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ABSTRACT
Program transformations are one of the most valuable compiler techniques to im-

prove parallelism or data locality. However, restructuring compilers have a hard time
coping with data dependences. A typical solution is to focus on program parts where
the dependences are simple enough to enable any transformation. For more complex
problems is only addressed the question of checking whether a transformation is legal

or not. In this paper we propose to go further. Starting from a transformation with
no guarantee on legality, we show how we can correct it for dependence satisfaction.
Two directions are explored: first when transformation properties can be explicitly ex-
pressed and second when they are implicit as in the data locality transformation case.
Generating code having the best properties is a direct application of this result.

Keywords: Program transformations, legality, dependences, polyhedral model, locality.

1. Introduction

The task of optimizing compute-bound programs is crucial for present day super-
computers if we notice that most of these machines run at a few percent of their
peak performance. The problem can be stated as a combinatorial optimization
problem, but due to the complexity of real-life programs and computers, this ap-
proach is not practical. Most of the time, we start from a first implementation, and
try to improve its performance by successive transformations. Beside improving
the performances, a transformation must be legal, i.e. must not change the final
results of the program. This is usually enforced by using only transformations that
respect dependences [22]. While selecting an optimizing transformation is not too
difficult for an experienced programmer, adjusting this transformation for legality
is a tedious and error-prone process.
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To bypass the dependence problem, most of the existing methods apply only
to perfect loop nests in which dependences are non-existent or have a special form
(fully permutable loop nests) [27]. To enlarge their application domain some prepro-
cessing, e.g. loop skewing or code sinking, may be applied [27,1,14]. More ambitious
techniques do not lay down any requirement on dependences, but are limited to pro-
pose solution candidates then to check them for legality [17,8]. If the candidate is
proved to violate dependences, then the proposed transformation is discarded and
another candidate, perhaps having less interesting properties is studied. In this pa-
per, we present a method that goes beyond checking by adjusting – if possible – a
transformation for dependence satisfaction, without modifying its optimizing prop-
erties. This technique can be used to correct a transformation candidate as well as
to replace preprocessing. The technique has been designed in the context of locality-
improving transformations, but can be applied in many other cases. On the other
hand, only transformations which can be represented as affine transformations in
iteration space can be corrected in this way.

This paper is organized as follows. In section 2 we outline the background of this
work. Section 3 deals with the transformations in the polyhedral model and focuses
on their dependences constraints. Section 4 shows how it is possible to correct a
transformation for legality. Section 5 compares our proposal to previous work in the
field of locality enhancement then section 6 concludes and discusses future work.

2. Background and Notations

A loop in an imperative language like C or FORTRAN can be represented using a

n-entry column vector called its iteration vector : ~x = (i1, i2 . . . in)T , where ik is the

kth loop index and n is the innermost loop. The surrounding loops and conditionals

of a statement define its iteration domain. The statement is executed once for each

element of the iteration domain. When loop bounds and conditionals only depend on

surrounding loop counters, formal parameters and constants, the iteration domain

can be specified by a set of linear inequalities defining a polyhedron [18]. The

term polyhedron will be used in a broad sense to denote a convex set of points in

a lattice (also called Z-polyhedron or lattice-polyhedron), i.e. a set of points in a

Z vector space bounded by affine inequalities [24]. A maximal set of consecutive

statements in a program with such polyhedral iteration domains is called a static

control part (SCoP) [7]. Figure 1 illustrates the correspondence between static

control and polyhedral domains. Each integral point of the polyhedron corresponds

to an operation, i.e. an instance of the statement. The notation S(~x) refers to

the instance of the statement S with iteration vector ~x. The execution of the

operations follows lexicographic order. This means in a n-dimensional polyhedron,

the operation corresponding to the integral point defined by the coordinates (a1...an)

is executed before those corresponding to the coordinates (b1...bn) iff

∃i, 1 ≤ i < n, (a1...ai) = (b1...bi) ∧ ai+1 < bi+1.

