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ABSTRACT
Large language model (LLM) accuracy and token generation rate are fundamentally limited by both DRAM
footprint and bandwidth, making them challenging to deploy on mobile devices. To improve the size-accuracy
trade-off criticial to mobile LLMs, Vector Quantization (VQ) has recently been proposed. However, while previous
VQ methods demonstrated footprint reduction, they have failed to demonstrate token rate gains over standard INT4
quantization on Nvidia GPUs, and do not even consider mobile devices. The reason for this is the large codebooks,
which are too slow to index at inference time. In this work, we co-design our VQ representation, post-training
quantization flow, and LLM software inference engine, to enable efficient inference on mobile devices. We
propose a novel post-training quantization algorithm, GPTVQ, that quickly and accurately compresses a wide
range of LLMs, specifically resulting in small per-block LUTs, which are fast to decode using existing CPU LUT
instructions. Using a custom LLM software inference engine, we demonstrate VQ LLMs running on mobile CPU,
and measure a simultaneous DRAM footprint reduction of 19% and token rate improvement of 10% compared
to industry standard INT4, at little harm to accuracy, and outperforming llama.cpp. Finally, for task-specific
scenarios, we demonstrate that combining GPTVQ base model with the orthogonal approach of LoRA adapters
results in a significant improvement of accuracy over previous adapter-based methods.

1 INTRODUCTION

Large language models (LLMs) enable unprecedented im-
provements in usability on mobile devices, providing gen-
eral AI assistance across a broad swathe of natural language
processing use cases. They also form the backbone for
multi-modal models that recognize and interpret images (Liu
et al., 2023; Lin et al., 2023c), transcribe and analyze au-
dio (Zhang et al., 2023), and even process video content (Lin
et al., 2023a; Cheng et al., 2024), making them a central and
indispensable tool in modern computing.

However, the sheer size of LLMs makes them challenging
to deploy on mobile devices for two reasons, both pertaining
to DRAM main memory constraints. Firstly, the required
model footprint is prohibitive in mobile devices, limiting
achievable accuracy. Typical mobile phones have around
8GB of total DRAM memory (Wikipedia, 2024), with the
OS and active apps easily occupying more than half of
this, typically leaving less than 4GB for an LLM. Secondly,
DRAM bandwidth limits achievable token generation rates,
since the autoregressive nature of LLMs requires loading
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every single weight once for each generated token. This is
particularly severe in the common case of moderate context
length of up to 8K–16K tokens (Kim et al., 2023; Hooper
et al., 2024). Therefore, reducing the stored model footprint
is critical to relaxing both of these impediments.

To directly address the compute-bound nature of LLM token
generation, we explore how to trade a small increase in
(surplus) compute for a commensurate decrease in valuable
weight footprint and bandwidth. We propose to do this using
Vector Quantization (VQ) (Stock et al., 2019; Tseng et al.,
2024; Egiazarian et al., 2024; Malinovskii et al., 2024b),
which is a SOTA approach that uses a non-uniform number
system in multiple dimensions to aggressively reduce LLM
footprint. Since we cannot compute on the VQ encoded data
directly, we must first decode to a native data type. Hence,
we use VQ only as a storage data type.

VQ provides an improvement in model size vs accuracy,
which will ideally improve all of: footprint, bandwidth and
token rate. However, although the token rate improvement
is expected since the workload is heavily bandwidth bound,
it is not guaranteed, due to the overhead for decoding VQ
back to a native type before use. If carefully designed, this
overhead is more than offset by the reduction in memory
bandwidth, enabling either a larger number of parameters
(higher accuracy) at the same DRAM footprint and token
rate, or a higher token rate and smaller footprint for the

https://arxiv.org/abs/2402.15319v2
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Figure 1. The proposed hardware-friendly representation and GPTVQ method. Top: During quantization, the FP16 weights are split
into groups with their own small codebook. Bottom: During inference, the codebooks and indices are moved from DRAM to SoC
independently from each other. The codebook is implemented as a lookup table (LUT) available on modern mobile CPUs.

same number of parameters. However, previous research on
VQ targets cloud GPU platforms only, and uses very large
codebooks, which are not efficient for implementation on
mobile CPUs.

In fact, we find that VQ decoding is most efficiently imple-
mented on mobile devices using existing hardware lookup
table instructions, present on mobile CPUs and also on
many NPUs and GPUs. These instructions typically map
a 5- or 6-bit index to an 8-bit value. Critically, this means
that very large lookup tables or high VQ dimensions, such
as those used by AQLM (Egiazarian et al., 2024), require
many calls to the lookup table instruction, leading to signif-
icant decoding latency. In this work, we demonstrate the
potential of VQ footprint compression running on mobile
CPU, by co-designing the VQ compression algorithm with
the software implementation.

Figure 1 demonstrates our approach. During post-training
quantization, we divide the FP16 weights into groups. For
each group, a table of indices and a corresponding codebook
is derived. During inference, the indices and codebooks are
stored in DRAM, before being transferred to the CPU cache
on the SoC, where they are decoded to a native data type and
used in matrix multiplication. To minimize the quantization
error due to our VQ representation, we introduce a novel

post-training quantization method, GPTVQ. The quantiza-
tion of each weight matrix is implemented as a single pass
from left to right, which is highly efficient. The quantization
error is compensated by updating the remaining unquantized
weights. Finally, we implement a custom LLM inference
software engine for mobile CPU, to demonstrate that our
end-to-end VQ method can reduce footprint and increase
token rate, without compromising accuracy.

The contributions of this work are summarized as follows:

• We describe an optimized VQ representation that is not
only footprint efficient, but also fast to decode. This
is achieved by co-designing the VQ parameters, in-
cluding the bitwidths, number of dimensions and LUT
size, with the mobile CPU software implementation, to
efficiently leverage existing hardware ISA extensions
for fast LUT decoding.

• We implement and benchmark a full LLM inference
stack supporting VQ decompression on mobile CPU.
Results demonstrate that VQ reduces DRAM footprint
by 19% while increasing the token rate by 10%, com-
pared to a 4-bit integer baseline.

• We propose a fast and accurate algorithm for post-
training VQ compression (GPTVQ), which achieves
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favorable size vs accuracy trade-offs on a wide range
of LLMs, while having a practical offline run time of
only 3 to 11 hours on a 70B parameter model.

• We also show that our VQ approach is complementary
to the popular use of adapters with LLMs, which gives
an additional opportunity to recover accuracy loss from
aggressive quantization on mobile devices.

2 BACKGROUND AND MOTIVATION

In this section we motivate the use of VQ as a storage data
type. We will first establish notation for VQ and explain
why VQ provides better representational accuracy than tradi-
tional uniform quantization. Then, we will discuss existing
VQ methods and their drawbacks. Lastly, we discuss re-
quirements of on-device implementation of VQ storage type
decoding to a native compute data type, and how existing
approaches aimed at cloud GPU environments fall short for
mobile application.

2.1 Uniform, non-uniform, and vector quantization

A symmetric uniform quantizer approximates an original
floating point vector x ∈ RD as x ≈ sxint, where each
element in xint is a b-bit integer value and s is a higher
precision quantization scale, shared across the components
of x.

A more flexible quantization approach is non-uniform quan-
tization, in which floating point numbers are discretized to
arbitrary scalar centroids stored in a codebook C : C =
{c1, c2, . . . , ck}. Each high precision value in x is then rep-
resented by the index j of a centroid cj . Each index is stored
in ⌈log2 k⌉ bits. Even more flexible quantizer can be con-
structed using a higher-dimensionality for the centroids of
C. In this case, each centroid in C encodes d values, e.g.,
pairs of values if d = 2, and each group of d values in x
is represented by a single index into Cd, where Cd denotes
a codebook with elements of dimensionality d (Gersho &
Gray, 2012).

Increasing the dimensionality of the codebook via VQ, in-
creases the flexibility of the quantization grid. Figure 2 (top)
gives a visual representation of this. In this example, where
we quantize each value in the original to a 3-bit representa-
tion, i.e., 6 bits for each pair of values, we can see that the
number of points stays the same, i.e., 26 = 64, but the dis-
tribution of the centroids with VQ can more closely match
the underlying distribution, increasing the accuracy of the
representation.

