
Putting Polyhedral Loop Transformations to Work

Cédric Bastoul13, Albert Cohen1, Sylvain Girbal124, Saurabh Sharma1, and Olivier
Temam2

1 A3 group, INRIA Rocquencourt
2 LRI, Paris South University

3 PRiSM, University of Versailles
4 LIST, CEA Saclay

Abstract. We seek to extend the scope and efficiency of iterative compilation
techniques by searching not only for program transformation parameters but for
the most appropriate transformations themselves. For thatpurpose, we need a
generic way to express program transformations and compositions of transfor-
mations. In this article, we introduce a framework for the polyhedral represen-
tation of a wide range of transformations in a unified way. We also show that it
is possible to generate efficient code after the applicationof polyhedral program
transformations. Finally, we demonstrate an implementation of the polyhedral
representation and code generation techniques in the Open64/ORC compiler.

1 Introduction

Optimizing and parallelizing compilers face a tough challenge. Due to their impact on
productivity and portability, programmers of high-performance applications want com-
pilers to automatically produce quality code on a wide rangeof architectures. Simulta-
neously, Moore’s law indirectly urges the architects to build complex architectures with
deeper pipelines and (non uniform) memory hierarchies, wider general-purpose and
embedded cores with clustered units and speculative structures. Static cost models have
a hard time coping with rapidly increasing architecture complexity. Recent research
works on iterative and feedback-directed optimizations [17] suggest that practical ap-
proaches based on dynamic information can better harness complex architectures.

Current approaches to iterative optimizations usually choose a rather small set of
program transformations, e.g., cache tiling and array padding, and focus on finding the
best possible transformation parameters, e.g., tile size and padding size [17] using pa-
rameter search space techniques. However, a recent comparative study of model-based
vs. empirical optimizations [22] stresses that many motivations for iterative, feedback-
directed or dynamic optimizations are irrelevant when the proper transformations are
not available. We want to extend the scope and efficiency of iterative compilation tech-
niques by making the program transformation itself one of the parameters. Moreover,
we want to search for composition of program transformations and not only single
program transformations. For that purpose, we need a generic method for expressing
program transformations and composition of those.

This article introduces a unified framework for the implemention and composition
of generic program transformations. This framework relieson a polyhedral represen-
tation of loops and loop transformations. By separating theiteration domains from the

statement and iteration schedules, and by enabling per-statement transformations, this
representation avoids many of the limitations of iteration-based program transforma-
tions, widens the set of possible transformations and enables parameterization. Few
invariants constrain the search space and ournon-syntactic representationimposes no
ordering and compatibility constraints. In addition, statements arenamed independenty
from their location and surrounding control structures: this greatly simplifies the prac-
tical description of transformation sequences. We beleivethis generic expression is ap-
propriate for systematic search space techniques.

The corresponding search techniques and performance evaluations are out of the
scope of this work and will be investigated in a follow-up article. This work presents
the principles of our unified framework and the first part of its implementation. Also,
since polyhedral transformation techniques can better accommodate complex control
structures than traditional loop-based transformations,we start with an empirical study
of control structures within a set of benchmarks. The four key aspects of our research
work are: (1) empirically evaluating the scope of polyhedral program transformations,
(2) defining a practical transformation environment based on a polyhedral representa-
tion, (3) showing that it is possible to generate efficient code from a polyhedral transfor-
mation, (4) implementing the polyhedral representation and code generation technique
in a real compiler, Open64/ORC [18], with applications to real benchmarks.

Eventually, our framework operates at an abstract semantical level to hide the de-
tails of control structures, rather than on a syntax tree. Itallows per-statement and ex-
tended transformations that make few assumptions about control structures and loop
bounds. Consequently, while our framework is initially geared toward iterative opti-
mization techniques, it can also facilitate the implementation of statically driven pro-
gram transformations in a traditional optimizing compiler.

The paper is organized as follows. We present the empirical analysis of static con-
trol structures in Section 2 and discuss their significance in typical benchmarks. The
unified transformation model is described in Section 3. Section 4 presents the code
generation techniques used after polyhedral transformations. Finally, implementation
in Open64/ORC is described in Section 5.

2 Static Control Parts

Let us start with some related works. Since we did not directly contribute to the driv-
ing of optimizations and parallelization techniques, we will not compare with the vast
literature in the field of model-based and empirical optimization.

Well-known loop restructuring compilers proposed unified models and intermedi-
ate representations for loop transformations, but none of them addressed the general
composition and parameterization problem of polyhedral techniques. ParaScope [6] is
both a dependence-based framework and an interactive source-to-source compiler for
Fortran; it implements classical loop transformations. SUIF [11] was designed as an
intermediate representation and framework for automatic loop restructuring; it quickly
became a standard platform for implementing virtually any optimization prototype, with
multiple front-ends, machine-dependent back-ends and variants. Polaris [4] is an auto-
matic parallelizing compiler for Fortran; it features a rich sequence of analyzes and

loop transformations applicable to real benchmarks. Thesethree projects are based on
a syntax-tree representation, ad-hoc dependence models and implement polynomial al-
gorithms. PIPS [12] is probably the most complete loop restructuring compiler, im-
plementing polyhedral analyses and transformations (including affine scheduling) and
interprocedural analyses (array regions, alias). PIPS uses an expressive intermediate
representation, a syntax-tree with polyhedral annotations.

