Putting Polyhedral Loop Transformations to Work

Cédric Bastoui®, Albert Cohen, Sylvain Girbalt?4, Saurabh Sharntaand Olivier
Temant

1 A3 group, INRIA Rocquencourt
2 LRI, Paris South University
3 PRSM, University of Versailles
4 LIST, CEA Saclay

Abstract. We seek to extend the scope and efficiency of iterative ceatiqpil
techniques by searching not only for program transfornmaiarameters but for
the most appropriate transformations themselves. Forghgiose, we need a
generic way to express program transformations and coripasiof transfor-
mations. In this article, we introduce a framework for théypedral represen-
tation of a wide range of transformations in a unified way. ié® &how that it
is possible to generate efficient code after the applicaifgrolyhedral program
transformations. Finally, we demonstrate an implemeomatf the polyhedral
representation and code generation techniques in the @f@R& compiler.

1 Introduction

Optimizing and parallelizing compilers face a tough chadie. Due to their impact on
productivity and portability, programmers of high-perfmance applications want com-
pilers to automatically produce quality code on a wide raoigarchitectures. Simulta-
neously, Moore’s law indirectly urges the architects tddbabmplex architectures with
deeper pipelines and (non uniform) memory hierarchiesewgkeneral-purpose and
embedded cores with clustered units and speculative stegtStatic cost models have
a hard time coping with rapidly increasing architecture pterity. Recent research
works on iterative and feedback-directed optimizationg uggest that practical ap-
proaches based on dynamic information can better harnegsler architectures.

Current approaches to iterative optimizations usuallyodeoa rather small set of
program transformations, e.g., cache tiling and array payénd focus on finding the
best possible transformation parameters, e.g., tile sidepadding size [17] using pa-
rameter search space techniques. However, a recent caivpatady of model-based
vs. empirical optimizations [22] stresses that many mditives for iterative, feedback-
directed or dynamic optimizations are irrelevant when theppr transformations are
not available. We want to extend the scope and efficiencyeddtitve compilation tech-
niques by making the program transformation itself one efggarameters. Moreover,
we want to search for composition of program transformaiand not only single
program transformations. For that purpose, we need a genmaihod for expressing
program transformations and composition of those.

This article introduces a unified framework for the implerti@m and composition
of generic program transformations. This framework reb@sa polyhedral represen-
tation of loops and loop transformations. By separatingtdgration domains from the

statement and iteration schedules, and by enabling pemséat transformations, this
representation avoids many of the limitations of iteratimsed program transforma-
tions, widens the set of possible transformations and esaphrameterization. Few
invariants constrain the search space andmaun-syntactic representatidmposes no
ordering and compatibility constraints. In addition, staents aremamed independenty
from their location and surrounding control structurdbis greatly simplifies the prac-
tical description of transformation sequences. We beléhigegeneric expression is ap-
propriate for systematic search space techniques.

The corresponding search techniques and performanceaticals are out of the
scope of this work and will be investigated in a follow-upieg. This work presents
the principles of our unified framework and the first part afiinplementation. Also,
since polyhedral transformation techniques can betteoraotodate complex control
structures than traditional loop-based transformatiamsstart with an empirical study
of control structures within a set of benchmarks. The four &spects of our research
work are: (1) empirically evaluating the scope of polyhégragram transformations,
(2) defining a practical transformation environment base@ @olyhedral representa-
tion, (3) showing that it is possible to generate efficiertefrom a polyhedral transfor-
mation, (4) implementing the polyhedral representatioth@de generation technigue
in a real compiler, Open64/ORC [18], with applications tall@genchmarks.

Eventually, our framework operates at an abstract sensdréeel to hide the de-
tails of control structures, rather than on a syntax trealltiws per-statement and ex-
tended transformations that make few assumptions abouttot@tructures and loop
bounds. Consequently, while our framework is initially gehtoward iterative opti-
mization techniques, it can also facilitate the implemgoteof statically driven pro-
gram transformations in a traditional optimizing compiler

The paper is organized as follows. We present the empiritallais of static con-
trol structures in Section 2 and discuss their significamctypical benchmarks. The
unified transformation model is described in Section 3. iBacd presents the code
generation techniques used after polyhedral transfoonatiFinally, implementation
in Open64/ORC is described in Section 5.

2 Static Control Parts

Let us start with some related works. Since we did not diyecbintribute to the driv-
ing of optimizations and parallelization techniques, wé mdt compare with the vast
literature in the field of model-based and empirical optiatian.