We will use � and � for the strict and non strict lexicographic order, respectively.
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do i = 1, n

do j = 1, n

if (i<=n+2-j)

S1: B[i+j][2*i+1] = ...
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(a) surrounding control of S1 (b) iteration domain of S1

Figure 1: Static control and corresponding iteration domain

Each statement may include one or several references to arrays (scalars are

zero-dimensional arrays). When the subscript function f(~x) of a reference is affine,

we can write it f(~x) = F~x + ~a where F is called the subscript matrix and ~a is a

constant vector. For instance, the reference to the array B in figure 1(a) is B[f(~x)]

with f
„

i
j

«

=
»

1 1
2 0

– „

i
j

«

+
„

0
1

«

.

In this paper, matrices are always denoted by capital letters, vectors and func-

tions in vector spaces are not. When an element is statement-specific, it is sub-

scripted like AS ; the subscript may be omitted when it is clear from the context.

3. Affine Transformations

3.1. Formulation

The goal of a transformation is to modify the original execution order of the

operations. A convenient way to express the new order is to give for each operation

an execution date. However, defining all the execution dates separately would

usually require very large scheduling systems. Thus optimizing compilers build

schedules at the statement level by finding a function specifying an execution time

for each instance of the corresponding statement. These functions are chosen affine

for multiple reasons: this is the only case where we are able to decide exactly the

transformation legality and where we know how to generate the target code. Thus,

scheduling functions have the following shape:

θS(~xS) = TS~xS + ~tS , (1)

where ~xS is the iteration vector, TS is a constant transformation matrix and ~tS is
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a constant vector (possibly including structure parameters).

It has been extensively shown that linear transformations can express most

of the useful transformations. In particular, loop transformations (such as loop

reversal, permutation or skewing) can be modeled as a simple particular case called

unimodular transformations (the TS matrix has to be square and has determinant

±1) [5,25]. Complex transformations such as tiling [26] can be achieved using linear

transformations as well [28]. These transformations modify the source polyhedra

into target polyhedra containing the same points, but with a new lexicographic

order. Considering an original polyhedron defined by the system of affine constraints

A~x+~c ≥ ~0 and the transformation function θ leading to the target index ~y = T~x, we

deduce that the transformed polyhedron can be defined by (AT−1)~y +~c ≥ ~0 (there

exits more convenient way to describe the target polyhedron as discussed in [6]).

For instance, let us consider the polyhedron in figure 2(a) and the transformation

function θ
„

i
j

«

=
»

1 1
0 1

– „

i
j

«

. The corresponding transformation is a well

known iteration space skewing and the resulting polyhedron is shown in figure 2(c).
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A~x + ~c ≥ ~0 ~y = T~x (AT−1)~y + ~c ≥ ~0

Figure 2: A skewing transformation

3.2. Legality

In general, applying an arbitrary transformation to a program will change its

semantics.

Two operations are said to be in dependence if they share a variable (memory

cell) and at least one the operations modifies it. This definition was suggested by

Bernstein [9] and is the most widely used one in works about program transforma-

tion. It is a sufficient condition for parallelism, but is by no means necessary, as the

well known case of reductions shows.

Many tests have been designed for dependence checking. Most of these are based

on sufficient conditions for independence. They give an approximate, conservative

answer. The best known examples are the GCD-test [3], and the Banerjee test [4].

On the other hand, one can use classical algorithms from Linear Integer program-
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ming to get exact answers, as in the Omega-test [23] and the Simplex-Gomory

test [12]. In the same way many dependence representations are possible, from the

simplest ones as dependence levels [2] to the most precise as dependence polyhedra

[16]. We chose in this paper to use the most precise representation of dependences:

the dependence polyhedra. However, many authors have noticed that approximate

dependences are special cases of dependence polyhedra. Hence, our method applies

whatever representation is chosen, provided the approximation is conservative.

In section 3.2.1, we recall how dependences in a SCoP can be expressed exactly

using linear (in)equalities. Then we show in section 3.2.2 how to build the legal

transformation space.