The representational accuracy increases the more the di-
mensionality of the codebook increases. Figure 2 (bot-
tom) shows signal-to-quantization-noise ratio (SQNR) as
the accuracy measure. SQNR is defined in the log scale

Figure 2. Top: Illustration on how vector quantization can fit bet-
ter 2D normal data, compared to uniform and non-uniform grids.
Bottom: SQNR increases with quantization dimensionality on
Llama-v2 7B weights, due to additional flexibility in the quantiza-
tion grid.

as: SQNRdB = 10 log10
(
E
[
W 2

]
/E

[
(W −Q(W ))2

])
,

where Q(·) is the quantization function. We can see the
improvement in representational accuracy of higher d for
Llama-v2 7B weights. Note that, as d grows, so does the
codebook size. For fair comparison, we ensure the code-
book overhead is always equal to 0.25 bit per weight for each
quantization method, i.e., improved SQNR is not caused
trivially by using more bits in total for our representations.

2.2 Prior work on vector quantization

Due to its ability to represent data more flexibly at very low
bit-widths, vector quantization has received increased atten-
tion recently. The AQLM method introduced in (Egiazarian
et al., 2024) employs vector quantization to compress LLMs
down to approximately 2 bits per weight, with significantly
improved accuracy compared to uniformly quantized mod-
els at the same bit width. Their method consists of 3 stages.
1) A codebook initialization step, where a weight tensor is
reshaped into a matrix with d columns and the codebook is
initialized using k-Means; 2) 100 iterations of an EM-style
phase, in which one epoch of a gradient-based codebook
fine-tuning is followed by a beam search that updates code-
book indices to minimize layer-wise reconstruction error;
and 3) a full block fine-tuning step in which the entries of the
codebooks for all layers in a decoder block are fine-tuned to
minimize the output error of the block. AQLM uses vector
dimensions d = 8. At 2 bit per dimension, this means that
each codebook contains 216 8-bit vectors.

While AQLM shows good quantization accuracy, the EM-
style phase and the following block fine-tuning are expen-
sive to run. In our experiments on a single H100, Llama



Efficient LLM Inference using Vector Quantization on Mobile CPUs

v2-7B quantization takes approximately 35 hours.

More recently, PV-tuning (Malinovskii et al., 2024b) intro-
duces an end-to-end training method for non-uniform and
VQ quantization. Similar to uniform quantization, gradi-
ents cannot be backpropagated through centroid indices. In
uniform quantization, a method commonly used to circum-
vent this issue is the straight-through estimator (STE). With
STE, during the backward pass, the gradient of the loss with
respect to the quantized weights is passed ’straight-through’
to the unquantized (shadow) weights without modification.
The PV-tuning authors show that this approach does not
work for VQ, as updating all weights simultaneously leads
to too-large updates. Instead, to learn centroid indices, the
authors introduce a trust ratio that restricts weight updates
to a small subset. Using this method the authors show im-
proved model accuracy compared to models quantized using
AQLM.

2.3 VQ model deployment and limitations of existing
methods

To avoid introducing extra latency in the decoding step from
storage data type to compute data type, decoding needs to
be extremely efficient and faster than the DRAM bandwidth.
The most efficient way to decode VQ weights is by using
the lookup table instruction (LUT) which is present in all
modern mobile CPUs. The LUT instruction maps a 6-bit
index to an 8-bit value. This means that, for 2D VQ, 2 LUT
instructions must be called, one for each dimension. The
6-bit index implies that VQ codebooks should contain at
most 64 entries. For this reason the setting used by recent
VQ methods such as AQLM is not conducive to good on-
device performance: Using, e.g., 16-bit indices (the 2.29
bpv in (Egiazarian et al., 2024)) precludes the use of the
efficient LUT instruction, and instead requires the use of the
less performant SVE gather instruction.

Armed with this knowledge, we design a VQ representation
using fewer bits per index and lower dimensionality, and
show that this can achieve model accuracy competitive with
traditional INT4 quantization and other VQ approaches.
Furthermore, we show that this setting can be implemented
efficiently for inference on mobile CPU.

3 ON-DEVICE IMPLEMENTATION

In this section we describe our on-device implementation.

3.1 Mobile-friendly quantized tensor representation

The most common approach to LLM quantization on mobile
CPU platforms is to use 4-bit integer for each element in a
tensor with a scale factor shared among a group of elements.
This approach is widely adopted, e.g., by the open source

Llama.cpp1 project. Our VQ implementation follows a
similar scheme, with tensors split into groups of elements,
each with a scale factor. In addition, we store for each
block a lookup table that is used to decode VQ elements.
Hence, each group of weight elements is stored as a tuple
of 1) the VQ encoded element indices, 2) the associated
LUT for decoding, and 3) a quantization scale factor. While
the GPTVQ algorithm presented in the next section can be
applied to any dimensionality or index bitwidth, for our
practical implementation we choose a fixed configuration of
2D VQ, with 6-bit indices, i.e., 3 bits per weight. This allows
our LLM inference software implementation to leverage the
6-bit to 8-bit LUT instruction.

3.2 LLM Inference Software Implementation

The inference software we use to benchmark our VQ ap-
proach is an in-house implementation of a highly parame-
terizable transformer architecture that supports major large
language models. It is written in C with vector intrinsics for
accelerating matrix multiply and similar kernels on mobile
CPU using SIMD extensions and the like. Furthermore, it
leverages the structural properties of transformers for effi-
cient coarse-grain parallelization and high-level polyhedral
compiler capabilities for fine-grain vectorization.

To support VQ in the inference engine, the 6-bit indices are
packed tightly and stored in memory along with the lookup
tables and quantization scales, organized to enable efficient
vectorization. During inference, each block is decoded as
follow: The tuple of block data is loaded from DRAM onto
the SoC, and into the CPU cache, c.f. Figure 1. Here, the
VQ decode kernel uses the native mobile CPU LUT instruc-
tions to efficiently perform lookups quickly, converting 6-bit
index to signed 8-bit integer data. These integer values are
then used in the downstream matrix-vector multiplications.

4 THE GPTVQ ALGORITHM

In this section, we introduce our GPTVQ algorithm, a
novel method for efficient and accurate post-training vector-
quantization of LLMs, which extends the GPTQ (Frantar
et al., 2022) algorithm to VQ. Appendices A, F ,G, and H
present extensions to GPTVQ, including Codebook SVD,
Blockwise Data Normalization, an extended EM initializa-
tion algorithm, and a codebook update procedure.

Neural network quantization reduces model size as well as
compute and energy requirements, but introduces quantiza-
tion noise. A large body of literature exists with methods
to alleviate the effects of quantization noise on model accu-
racy, see (Nagel et al., 2021; Gholami et al., 2022) for re-
cent surveys. Post-training quantization (PTQ) approaches
aim to mitigate the adverse effects of quantization noise

1https://github.com/ggerganov/llama.cpp

https://github.com/ggerganov/llama.cpp
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Algorithm 1 GPTVQ algorithm: Quantize a weight tensor
W ∈ Rr×c given the inverse Hessian H−1, the block size
B, VQ dimensionality d, the number of centroids k, and the
group size l. To simplify the notation, we assume one group
per column.

1: Nb ← c
B ▷ the number of blocks

2: m← l
r ▷ the number of columns in a group

3: Q← 0r,c

4: E← 0r,c

5: Ng ← rc
l ▷ the number of groups/codebooks

6: Ci ← 0d,k, i = 1, . . . , Ng

7: H−1 ← Cholesky(H−1)T

8: for i = 0, B, 2B, . . . , NbB do
9: if i % m = 0 then

10: g ← i
m ▷ the group index

11: Cg ← init_codebook [W:,i:i+m−1]
12: end if
13: Q:,i:i+m−1← QUANTGROUP(W:,i:i+m−1)
14: W:,i+B: ←W:,i+B: −E · [H−1]i:i+B,i+B:

15: end for

on pre-trained networks, without having to resort to costly
quantization-aware training (QAT). A popular and effective
approach in PTQ, introduced by AdaRound (Nagel et al.,
2020), is to modify weights to minimize a layer’s output
error as an approximation to the full network’s loss:

E [L(θ + ϵ)− L(θ)] ≈
∑
ℓ

||WℓXℓ − ŴℓXℓ||2F , (1)

where Wℓ is the weight for layer ℓ, Ŵℓ = Wℓ + ϵℓ is the
(quantized) approximation to this weight tensor, and Xℓ of
shape R×N denotes the input data for layer ℓ from a calibra-
tion dataset, with N individual data points of dimensionality
R along its columns.