Well-known loop restructuring compilers proposed unifieddels and intermedi-
ate representations for loop transformations, but nondeitaddressed the general
composition and parameterization problem of polyhedrmehtéques. ParaScope [6] is
both a dependence-based framework and an interactiveestausource compiler for
Fortran; it implements classical loop transformationsIiS{11] was designed as an
intermediate representation and framework for automatp Irestructuring; it quickly
became a standard platform for implementing virtually apifraization prototype, with
multiple front-ends, machine-dependent back-ends aridntar Polaris [4] is an auto-
matic parallelizing compiler for Fortran; it features atrisequence of analyzes and

loop transformations applicable to real benchmarks. Thiesee projects are based on
a syntax-tree representation, ad-hoc dependence modkisiplement polynomial al-
gorithms. PIPS [12] is probably the most complete loop testiring compiler, im-
plementing polyhedral analyses and transformationsyiob affine scheduling) and
interprocedural analyses (array regions, alias). PIPS aseexpressive intermediate
representation, a syntax-tree with polyhedral annotation

Within the Omega project [14], the Petit dependence analyaé loop restructur-
ing tool [13] is much closer to our work: it provides a unifiedlghedral framework
(space-time mappings) for iteration reordering only, arghares our emphasis on per-
statement transformations. It is intended as a researd¢liciosmall kernels only. The
MARS compiler [16] is also very close to our work: its polymatrepresentation allows
to unify several loop transformations to ease the appbcadif long transformation se-
quences. Its successes in iterative optimization [17] mékbe main comparison point
and motivation for our work, although MARS lacks the expirétsof the affine sched-
ules we use in our unified model.

Two codesign projects have a lot in common with our semi-aatiic optimization
project. MMAIpha [10] is a domain-specific single assigniianguage for systolic ar-
ray computations, a polyhedral transformation frameward a high-level circuit syn-
thesis tool. The interactive and semi-automatic approagolyhedral transformations
were introduced by MMAIpha. The PICO project [20] is a moragmatic approach
to codesign, restricting the application domain to loopsi@sth uniform dependences
and aiming at the selection and coordination of existingfiomal units to generate an
application-specific VLIW processor. Both tools only targmall kernels.

2.1 Decomposition into Static Control Parts

In the following, loops are normalized and split in two caiggs: loops from O to
some bound expression with an integer stride, calledoops; other kinds of loops,
referred to aswi | e loops. Early phases of the Open64 compiler perform mostisf th
normalization, along with closed form substitution of irmtion variables. Notice some
Fortran and Gahi | e loops may be normalized @p loops when bound and stride can
be discovered statically.

The following definition is a slight extension efatic controlnests [8]. Within a
function body, astatic control part(SCoP) is a maximal set of consecutive statements
withoutwhi | e loops, where loop bounds and conditionals may only deperidwami-
ants within this set of statements. These invariants ireckymbolic constants, formal
function parameters and surrounding loop counters: thegalted theglobal parame-
tersof the SCoP, as well as any invariant appearing in some auiascsipt within the
SCoP. A static control part is calleith when it holds at least one non-empty looigh
SCoPs are the natural candidates for polyhedral loop tbamsitions. An example is
shown in Figure 1. We will only consideich SCoPs in the following.

As such, a SCoP may hold arbitrary memory accesses andduarazlls; a SCoP is
thus larger than a static control loop nest [8]. Interpragatialias and array region anal-
ysis would be useful for precise dependence analysis. Wealess, our semi-automatic
framework copes with crude dependence information in aigimy the expert user to
override static analysis when applying transformations.

SCoP deconposi tion

doi=1, 3
| st | SCoP 1, one statement, non rich
| doj=1, i*i
[|s2 | SCoP2, three statements, rich
do k=0, j parametersi ,
if (j .ge. 2) then iterators: k
S3
A
dop=0, 6 SCoP 3, two statements, rich
S5 iterators: p
S6

Fig. 1. Example of decomposition into static control parts

2.2 Automatic Discovery of SCoPs

SCoP extraction is greatly simplified when implemented inith modern compiler
infrastructure such as Open64/ORC. Previous phases mdlutttion inlining, con-
stant propagation, loop normalization, integer comparisormalization, dead-code
andgot o elimination, and induction variable substitution, alonghdanguage-specific
preprocessing: pointer arithmetic is replaced by arragstpr analysis information is
available (but not yet used in our tool), etc. The algoriton$CoP extraction is de-
tailed in [2]; it outputs a list of SCoPs associated with amydtion in the syntax tree.
Our implementation in Open64 is discussed in Section 5.

2.3 Significance Within Real Applications

Thanks to an implementation of the previous algorithm infge@64, we studied the
applicability of our polyhedral framework to several benwdrks.

Figure 2 summarizes the results for the SpecFP 2000 anddi@ldié benchmarks
handled by our tool (single-file programs only, at the timengg Construction of the
polyhedral representation takes much less time than ttiemary analyses performed
by Open64/ORC. All codes are in Fortran77, excaptandquake in C, andlucas in
Fortran90. The first column shows the number of functionbnimy was not applied
in these experiments). The next two columns count the nuimb®CoPs with at least
one global parameter and enclosing at least one condifiegdectively; the first one
advocates for parametric analysis and transformatiomigcies; the second one shows
the need for techniques that handle static-control comtitis. The next two columns in
the “Statements” section show that SCoPs cover a large ityagdrstatements (many
statements are enclosed in affine loops). The last two cdumthe “Array References”
section are very promising for dependence analysis: mdstcsipts are affine except
for lucas andmg3d (the rate is over 99% in 7 benchmarks), but approximate ateay
pendence analyses will be required for a good coverage @& titeers. In accordance
with earlier results using Polaris [7], the coverage of tagloop nests is strongly in-
fluenced by the quality of loop normalization and inducti@nigble detection.