3.2.1. Dependence Graph

A convenient way to represent the scheduling constraints is the dependence

graph. In this directed graph, each program statement is represented using a unique

vertex, and the existing dependence relations are represented using edges. Each ver-

tex is labelled with the iteration domain of the corresponding statement and the

edges with the dependence polyhedron describing the dependence.

The dependence relation can be defined in the following way:

Definition 1 A statement R depends on a statement S (written SδR) if there

exits an operation S(~x1), an operation R(~x2) and a memory location m such that:

1. S(~x1) and R(~x2) refer the same memory location m, and at least one of them

writes to that location;

2. ~x1 and ~x2 respectively belong to the iteration domain of S and R;

3. in the original sequential order, S(~x1) is executed before R(~x2).

From this definition follows the description of the dependence polyhedron by affine

(in)equalities. The constraints systems have the following components:

1. Same memory location: assuming that m is an array location, this constraint

is the equality of the subscript functions of a pair of references to the same

array: FS~xS + ~aS = FR~xR + ~aR.

2. Iteration domains : both S and R iteration domains can be described using

affine inequalities, respectively AS~xS + ~cS ≥ ~0 and AR~xR + ~cR ≥ ~0.

3. Precedence order : this constraint can be separated into a disjunction of as

many parts as there are common loops to both S and R. Each case corresponds

to a common loop depth and is called a dependence level. For each dependence

level l, the precedence constraints are the equality of the loop index variables

at depth lesser to l: xR,i = xS,i for i < l and xR,l > xS,l if l is less than the

common nesting level. Otherwise, there are no additional constraints and the

dependence only exists if S is textually before R. Such constraints can be

written using linear inequalities: PS~xS − PR~xR +~b ≥ ~0.
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Thus, the dependence polyhedron for SδR at a given level l and for a given pair of

references p can be described using the following system of (in)equalities:

DSδR,l,p : D
(

~xS

~xR

)

+ ~d =

[

FS −FR

AS 0
0 AR

PS −PR

]

(

~xS

~xR

)

+





~aS − ~aR

~cS

~cR

~b





=
≥

~0 (2)

There is a dependence SδR if there exists an integral point inside DSδR,l,p. This

can be easily checked with some linear integer programming tool like PipLiba [11].

If this polyhedron is not empty, there is an edge in the dependence graph from the

vertex corresponding to S up to the one corresponding to R, labelled with DSδR,l,p.

For the sake of simplicity we will ignore subscripts l and p and refer in the following

to DSδR as the only dependence polyhedron describing SδR.

3.2.2. Legal Transformation Space

Considering the transformations as scheduling functions, the time interval in the

target program between the executions of two operations R(~xR) and S(~xS) is

∆R,S

(

~xS

~xR

)

= θR(~xR) − θS(~xS). (3)

If there exists a dependence SδR, i.e. if DSδR is not empty, then ∆R,S

(

~xS

~xR

)

must

be lexicopositive in DSδR (intuitively, the time interval between two operations

R(~xR) and S(~xS) such that R(~xR) depends on S(~xS) must be at least (0, . . . , 0, 1)T ,

the smallest time interval: this guarantees that the operation R(~xR) is executed

after S(~xS) in the target program). This condition represents as many constraints

as there are points in ∆R,S . Fortunately, all these constraints can be compacted in

a small set of affine constraints with the help of Farkas Lemma [13].

Lemma 1 (Affine form of Farkas Lemma [24]) Let D be a nonempty polyhedron

defined by the inequalities A~x+~b ≥ ~0. Then any affine function f(~x) is nonnegative

everywhere in D iff it is a positive affine combination:

f(~x) = λ0 + ~λT (A~x +~b), with λ0 ≥ 0 and ~λT ≥ ~0.

λ0 and ~λT are called Farkas multipliers.