Algorithm 2 QuantGroup: VQ quantization for a group of
weights W ∈ Rr×m given the inverse Hessian H−1, the
block size B, VQ dimensionality d

1: function QUANTGROUP(W)
2: for j = 0, d, 2d, . . . , l do
3: P = j, . . . , j + d− 1
4: Q:,P ← VQ_quant [W:,P ,Cg]
5: E:,P ← (W:,P −Q:,P ) [H

−1]P
6: U←

∑d−1
p=0 E:,j+p[H

−1]p,j+d−1:B

7: W:,j+d−1:B ←W:,j+d−1:B −U
8: end for
9: end function

Preliminary: GPTQ GPTQ follows Optimal Brain Quan-
tization (OBQ; (Frantar & Alistarh, 2022)), which uses the
Hessian of Equation 1. This Hessian can be efficiently com-
puted as H(ℓ) = X(ℓ)X(ℓ)T . Like OBQ, GPTQ aims to

minimize the Hessian-weighted error introduced by quantiz-
ing weights in W(ℓ):

E =
∑
q

|Eq|22; Eq =
(W:,q − quant(W:,q))

2[
H−1

]
qq

. (2)

GPTQ extends OBQ in the following ways. First, GPTQ
exploits the fact that H(ℓ) is shared over all rows of W(ℓ)

by quantizing all weights in a column in parallel, from left
to right. This obviates the need for independent Hessian
updates for different rows. After quantizing a column q,
all remaining (unquantized) columns q′ > q are modified
with a Hessian-based update rule δ that absorbs the error
introduced by quantizing column q on the layer’s output:

δ = −W:,q − quant(W:,q)[
H−1

]
qq

H:,(q+1): (3)

To reduce data transfer, GPTQ applies the update of Equa-
tion 3 only to a small block of B columns in which column
q resides. Note that such blocks enable an efficient weight
update implementation. To update the columns outside of
block B, the error Eq in Equation 2 is accumulated while
the columns in block B are processed, and are applied in
one go to all columns outside of block B after all columns
in block B are processed. Lastly, GPTQ uses a Cholesky
decomposition for updating the inverse Hessian H−1, which
introduces a more numerically stable alternative to the in-
verse Hessian row and column removal operations of OBQ.

Codebook Initialization Unlike traditional GPTQ, VQ
requires a codebook for each group of weights. To initial-
ize the codebook for a group of weights, we propose the
following variant of the EM algorithm. Given the set of
d-dimensional vectors x(i), our goal is to find k centroid
vectors c(m) and the corresponding sets of indices Im point-
ing at the centroid m. The objective is the following sum of
weighted distance functions:

min
I,c(0),...,(k)

k∑
m=0

∑
i∈Im

(
x(i) − c(m)

)T

D(i)
(

x(i) − c(m)
)
,

(4)
where D = diag

(
1/[H−1]11, . . . , 1/[H

−1]cc
)

and D(i) is
a d× d subset of D corresponding to the data point xi. E.g.
for 2D vector quantization, these matrices are share among
pairs of columns. For the case of D(i) equal to identity, the
clustering method is equivalent to K-means. The objective
can be minimized using E- and M-steps as follows.

E-step: keeping the values of the centroids fixed, find cen-
troid assignment c(i) for each unquantized d-dimensional
vector x(i) that minimizes the objective (4). Using this
distance function assigns optimal centroids based on the
data-aware loss.
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c(i) = argmin
m

(
x(i) − c(m)

)T

D(i)
(

x(i) − c(m)
)
, (5)

M-step: keeping the assignments found in the E-step fixed,
find the centroid value c(m) that minimizes

c(m) = argmin
c

∑
i∈Im

(
x(i) − c

)T

D(i)
(

x(i) − c
)
. (6)

This objective is a quadratic form w.r.t c(m). The
optimal value is computed in a closed form as

c(m) =
(∑

i∈Im
D(i)

)+ (∑
i∈Im

D(i)x(i)
)

, where (·)+ is
a Moore–Penrose pseudoinverse. During the vector quan-
tization operation on line 4 in Algorithm 2, we use the
assignment step defined in Equation 5 as well. Practically,
we find no performance difference between using the inverse
Hessian diagonal, or the full d-dim inverse sub-Hessian.

GPTVQ To efficiently and accurately quantize pre-trained
floating point LLMs to our VQ storage format, we gen-
eralize the GPTQ framework to non-uniform and vector
quantization.

Following the GPTQ framework we perform quantization of
the weight tensor in a greedy manner starting from the first
column. The details of the method are given in Algorithm 1.
For a VQ dimensionality d, we quantize d columns at a
time. Although quantizing d elements of a single column
instead of d columns would absorb the quantization error
more effectively, we choose to quantize d columns at a time
as this layout allows for a much more efficient on-device
implementation.

When quantizing a d-dimensional vector, we find the cen-
troid in the codebook for the current block that minimizes
the objective in Equation 4. After quantizing d columns,
we update the remaining weights using the update rule (3).
We accumulate the update along d coordinates and apply
it to the remaining weights as a single operation. To allow
for a hardware-friendly representation, we use several code-
books per layer, each assigned to a group of weights (see
Algorithm 1). We use group sizes of at most 256 columns,
to ensure codebook initialization can capture the previous
updates of (3). For example, a group of 2,048 weights is 8
rows by 256 columns.

Total bits per value As a measure of total model size,
we compute bits per value (bpv), given by log2(k)/d +
kdbc/l , where k is the number of centroids, d is the V Q
dimensionality, bc is the codebook bit-width, and l is the
group size, i.e., the number of weights sharing a codebook.
We choose values for k s.t. log2(k) is an integer.

5 EXPERIMENTS AND RESULTS

In this section we compare on-device token generation rate
of our VQ method to uniformly quantized models. Further-
more, we evaluate GPTVQ and compare the performance of
vector quantization in 1, 2 and 4 dimensions against uniform
quantization baseline methods.

5.1 On-device VQ inference evaluation and
comparison

To investigate the effect of VQ quantized models on model
DRAM footprint and token rate, we run our optimized
VQ decoding kernel with our in-house implementation of
a highly parameterizable transformer architecture, as de-
scribed in Section 4. We benchmark the latency and DRAM
footprint on a Snapdragon® X Elite platform, and further
compare our implementation to the open source llama.cpp
implementation baseline on the same platform. The mobile
platform we used runs Windows, and we used Clang 18.1
with Polly enabled.

We measure end-to-end inference token rate for a Llama3-
8B model using three different quantization scenarios: 1)
llama.cpp Q4_0 INT4 quantization; 2) our implementation
with INT4 g128; and 3) Our implementation with 2D VQ,
at 3.125 effective bits per weight. The latter uses 3 bits per
dimension, i.e. 6-bit indices, and a group size of 8,192.

Results of this experiment can be found in Table 1. Firstly,
we note that our INT4 implementation baseline greatly im-
proves token rate compared to llama.cpp. Secondly, we note
that, within our optimized implementation, VQ provides a
10% increase in token rate compared to INT4 g128 quanti-
zation. Lastly, we note that our VQ model has significantly
lower footprint than the INT4 quantized models.

In conclusion, when deployed on a mobile CPU, our VQ
setting yields significantly lower footprint and significantly
higher token rates than an INT4 model, even when compared
to a highly optimized INT4 implementation.

5.2 GPTVQ evaluation

Models We use Llama-1 (Touvron et al., 2023a), Llama-2
(Touvron et al., 2023b), and Llama-3 as well as Mistral-
7B-v0.1 (Jiang et al., 2023) and Mixtral-MoE-8x7B-v0.1
(Jiang et al., 2024). Additionally, we run a single ablation
on BLOOM-560M (Workshop et al., 2022).

Datasets Following Shao et al. (2023), we use 128 se-
quences of 2048 tokens from the WikiText2 (Merity et al.,
2016) training set as calibration data for all experiments.
We evaluate our models on token perplexity for the Wiki-
Text2 validation set for a sequence length 2048, as well as
zero-shot language tasks: PIQA (Bisk et al., 2020), ARC-
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Table 1. LLM token generation on mobile device for Llama-v3-8B. The top row shows model footprint and token rate numbers for a
model deployed using llama.cpp, the two bottom rows show deployment using our implementation.