‘ 4 SCoPs ‘ StatementsJArray Reference‘s
FunctiongAll Parametric Affinei fs| All in SCoPg All Affine
applu 16| 19 15 1 757 6331245 1009
apsi 97| 80 80 242192 1839 977 789
art 26| 28 27 4 499 343 52 1009
lucas 41 4 4 22070 2050 411 409
mgrid 12 12 12 2 369 369 176 999
quake 27| 20 14 4 639 489 218 1009
swim 6| 6 6 1 123 123 192 1009
adm 97| 80 80 2852260 1899 147 959
dyfesm 78| 75 70 31497 1280 507 999
mdg 16| 17 17 5 530 464 355 849
mg3d 28| 39 39 §1442 12421274 199
qcd 35| 30 23 q 819 641 943 1009

Fig. 2. Coverage of static control parts in high-performance ajapibns

Our tool also gathers detailed statistics about the numbpa@meters and state-
ments per SCoP, and about statement depth (within a SCo&uoting non-static en-
closing loops). Figure 3 shows that almost all SCoPs arelsnthbn 100 statements,
with a few exceptions, and that loop depth is rarely gre&i@n 8. Moreover, deep loops
also tend to be very small, except tqplu, adm andmg3d which contain depth-3 loop
nests with tenths of statements. This means that most padgthanalysis and trans-
formations will succeed and require reasonable resoultatso gives an estimate of
the scalability required for worst-case exponential altpons, like the code generation
phase to convert the polyhedral representation back taceaade.

SpecFP: Statement Distribution
SpecFP: Statement Depth

SCoPs
Statements

0-1 2-3 4-7 B-15 16-31 3263 64- 128~ 256- 52— 1024- >2048
127 25 511 1023 2047

Statement Range
o Statemement Depth

PerfectClub: Statement Distribution
PerfectClub: Statement Depth

10000

1000

SCoPs

100

Statements

0-1 2-3 4-7 8-15 16— 32— 64— 128- 266- 512- 1024 >2048 !
31 6 127 265 511 1023 2047

Statement Range Statement Depth

Fig. 3. Distribution of statement depths and SCoP size

3 Unified Polyhedral Representation

In this section, we define the principles of polyhedral pergrtransformations. The
termpolyhedrorwill be used in a broad sense to denotmavex set of points in a lattice
(also calledZ-polyhedron or lattice-polyhedron), i.e., a set of poimtaZ vector space
bounded by affine inequalities.

Let us now introduce the representation of a SCoP and itsezltary transforma-
tions. A static control part within the syntax tree is a p@ri,,), wheres is the set
of consecutivestatements— in their polyhedral representation — aigl is the vec-
tor of global parametersf the SCoP. Vectoi, is constant for the SCoP but statically
unknown; yet its value is known at runtime, when entering $@oP.d,, = dim(i,,)
denotes the number of global parameters.

We will use a few specific linear algebra notations: matrimesalways denoted by
capital letters, vectors and functions in vector spacesatigfx(v, n) returns a lengthn
prefix ofv, i.e., the vector built from tha first components of; u C w is equivalent to
u being a prefix ofv; 1x denotes thé&-th unit vector in a reference baég, ..., 14) of
ad-dimensional space, i.€90,...,0,1,0,...,0); likewise, } j denotes the matrix filled
with zeros but elemerti, j) setto 1.

A SCoP may also be decorated with static properties suctrag dependences or
regions, but this work does not address static analysis.

3.1 Domains, Schedules and Access Functions

Thedepth & of a statemen$ is the number of nested loops enclos®in the SCoP.
A statementS < S is a quadrupld DS, LS, R S,85), where DS is the dS-dimensional
iteration domairof S, LS and R S are sets of polyhedral representationswofy refer-
encesand®S is theaffine schedulef S, defining thesequential execution orderiraf
iterations ofS. To represent arbitrary lattice polyhedra, each statenisgarbvided with
a numbeldlf of local parametergo implement integer division and modulo operations
via affine projectione.g., the set of even values iois described by means of a local
parameterp — existentially quantified — and equation= 2p. Let us describe these
concepts in more detail and give some examples.

DS is aconvex polyhedrodefined by matrix\S Mn,d$+d|§+dgp+1(z) such that

i€ DS < iy, AS(i,ip,ig 1) >0.

Notice the last matrix column is always multiplied by the stamt 1; it corresponds to
thehomogeneous coordinadéacoding ofaffineinequalities intdinear form. The num-
bern of constraints imS is not limited. Statements guarded by non-convex conditen
—suchas Xi <3Vi>8—are separated into convex domains in the polyhedral rep-
resentation. Figure 4 shows an example that illustratesettefinitions.