∆R,S is a vector. For it to be lexicopositive, some of its components must be

constrained to be either non negative or strictly positive. Let us apply Farkas

Lemma to one of the constrained components. We can find a non-negative scalar

λ0 and a non-negative vector ~λT such that:

TR,•~xR + tR − (TS,•~xS + tS) − δ = λ0 + ~λT
(

D
(

~xS

~xR

)

+ ~d
)

(4)

In this formula, TR,• and TS,• are corresponding rows in the TR and TS matrices,

and δ is zero or one according to the position of the rows.

aPipLib is freely available at http://www.prism.uvsq.fr/∼cedb
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This formula can be split in as many equalities as there are independent variables

(~xS and ~xR components and parameters) by equating their coefficients in both

sides of the formula. The Farkas multipliers can be eliminated by using the Fourier-

Motzkin projection algorithm [24]. The result is a system of affine constraints on the

coefficients of the transformation (the elements of TR,• and TS,•). The important

point is that this system is the same for all rows of the scheduling matrices and

depends only on the dependence to be satisfied. Furthermore, it depends linearly

on the value of δ. These systems completely characterize the legal transformations

of a program, and can be computed once and for all as soon as the dependences are

known.

4. Correcting Transformations

Both optimizing compilers and programmers have a tendency to think of perfor-

mances first and to check legality afterward. The basic framework is first to find the

best transformation (e.g. in the case of data locality improvement, which references

carry the most reuse and necessitate new access patterns, which rank constraints

should be respected by the corresponding transformation functions, etc.), then to

check if a candidate transformation is legal or notb. If the check fails, build and

test another candidate, and so on. The major advantage of such a framework is to

focus firstly on the most interesting properties, and the main drawback is to forsake

these properties if a legal transformation is not directly found after a simple check

of a candidate solution. In this section we will show how it is possible to correct

a candidate transformation for dependences, firstly when it can be described using

explicit constraints as discussed in section 4.1. Then in section 4.2 we study the

special case of data locality improvement where the transformation properties are

hidden.

4.1. Transformations With Explicit Properties

Experts or optimizing compilers have a wide choice of optimizing transforma-

tions for a given program. Each transformation has a more or less precise cost

model which helps in deciding whether to apply the transformation or not. In the

polyhedral framework, many transformations are related to well chosen scheduling

functions [5,13,10]. For instance, generalized loop interchange is associated to sched-

ules whose matrix is a permutation matrix [5]. Trying to use these transformations

as they are may result in a negative dependence test. Let us consider the code in

Figure 3. An expert or an optimizing compiler may decide that moving the i-loop

innermost would result in better locality. But because of complex dependences,

using directly the loop interchange transformation θS

„

i
j

«

=
»

0 1
1 0

– „

i
j

«

is

not legal. This will lead usually to rejecting the transformation.

bThis can be done easily by instantiating the transformation functions in the space of all affine
transformation as defined in section 3.2, then checking whether it belong to the legal subset using
any linear algebra tool.
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do i = 1, n

do j = 1, n

S: a(j+1) = 1/3 * (a(j)+a(j+1)+a(j+2))

DS

DSδS,1,<a(j),a(j ′+1)>

DSδS,1,<a(j+1),a(j ′)>

DSδS,1,<a(j+1),a(j ′+1)>

DSδS,1,<a(j+1),a(j ′+2)>

DSδS,1,<a(j+2),a(j ′+1)>

DSδS,2,<a(j+1),a(j ′)>

DSδS,2,<a(j+2),a(j ′+1)>

Figure 3: Original Hyperbolic-PDE program and dependence graph

The polyhedral model allow more flexibility when defining such transformations.

Moreover, one can work with an incompletely specified transformations and use the

legality constraints as a way of solving for the missing coefficients. The method

consists in stating the constraints the transformation has to satisfy, then solving

these constraints and the legality constraints (4), using a linear algebra tool as

PipLib. If the system does not have a solution, we conclude that there is no legal

instance of the proposed transformation. For example, “innermosting” the i-loop

in the code in Figure 3 means that we are looking for a transformation function

θS

„

i
j

«

=
»

T1,1 T1,2

T2,1 T2,2

– „

i
j

«

+

„

t1
t2

«

with as only constraints T2,1 = 1 and

T2,2 = 0. By solving the system we find the solution θS

„

i
j

«

=
»

1 1
1 0

– „

i
j

«

.