Bits per value Format Block size Engine Footprint [GB] ↓ Throughput [tok/s] ↑
4.5 INT4 32 llama.cpp 4.64 17.95±1.01

4.125 INT4 128 Ours 4.33 23.81±0.27

3.125 VQ 2D 8,192 Ours 3.52 (-19%) 26.15±0.31 (+10%)

easy/-challenge (Clark et al., 2018), BoolQ (Clark et al.,
2019), HellaSwag (Zellers et al., 2019), and WinoGrande
(Sakaguchi et al., 2021). For Llama3, following (Huang
et al., 2024), we omit BoolQ from the zero-shot average
to allow fair comparison to the zero-shot results in (Huang
et al., 2024). For all evaluation tasks except WikiText2
perplexity we use the LLM-evaluation-harness (Gao et al.,
2023).

Baselines We compare GPTVQ to various uniform quan-
tization methods with different group sizes, at the same
overall bits-per-value (bpv). We include Round-to-Nearest
(RTN) and several recent state-of-the-art PTQ approaches
for LLMs: GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023b), and OmniQuant (Shao et al., 2023). We take AWQ
and OmniQuant baseline numbers from (Shao et al., 2023),
all Llama3 baseline numbers from (Huang et al., 2024), and
generate all other baseline numbers ourselves. In Section 5.2
and Appendix E.1 we provide a more detailed comparison
to other VQ approaches, most notably AQLM (Egiazarian
et al., 2024), recent work that applies VQ to LLMs in a
different manner.

Codebook overhead For a given bits per index b and VQ
dimensionality d, we set group size l to reach an overhead
of 0.125 bits per value for all values of b, and additionally
consider an overhead 0.25 bits per value for b = 2. These
are chosen to match the overhead incurred by a 16-bit quan-
tization scale for the commonly used group size of 128 (e.g.,
(Frantar et al., 2022)) and the group size of 64 used by (Shao
et al., 2023).

Comparison to scalar quantization Table 2 summarizes
results for GPTVQ, where we report WikiText 2 perplexity
and an average over zero-shot task scores for the PIQA,
BoolQ, ARC-easy, ARC-challenge, HellaSwag and Wino-
Grande tasks. We include all Llama-v2 models, Mistral-7B-
v0.1 and Mixtral-8x7B-v0.1. More results are in appendix
D: Table 10 and Table 11 contain individual scores for the
zero-shot tasks, Table 8 contains WikiText2 perplexity for
all Llama-v1 models, and Table 9 shows perplexity on 4
bit quantization. Full VQ configurations can be found in
Table 7.

These tables show that non-uniform quantization using

GPTVQ generally yields improved results over uniform
PTQ methods. This gap becomes especially large at low
bitwidths and for very large models. For example, compar-
ing GPTVQ 2D on Llamav2-70B to OmniQuant W2@g128,
we see an improvement of nearly 2 perplexity points. Fur-
thermore, in nearly all cases, 2D VQ outperforms 1D VQ,
while 4D VQ shows even more significant improvements.

Comparison to other VQ methods Table 3 compares
the results of GPTVQ to AQLM and QuIP# (Tseng et al.,
2024). We use the same calibration data for AQLM and
GPTVQ (SlimPajama, 4096 samples × 2048 tokens). Fur-
thermore, we use the the original AQLM source code and
closely follow the AQLM evaluation protocol. In particular,
we use sequences of 4096 tokens from the WikiText2 test
dataset, and average zero-shot accuracy among five LLM-
evaluation-harness tasks (WinoGrande, PiQA, HellaSwag,
ArcE, ArcC).

In terms of size vs accuracy, GPTVQ is on par with AQLM
when full block fine-tuning is not used. Extra block fine-
tuning allows AQLM to achieve better performance but in-
creases the overall compression time significantly. Note that
GPTVQ was specifically designed for mobile CPU use case.
For this reason, we use smaller codebooks and a smaller vec-
tor dimension, even though this may lead to slightly worse
perplexity and accuracy compared to the 8-dimensional case
of AQLM and QuIP#, c.f. Figure 2. Further details and com-
parison can be found in Appendix E.1.

5.3 4 bit codebooks

Reducing the bit width of the codebooks to 4 bit can bring
further benefits to VQ implementations: 1) 2 values can
be decoded with 1 LUT instruction, 2) codebook overhead
is reduced, and 3) decoded tensors take up less space on
on-chip cache memory. However, reducing the codebook
bit width potentially lowers accuracy. To mitigate the ac-
curacy degradation we decode to groupwise INT4, with
groups of 128 values. We refer to these groups as codebook
quantization groups, to distinguish them from the groups
used in GPTVQ, which we denote GPTVQ groups. We then
modify the GPTVQ algorithm in the following ways: 1)
First, for each group of weights wg we find the scale sg
that minimizes |(wg−Q(wg, s, b))hb|22, where Q(wg, s, b))
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Table 2. Weight-only quantization results of Llama-v2/v3, Mistral, and Mixtral-MoE Models. We report WikiText2 perplexity and
average zero-shot accuracy; Models marked L2 denote Llama-v2, L3 denote Llama-v3, M denotes Mistral, and 8x7B denotes Mixtral-MoE
8x7B. Numbers marked in bold are SOTA or surpass it, numbers underlined are on par with or outperform at least one VQ variant. *
Following (Huang et al., 2024), Llama3-8B zeroshot average omits BoolQ.

WikiText2 perplexity ↓ Zeroshot avg acc. ↑
L2-7B L2-13B L2-70B L3-8B L3-70B M-7B 8x7B L2-7B L2-13B L3-8B∗ M-7B 8x7B

FP16 5.47 4.88 3.31 6.1 2.9 5.25 3.84 70.5 73.2 68.6 75.7 75.9

2.125
W2

g128

RTN 4e3 122 27.3 2e3 5e5 1e3 4e3 36.9 42.1 36.0 37.8 38.3
GPTQ 36.8 28.1 6.74 2e2 11.9 15.7 14.1 41.4 46.6 36.2 41.9 44.5
AWQ 2e5 1e5 - 2e6 2e6 - - - - - - -
OQ 11.1 8.26 6.55 - - - - - - - - -
Ours 1D 12.2 7.40 5.03 15.9 9.37 14.0 8.37 47.8 61.8 41.1 42.8 54.9
Ours 2D 7.77 6.52 4.72 11.3 7.37 7.53 5.92 58.6 64.5 53.9 64.5 64.4
Ours 4D 7.18 6.07 4.44 9.94 6.59 6.89 5.28 60.5 65.7 57.3 65.7 68.7

2.25
W2
g64

RTN 432 26.2 10.3 - - 71.5 156 42.4 46.4 - 44.8 46.9
GPTQ 20.9 22.4 NAN - - 14.2 10.1 47.5 54.2 - 51.8 48.8
AWQ 2e5 1e5 - - - - - - - - - -
OQ 9.62 7.56 6.11 - - - - - - - - -
Ours 1D 10.1 6.99 4.85 14.1 8.31 9.69 7.75 52.8 63.3 57.3 56.3 57.4
Ours 2D 7.61 6.41 4.58 10.8 6.83 7.24 5.58 61.5 64.8 60.3 65.3 65.7
Ours 4D 6.99 5.98 4.36 9.59 6.21 6.66 5.16 62.9 67.5 62.3 68.2 69.3

3.125
W3

g128

RTN 6.66 5.51 3.97 27.9 11.8 6.15 5.18 67.3 70.8 40.2 71.8 72.4
GPTQ 6.29 5.42 3.85 8.2 5.2 5.83 4.71 66.2 71.4 61.7 72.2 72.7
AWQ 6.24 5.32 - 8.2 4.8 - - - - - - -
OQ 6.03 5.28 3.78 - - - - - - - - -
Ours 1D 5.95 5.19 3.64 7.29 4.29 5.79 4.59 66.9 71.4 65.7 71.0 73.5
Ours 2D 5.83 5.12 3.58 7.00 4.04 5.51 4.27 68.3 71.2 66.1 73.9 75.1

Table 3. Comparison with existing SOTA VQ methods. No BFT option in AQLM denotes no block fine-tuning. This setting is the most
comparable to Our GPTVQ algorithm. For fair compression comparison, we used the original AQLM code adapting it to our GPTVQ
setup as close as possible, and also evluation protocol which is slightly different from Table 2.