The domains of the five statements @& = {i |1 <i <N}, D2 = {(i,j) | 1<
i <N,1<j <M}, D2 = {()} (the zero-dimensional vectorp™ = DS = {k| 3 <

Runni ng exanpl e

doi =1, N

A(i) =0 (S1)
doj=1, M

| AGi) = A(i) + B(i, 2¥i4-N1) (S)
ooy =1 (S)
dok =3, N 2

D(k) = 2*D(k-2) (S1)
E(k) = -A(K); (S)

Fig. 4. Running example

k <NA3p,k=3+2p}. E.g., theA-matrices for statemen& and$, are

1.000-1] i 10003
Am_ |-10100| B As_ | L0100 LR
0 100-1 ’ 1 -200-3 ’
iy = (N, M) iy = (N,M)
0 -101 0 ” ~1200 3 ”

£S5 and R S describe array references written By(left-hand side) or read b
(right-hand side), respectively; it is a set of pgiksf) whereA is an array variable and
f is theaccess functiomapping iterations irDS to locations inA. The access function
f is defined by a matrix E ﬂ/[dim(A)’dsz%erng(Z) such that

F(i) = F(i,ipyig 1)".

E.g.L2={(A (i)} andR= = {(A (i), (B,(i,2%i+ j—N—1)")}, stored as

L%:{(A,[loooo})} i=(,])

w{(x[10009). (839 %8 51}l = tum

8% is theaffine schedulef S; it maps iterations inDS to time-stampgi.e., logical
execution dates) ind® + 1-dimensional time [8]. Multidimensional time-stamps are
compared through thexicographic orderingpver vectors, denoted by iterationi of
Sis executed before iteratighof S if and only if 65(i) < 85(i’).

To facilitate code generation and to schedule iteratiorts statements indepen-
dently, we need @+ 1 time dimensions instead df (the minimum for a sequential
schedule). This encoding was first proposed by Feautrieafi@] used extensively by
Kelly and Pugh [13]: dimensionk®ncodes the relative ordering of statements at depth
k and dimension2— 1 encodes the ordering of iterations in loops at dépth

Eventually,8S is defined by a matri®S ¢ Mogs 1 1,d5+d,,+1(Z) such that

05(i) = ©5(i, i 1)".

Notice ©° does not involve local parameters, since lattice polyheldraot increase
the expressivity of sequential schedules. The schedutatéoprevious example are:
6% (i) = (0,i,0)", 6%(i) = (0,i,1,},0), 82(i) = (1), 6% (i) = (2,k,0), 8%(i) = (2,k,1).

E.g., the®-matrices fors, andS, are:

00000
10000 i=(i,j) 0002 i = (k)

©%2= 0000 1| with|i, = () ©% = |1000]|with|i,=()
01000 igp= (N, M) 0000 i, = (N, M)
00000

3.2 Invariants

Our representation makes a clear separation betweeethantically meaningful trans-
formationsexpressible on the polyhedral representation from damantically safe
transformationssatisfying the statically checkable properties. The geabfi course
to widen the range of meaningful transformatiomghout relying on the accuracy of
a static analyzer. Although classical transformationstampered from the lack of
information about loops bounds, they may be feasible in ghwlral representation
separating domains from affine schedules and authorizingtpgement operations. To
reach this goal and to achieve a high degree of transformatanpositionality, the
representation enforces a fémwariantson the domains and schedules.

There is only one domain invariant. To avoid integer overfipthie coefficients in a
row of AS must be relatively prime:

V1<i<dSgedAig,.... Aig1) =1 (1)

This restriction has no effect on the expressible domains.

The first schedule invariant requires the schedule matrifit imto a decomposi-
tion amenable to composition and code generation. It stgzatlae squarieration re-
ordering matrixAS € Mgs 4s(Z) operating on iteration vectors, from tharameterized

matrix 'S € Mgs q,,+1(Z) and from thestatement-scattering vectpP e NI*+1;

r' 0 --- 0 0O --- 0 Bg 7
S s s s S

Ap - Al,ds M3y - rl,dgp rl,dg£+1
g g 2 So sBl

oS— | A21 " Aggs T21 - T3q, Mg |,)

.1 0 .0 :
s S S s s

Ads’1 . AdS,dS rds’l rdS’dgp Fds,dgﬁl
0O --- 0 0O --- 0 gs]

Statement scattering may not depend on loop counters omgdess, hence the zeroes
in “even dimensions”. Notic@ subscripts range from 0 .
Back to the running example, mati® splits into

10 000

The second schedule invariant is geguentialityone: two distinct statement itera-
tions may not have the same time-stamp:

S£SVi#i = 0%(i) £ 65 (). 3)

Whether the iterations belong to the domairsaindS does not matter in (3): we wish
to be able to transform iteration domains without botheviiit) the sequentiality of the
schedule. Because this invariant is hard to enforce diregt introduce two additional
invariants with no impact on schedule expressivity andrgtes than (3):

|det(AS)| =1, i.e., Ais unimodular, an®# S = S pS. (4)

Finally, we add alensityinvariant to avoid integer overflow and ease schedule com-
parison. The “odd dimensions” of the image ®? form a dS-dimensional sub-space
of the multidimensional time, sinceAs unimodular, but an additional requirement is
needed to enforce that “even dimensions” satisfy some fdrdeonse encoding:

Bt > 0= 38 €.5,pfx(B% k) = pfx(B%, k) ABF =PBF—1, (5)

i.e., for a given prefix, the next dimension of the statenmssrttering vectors span an
interval of non-negative integers.