Expressed using classical transformation techniques, it is a combination of loop

skewing and loop interchange. It leads to the target program in Figure 4 and as

expected to a better cache behavior (on a i386 1GHz system with 128KB L1 cache

memory and n=33000 the number of cache misses of the original program is 68M

but 43M for the target one).

do i’ = 2, 2*n

do j’ = max(i’-n,1), min(i’-1,n)

j = i’-j’ ;

i = i’ ;

S: a(j+1) = 1/3 * (a(j)+a(j+1)+a(j+2))

Figure 4: Final Hyperbolic-PDE program

4.2. Transformations With Implicit Properties: Data Locality

Cache are used in most computer systems to compensate for the mismatch
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between processor and memory performance (at the time of writing, factors of

10 to 100 are commonplace). Caches work by exploiting locality, i.e. the fact that

accesses to each memory cell and its close neighbors have a tendency to cluster in

the program code. While this is found to work very well for ordinary programs, it

fails for compute-bound codes where large datasets are accessed according to very

regular patterns. The basic framework for increasing cache hit rates is to move

references to a given memory cell (or cache line) to neighboring iterations of some

innermost loop. This reduces the elapsed time between two accesses and hence

decreases the probability that the cell has been evicted from the cache. Such a

transformation usually changes the execution order of the program, hence it must

be checked for legality before being applied.

Another way of expressing the same intuition is to assign an execution date (a

schedule) to each operation, and to take care that the date of accesses to the same

memory cell are “almost” equal. This is usually obtained by requiring that the

outer components of the schedule are equal. The methods continues by applying a

completion procedure to achieve an invertible transformation function (see [27] for

references).

For instance, let us consider self-temporal locality and a reference B[f(~x)] to an

array B with the affine subscript function f(~x) = F~x + ~a. Two instances of this

reference, B[f(~x1)] and B[f(~x2)] refers the same memory location iff f(~x1) = f(~x2),

that is when F~x1 + ~a = F~x2 + ~a, then iff F~xr = ~0 with ~xr = ~x1 − ~x2. Thus there

is self-temporal reuse when ~xr ∈ kerF . The basis vectors of kerF give the reuse

directions for the reference B[f(~x)]; if kerF is trivial, there is no self-temporal reuse

for the corresponding reference. Reuse can be exploited if the transformed iteration

order follows one of the reuse directions. Then we have to find a vector orthogonal

to the chosen reuse direction to be the first part of the transformation matrix T .

If this partial transformation does not violate dependences, we have many choices

for the completion procedure in order for the transformation function to be one-to-

one either by considering artificial dependences [20,15] or not [6]. As an example,

consider the following pseudo-code:

do i = 1, n

do j = 1, n

S1: ... B[j] ...

the subscript function of the reference B[j] is f
„

i
j

«

=
»

0 1
0 0

– „

i
j

«

, the kernel of

the subscript matrix is then kerF = span {(1, 0)}. Thus there is reuse generated

by the reference B[j], and we can exploit it thank to a transformation matrix built

with an orthogonal vector to the reuse direction, e.g. [0 1] and its completion

to a unimodular transformation matrix as described in [15]: T =
»

0 1
1 0

–

. The

transformation function would be θ
„

i
j

«

=
»

0 1
1 0

– „

i
j

«

, i.e. a loop interchange

(the reader may care to verify that this solution do exploit the reuse of the reference
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B[j]). It is easy to generalize this method to several references by considering not

only a reuse direction vector, but a reuse direction space (built with one basis vector

per reference). It appears that there are a lot of degrees of freedom when looking

for a transformation improving self-temporal locality, since it is possible to choose

the reuse direction space, the completion method and the constant vector of the

transformation function.