Model Algorithm bpv Format WikiText2 perplexity ↓ Zero-shot avg. acc. ↑ Compression time, h ↓

L2-7B

QuIP# 2.02 8D 8.22 52.2 -
AQLM (no BFT) 2.29 8D 7.49 58.9 18.3
AQLM 2.29 8D 6.65 60.3 35.2
Ours 2.25 4D 7.11 59.2 2.5

L3-8B
AQLM (no BFT) 2.27 8D 9.86 60.9 19.9
AQLM 2.29 8D 8.71 62.7 40.4
Ours 2.25 4D 9.40 60.0 2.8

M-7B

QuIP# 2.01 8D 6.02 62.2 -
AQLM (no BFT) 2.27 8D 6.87 64.0 19.4
AQLM 2.29 8D 5.77 65.4 76.0
Ours 2.25 4D 6.68 62.7 2.8

denotes b-bit quantization of wg, using scale s, and hg is
the Hessian diagonal corresponding to block wg. 2) Then,
EM codebook initialization is applied to the GPTVQ group
of weights. These groups are generally larger than the code-
book quantization groupsize of 128. E.g., for d = 2, b = 3,
a group size of 8192 is used. Before EM, each quantzation
group g (i.e., row) in a block is scaled using the scale sg
found in the previous step, but not clipped or rounded. This
ensures that the codebook found is already on the INT4
scale, but that no further error is introduced. I.e., each row

is scaled as ws
g = 1

sg
wg , where the scaled rows ws

g are used
in EM. 3) After EM, the codebook is clipped and rounded,
but not scaled, since it is already scaled before initializa-
tion. 4) Lastly, during GPTVQ, each codebook quantiza-
tion group is scaled using the scale found in step 1 before
the nearest centroid is found: Equation 4 is modified as
c(i) = argminm

(
1

s(i)
x(i) − c(m)

)T D(i)
(

1
s(i)

x(i) − c(m)
)
,

where s(i) is the scale corresponding to vector x(i).

In Table 4 we show the effect of quantizing codebooks to



Efficient LLM Inference using Vector Quantization on Mobile CPUs

Table 4. INT4 codebooks. Perplexity for on WikiText2 for models
with 2D, 3B VQ, blocksize 4096, with codebook entries quantized
to INT4. INT4 CB column also shows PPL increase relative to
INT8 CB. ∗For Mistral-7B better results were achieved by avoiding
block quantization and instead quantizing per VQ block.

Model INT4 b128 INT8 CB INT4 CB

L2-7B 5.72 5.95 5.99 (+0.05)
L3-8B 6.73 7.00 7.29 (+0.29)
M-7B 5.34 5.51 5.77∗ (+0.26)

4 bits. For Mistral-7B, a slightly modified version of the
procedure enumerated above is used, in which the quantiza-
tion group is set equal to the GPTVQ group. For all models
considered, quantizing the codebook to INT4 yields very
minor increase in perplexity.

5.4 Combination of GPTVQ with LoRA adapters

Table 5 shows the results of fine-tuning LoRA adapters
on top of GPTVQ representation. We do not present
the WikiText2 perplexity from the LoftQ paper because
it was calculated using a different protocol than the one
currently adopted in quantization literature (Shao et al.,
2023; Egiazarian et al., 2024). First, we observe that LoRA
adapters not only help to improve WikiText2 perplexity and
GSM8k (Cobbe et al., 2021) accuracy, but also helps to
recover performance from aggressive quantization. Second,
we note that the GPTVQ and LoRA combination achieves
a noteworthy improvement over previous methods making
it a top choice for on device LLM serving with adapters,
e.g., (Gunter et al., 2024).

6 RELATED WORK

Vector quantization A number of works propose vector
quantization of CNN weights (Gong et al., 2014; Martinez
et al., 2021; Fan et al., 2020; Stock et al., 2019; Wu et al.,
2016; Martinez et al., 2021; Cho et al., 2021). The most
common approach is to reshape the weights of convolutional
or fully connected layers into a matrix, and then apply K-
means clustering directly on the columns. Typically, the
clustering is applied on scalars or vectors of dimension 4
or higher. Some of these works consider data-aware opti-
mization of the quantized weights. Most often, a variant of
the EM algorithm is used in order to update centroids and
indices (Stock et al., 2019; Gong et al., 2014). An alterna-
tive approach is using a differentiable K-means formulation,
which enables fine-tuning using SGD with the original loss
function in order to recover the network accuracy (Cho
et al., 2021; Fan et al., 2020; Tang et al., 2023). Finally,
most recent SOTA works (Tseng et al., 2024; Egiazarian
et al., 2024; Malinovskii et al., 2024b) apply layer-wise,

block-wise and even end-to-end fine-tuning on a calibration
dataset to recover accuracy loss.

LLM quantization Applying DNN quantization ap-
proaches to recent LLMs often poses significant com-
putational challenges. Therefore, even uniform post-
training quantization methods must be optimized for scal-
ability (Frantar et al., 2022). Since vector quantization
approaches have even higher computational complexity, ap-
plying them to LLM weights compression may be expen-
sive. The most similar to our work is a method (Deng et al.,
2024), which uses gradient-based layer sensitivities to up-
date the codebooks and a reduced complexity LoRA-based
approach (Hu et al., 2021) to partially recover the accuracy.

Hessian-based compression methods Several classical
works suggest second-order approximation of the neural net-
work loss function for accurate unstructured pruning (LeCun
et al., 1989; Hassibi et al., 1993). A more recent line of work
extends this family of methods to PTQ (Singh & Alistarh,
2020; Frantar & Alistarh, 2022; Frantar et al., 2022).

7 CONCLUSIONS

In this work, we have shown that vector quantization, when
properly designed, can yield significant positive impact on
token generation speed, DRAM footprint, and perplexity
on a mobile CPU. Furthermore, we have shown that VQ in
one or more dimensions progressively improves quantized
large language model accuracy. By co-designing the VQ
representation with the mobile CPU implementation, we
created a fast decode kernel, leveraging existing hardware
LUT instructions, and demonstrated an increase in decode
token rate. Lastly, we introduced GPTVQ, a fast method
for post-training quantization of LLMs that achieves com-
petitive model size vs accuracy trade-offs on a wide range
of LLMs and zero-shot tasks, using mobile friendly VQ
configurations.
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A GPTVQ ALGORITHM DETAILS
Codebook update After the procedure in Algorithm 1 is complete, we found that the output reconstruction error can be
further reduced through a codebook update. Recall that, in line 4 of Algorithm 2, Q is incrementally constructed from the
elements of C. Since this construction constitutes a lookup of values in C, the layer-wise objective can still be minimized
w.r.t C. The objective is a quadratic program and is convex:

min
C0,...,CN

||WX−QX||2F , (7)

where Q(C0, . . . ,CN ) is a look-up operation, reconstructing the quantized weights from the centroids. While this objective
can be minimized in a closed form, we find that the PyTorch implementation using gradient descent is considerably faster
while the solutions are equally good. The gradient of Q w.r.t. C can be defined simply, as constructing Q only involves a
look-up operation. In each GD step, the values in C are updated, and Q is reconstructed using the new values in C, keeping
the indices fixed.

B FURTHER ON-DEVICE RESULTS

To investigate the effect of VQ quantized models on model DRAM footprint and latency, we implemented optimized kernels
for both a popular mobile CPU architecture, and Nvidia® GeForce RTX 3080 GPU.

The CPU kernel employs the table lookup (TBL) instruction to translate an index of (at most) 5 bits to an 8 bit integer, with
two TBL instructions chained for 2D VQ. On GPU, we use native CUDA vector types to load and unload data quickly from
GPU memory into the registers and back, such as char4/uchar4, and custom agglomerations of those, up to char128.
The code for these kernels will be made available in the future.

We measure the time to transfer and unpack/decode the weights of a Llamav2-7B gate_proj layer (11008× 4096), for
VQ and to uniformly quantized data, and also FP16 on GPU. Furthermore, we integrate our CPU kernel with a matmul
operation for an end-to-end token generation experiment on Llamav2-7B quantized using 1D VQ.

Table 6 shows that for both data transfer and token generation, VQ can achieve significant footprint reductions, with strictly
positive latency impact on CPU, and negligible to positive latency impact on Nvidia® GPU.

Table 6. Measured VQ data transfer/decoding, and LLM token generation on mobile device. Exp: experiment, Data Transfer (T) or
Token Generation (G). Ptfm: platform, Mobile CPU or NVIDIA® GPU. Format: either Uniform or VQ. Rel. FP: relative footprint. Rel.
lat: relative latency.