3.3 Constructors

We define some elementary functions on SCoPs, catbedtructors Many matrix op-
erations consist in adding or removing a row or column. Gigerectorv and matrix
M with dim(v) columns and at leastrows, AddRow(M, i,V) inserts a new row at po-
sitioni in M and fills it with the value of vectov, whereasRemRow(M, i) does the
opposite transformation. Analogous constructors existédumns AddCol(M, j,v) in-
serts a new column at positignn M and fills it with vectorv, whereaRemCol(M, j)
undoes the insertiohddRow andRemRow are extended to operate on vectors.
Displacement of a statemes8tis also a common operation. It only impacts the
statement-scattering vectﬁ? of some statemen8 sharing some common property
with S. Indeed, forward or backward movement3¥it depthv triggers the same move-
ment on every subsequent statem8nat depth? such that pr@Bg,E) = pfx(BS,0).
Although rather intuitive, the following definition with pfixed blocks of statements is
rather technical. Consider a SCgPa statement-scattering prefixdefining the depth
at which statements should be displacestaaement-scattering prefix-Q prefixed by
P — making the initial time-stamp of statements to be displaead a displacement
distanceo; o is the value to be added/subtracted to the component at deptP) of
any statement-scattering vecfot prefixed byP and following Q. The displacement
constructoMove (P, Q,0) leave all statements unchanged except those satisfying

VSe S,PLBA(Q< BV QLB : Bimp) — Biimp) +©- (6)

Constructors make no assumption about representationamtaand may violate them.

3.4 Primitives

From the earlier constructors, we will now define transfatioraprimitives that en-
force the invariants and serve as building blocks for higbeel, semantically sound
transformations. Most primitives correspond to simpleypeldral operations, but their
formal definition is rather technical and will be describedrmextensively in a further
paper. Figure 5 lists the main primitives affecting the pagiral representation of a
statemen®. U denotes a unimodular matrix; M implements the paramegdr&hift (or
translation) of the affine schedule of a statemérdenotes the depth of a statement
insertion, iteration domain extension or restriction; and a vector implementing an
additional domain constraint.

The last two primitives — fusion and split (or distributior} show the benefit of
designing loop transformations at the abstract semari¢icel of polyhedra. First of all,
loop bounds are not an issue since the code generator willléamy overlapping of
iteration domains. Next, these primitives dot directly operate on loops, but consider
prefixesP of statement-scattering vectors. As a result, they mayaily be composed
with any possibléransformation. For the split primitive, vect@®, o) prefixes all state-
ments concerned by the split; and paraméterdicates the position where statement
delaying should occur. For the fusion primitive, vectBro+ 1) prefixes all statements
that should be interleaved with statements prefixed Bp). Eventually, notice that
fusion followed by split (with the appropriate valuelgfleaves the SCoP unchanged.

This table is not complete: privatization, array contractand copy propagation
require operations on access functions.

3.5 Transformation Composition

We will illustrate the compaosition of primitives on a typlexample: two-dimensional
tiling. To define such a composed transformation, we firstdbiie strip-mining and
interchange transformations from the primitives, as showkfigure 6.

INTERCHANGES, 0) swaps the roles af andio1 in the schedule 08§, it is a per-
statement extension of the classical interchang&I®MINE(S 0,k) — wherek is a
known integer— prepends a new iterator to virtualkstimes unroll the schedule and
iteration domain ofS at deptho. Finally, TILE(S 0,k) tiles the loops at deptb and
0+ 1 with k x k blocks.

This tiling transformation is a first step towards a higherdl combinecdtransfor-
mation, integrating strip-mining and interchange withvptization, array copy propa-
gation and hoisting for dependence removal. The only reimgiparameters would be
the statements and loops of interest and the tile size.

4 Code Generation

After polyhedral transformations, code generation is #st step to the final program.
It is often ignored in spite of its impact on the target codaldgu In particular, we

5 Many of these primitives can be extended to blocks of statésrsharing a common statement-
scattering prefix (like the fusion and split primitives).

[Syntax & Name [Prerequisites [Effect

LEFTU(SU) SeSAU € Mys 4s(Z) AS—UAS
Unimodular AldetU)] =1
RIGHTU (S U) Se SAU € Mys 4s(Z) AS —ASU
Unimodular AldetU)] =1
SHIFT(SM) SESAME Mysy,1(Z) rS—Tr>+M
Shift
INSERT(S /) C<dABY,, = =B =0 |P=pi(B50)
Insertion A(3S € S,pfx(BS,£+1) C p¥ |5 — Move(P,(P,B5), 1) US
v (pfx(BS.0).65 1) C %)
DELETE(S) Ses P = pfx(BS,d5)
Deletion S — Move(P,(P,B5): 1)\ S
EXTEND(S /) Ses dS —dS+1;AS — AddCol(AS 7,0);
Extension AS — AddRow(AddCol(AS,£,0),¢,1,);

(35 < AddRow(S,£,0);TS «— AddRow(I"S, ,0);
Y(AF) € LSURS,F — AddRow(F,/,0)
RESTRICT(S /) [S€ S dS « d5—1;AS — RemCol(AS,?);

Restriction AS « RemRow(RemCol(AS,¢),¢);