Let us consider self-temporal locality and a transformation candidate before

completion θSc(~xS) = TSc~xS . This function has the property that, modified in the

following way:

θS(~xS) = CSTSc~xS + ~tS , (5)

where CS is an invertible matrix and ~tS is a constant vector, the locality properties

are left unmodified for each time step. Intuitively, if θSc gives the same execution

date for ~x1 and ~x2, then the transformed function θS does it as well. In the same

way if the dates are different with θSc, then the transformed function θS returns

different dates. But while the values of CS and ~tS do not change the self-temporal

locality propertiesc, they can change the transformation from an illegal to a legal

one.

It is clearly not possible to check all these transformations for legality. In the

following we study another way: we show how to find, when possible, the unknown

components CSTSc and ~tS of formula 5 in order to construct a legal transformation.

Correcting formulae similar to (5) and having the same type of degrees of free-

dom can be used to achieve every type of locality (self or group - temporal or

spatial) [25,8]. The challenge is, considering the candidate transformation matrices

TSc, to find the corrected matrices CSTSc and the constant vectors ~tS in order for

the transformation system to be legal for dependences.

This problem can be solved in an iterative way, each dimension being considered

as a stand-alone transformation. Each row of CSTSc is a linear combination of

the rows of TSc. Thus, the unknown in the ith algorithm iteration are, for each

statement, the linear combination coefficients building the ith row of CSTSc from

TSc and the constant factor of the corresponding ~tS entry. After each iteration, we

have to update the dependence graph since, by a property of lexicographic order,

there is no need to consider the already satisfied dependences. Thus, to find a

solution is easier as the algorithm iterates. The algorithm is shown in figure 5.

Let us illustrate how the algorithm works using the example in figure 6. Suppose

that an optimizing compiler would like to exploit the data reuse generated by the

references to the array A of the program in figure 6(a) and that it suggests the trans-

formation candidates in figure 6(b). As shown by the graph describing the resulting

operation execution order, where each arrow represents a dependence relation and

each backward arrow is a dependence violation, the transformation system is not

cThis amount to noticing that the amount of locality in the transformed program is linked to the
rank of TSc. For a more formal discussion, see [8].
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Correction Algorithm: adjust a transformation system to respect dependences

Input: a dependence graph DG, the transformation candidates θSc(~xS) = TSc~xS .

Output: the legal transformations θS(~xS) = CSTSc~xS + ~tS .

1. for dimension i = 1 to maximum dimension of TSc

(a) build the legal transformation space with:

• for each edge in DG, the constraints of (4) for the ith row of TRc

and TSc

• the constraints equating the ith row entries of each CSTSc with a
linear combination of TSc entries whose coefficients are unknown

(b) for each statement, remove from the solution space the trivial solution
where ∀j ≥ i the linear combination coefficient of the jth row of TSc is
null

(c) if the solution space is empty, return ∅, else

i. pick the solution giving for each statement the minimum values for
the entries of the ith row of CSTSc and the ith element of ~tS

ii. update DG: for each edge in DG, add to the dependence polyhedron
the constraint equating the ith dimension of CSTSc~xS + ~tS of the
statements labelling the source and destination vertices (this may
empty the polyhedron for integral solutions)

iii. if every dependence polyhedra in DG are empty, goto 2

iv. for each statement, update the candidate transformation TSc:

• replace a row such that the corresponding linear combination
coefficient is not null with the ith row

• replace the ith row with the ith row of CSTSc

2. return the transformation functions θS(~xS) = CSTSc~xS + ~tS .

Figure 5: Algorithm to correct the transformation functions

legal. The correction algorithm modifies successively each transformation dimen-

sion. Each stand-alone transformation splits up the operations into sets such that

there are no backward arrows between sets. The algorithm stops when there are

no more backward arrows or when every dimension has been corrected. Then any

polyhedral code generator, like CLooGd [6], can generate the target code. Choos-

ing transformation coefficients as small as possible (step 1(c)i) is a heuristic helping

code generators to avoid control overhead.