Exp Ptfm bpv Format d Rel. FP ↓ Rel. lat. ↓
T CPU 4 Unif 1D 1.00× 1.00×
T CPU 8 Unif 1D 2.00× 1.93×
T CPU 3 VQ 2D 0.75× 0.98×
T CPU 2.75 VQ 2D 0.69× 0.96×
T CPU 2.25 VQ 2D 0.56× 0.87×
G CPU 3.125 VQ 1D 0.78× 0.96×

T GPU 4 Unif 1D 1.00× 1.00×
T GPU 8 Unif 1D 2.00× 1.47×
T GPU 16 FP 1D 4.00× 2.72×
T GPU 2.125 VQ 2D 0.53× 1.03×
T GPU 2.125 VQ 4D 0.53× 0.71×
T GPU 3.125 VQ 2D 0.78× 1.06×

C VQ CONFIGURATIONS

Table 7 details the studied VQ configurations.
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Table 7. VQ configurations. Group shape (r × c) indicates (rows×columns)

bpv d b group size group shape codebook bw

2.125 1D 2 256 (1×256) 8
2.125 2D 2 2,048 (4×256) 8
2.125 4D 2 65,536 (256×256) 8

2.25 1D 2 128 (1×128) 8
2.25 2D 2 1,024 (4×256) 8
2.25 4D 2 32,768 (128×256) 8

2.75 2D 2.5 2,048 (4×256) 8
3 2D 2.5 512 (2×256) 8

3.125 1D 3 8,192 (32×256) 8
3.125 2D 3 32,768 (128×256) 8

4.125 1D 4 1,024 (4 ×256) 8
4.125 2D 4 65,536 (256×256) 8

Table 8. Weight-only quantization results of Llama-1. We report WikiText2 perplexity in this table; lower is better.
L1-7B L1-13B L1-30B L1-65B

FP16 5.68 5.09 4.10 3.53

2.125 bpv
(W2@g128)

RTN 1.9e3 781.20 68.04 15.08
GPTQ 44.01 15.60 10.92 9.51
AWQ 2.6e5 2.8e5 2.4e5 7.4e4
OmniQuant 9.72 7.93 7.12 5.95
GPTVQ 1D (ours) 16.29 6.93 6.04 5.19
GPTVQ 2D (ours) 9.64 6.58 5.63 4.91

2.25 bpv
(W2@g64)

RTN 188.32 101.87 19.20 9.39
GPTQ 22.10 10.06 8.54 8.31
AWQ 2.5e5 2.7e5 2.3e5 7.4e4
OmniQuant 8.90 7.34 6.59 5.65
GPTVQ 1D (ours) 16.64 6.78 5.97 5.05
GPTVQ 2D (ours) 9.90 6.43 5.56 4.86
GPTVQ 4D (ours) 8.76 6.33 5.42 4.74

3.125 bpv
(W3@g128)

RTN 7.01 5.88 4.87 4.24
GPTQ 6.55 5.62 4.80 4.17
AWQ 6.46 5.51 4.63 3.99
OmniQuant 6.15 5.44 4.56 3.94
GPTVQ 1D (ours) 6.60 5.34 4.48 3.85
GPTVQ 2D (ours) 6.32 5.31 4.38 3.79

D EXTENDED RESULTS

Table 8 shows GPTVQ results on Llama-1. Table 9 shows GPTVQ results for 4.125 bpv on various models. Tables 10 and 11
present detailed LM-eval results.

E MEAN AND STANDARD DEVIATION OVER MULTIPLE RUNS

Table 12. Mean and standard deviation over 10 random seeds. Setting used: Llamav2-7B, 2D VQ, 8-bit codebook.

BPV Mean and Std. Dev.

3.125 5.82± 0.01
4.125 5.59± 0.01
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Table 9. Weight-only 4 bit quantization results of Llama-1, Llama-2, and Mistral-7B models. We report WikiText2 perplexity in this
table; lower is better. Models marked ‘L1’ or ‘L2’ denote Llama-v1 and Llama-v2, respectively. M-7B denotes Mistral.

L1-7B L1-13B L1-30B L1-65B L2-7B L2-13B L2-70B M-7B L3-8B

FP16 5.68 5.09 4.10 3.53 5.47 4.88 3.31 5.25 6.5

4.125 bpv
(W4@g128)

RTN 5.96 5.25 4.23 3.67 5.72 4.98 3.46 5.42 6.73
GPTQ 5.85 5.20 4.23 3.65 5.61 4.98 3.42 5.35 7.32
AWQ 5.81 5.20 4.21 3.62 5.62 4.97 - - -
OmniQuant 5.77 5.17 4.19 3.62 5.58 6.5 4.95 - -
GPTVQ 1D (ours) 5.96 5.15 4.18 3.60 5.62 4.97 3.39 5.32 -
GPTVQ 2D (ours) 5.94 5.20 4.18 3.64 5.59 4.94 3.38 5.32 6.41

E.1 Comparison to AQLM

Additive Quantization for Language Models (Egiazarian et al., 2024) (AQLM) is a recent method that also uses vector
quantization to compress LLMs to very low effective bit widths and achieves impressive bits per value vs accuracy results,
as shown in Table 3. While both GPTVQ and AQLM employ VQ for LLM compression, our methods differ in several
significant ways, which affects inference deployment, compression time, and on-disk model size.

AQLM uses larger vector dimension d, with d = 8, scale their codebooks exponentially in d, similar to us. E.g., for 2-bit
results AQLM uses codebooks with 215 or 216 8-dimensional entries, where each entry is stored in FP16. While the authors
have shown that these configurations can be employed on Nvidia® GPUs, codebooks of these sizes would be harder to
employ efficiently on a popular mobile platform. This is caused by the fact that many calls to the (5-bit) TBL instruction
would be required, leading to significant additional latency during inference time. For example, decoding a single 16-bit
index to an 8-bit FP16 would require 2× 8× 211 5-to-8-bit lookup tables (LUTs), where each lookup requires 2× 8× 11
instructions to decode.

The full AQLM algorithm requires significant time to compress models. Compressing Llamav2-7B requires up to 35 hours
on H100, while GPTVQ takes between 30 minutes and 3 hours on a single H100 GPU. It should however be noted that our
method becomes significantly slower for higher quantization dimensionality, mainly due to the EM codebook initialization.

The long runtime of AQLM is caused in part by a block-wise fine-tuning step. This step allows the model to correct
intra-layer effects of quantization error. While GPTVQ has no mechanism to correct intra-layer error effects, its results
are competitive with AQLM. AQLM without the additional block fine-tuning step (i.e., Table 3), achieves a perplexity of
7.49 for the WikiText2 test set on Llama-v2-7B, a degradation of 0.38 point compared to 7.11 for GPTVQ under the same
conditions.

F ABLATIONS ON HYPERPARAMETER CHOICES

EM initialization To find seed centroids for EM initialization, we compare k-Means++ (Arthur & Vassilvitskii, 2007) to
a quick and effective initialization method dubbed Mahalanobis initialization. In the latter method, we initialize EM for
a matrix of N d-dimensional points X by first sorting all points by Mahalanobis distance (Bishop, 2006) to the mean of
the data, then sampling k points spaced ⌊ N

k−1⌉ apart from the sorted list. Intuitively, this method ensures that points are
sampled at representative distances from the mean. Table 13 shows perplexity after GPTVQ for different EM initialization
seed methods, and find that Mahalanobis initialization performs comparably to k-Means++, at increased speed.

EM iterations We explore the effect of the number of EM initialization iterations on the final perplexity of GPTVQ.
Table 14 shows that even up to 100 iterations, results keep improving slightly, therefore we use 100 iterations as default.

Codebook update Table 15 includes an ablation on including codebook updates as described in Section A. We find that, in
all cases, updating the codebook after running Algorithm 2 improves final perplexity, at the expense of moderately increased
(though still reasonable) run time. We thus include codebook update in all training runs.

Method runtime GPTVQ can quantize large language models efficiently. Exact runtime depends on model, quantization
setting (groupsize, bitwidth, VQ dimensionality), and several hyperparameters (EM iterations, codebook update iterations).
As An indication of realistic run-times on a single H100: Llamav2-7B takes between 30 minutes and 1 hour, while
Llamav2-70B takes between 3 and 11 hours.
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G CODEBOOK COMPRESSION

While we find that 8 bit quantization of codebooks provides best results for the same overhead, we explore a different
approach to codebook compression in this section.