B3S «— RemRow(pBS,£); 'S « RemRow(TS,£);
V(A F) € LSURS F — RemRow(F, ()

CuTDOMAIN (Sc)[Se s AS — AddRow(AS,0,
Cut Domain Adim(c) = dS+dj +dgp+1 c/gcd(cl,...,cds+d'%+dgp+l))
ADDLP(S) Ses dp —dp+1;
Add Local /\g «— AddCol(AS,dS+1,0);
Parameter V(A F) € LSU RS F — AddCol(F,dS +1,0)
Fuse(P,0) b= max{BdSim(P>+1 [(PO)CRS}+1;
Fusion Move((P,0o+1),(P,0+1),b);
Move(P, (P,o+1),—1)
SpLIT(P,0,b) Move(P, (P,0,b),1);
Split Move((P.o+1),(Po+1),—b)
Fig. 5. Main transformation primitives
[Syntax & Name [PrerequisitefEffect [Comments
INTERCHANGE(S 0)[S€e § U=lis—1oo—Lot10r1+Loor1t1or10 [SWapP rows
Loop Interchange |A 0 < dS S— RIGHTU(SU) oando-+1
STRIPMINE (S0,k) [Se S S— EXTEND(S0);
Strip Mining A0<d® [S— ADDLP(S);
ANk>0 p=dS+1; local param. colump
u=dS+d5+dgp+1; constant column
S« CUTDOMAIN (S 1641 — 1o); (io <lo41)

S« CUTDOMAIN (S 15— 141+ (K—1)1y);| (041 <io+k—1)

S«— CUTDOMAIN (S§,1o —1p); (kx p<ii)
S— CUuTDOMAIN (§ 1, —1p); (il <kxp)
TILE(S0,k) Ses S« STRIPMINE (S 0,k);
Tiling A0<dS [S« STRIPMINE(S0+2,K);
Ak>0 S— INTERCHANGE(S 0+1);

Fig. 6. Composition of transformation primitives

must ensure that a bad control management does not spalpenfice, for instance by
producing redundant guards or complex loop bounds.

Ancourt and Irigoin [1] proposed the first solution, basedtioe Fourier-Motzkin
pair-wise elimination. The scope of their method was lihite a single polyhedron
with unimodular transformation (scheduling) matricese Hasic idea was to apply the
transformation function as a change of base of the loop @glithen for each new
dimension, to project the polyhedron on the axis and thustfieccorresponding loop

bounds. The main drawback of this method was the large anefuatiundant control.
Most further works on code generation tried to extend thist fiechnique, in order
to deal with non-unit strides [15, 21] or with a non-inveléiliransformation matrix
[9]. A few alternatives to Fourier-Motzkin were discussedf without addressing the
challenging problem of scanning more than one polyhedromeg.

This problem was first solved and implemented in Omega by rg¢ing a naive
perfectly nested code and then by (partially) eliminatiedundant guards [14]. Another
way was to generate the code for each polyhedron separatelythen to merge them
[9,5]; it generates a lot of redundant control, even if theeze no redundancies in the
separated code. Quilleré et al. proposed to recursivelgraggunion of polyhedra into
subsets of disjoint polyhedra and generating the corredipgmests from the outermost
to the innermost levels [19]. This approach provides atgmethe best solutions since
it totally eliminates redundant control. However, it sufférom some limitations, e.g.
high complexity, code generation with unit strides onlyd aigid partial order on the
polyhedra. Improvements are presented in the next section.

This section presents the code generation problem, itdutso with a modern
polyhedral-scanning technique, and its implementation.

4.1 The Code Generation Problem

In the polyhedral model, code generation amounts polghedron scanning problem

finding a set of nested loops visiting each integral poinfipfeing a given scanning

order. The generated code quality can be assessed by usingatuations: the most

important is the amount of duplicated control in the final epsecond, the code size,
since a large code may pollute the instruction cache. Wesshthe recent Quilleré et al.
method [19] with some additional improvements, which gntea a code generation
without any duplicated control. The outline of the modifiddaaithm is presented in

Section 4.2 and some useful optimization are discusseddticBet. 3.

4.2 Outline of the Code Generation Algorithm

Our code generation process is divided in two main stepst, Fire take the scheduling
functions into account by modifying each polyhedron’s ¢exjraphic order. Next, we
use an improved Quilleré et al. algorithm to perform the attwde generation.

When no schedule is specified, the scanning order is the lgigicographic order.
Applying a new scanning order to a polyhedron amounts toragidew dimensions in
leading positions. Thus, from each polyhed®hand scheduling functio®®, we build
another polyhedro S with the desired lexicographic ordeit,i) € 7S if and only if
t = 85(i). The algorithm is a recursive generation of the scanningcothintaining a
list of polyhedra from the outermost to the innermost loops:

1. intersect each polyhedron of the list with the contexhef¢urrent loop (to restrict
the scanning code to this loop);

2. project the resulting polyhedra onto the outermost diiwrs, then separate the
projections into disjoint polyhedra;

3. sort the resulting polyhedra such that a polyhedron iefeednother one if its scan-
ning code has to precede the other to respect the lexicoigrapter;

4. merge successive polyhedra having at least anotherdweptb generate a new list
and recursively generate the loops that scan this list;

5. compute the strides that the current dimension impostsetouter dimensions.