The correctness of the algorithm comes from two properties: (1) the target

dCLooG is freely available at http://www.prism.uvsq.fr/∼cedb
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transformations are legal, (2) the CS matrices are invertible. The legality is achieved

because each transformation part is chosen in the legal transformation space (step

1a). The second property follows from the updating policy (step 1(c)iv): at start the

CS matrices are identities. During each iteration, we exchange their rows, multiply

some rows by non null constants (as guaranteed by step 1b) and add to these rows

a linear combination of the other rows. Each of these transformations does not

modify the invertibility property.

5. Related Work

Since they cannot deal with (complex) dependences, the earliest works on local-

ity improvement discuss enabling transformations to modify the program in such

a way that the proposed method can apply. Wolf and Lam [25] proposed in their

seminal data locality optimizing algorithm to use skewing and reversal to enable

tiling as in previous works on automatic parallelization. McKinley et al. [21] pro-

posed a technique based on a detailed cost model that drives the use of fusion and

distribution mainly to enable loop permutation. Such methods are limited by the

set of directives they use (like fuse or skew) and because they have to apply them

in a definite order. We claim that proposing (and correcting) scheduling functions

is more complete and has better compositionality properties.

A significant step on preprocessing techniques to produce fully permutable loop

nests has been achieved by Ahmed et al. [1]. They use Farkas Lemma to find

a valid code sinking-like transformation if it exists. But this transformation is

still independent from the optimization itself and it is limited to produce a fully

permutable loop nest. The method proposed in this paper may find solutions even

when it is not possible to extract such a loop nest.

The method of Griebl et al. [14] is quite different. Their aim is to minimize

the amount of communication in a distributed program, which is indeed a kind of

locality optimization. They first take care of dependences by finding a legal space-

time transformation (i.e. a schedule and a placement) and then tile in space-time to

achieve the optimal granularity. Adapting these ideas to cache optimization seems

by no mean obvious, although it is an interesting subject for further research.

Reasoning directly on scheduling functions, Li and Pingali proposed a comple-

tion algorithm to build a non-unimodular transformation function from a partial

matrix, such that starting from a legal transformation, the completed transforma-

tion stay legal for dependences [20]. In the same spirit, Griebl et al. [15] extended

an arbitrary matrix describing a legal transformation to a square invertible matrix.

In contrast, we show in this paper how to find the valid functions before completion.

6. Conclusion and Future Work

In this paper we presented a general method correcting a program transforma-

tion for legality with no consequence on its properties. It can be applied either
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do i = 1, n

do j = 1, n

do k = 1, n

S1: A(j,k) = A(j,k) + B(i,j,k) / A(j,k-1)

S2: c = A(n,n) + 1

(a) Original program
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(b) Transformation function candidates
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(c) First correction iteration
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(d) Second and last correction iteration

do j = 1, n

do k = 1, n

do i = 1, n

S1: A(j,k) = A(j,k) + B(i,j,k) / A(j,k-1)

S2: c = A(n,n) + 1

(e) Target program

Figure 6: Iterative transformation correction principle (n = 2 for graphs)
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when the properties can be explicitly expressed as affine constraints, either when

they are carried implicitly as data locality properties. It has been implemented in

the Chunky prototype [8], advantageously replacing usual enabling preprocessing

techniques and saving a significant amount of interesting transformations from be-

ing ignored. It could be used combined with a wide range of existing optimizing

techniques and in particular for data locality improvement methods, for the single

processor case as well as for parallel systems using space-time mappings [19].

Further implementation work is necessary to handle real-life benchmarks in our

prototype and to provide full statistics on corrected transformations. Moreover,

the question of scalability is left open since, for several tenth of deeply nested

statements, the number of unknown in the constraint systems can become embar-

rassingly large. Splitting up the problem according to the dependence graph is a

solution under investigation.
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