Within the Omega project [14], the Petit dependence analyzer and loop restructur-
ing tool [13] is much closer to our work: it provides a unified polyhedral framework
(space-time mappings) for iteration reordering only, and it shares our emphasis on per-
statement transformations. It is intended as a research tool for small kernels only. The
MARS compiler [16] is also very close to our work: its polyhedral representation allows
to unify several loop transformations to ease the application of long transformation se-
quences. Its successes in iterative optimization [17] makes it the main comparison point
and motivation for our work, although MARS lacks the expressivity of the affine sched-
ules we use in our unified model.

Two codesign projects have a lot in common with our semi-automatic optimization
project. MMAlpha [10] is a domain-specific single assignment language for systolic ar-
ray computations, a polyhedral transformation framework,and a high-level circuit syn-
thesis tool. The interactive and semi-automatic approach to polyhedral transformations
were introduced by MMAlpha. The PICO project [20] is a more pragmatic approach
to codesign, restricting the application domain to loop nests with uniform dependences
and aiming at the selection and coordination of existing functional units to generate an
application-specific VLIW processor. Both tools only target small kernels.

2.1 Decomposition into Static Control Parts

In the following, loops are normalized and split in two categories: loops from 0 to
some bound expression with an integer stride, calleddo loops; other kinds of loops,
referred to aswhile loops. Early phases of the Open64 compiler perform most of this
normalization, along with closed form substitution of induction variables. Notice some
Fortran and Cwhile loops may be normalized todo loops when bound and stride can
be discovered statically.

The following definition is a slight extension ofstatic controlnests [8]. Within a
function body, astatic control part(SCoP) is a maximal set of consecutive statements
withoutwhile loops, where loop bounds and conditionals may only depend oninvari-
ants within this set of statements. These invariants include symbolic constants, formal
function parameters and surrounding loop counters: they are called theglobal parame-
tersof the SCoP, as well as any invariant appearing in some array subscript within the
SCoP. A static control part is calledrich when it holds at least one non-empty loop;rich
SCoPs are the natural candidates for polyhedral loop transformations. An example is
shown in Figure 1. We will only considerrich SCoPs in the following.

As such, a SCoP may hold arbitrary memory accesses and function calls; a SCoP is
thus larger than a static control loop nest [8]. Interprocedural alias and array region anal-
ysis would be useful for precise dependence analysis. Nevertheless, our semi-automatic
framework copes with crude dependence information in authorizing the expert user to
override static analysis when applying transformations.

SCoP decomposition
do i=1, 3
...
S1 SCoP 1, one statement, non rich

...
do j=1, i*i

...
S2 SCoP 2, three statements, rich
do k=0, j parameters:i,j
if (j .ge. 2) then iterators: k

S3
S4

...
do p = 0, 6 SCoP 3, two statements, rich
S5 iterators: p
S6

Fig. 1. Example of decomposition into static control parts

2.2 Automatic Discovery of SCoPs

SCoP extraction is greatly simplified when implemented within a modern compiler
infrastructure such as Open64/ORC. Previous phases include function inlining, con-
stant propagation, loop normalization, integer comparison normalization, dead-code
andgoto elimination, and induction variable substitution, along with language-specific
preprocessing: pointer arithmetic is replaced by arrays, pointer analysis information is
available (but not yet used in our tool), etc. The algorithm for SCoP extraction is de-
tailed in [2]; it outputs a list of SCoPs associated with any function in the syntax tree.
Our implementation in Open64 is discussed in Section 5.

2.3 Significance Within Real Applications

Thanks to an implementation of the previous algorithm into Open64, we studied the
applicability of our polyhedral framework to several benchmarks.

Figure 2 summarizes the results for the SpecFP 2000 and PerfectClub benchmarks
handled by our tool (single-file programs only, at the time being). Construction of the
polyhedral representation takes much less time than the preliminary analyses performed
by Open64/ORC. All codes are in Fortran77, exceptart andquake in C, andlucas in
Fortran90. The first column shows the number of functions (inlining was not applied
in these experiments). The next two columns count the numberof SCoPs with at least
one global parameter and enclosing at least one conditional, respectively; the first one
advocates for parametric analysis and transformation techniques; the second one shows
the need for techniques that handle static-control conditionals. The next two columns in
the “Statements” section show that SCoPs cover a large majority of statements (many
statements are enclosed in affine loops). The last two columns in the “Array References”
section are very promising for dependence analysis: most subscripts are affine except
for lucas andmg3d (the rate is over 99% in 7 benchmarks), but approximate arrayde-
pendence analyses will be required for a good coverage of the5 others. In accordance
with earlier results using Polaris [7], the coverage of regular loop nests is strongly in-
fluenced by the quality of loop normalization and induction variable detection.