This algorithm is slightly different from the one presentgdQuilleré et al. in [19]; our
two main contributions are the support for non-unit strifet®p 5) and the exploitation
of degrees of freedom (i.e., when some operations do notdaebedule) to produce a
more effective code (Step 4).

Let us describe this algorithm with a non-trivial examplee two polyhedral do-
mains presented in Figure 7(a). Both statements haveidaraector(i, j), local pa-
rameter vectofk) and global parameter vect@m). We first compute intersections with
the context, supposed to Ine> 6. We project the polyhedra onto the first dimension,
i, then separate them into disjoint polyhedra. Thus we coenfngt domains associated
with 7= alone, bothZ'St and7%2, and7 " alone (as shown in Figure 7(b), this last do-
main is empty). We notice there is a local parameter implgmgpn-unit stride; we can
determine this stride and update the lower bound. We finahegate the scanning code
for this first dimension. We now recurse on the next dimensiepeating the process
for each polyhedron list (in this example, there are now tat31 one inside each gener-
ated outer loop). We intersect each polyhedra with the newest, now the outer loop
iteration domains; then we project the resulting polyhexrghe outer dimensions, and
finally we separate these projections into disjoint polylaedhis last processing is triv-
ial for the second list but yields two domains for the first,lss shown in Figure 7(c).
Eventually, we generate the code associated with the newrdiion.

j, oSL eS2 j Sland S2 s1 i
n o o o o o n o o o o o n o o
o o o o o o o o o o o o
7 o o o o o 7 o o o o o 7 o o
6 rod o o o o 6 . o o o o 6 o o
® o o o o » o o o o o o
o o o o o Ied rod o o o o o
o o o o o g » o] o o o
2{ # #» o o o 21 |# # o |o o 2 o o
11 o® » » o o 11| o o o o 1 o)
i i i
12 6 7 n 12 6!7 n 12 6!7...n
code generation exanple
1<i< doi =1,6, 2
i<n P -z)
5, ..) 1sts doi =1, 6 2 doj =1, 7-i
g <””{'{fﬁ“ I (1< <n) | st sz
sJ=n S5)) doj =8i, n
. Ti(n):{1<j<7-i} | st
. 1<i<6 doi =7, n, 2 doi =7 n 2
T, %(n): i=2k+1 T (1<i<n o
1<j<7-i 12m:{l<j<n} doj =1 n

| st

(b) Projection and separation on the first

(a) Initial domains to scan . :
dimension

(c) Recursion on next dimensions

Fig. 7. Step by step code generation example

4.3 Complexity Issues

The main computing kernel in the code generation procebgisdparation into disjoint
polyhedra, with a worst-cas@(3") complexity in polyhedral operations (exponential
themselves). In addition, the memory usage is very highesivehave to allocate mem-
ory for each separated domain. For both issues, we propoadialsolution. First of
all, we use pattern matching to reduce the number of polydiedimputations: at a
given depth, the domains are often the same (this is a psopethe input codes), or
disjoint (this is a property of the statement-scatteringtoes of the scheduling matri-
ces). Second, to avoid memory problems, we detect high mermrsumption and
switch for a more naive algorithm when necessary, leading less efficient code but
using far less memory.

Our implementation of this algorithm is called CLooG (Churikoop Genera-
tor) and was originally designed for a locality-improverhaigorithm and software
(Chunky) [3]. CLooG could regenerate code &lr12 benchmarks in Figure 2. Experi-
ments were conducted on a 8B 1GHzPentium Il machine; generation times range
from 1 to 127 seconds (34 seconds on average). It producedalontrol for all but
three SCoPs ifucas, apsi andadm; the first SCoP has more than 1700 statements and
could be optimally generated on &B Itanium machine in 22 minutes; the two other
SCoPs have less than 50 statements, but 16 parametergiwmeerent version of does
not analyse the linear relations between variables, thiahitity of parameter interac-
tions leads to an exponential growth of the generated codeplexity improvements
and studies of the generated code quality are under inaistig

5 WRaP-IT: an Open64 Plug-In for Polyhedral Transformations

Our main goal is to streamline the extraction of static coinparts and the code gen-
eration, to ease the integration of polyhedral technigo&soptimizing and paralleliz-
ing compilers. This interface tool is built on Open64/ORtCzdnverts the WHIRL —
the compiler’s hierarchical intermediate representatieo an augmented polyhedral
representation, maintaining a correspondence betweericesmtn SCoP descriptions
with the symbol table and syntax tree. This representasiaalled the WRaP: WHIRL
Represented as Polyhedra. It is the basis for any polyhediysis or transforma-
tion. Then, the second part of the tool is a modified versioRlbboG, to regenerate
a WHIRL syntax tree from the WRaP. The whole Interface Toaabed WRaP-IT; it
may be used in a normal compilation or source-to-sourcedvaonk, see [2] for details.
Although WRaP-IT is still a prototype, it proved to be verpust; the whole source-
to-polyhedra-to-source transformation was successépflied to all 12 benchmarksin
Figure 2. Seéttp://ww-rocq.inria.fr/a3/wap-it forfurtherinformation.