For the case where d = 1, we could further compress the codebook C by stacking all codebooks for multiple blocks (e.g.
all blocks in a tensor) and rank-reducing the resulting matrix. For a single tensor, C has shape NG × k, where NG is the
number of groups in the corresponding weight tensor, k is the number of centroids per codebook. We first sort values in
each codebook in C, and reassign the indices in I accordingly. Then, we perform SVD on C, leading to matrices U, Σ and
V, of shapes NG × k, k × k and k × k, respectively. U′ = UΣ, and reduce the rank of this matrix to r, yielding a NG × r
shaped matrix U′′. We also reduce the rank of V accordingly, yielding r × r matrix V′. Then, we perform gradient descent
(GD) on the loss of equation 7, but with respect to the codebook tensor factors U′′ and V′. In each GD step, Ĉ is created as
Ĉ = U′′V′T , and the rest of the codebook up procedure as described earlier is followed. Lastly, only the codebook tensor
factor U′′ is quantized, as V′ gives very little overhead. During inference, Ĉ is quantized per codebook after construction.

For higher dimensions, Tucker factorization could be employed. However, in this case there is no natural ordering in which
to sort the elements of each codebook.

In Table 18 we compare the effect of either rank reducing by 50%, or quantizing the codebook to 8-bit (our default approach),
to keeping the codebook in FP16 and increasing the group size. In all three settings the overhead of the codebook is the
same. We see that, for the same overhead, quantization gives best results. For this reason, and because codebook SVD does
not easily apply to d > 1, we have not explored codebook SVD further, and instead use INT8 quantization as our default
approach.

H BLOCKWISE DATA NORMALIZATION

In order to lower the error of vector quantization, we apply blockwise data normalization to the data before the codebook
initialization. For each group corresponding to a new codebook we perform element-wise division Wi ⊘ Si of the weight
sub-matrix matrix Wi by the corresponding scales Si. The scale is computed block-wise for every sub-row of Wi, e.g. for
a block size of 16, 32, or 64.

Given a set of blocks (sub-rows) w(i), the scale s(i) for each of them is computed as s(i) = maxj |w(i)
j |. In order to

minimize the overhead, the scales are quantized to 4-bit integer.

We found that it is beneficial to perform quantization in log-scale to capture several orders of magnitudes in weights. The
quantized scales are computed as s

(i)
int = ⌈ log2[s

(i)]−z
a ⌋a, where a is the quantization scale shared among the group of

weights. In order to accurately represent zero in log-space which corresponds to unit scaling, we use the floating point
offset z. In practice the value of z is shared within the columns of W and thus has negligible overhead. Finally the scaled
sub-row is normalized as w · 2−asint−s0 , where s0 = log2(z). The scaled data is used for codebook initialization. The
inverse scaling is applied at VQ decoding step.

I CENTROID FINE-TUNING

The GPTVQ algorithm has two reasons for being not optimal. First, it processes layers sequentially, minimizing the local
error in each layer. Second, the codebook is selected per group that usually spans across multiple columns. Once the first d
columns are quantized (step 4 in Algorithm 2), the remaining weights of the same group are updated (step 7 in Algorithm 2).
Therefore, the selected codebook will not optimally represent the remaining weights in the group.

One straight-forward solution to improve the performance is to fine-tune the selected codebook entries end-to-end. To this
end, we fine-tuned the codebooks and scales on SlimPajama (Soboleva et al., 2023) dataset for 1000 steps with batch size 32
and sequence lengths of 1024. We used Adam optimizer with warmup and cosine scheduler for both codebooks and scales.
We selected the codebook learning rate using a grid search. The scales learning rate was reduced by 103 times.

Table 19 compares the fine-tuning results with the original GPTVQ results. We can see that for all models and bits,
fine-tuning consistently improves the results except zero-shot accuracy at 3.125 bits.

Note that we also tried to update the indices similarly to PV-Tuning (Malinovskii et al., 2024a), but we did not see any
significant improvement of results. We hypothesize that due to the nature of GPTVQ update of the weights, the selected
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indices are very close to the optimal one. This is partially confirmed by the fact that AQLM algorithm, which is used by
PV-tuning, requires layer-wise and block-wise fine-tuning of centroids, while the original GPTVQ algorithm produces
comparable results right after initialization.
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Table 10. LM-eval results of quantized Llama-v2 7B and 13B, and Llama-v3 8B models.
#Bits Method PIQA ARC-e Arc-c BoolQ HellaSwag Winogrande Avg.↑

Llama-v2-7B

FP16 79.11 74.58 46.25 77.74 75.99 69.14 70.47

2.125 bpv
(W2@g128)

RTN 51.09 27.95 25.00 41.13 26.57 49.88 36.94
GPTQ 54.84 30.64 25.09 53.43 33.09 51.54 41.44
VQ-1D 61.21 38.76 24.66 62.78 45.78 53.83 47.84
VQ-2D 71.33 57.41 32.94 65.60 59.85 64.72 58.64
VQ-4D 73.34 60.44 34.39 65.50 63.99 65.04 60.45

2.25 bpv
(W2@g64)

RTN 58.76 36.66 24.83 41.87 40.38 51.93 42.40
GPTQ 60.83 39.02 25.17 59.33 45.82 55.49 47.61
VQ-1D 64.80 49.33 28.24 65.87 53.37 54.93 52.76
VQ-2D 72.36 63.47 35.41 72.14 60.92 64.72 61.50
VQ-4D 73.99 64.73 36.77 71.19 64.84 65.75 62.88

3.125 bpv
(W3@g128)

RTN 76.77 70.50 42.92 71.71 73.96 67.64 67.25
GPTQ 77.37 68.14 40.70 71.04 72.50 67.25 66.16
VQ-1D 77.86 68.64 40.96 73.85 72.29 67.80 66.90
VQ-2D 77.64 73.15 43.17 74.22 72.61 69.06 68.31

Llama-v2-13B

FP16 80.52 77.53 49.23 80.52 79.38 72.14 73.22

2.125 bpv
(W2@g128)

RTN 58.43 32.32 25.51 47.86 39.40 48.86 42.06
GPTQ 59.52 40.15 27.65 57.06 41.56 53.43 46.56
VQ-1D 73.23 64.10 35.75 71.38 60.71 65.43 61.77
VQ-2D 75.24 68.27 38.99 69.91 65.81 68.98 64.53
VQ-4D 75.46 71.93 42.92 67.86 69.26 66.93 65.73

2.25 bpv
(W2@g64)

RTN 61.59 41.58 25.43 49.79 48.24 51.85 46.41
GPTQ 70.13 56.65 31.57 51.10 56.62 58.88 54.16
VQ-1D 72.36 67.63 37.37 74.13 62.89 65.27 63.28
VQ-2D 74.97 67.63 40.53 69.24 67.11 69.30 64.80
VQ-4D 76.66 69.87 43.00 74.68 70.81 69.69 67.45

3.125 bpv
(W3@g128)

RTN 78.89 74.28 46.76 77.25 76.51 70.80 70.75
GPTQ 79.33 75.84 47.01 78.90 77.16 70.40 71.44
VQ-1D 78.94 75.04 46.76 79.42 75.85 72.45 71.41
VQ-2D 79.27 74.33 46.67 77.40 77.21 72.45 71.22

Llama-v3-8B

FP16 79.9 80.1 50.4 - 60.2 72.8 68.6

2.125 bpv
(W2@g128)

RTN 53.1 24.8 22.1 - 26.9 53.1 36.0
GPTQ 53.9 28.8 19.9 - 27.7 50.5 36.2
VQ-1D 56.58 35.10 18.26 60.00 38.25 57.06 41.05
VQ-2D 69.48 62.58 29.01 72.29 43.05 65.51 53.93
VQ-4D 71.93 69.19 32.68 69.45 45.62 67.17 57.32

2.25 bpv
(W2@g64)

VQ-1D 71.16 70.24 34.04 74.13 45.71 65.27 57.29
VQ-2D 74.27 71.30 37.54 69.24 49.07 69.30 60.30
VQ-4D 75.68 72.60 41.04 74.68 52.22 69.69 62.25

3.125 bpv
(W3@g128)