SCoPs Statements Array References
FunctionsAll Parametric Affineifs All in SCoPs All Affine

applu 16 19 15 1 757 6331245 100%
apsi 97 80 80 252192 1839 977 78%
art 26 28 27 4 499 343 52 100%
lucas 4 4 4 2 2070 2050 411 40%
mgrid 12 12 12 2 369 369 176 99%
quake 27 20 14 4 639 489 218 100%
swim 6 6 6 1 123 123 192 100%

adm 97 80 80 252260 1899 147 95%
dyfesm 78 75 70 31497 1280 507 99%
mdg 16 17 17 5 530 464 355 84%
mg3d 28 39 39 61442 12421274 19%
qcd 35 30 23 6 819 641 943 100%

Fig. 2. Coverage of static control parts in high-performance applications

Our tool also gathers detailed statistics about the number of parameters and state-
ments per SCoP, and about statement depth (within a SCoP, notcounting non-static en-
closing loops). Figure 3 shows that almost all SCoPs are smaller than 100 statements,
with a few exceptions, and that loop depth is rarely greater than 3. Moreover, deep loops
also tend to be very small, except forapplu, adm andmg3d which contain depth-3 loop
nests with tenths of statements. This means that most polyhedral analysis and trans-
formations will succeed and require reasonable resources.It also gives an estimate of
the scalability required for worst-case exponential algorithms, like the code generation
phase to convert the polyhedral representation back to source code.

Fig. 3.Distribution of statement depths and SCoP size

3 Unified Polyhedral Representation

In this section, we define the principles of polyhedral program transformations. The
termpolyhedronwill be used in a broad sense to denote aconvex set of points in a lattice
(also calledZ-polyhedron or lattice-polyhedron), i.e., a set of points in aZ vector space
bounded by affine inequalities.

Let us now introduce the representation of a SCoP and its elementary transforma-
tions. A static control part within the syntax tree is a pair(S , igp), whereS is the set
of consecutivestatements— in their polyhedral representation — andigp is the vec-
tor of global parametersof the SCoP. Vectorigp is constant for the SCoP but statically
unknown; yet its value is known at runtime, when entering theSCoP.dgp = dim(igp)
denotes the number of global parameters.

We will use a few specific linear algebra notations: matricesare always denoted by
capital letters, vectors and functions in vector spaces arenot; pfx(v,n) returns a length-n
prefix of v, i.e., the vector built from then first components ofv; u⊑ w is equivalent to
u being a prefix ofv; 1k denotes thek-th unit vector in a reference base(11, . . . ,1d) of
a d-dimensional space, i.e.,(0, . . . ,0,1,0, . . . ,0); likewise, 1i, j denotes the matrix filled
with zeros but element(i, j) set to 1.

A SCoP may also be decorated with static properties such as array dependences or
regions, but this work does not address static analysis.

3.1 Domains, Schedules and Access Functions

Thedepth dS of a statementS is the number of nested loops enclosingS in the SCoP.
A statementS∈ S is a quadruple(DS,LS,R S,θS), whereDS is thedS-dimensional
iteration domainof S, LS andR S are sets of polyhedral representations ofarray refer-
ences, andθS is theaffine scheduleof S, defining thesequential execution orderingof
iterations ofS. To represent arbitrary lattice polyhedra, each statementis provided with
a numberdS

lp of local parametersto implement integer division and modulo operations
via affine projection: e.g., the set of even values ofi is described by means of a local
parameterp — existentially quantified — and equationi = 2p. Let us describe these
concepts in more detail and give some examples.
DS is aconvex polyhedrondefined by matrixΛS∈Mn,dS+dS

lp+dgp+1(Z) such that

i ∈DS ⇐⇒ ∃i lp,ΛS(i, i lp, igp,1
)t
≥ 0.

Notice the last matrix column is always multiplied by the constant 1; it corresponds to
thehomogeneous coordinateencoding ofaffineinequalities intolinear form. The num-
bern of constraints inΛS is not limited. Statements guarded by non-convex conditionals
— such as 0≤ i ≤ 3∨ i ≥ 8 — are separated into convex domains in the polyhedral rep-
resentation. Figure 4 shows an example that illustrates these definitions.

The domains of the five statements areDS1 = {i | 1≤ i ≤ N}, DS2 = {(i, j) | 1≤
i ≤ N,1≤ j ≤ M}, DS3 = {()} (the zero-dimensional vector),DS4 = DS5 = {k | 3≤

Running example
do i = 1, N
A(i) = 0 (S1)
do j=1, M
A(i) = A(i) + B(i, 2*i+j-N-1) (S2)

D[0] = 1 (S3)
do k = 3, N, 2
D(k) = 2*D(k-2) (S4)
E(k) = -A(k); (S5)

Fig. 4. Running example

k≤ N∧∃p,k = 3+2p}. E.g., theΛ-matrices for statementsS2 andS4 are

ΛS2 =









1 0 0 0−1
−1 0 1 0 0
0 1 0 0−1
0 −1 0 1 0









w/

∣

∣

∣

∣

∣

∣

i = (i, j)
i lp = ()
igp = (N,M)

ΛS4 =









1 0 0 0−3
−1 0 1 0 0
1 −2 0 0−3
−1 2 0 0 3









w/

∣

∣

∣

∣

∣

∣

i = (k)
i lp = (p)
igp = (N,M)

LS andR S describe array references written byS (left-hand side) or read byS
(right-hand side), respectively; it is a set of pairs(A, f) whereA is an array variable and
f is theaccess functionmapping iterations inDS to locations inA. The access function
f is defined by a matrix F∈Mdim(A),dS+dS

lp+dgp+1(Z) such that

f (i) = F
(

i, i lp, igp,1
)t

.