6 Conclusion

We described a framework to streamline the design of polsdiedansformations,
based on a unified polyhedral representation and a set afftnanation primitives.
It decouples transformations from static analyses. It ferided as a formal tool for

semi-automatic optimization, where program transforovai— with the associated
static analyses for semantic-preservation — are sepafirat@the optimization or par-
allelization algorithm which drives the transformatiomglaselect their parameters.

We also described WRaP-IT, a robust tool to convert back artti between For-
tran or C and the polyhedral representation. This tool ilémented in Open64/ORC.
The complexity of the code generation phase, when congghttk to source code,
has long been a deterrent for using polyhedral representatn optimizing or paral-
lelizing compilers. However, our code generator (CLoo@) bandle loops with more
than 1700 statements. Moreover, the whole source-to-pdlgito-source transforma-
tion was successfully applied to the 12 benchmarks. Thissisang point in favor of
polyhedral techniques, even in the context of real codes.

Current and future work include the design and implemenatif a polyhedral
transformation library, an iterative compilation schemighva machine-learning algo-
rithm and/or an empirical optimization methodology, and tptimization of the code
generator to keep producing optimal code on larger codes.

References

1. C. Ancourtand F. Irigoin. Scanning polyhedra with DO leofm3rd ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programmingpages 39-50, june 1991.
2. C.Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. TemautinByolyhedral loop transformations to work. Research
report 4902, INRIA Rocquencourt, France, July 2003.
3. C.Bastoul and P. Feautrier. Improving data locality byrdting. InCC’12 Intl. Conference on Compiler Construction,
LNCS 2622pages 320-335, Warsaw, Poland, april 2003.
4. W.Blume, R. Eigenmann, K. Faigin, J. Grout, J. HoeflinGeRadua, P. Petersen, W. Pottenger, L. Rauchwerger, P. Tu,
and S. Weatherford. Parallel programming with PolalisEE Computer29(12):78-82, Dec. 1996.
5. P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop patization algorithms: From parallelism extraction tods
generation Parallel Computing 24(3):421-444, 1998.
6. K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKag] J. M. Mellor-Crummey, L. Torczon, and S. K.
Warren. The ParaScope parallel programming environnferaceedings of the IEEB1(2):244-263, 1993.
7. R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatidielization of the perfect benchmarkKEEE Trans.
on Parallel and Distributed Systen(1):5-23, Jan. 1998.
8. P. Feautrier. Some efficient solution to the affine schieduyroblem, part Il, multidimensional timeint. Journal of
Parallel Programming21(6):389—-420, Dec. 1992. See also Part I, One Dimensioma, 21(5):315-348.
9. M. Griebl, C. Lengauer, and S. Wetzel. Code generatiohgmpblytope model. IPACT'98 Intl. Conference on Parallel
Architectures and Compilation Techniqueages 106-111, 1998.
10. A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhyedd. Risset. Hardware design methodology with the alpha
language. IFDL'01, Lyon, France, Sept. 2001.
11. M. Hall et al. Maximizing multiprocessor performancetwihe SUIF compilerlEEE Computer29(12):84-89, Dec.
1996.
12. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical iptecedural parallelization: An overview of the pips pictje In
ACM Int. Conf. on Supercomputing (ICS'@ologne, Germany, June 1991.
13. W. Kelly. Optimization within a unified transformatiorafmework. Technical Report CS-TR-3725, University of
Maryland, 1996.
14. W. Kelly, W. Pugh, and E. Rosser. Code generation foripielmappings. IrFrontiers’95 Symp. on the frontiers of
massively parallel computatioMcLean, 1995.
15. W. Li and K. Pingali. A singular loop transformation framork based on non-singular matricdstl. J. of Parallel
Programming 22(2):183-205, April 1994.
16. M. O'Boyle. MARS: a distributed memory approach to skamemory compilation. IProc. Language, Compilers
and Runtime Systems for Scalable ComputiRigsburgh, May 1998. Springer-Verlag.
17. M. O'Boyle, P. Knijnenburg, and G. Fursin. Feedbacksisdliiterative compiplation. IRarallel Architectures and
Compilation Techniques (PACT'QIEEE Computer Society Press, Oct. 2001.
18. Open research compildrt t p: / /i pf-orc. sour cef or ge. net .
19. F. Quilleré, S. Rajopadhye, and D. Wilde. Generationffiient nested loops from polyhedrantl. J. of Parallel
Programming 28(5):469—498, october 2000.
20. R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. Mahlke ABraham, and G. Snider. High-level synthesis of nonpro-
grammable hardware accelerators. Technical report, HeRbckard, May 2000.
21. J. Xue. Automating non-unimodular loop transformadior massive parallelisnParallel Computing20(5):711-728,
1994.
22. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garaar D. Padua, K. Pingali, P. Stodghill, and P. Wu. A
comparison of empirical and model-driven optimization AGM Symp. on Programming Language Design and Imple-
mentation (PLDI'03) San Diego, California, June 2003.