RTN 62.3 32.1 22.5 - 29.1 54.7 40.2
VQ-1D 77.31 77.90 43.43 79.42 57.28 72.45 65.68
VQ-2D 77.80 76.68 45.14 77.40 58.16 72.45 66.05
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Table 11. LM-eval results of quantized Mistral-7B and Mixtral-8x7B models.
#Bits Method PIQA ARC-e Arc-c BoolQ HellaSwag Winogrande Avg.↑

Mistral-7B

FP16 82.10 79.59 53.92 83.58 81.07 73.88 75.69

2.125 bpv
(W2@g128)

RTN 53.05 29.42 26.62 38.56 29.26 49.57 37.75
GPTQ 57.73 35.65 26.62 46.06 36.06 49.49 41.93
VQ-1D 55.22 35.94 25.51 54.01 34.35 52.01 42.84
VQ-2D 73.78 69.02 37.80 76.57 64.52 65.35 64.51
VQ-4D 75.90 71.63 41.98 69.85 68.59 66.46 65.73

2.25 bpv
(W2@g64)

RTN 60.72 38.47 27.56 44.83 46.10 51.07 44.79
GPTQ 65.83 46.21 30.20 62.11 50.64 55.56 51.76
VQ-1D 67.41 59.01 33.79 67.74 53.80 55.96 56.28
VQ-2D 74.86 69.23 40.53 74.07 65.93 67.40 65.34
VQ-4D 76.61 73.15 42.41 77.95 69.48 69.30 68.15

3.125 bpv
(W3@g128)

RTN 80.79 74.62 48.46 80.00 78.66 68.19 71.79
GPTQ 79.82 75.51 49.40 81.22 77.34 70.17 72.24
VQ-1D 78.84 75.29 47.87 79.57 75.32 69.30 71.03
VQ-2D 81.12 78.70 51.02 82.39 78.05 72.06 73.89

Mixtral-8x7B

FP16 83.46 73.74 55.89 84.74 82.45 75.30 75.93

2.125 bpv
(W2@g128)

RTN 51.90 27.27 25.85 47.98 27.07 49.64 38.29
GPTQ 59.79 35.44 27.30 52.08 41.80 50.83 44.54
VQ-1D 68.93 50.93 33.02 62.51 52.52 61.17 54.85
VQ-2D 76.39 57.87 38.91 74.95 67.03 71.03 64.36
VQ-4D 78.13 65.57 46.42 78.59 72.40 71.11 68.70

2.25 bpv
(W2@g64)

RTN 62.08 38.68 28.41 54.46 44.40 53.12 46.86
GPTQ 66.05 42.93 28.58 50.12 49.59 55.41 48.78
VQ-1D 69.42 50.55 36.09 64.95 59.51 63.93 57.41
VQ-2D 77.42 62.12 42.66 72.39 70.74 68.90 65.71
VQ-4D 79.16 67.68 48.04 76.09 73.43 71.11 69.25

3.125 bpv
(W3@g128)

RTN 81.50 68.77 50.60 80.92 79.71 72.93 72.40
GPTQ 80.85 69.32 52.05 81.35 78.40 74.43 72.73
VQ-1D 80.90 71.34 52.73 84.83 77.62 73.64 73.51
VQ-2D 82.59 72.94 54.86 84.46 80.61 74.82 75.05

Table 13. Effect of EM initialization. Setting used: Llamav2-7B, 2D 3-bit VQ, blocksize 2048.

Lookup method BPV Setting PPL Time (s)

1D 3B 1024 3.125 Mahalanobis 6.05 605
K++ 6.16 3328

2D 3B 16384 3.125 Mahalanobis 5.65 756
K++ 5.63 3168

1D 4B 2048 4.125 Mahalanobis 5.86 1272
K++ 5.88 2116

2D 4B 65536 4.125 Mahalanobis 5.59 3816
K++ 5.57 6644

Table 14. Effect of number of EM interations. Setting used: BLOOM-560m 2D 3-bit VQ with blocksize 4096, perplexity on WikiText2
test set.

EM iterations PPL

10 24.49
30 24.18
50 24.12
75 24.11
100 24.09
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Table 15. Effect of codebook fine-tuning on final PPL for Llamav2-7B.

d b gs Update PPL Runtime (s)

1
2 512 N 43.14 625

Y 14.02 1857

3 1024 N 6.05 712
Y 6.01 1916

2
2 2048 N 8.64 723

Y 8.21 1335

3 8192 N 5.93 1585
Y 5.88 2195

Table 16. Effect of scaling block size on perplexity for Llamav2-7B. d: VQ-dimension; b: VQ bitwidth per dimension; gs: block size;
Codebooks are quantized to 8 bits.

d b gs Scaling BS
None 128 64 32 16 8

1 2 512 14.01 16.74 2744.9 480.8 15.36 13.79
3 1024 6.02 5.97 6.00 5.87 5.82 5.72

2 2 2048 8.23 8.38 8.04 7.97 7.56 6.89
3 8192 5.91 5.82 5.78 5.73 5.74 5.66

Table 17. Effect of scaling on perplexity for different models. Configurations with equal overhead with or without the scaling are
considered. d: VQ-dimension; b: VQ bitwidth per dimension; gs: block size; Codebooks are assumed to be quantized to 8 bit.

d b gs Scale Llamav2-7B Llamav2-13B Mistral-7B Mixtral-8x7B

1
2 256 N 14.01 7.34 15.03 8.56

512 Y 171.29 7.44 87.60 8.11

3 512 N 5.98 5.21 5.76 4.60
1024 Y 6.01 5.17 5.77 4.59

2
2 2048 N 8.23 6.69 10.98 6.73

4096 Y 8.49 6.50 10.28 6.37

3 8192 N 5.91 5.19 8.63 4.52
16384 Y 5.56 5.11 5.53 4.30

Table 18. Choices in experimental setup leading to comparable bits per value. d: VQ-dimension; b: VQ bitwidth per dimension; gs:
block size; Q: 8-bit codebook quantization yes/no; SVD: codebook SVD yes/no. BPV: bits per value.

d b gs Q SVD BPV PPL

1

2
512 N N 2.125 14.01
256 Y N 2.125 11.57
256 N Y 2.125 44.99

3
1024 N N 3.125 6.01
512 Y N 3.125 5.98
512 N Y 3.125 5.98

2
2 4096 N N 2.125 8.37

2048 Y N 2.125 8.23

3 16384 N N 3.125 5.93
8192 Y N 3.125 5.87
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Table 19. Weight-only quantization results of Llama-v2, Llama-v3, Mistral, and Phi-3 mini 4k instruct models with centroid
fine-tuning (+FT). We report WikiText2 perplexity at the context length of 2048 and average zero-shot accuracy. Models marked L2
denote Llama-v2, L3 denote Llama-v3, M denotes Mistral, and P3-mini denotes Phi-3 mini 4k instruct.

WikiText2 perplexity ↓ Zeroshot avg acc. ↑
L2-7B L2-13B L3-8B M-7B P3-mini L2-7B L2-13B L3-8B M-7B P3-mini

FP16 5.47 4.89 6.14 5.25 6.36 70.4 73.3 74.2 75.7 76.1

2.125
W2

g128

GPTVQ 2D 7.60 6.38 10.99 7.69 10.18 59.9 65.0 60.3 64.0 62.4
GPTVQ 2D + FT 6.57 5.70 8.65 6.22 8.00 64.2 67.2 66.8 69.1 67.5
GPTVQ 4D 7.14 5.97 9.61 6.75 9.01 62.2 67.4 61.4 67.7 65.3
GPTVQ 4D + FT 6.39 5.58 8.25 6.04 7.75 64.4 68.4 68.9 70.0 68.4

2.25
W2
g64

GPTVQ 2D 7.42 6.25 10.45 7.36 9.70 60.6 66.7 61.9 64.6 63.9
GPTVQ 2D + FT 6.49 5.65 8.51 6.16 7.91 64.1 68.7 67.1 70.4 67.8
GPTVQ 4D 6.92 5.88 9.26 6.59 8.86 62.0 67.4 63.1 68.2 64.6
GPTVQ 4D + FT 6.31 5.54 8.13 5.99 7.59 65.6 70.0 68.9 70.2 68.9

3.125
W2

g128

GPTVQ 2D 5.79 5.11 6.97 5.53 6.93 67.8 71.4 71.1 73.9 72.3
GPTVQ 2D + FT 5.73 5.10 6.96 5.49 6.56 68.7 71.2 72.5 73.8 73.7