E.g.,LS2 =
{(

A,(i)
)}

andR S2 =
{(

A,(i)
)

,
(

B,(i,2∗ i + j−N−1)t
)}

, stored as

LS2 :
{(

A,
[

1 0 0 0 0
])}

R S2 :
{(

A,
[

1 0 0 0 0
])

,
(

B,
[1 0 0 0 0

2 1−1 0−1

])}with

∣

∣

∣

∣

∣

∣

i = (i, j)
i lp = ()
igp = (N,M)

θS is theaffine scheduleof S; it maps iterations inDS to time-stamps(i.e., logical
execution dates) in 2dS+ 1-dimensional time [8]. Multidimensional time-stamps are
compared through thelexicographic orderingover vectors, denoted by≪: iterationi of
S is executed before iterationi′ of S′ if and only if θS(i)≪ θS(i′).

To facilitate code generation and to schedule iterations and statements indepen-
dently, we need 2dS+ 1 time dimensions instead ofdS (the minimum for a sequential
schedule). This encoding was first proposed by Feautrier [8]and used extensively by
Kelly and Pugh [13]: dimension 2k encodes the relative ordering of statements at depth
k and dimension 2k−1 encodes the ordering of iterations in loops at depthk.

Eventually,θS is defined by a matrixΘS∈M2dS+1,dS+dgp+1(Z) such that

θS(i) = ΘS(i, igp,1
)t

.

Notice ΘS does not involve local parameters, since lattice polyhedrado not increase
the expressivity of sequential schedules. The schedules for the previous example are:
θS1(i) = (0, i,0)t , θS2(i) = (0, i,1, j,0), θS3(i) = (1), θS4(i) = (2,k,0), θS5(i) = (2,k,1).

E.g., theΘ-matrices forS2 andS4 are:

ΘS2 =













0 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 0 0













with

∣

∣

∣

∣

∣

∣

i = (i, j)
i lp = ()
igp = (N,M)

ΘS4 =





0 0 0 2
1 0 0 0
0 0 0 0



with

∣

∣

∣

∣

∣

∣

i = (k)
i lp = ()
igp = (N,M)

3.2 Invariants

Our representation makes a clear separation between thesemantically meaningful trans-
formationsexpressible on the polyhedral representation from thesemantically safe
transformationssatisfying the statically checkable properties. The goal is of course
to widen the range of meaningful transformationswithout relying on the accuracy of
a static analyzer. Although classical transformations arehampered from the lack of
information about loops bounds, they may be feasible in a polyhedral representation
separating domains from affine schedules and authorizing per-statement operations. To
reach this goal and to achieve a high degree of transformation compositionality, the
representation enforces a fewinvariantson the domains and schedules.

There is only one domain invariant. To avoid integer overflows, the coefficients in a
row of ΛS must be relatively prime:

∀1≤ i ≤ dS,gcd(Λi,1, . . . ,Λi,dgp+1) = 1. (1)

This restriction has no effect on the expressible domains.
The first schedule invariant requires the schedule matrix tofit into a decomposi-

tion amenable to composition and code generation. It separates the squareiteration re-
ordering matrixAS∈MdS,dS(Z) operating on iteration vectors, from theparameterized

matrix ΓS∈MdS,dgp+1(Z) and from thestatement-scattering vectorβS∈ N
dS+1:

ΘS =

























0 · · · 0 0 · · · 0 βS
0

AS
1,1 · · · AS

1,dS ΓS
1,1 · · · ΓS

1,dgp
ΓS

1,dgp+1

0 · · · 0 0 · · · 0 βS
1

AS
2,1 · · · AS

2,dS ΓS
2,1 · · · ΓS

2,dgp
ΓS

2,dgp+1
...

. . .
... 0

... 0
...

AS
dS,1
· · · AS

dS,dS ΓS
dS,1
· · · ΓS

dS,dgp
ΓS

dS,dgp+1

0 · · · 0 0 · · · 0 βS
dS

























. (2)

Statement scattering may not depend on loop counters or parameters, hence the zeroes
in “even dimensions”. Noticeβ subscripts range from 0 todS.

Back to the running example, matrixΘS2 splits into

AS2 =

[

1 0
0 1

]

,ΓS2 =

[

0 0 0
0 0 0

]

,βS2 = (0,1,0)t

The second schedule invariant is thesequentialityone: two distinct statement itera-
tions may not have the same time-stamp:

S 6= S′∨ i 6= i′⇒ θS(i) 6= θS′(i′). (3)

Whether the iterations belong to the domain ofSandS′ does not matter in (3): we wish
to be able to transform iteration domains without botheringwith the sequentiality of the
schedule. Because this invariant is hard to enforce directly, we introduce two additional
invariants with no impact on schedule expressivity and stronger than (3):

|det(AS)|= 1, i.e., AS is unimodular, andS 6= S′⇒ βS 6= βS′ . (4)

Finally, we add adensityinvariant to avoid integer overflow and ease schedule com-
parison. The “odd dimensions” of the image ofΘS form a dS-dimensional sub-space
of the multidimensional time, since AS is unimodular, but an additional requirement is
needed to enforce that “even dimensions” satisfy some form of dense encoding:

βS
k > 0⇒∃S′ ∈ S ,pfx(βS,k) = pfx(βS′ ,k)∧βS′

k = βS
k−1, (5)

i.e., for a given prefix, the next dimension of the statement-scattering vectors span an
interval of non-negative integers.

