];

}
}

}
}

}

Partial Tile

i

j
or

Full Tile

(c) Tiling of 232x152 With an Outer Loop On the PEs Number

doall (i = 0; i <= 95; i++) {
doall (j = (95 - i) / 96; j <= floorDiv(-52*i + n + -1, 4992); j++) {
for (k = max(0, (104*i + 9984*j - n + 1) / 152) ;

k <= min(floorDiv(n - 1, 152), (13*i + 1248*j + 1285) / 19 - 67); k++) {
if (-104*i -9984*j + 152*k + n >= 104) {

if (104*i + 9984*j - n >= -1 && -152*k + n >= 152) {
doall (l = 0; l <= 103; l++) {

for (m = 0; m <= 151; m++) {
C[l - 104*i - 9984*j] += A[m - 152 * k] * B[l - 104*i - 9984*j - m - 152 * k];

}
}

}
if (-104*i -9984*j + n >= 2 && 13*i + 1248*j -19*k >= 19) {
doall (l = 0; l <= 103; l++) {

for (m = 0; m <= 151; m++) {
C[l - 104*i - 9984*j] += A[m - 152*k] * B[l - 104*i - 9984*j - m - 152*k];

}
}

}
}
if (!(-152*k + n >= 152 && -104*i -9984*j + 152*k + n >= 104 &&

104*i + 9984*j - n >= -1 || 13*i + 1248*j - 19*k >= 19 &&
-104*i - 9984*j + n >= 2 && -104*i -9984*j + 152*k + n >= 104)) {

doall (l = max(152*k, 104*i + 9984*j);
l <= min(104*i + 9984*j + 103, 2*n - 2, 152*k + n + 150); l++) {

for (m = max(l - n + 1, 152*k); m <= min(n - 1, 152*k + 151, l); m++) {
C[l] += A[m] * B[l - m];

}
}

}
}

}
}

(d) Code After Full Tile Extraction & Normalization

Figure 5. Full Tile Extraction & Normalization for Polynomial Multiplication

rated. The combined predicates are intersected into each
statement’s domain and a clone of the statement is created
with the negated predicate. Polyhedral domain simplifica-
tion occurs to cleanup redundancies. After this transforma-
tion, the trip count of every intra-tile loop is constant but
their bounds may still depend on the PE number to reflect
their position in the original iteration space. A last step of
normalization to 0 moves the offset to the statement expres-
sions and allows the intra-tile loops to be non-poly.

Applying this code generation scheme to our example
leads to the code in Figure 5(d). In this code, there are two
parts. The first one corresponds to the full tiles where the in-
ner loops (intra-tile) have constant bounds and are non poly.
The second part is devoted to scanning the partial tiles and
have poly intra-tile loops. Unfortunately because of the nor-
malization, the array subscripts in the statements are more
complex. However (without other positive memory trans-
fer effects), the final code in Figure 5(d) is 30% faster than
the one in Figure 5(c). The construction of full-tiles has al-
ready been used, for instance when considering parametric
tiling [6], however, to the best of our knowledge, this is the
first time a solution is proposed as a code generation step in
the Polyhedral Model and applied to the control overhead
minimization problem.

6 Conclusion

The learning curve to achieve good performance using
accelerators may be high because of the need to deeply
understand their architectures and their specific languages.
ClearSpeed accelerators are no exceptions as in addition
to the architecture properties, three abstraction levels have
to be learned: CSXAPI, Cn and vector intrinsics. Ulti-
mately, assembly may be necessary to achieve the best per-
formance. To bridge the gap between the power-efficient,
high performance potential of the CSX700 architecture and
the user needs, the availability of an optimizing compiler is
necessary.

R-Stream is a multi-platform high-level compiler that,
thanks to machine models and possibly some adaptations of
a few phases, may be extended to target new architectures in
a much faster way than designing a new target-specific op-
timizing compiler from scratch. In this preliminary work to
target ClearSpeed CSX700, in addition to the necessary new
back end to support Cn, only two phases have been modi-
fied (Memory Promotion and Thread Generation) and one
created (SIMDization) in the Polyhedral Mapper. The cur-
rent state of the implementation does not perform as well as
the libraries, but it demonstrates the feasibility of automat-
ing the difficult transformations from sequential C source to
Cn and ClearSpeed vector intrinsics, potentially achieving
a reasonable percentage of peak performance and providing
maximum flexibility to programmers. This productivity is

granted to the users as long as they conform as much as pos-
sible to the Static Control Program paradigm, hence with no
need for learning at new architecture nor new language.

Ongoing work on supporting ClearSpeed CSX700 fo-
cuses on communications, in particular to support multi-
buffering and the swazzle path that allows near-neighbor
communications for PEs.

References

[1] U. Bondhugula, A. Hartono, J. Ramanujan, and P. Sadayap-
pan. A practical automatic polyhedral parallelizer and local-
ity optimizer. In ACM SIGPLAN Programming Languages
Design and Implementation (PLDI ’08), Tucson, Arizona,
June 2008.

[2] ClearSpeed Inc. Cn Standard Libraries Reference Manual,
Document 06-RM-1139. 2008.

[3] ClearSpeed Inc. CSX700 Floating Point Processor
Datasheet, Document 06-PD-1425. 2008.

[4] ClearSpeed Inc. Software Development Kit Reference Man-
ual, Document 06-RM-1600. 2008.

[5] P. Feautrier. Some efficient solutions to the affine scheduling
problem. part I. One-dimensional time. International Jour-
nal of Parallel Programming, 21(5):313–348, October 1992.

[6] A. Hartono, M. Baskaran, C. Bastoul, A. Cohen, S. Krish-
namoorthy, B. Norris, J. Ramanujam, and P. Sadayappan.
Parametric multi-level tiling of imperfectly nested loops. In
Proceedings of the ACM International Conference on Su-
percomputing (ICS’09), pages 147–157, Yorktown Heights,
New York, June 2009.

[7] R. Lethin, A. Leung, B. Meister, P. Szilagyi, N. Vasilache,
and D. Wohlford. Final report on the the R-Stream 3.0 com-
piler DARPA/AFRL Contract # F03602-03-C-0033, DTIC
AFRL-RI-RS-TR-2008-160. Technical report, Reservoir
Labs, Inc., May 2008.

[8] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso,
B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,
K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE,
special issue on ”Program Generation, Optimization, and
Adaptation”, 93(2):232– 275, 2005.

[9] R. Schreiber and D. C. Cronquist. Near-optimal allocation
of local memory arrays. Technical Report HPL-2004-24,
Hewlett-Packard Laboratories, Feb. 2004.

[10] N. Vasilache. Scalable Program Optimization Techniques In
the Polyhedral Model. PhD thesis, University of Paris-Sud,
September 2007.

[11] N. Vasilache, C. Bastoul, and A. Cohen. Polyhedral code
generation in the real world. In Proceedings of the In-
ternational Conference on Compiler Construction (ETAPS
CC’06), lncs, pages 185–201, Vienna, Austria, March 2006.
Springer-Verlag.