3.3 Constructors

We define some elementary functions on SCoPs, calledconstructors. Many matrix op-
erations consist in adding or removing a row or column. Givena vectorv and matrix
M with dim(v) columns and at leasti rows,AddRow(M, i,v) inserts a new row at po-
sition i in M and fills it with the value of vectorv, whereasRemRow(M, i) does the
opposite transformation. Analogous constructors exist for columns,AddCol(M, j,v) in-
serts a new column at positionj in M and fills it with vectorv, whereasRemCol(M, j)
undoes the insertion.AddRow andRemRow are extended to operate on vectors.

Displacement of a statementS is also a common operation. It only impacts the
statement-scattering vectorβS′ of some statementsS′ sharing some common property
with S. Indeed, forward or backward movement ofSat depthℓ triggers the same move-
ment on every subsequent statementS′ at depthℓ such that pfx(βS′ , ℓ) = pfx(βS, ℓ).
Although rather intuitive, the following definition with prefixed blocks of statements is
rather technical. Consider a SCoPS , astatement-scattering prefix Pdefining the depth
at which statements should be displaced, astatement-scattering prefix Q— prefixed by
P — making the initial time-stamp of statements to be displaced, and a displacement
distanceo; o is the value to be added/subtracted to the component at depthdim(P) of
any statement-scattering vectorβS prefixed byP and followingQ. The displacement
constructorMove(P,Q,o) leave all statements unchanged except those satisfying

∀S∈ S ,P⊑ βS∧ (Q≪ βS∨Q⊑ βS) : βS
dim(P)← βS

dim(P) +o. (6)

Constructors make no assumption about representation invariants and may violate them.

3.4 Primitives

From the earlier constructors, we will now define transformation primitives that en-
force the invariants and serve as building blocks for higherlevel, semantically sound
transformations. Most primitives correspond to simple polyhedral operations, but their
formal definition is rather technical and will be described more extensively in a further
paper. Figure 5 lists the main primitives affecting the polyhedral representation of a
statement.5 U denotes a unimodular matrix; M implements the parameterized shift (or
translation) of the affine schedule of a statement;ℓ denotes the depth of a statement
insertion, iteration domain extension or restriction; andc is a vector implementing an
additional domain constraint.

The last two primitives — fusion and split (or distribution)— show the benefit of
designing loop transformations at the abstract semanticallevel of polyhedra. First of all,
loop bounds are not an issue since the code generator will handle any overlapping of
iteration domains. Next, these primitives donot directly operate on loops, but consider
prefixesP of statement-scattering vectors. As a result, they may virtually be composed
with any possibletransformation. For the split primitive, vector(P,o) prefixes all state-
ments concerned by the split; and parameterb indicates the position where statement
delaying should occur. For the fusion primitive, vector(P,o+1) prefixes all statements
that should be interleaved with statements prefixed by(P,o). Eventually, notice that
fusion followed by split (with the appropriate value ofb) leaves the SCoP unchanged.

This table is not complete: privatization, array contraction and copy propagation
require operations on access functions.

3.5 Transformation Composition

We will illustrate the composition of primitives on a typical example: two-dimensional
tiling. To define such a composed transformation, we first build the strip-mining and
interchange transformations from the primitives, as shownin Figure 6.

INTERCHANGE(S,o) swaps the roles ofio andio+1 in the schedule ofS; it is a per-
statement extension of the classical interchange. STRIPM INE(S,o,k) — wherek is a
known integer— prepends a new iterator to virtuallyk-times unroll the schedule and
iteration domain ofS at deptho. Finally, TILE(S,o,k) tiles the loops at deptho and
o+1 with k×k blocks.

This tiling transformation is a first step towards a higher-levelcombinedtransfor-
mation, integrating strip-mining and interchange with privatization, array copy propa-
gation and hoisting for dependence removal. The only remaining parameters would be
the statements and loops of interest and the tile size.

4 Code Generation

After polyhedral transformations, code generation is the last step to the final program.
It is often ignored in spite of its impact on the target code quality. In particular, we

5 Many of these primitives can be extended to blocks of statements sharing a common statement-
scattering prefix (like the fusion and split primitives).

Syntax & Name Prerequisites Effect

LEFTU(S,U) S∈ S ∧U ∈MdS,dS(Z) AS← U.AS

Unimodular ∧|det(U)|= 1
RIGHTU(S,U) S∈ S ∧U ∈MdS,dS(Z) AS← AS.U
Unimodular ∧|det(U)|= 1
SHIFT(S,M) S∈ S ∧M ∈MdS,dgp+1(Z) ΓS← ΓS+M
Shift
INSERT(S,ℓ) ℓ≤ dS∧βS

ℓ+1 = · · · = βS
dS = 0 P = pfx(βS,ℓ)

Insertion ∧(∃S′ ∈ S ,pfx(βS,ℓ+1)⊑ βS′ S ←Move(P,(P,βS
ℓ),1)∪S

∨ (pfx(βS,ℓ),βS
ℓ −1)⊑ βS′)

DELETE(S) S∈ S P = pfx(βS,dS)
Deletion S ←Move(P,(P,βS

dS),−1)\S

EXTEND(S,ℓ) S∈ S dS← dS+1;ΛS← AddCol(ΛS,ℓ,0);
Extension AS← AddRow(AddCol(AS,ℓ,0),ℓ,1ℓ);

βS← AddRow(βS,ℓ,0);ΓS← AddRow(ΓS,ℓ,0);
∀(A,F) ∈ LS∪R S,F← AddRow(F,ℓ,0)

RESTRICT(S,ℓ) S∈ S dS← dS−1;ΛS← RemCol(ΛS,ℓ);
Restriction AS← RemRow(RemCol(AS,ℓ),ℓ);

βS← RemRow(βS,ℓ);ΓS← RemRow(ΓS,ℓ);
∀(A,F) ∈ LS∪R S,F← RemRow(F,ℓ)

CUTDOMAIN (S,c) S∈ S ΛS← AddRow(ΛS,0,
Cut Domain ∧dim(c) = dS+dS

lp +dgp+1 c/gcd(c1, . . . ,cdS+dS
lp+dgp+1))

ADDLP(S) S∈ S dS
lp← dS

lp +1;
Add Local ΛS← AddCol(ΛS,dS+1,0);
Parameter ∀(A,F) ∈ LS∪R S,F← AddCol(F,dS+1,0)
FUSE(P,o) b = max{βS

dim(P)+1 | (P,o)⊑ βS}+1;
Fusion Move((P,o+1),(P,o+1),b);

Move(P,(P,o+1),−1)
SPLIT(P,o,b) Move(P,(P,o,b),1);
Split Move((P,o+1),(P,o+1),−b)

Fig. 5. Main transformation primitives

Syntax & Name PrerequisitesEffect Comments

INTERCHANGE(S,o) S∈ S U = IdS−1o,o−1o+1,o+1 +1o,o+1 +1o+1,o swap rows
Loop Interchange ∧ o < dS S← RIGHTU(S,U) o ando+1
STRIPM INE (S,o,k) S∈ S S← EXTEND(S,o);
Strip Mining ∧ o≤ dS S← ADDLP(S);

∧ k > 0 p = dS+1; local param. column
u = dS+dS

lp +dgp+1; constant column
S← CUTDOMAIN (S,1o+1−1o); (io ≤ io+1)
S← CUTDOMAIN (S,1o−1o+1 +(k−1)1u); (io+1 ≤ io +k−1)
S← CUTDOMAIN (S,1o−1p); (k× p≤ ii)
S← CUTDOMAIN (S,1p−1o); (ii ≤ k× p)

TILE (S,o,k) S∈ S S← STRIPM INE (S,o,k);
Tiling ∧ o < dS S← STRIPM INE (S,o+2,k);

∧ k > 0 S← INTERCHANGE(S,o+1);

Fig. 6. Composition of transformation primitives

must ensure that a bad control management does not spoil performance, for instance by
producing redundant guards or complex loop bounds.

Ancourt and Irigoin [1] proposed the first solution, based onthe Fourier-Motzkin
pair-wise elimination. The scope of their method was limited to a single polyhedron
with unimodular transformation (scheduling) matrices. The basic idea was to apply the
transformation function as a change of base of the loop indices, then for each new
dimension, to project the polyhedron on the axis and thus findthe corresponding loop

bounds. The main drawback of this method was the large amountof redundant control.
Most further works on code generation tried to extend this first technique, in order
to deal with non-unit strides [15, 21] or with a non-invertible transformation matrix
[9]. A few alternatives to Fourier-Motzkin were discussed,but without addressing the
challenging problem of scanning more than one polyhedron atonce.

This problem was first solved and implemented in Omega by generating a naive
perfectly nested code and then by (partially) eliminating redundant guards [14]. Another
way was to generate the code for each polyhedron separately,and then to merge them
[9, 5]; it generates a lot of redundant control, even if therewere no redundancies in the
separated code. Quilleré et al. proposed to recursively separate union of polyhedra into
subsets of disjoint polyhedra and generating the corresponding nests from the outermost
to the innermost levels [19]. This approach provides at present the best solutions since
it totally eliminates redundant control. However, it suffers from some limitations, e.g.
high complexity, code generation with unit strides only, and a rigid partial order on the
polyhedra. Improvements are presented in the next section.

This section presents the code generation problem, its resolution with a modern
polyhedral-scanning technique, and its implementation.

4.1 The Code Generation Problem

In the polyhedral model, code generation amounts to apolyhedron scanning problem:
finding a set of nested loops visiting each integral point, following a given scanning
order. The generated code quality can be assessed by using two valuations: the most
important is the amount of duplicated control in the final code; second, the code size,
since a large code may pollute the instruction cache. We choose the recent Quilleré et al.
method [19] with some additional improvements, which guarantee a code generation
without any duplicated control. The outline of the modified algorithm is presented in
Section 4.2 and some useful optimization are discussed in Section 4.3.

4.2 Outline of the Code Generation Algorithm

Our code generation process is divided in two main steps. First, we take the scheduling
functions into account by modifying each polyhedron’s lexicographic order. Next, we
use an improved Quilleré et al. algorithm to perform the actual code generation.

When no schedule is specified, the scanning order is the plainlexicographic order.
Applying a new scanning order to a polyhedron amounts to adding new dimensions in
leading positions. Thus, from each polyhedronDS and scheduling functionθS, we build
another polyhedronT S with the desired lexicographic order:(t, i) ∈ T S if and only if
t = θS(i). The algorithm is a recursive generation of the scanning code, maintaining a
list of polyhedra from the outermost to the innermost loops:

1. intersect each polyhedron of the list with the context of the current loop (to restrict
the scanning code to this loop);

2. project the resulting polyhedra onto the outermost dimensions, then separate the
projections into disjoint polyhedra;

3. sort the resulting polyhedra such that a polyhedron is before another one if its scan-
ning code has to precede the other to respect the lexicographic order;

4. merge successive polyhedra having at least another loop level to generate a new list
and recursively generate the loops that scan this list;

5. compute the strides that the current dimension imposes tothe outer dimensions.

This algorithm is slightly different from the one presentedby Quilleré et al. in [19]; our
two main contributions are the support for non-unit strides(Step 5) and the exploitation
of degrees of freedom (i.e., when some operations do not havea schedule) to produce a
more effective code (Step 4).

Let us describe this algorithm with a non-trivial example: the two polyhedral do-
mains presented in Figure 7(a). Both statements have iteration vector(i, j), local pa-
rameter vector(k) and global parameter vector(n). We first compute intersections with
the context, supposed to ben≥ 6. We project the polyhedra onto the first dimension,
i, then separate them into disjoint polyhedra. Thus we compute the domains associated
with T S1 alone, bothT S1 andT S2, andT S2 alone (as shown in Figure 7(b), this last do-
main is empty). We notice there is a local parameter implyinga non-unit stride; we can
determine this stride and update the lower bound. We finally generate the scanning code
for this first dimension. We now recurse on the next dimension, repeating the process
for each polyhedron list (in this example, there are now two lists: one inside each gener-
ated outer loop). We intersect each polyhedra with the new context, now the outer loop
iteration domains; then we project the resulting polyhedraon the outer dimensions, and
finally we separate these projections into disjoint polyhedra. This last processing is triv-
ial for the second list but yields two domains for the first list, as shown in Figure 7(c).
Eventually, we generate the code associated with the new dimension.

.

.

.

.

.

.

S2S1

21
i

6. . . 7 . . . n

1

2

6

7

n

j

.

.

.

.

.

.

21
i

6. . . 7 . . . n

1

2

6

7

n
S1 and S2 S1j

.

.

.

.

.

.

21
i

6. . . 7 . . . n

1

2

6

7

n
j

T
S1

1 (n) :







1≤ i ≤ n
i = 2k+1
1≤ j ≤ n

T
S2

1 (n) :







1≤ i ≤ 6
i = 2k+1

1≤ j ≤ 7− i

do i = 1, 6, 2
T

S1
1,1 (n) : {1≤ j ≤ n}

T
S2

1,1 (n) : {1≤ j ≤ 7− i}
do i = 7, n, 2

T
S1

1,2 (n) : {1≤ j ≤ n}

code generation example
do i = 1, 6, 2
do j = 1, 7-i

S1; S2
do j = 8-i, n

S1
do i = 7, n, 2
do j = 1, n

S1

(a) Initial domains to scan (b) Projection and separation on the first
dimension

(c) Recursion on next dimensions

Fig. 7.Step by step code generation example

4.3 Complexity Issues

The main computing kernel in the code generation process is the separation into disjoint
polyhedra, with a worst-caseO(3n) complexity in polyhedral operations (exponential
themselves). In addition, the memory usage is very high since we have to allocate mem-
ory for each separated domain. For both issues, we propose a partial solution. First of
all, we use pattern matching to reduce the number of polyhedral computations: at a
given depth, the domains are often the same (this is a property of the input codes), or
disjoint (this is a property of the statement-scattering vectors of the scheduling matri-
ces). Second, to avoid memory problems, we detect high memory consumption and
switch for a more naive algorithm when necessary, leading toa less efficient code but
using far less memory.

Our implementation of this algorithm is called CLooG (Chunky Loop Genera-
tor) and was originally designed for a locality-improvement algorithm and software
(Chunky) [3]. CLooG could regenerate code forall 12 benchmarks in Figure 2. Experi-
ments were conducted on a 512MB 1GHzPentium III machine; generation times range
from 1 to 127 seconds (34 seconds on average). It produced optimal control for all but
three SCoPs inlucas, apsi andadm; the first SCoP has more than 1700 statements and
could be optimally generated on a 1GB Itanium machine in 22 minutes; the two other
SCoPs have less than 50 statements, but 16 parameters; sincethe current version of does
not analyse the linear relations between variables, the variability of parameter interac-
tions leads to an exponential growth of the generated code. Complexity improvements
and studies of the generated code quality are under investigation.

5 WRaP-IT: an Open64 Plug-In for Polyhedral Transformations

Our main goal is to streamline the extraction of static control parts and the code gen-
eration, to ease the integration of polyhedral techniques into optimizing and paralleliz-
ing compilers. This interface tool is built on Open64/ORC. It converts the WHIRL —
the compiler’s hierarchical intermediate representation— to an augmented polyhedral
representation, maintaining a correspondence between matrices in SCoP descriptions
with the symbol table and syntax tree. This representation is called the WRaP: WHIRL
Represented as Polyhedra. It is the basis for any polyhedralanalysis or transforma-
tion. Then, the second part of the tool is a modified version ofCLooG, to regenerate
a WHIRL syntax tree from the WRaP. The whole Interface Tool iscalled WRaP-IT; it
may be used in a normal compilation or source-to-source framework, see [2] for details.

Although WRaP-IT is still a prototype, it proved to be very robust; the whole source-
to-polyhedra-to-source transformation was successfullyapplied to all 12 benchmarks in
Figure 2. Seehttp://www-rocq.inria.fr/a3/wrap-it for further information.

6 Conclusion

We described a framework to streamline the design of polyhedral transformations,
based on a unified polyhedral representation and a set of transformation primitives.
It decouples transformations from static analyses. It is intended as a formal tool for

semi-automatic optimization, where program transformations — with the associated
static analyses for semantic-preservation — are separatedfrom the optimization or par-
allelization algorithm which drives the transformations and select their parameters.

We also described WRaP-IT, a robust tool to convert back and forth between For-
tran or C and the polyhedral representation. This tool is implemented in Open64/ORC.
The complexity of the code generation phase, when converting back to source code,
has long been a deterrent for using polyhedral representations in optimizing or paral-
lelizing compilers. However, our code generator (CLooG) can handle loops with more
than 1700 statements. Moreover, the whole source-to-polyhedra-to-source transforma-
tion was successfully applied to the 12 benchmarks. This is astrong point in favor of
polyhedral techniques, even in the context of real codes.

Current and future work include the design and implementation of a polyhedral
transformation library, an iterative compilation scheme with a machine-learning algo-
rithm and/or an empirical optimization methodology, and the optimization of the code
generator to keep producing optimal code on larger codes.

References
1. C. Ancourt and F. Irigoin. Scanning polyhedra with DO loops. In3rd ACM SIGPLAN Symp. on Principles and Practice

of Parallel Programming, pages 39–50, june 1991.
2. C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam. Putting polyhedral loop transformations to work. Research

report 4902, INRIA Rocquencourt, France, July 2003.
3. C. Bastoul and P. Feautrier. Improving data locality by chunking. InCC’12 Intl. Conference on Compiler Construction,

LNCS 2622, pages 320–335, Warsaw, Poland, april 2003.
4. W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger,D. Padua, P. Petersen, W. Pottenger, L. Rauchwerger, P. Tu,

and S. Weatherford. Parallel programming with Polaris.IEEE Computer, 29(12):78–82, Dec. 1996.
5. P. Boulet, A. Darte, G.-A. Silber, and F. Vivien. Loop parallelization algorithms: From parallelism extraction to code

generation.Parallel Computing, 24(3):421–444, 1998.
6. K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crummey, L. Torczon, and S. K.

Warren. The ParaScope parallel programming environment.Proceedings of the IEEE, 81(2):244–263, 1993.
7. R. Eigenmann, J. Hoeflinger, and D. Padua. On the automaticparallelization of the perfect benchmarks.IEEE Trans.

on Parallel and Distributed Systems, 9(1):5–23, Jan. 1998.
8. P. Feautrier. Some efficient solution to the affine scheduling problem, part II, multidimensional time.Int. Journal of

Parallel Programming, 21(6):389–420, Dec. 1992. See also Part I, One DimensionalTime, 21(5):315–348.
9. M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytope model. InPACT’98 Intl. Conference on Parallel

Architectures and Compilation Techniques, pages 106–111, 1998.
10. A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, and T. Risset. Hardware design methodology with the alpha

language. InFDL’01, Lyon, France, Sept. 2001.
11. M. Hall et al. Maximizing multiprocessor performance with the SUIF compiler.IEEE Computer, 29(12):84–89, Dec.

1996.
12. F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization: An overview of the pips project. In

ACM Int. Conf. on Supercomputing (ICS’2), Cologne, Germany, June 1991.
13. W. Kelly. Optimization within a unified transformation framework. Technical Report CS-TR-3725, University of

Maryland, 1996.
14. W. Kelly, W. Pugh, and E. Rosser. Code generation for multiple mappings. InFrontiers’95 Symp. on the frontiers of

massively parallel computation, McLean, 1995.
15. W. Li and K. Pingali. A singular loop transformation framework based on non-singular matrices.Intl. J. of Parallel

Programming, 22(2):183–205, April 1994.
16. M. O’Boyle. MARS: a distributed memory approach to shared memory compilation. InProc. Language, Compilers

and Runtime Systems for Scalable Computing, Pittsburgh, May 1998. Springer-Verlag.
17. M. O’Boyle, P. Knijnenburg, and G. Fursin. Feedback assisted iterative compiplation. InParallel Architectures and

Compilation Techniques (PACT’01). IEEE Computer Society Press, Oct. 2001.
18. Open research compiler.http://ipf-orc.sourceforge.net.
19. F. Quilleré, S. Rajopadhye, and D. Wilde. Generation of efficient nested loops from polyhedra.Intl. J. of Parallel

Programming, 28(5):469–498, october 2000.
20. R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. Mahlke, S.Abraham, and G. Snider. High-level synthesis of nonpro-

grammable hardware accelerators. Technical report, Hewlett-Packard, May 2000.
21. J. Xue. Automating non-unimodular loop transformations for massive parallelism.Parallel Computing, 20(5):711–728,

1994.
22. K. Yotov, X. Li, G. Ren, M. Cibulskis, G. DeJong, M. Garzaran, D. Padua, K. Pingali, P. Stodghill, and P. Wu. A

comparison of empirical and model-driven optimization. InACM Symp. on Programming Language Design and Imple-
mentation (PLDI’03), San Diego, California, June 2003.

