
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

#pragma scop

S1(i, j);

for (i=1; i<n; i++)

for (j=0; j<i; j++)

���
���
���
���

���
���
���
���

CLAN REFERENCE CARD
Version 1.0 for Clan 0.7.0

About Clan

Clan is a translator from C-like code parts to polyhedral representation. It
opens the gates of powerful polyhedral compilation techniques provided
by, e.g., PoCC or Pluto. Programmers should ensure their computation-
intensive code parts are compatible with Clan’s input to benefit from state-
of-the-art automatic optimization and parallelization.

Basic Concepts

Static Control Parts
Clan is capable to translate program parts easily amenable to the polyhe-
dral model. We call them Static Control Parts (SCoP for short). They
are basically loop-based codes where loop bounds, if conditions and ar-
ray subscripts are made of affine expressions involving only outer loop
iterators, integer constants (a.k.a. parameters) and integer literals.

SCoP Pragmas
Clan translates code parts delimited by specific pragmas and ignores what
is outside those regions:
å between #pragma scop and #pragma endscop for C/C++,
å between /*@ scop */ and /*@ end scop */ for JAVA.

In addition to the syntactic restrictions imposed by Clan, inserting SCoP
pragmas in a code also implicitely specifies that:
å all functions called within the SCoP are pure (no side-effects),
å no aliasing of array names is possible within the SCoP,
å pointer references behave like variables or arrays.

Affine Expressions
Affine expressions are additive forms of loop iterators (e.g., i), parameters
(e.g., N) and integers, with integer coefficients, e.g., 7∗ i+13∗N +42.
å Expressions simplifying to affine forms are OK, e.g., 3∗ (i∗2+N).

Specific Operators
Four particular operators may be used in Clan’s input. Let us suppose that
a and b are affine expressions and n an integer:
Maximum of a and b (a and b may be max expressions) max(a, b)
Minimum of a and b (a and b may be min expressions) min(a, b)
Ceil of a divided by n (considered as a max expression) ceild(a, n)
Floor of a divided by n (considered as a min expression) floord(a, n)

January 2012 v1.0. Copyright c© 2012 Cédric Bastoul and Louis-Noël Pouchet
Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 published by the Free Software Foundation.
Please send comments and corrections to Cédric Bastoul, cedric.bastoul@u-psud.fr

General Restrictions

Codes between SCoP pragmas must comply to the following restrictions:

• The only allowed control keywords are for, while, if and else,
with restrictions as described below.

• Declarations are not allowed.

• Any C instruction without control keywords is accepted, with re-
strictions for array subscripts as described below.

Identification of Constrained Elements

i n c l u d e < s t d i o . h>
d e f i n e N 42

i n t main () {
i n t i , j ;
i n t p a s c a l [N] [N] ;

pragma scop
f o r (i = 0 ; i < N; i ++) {

f o r (j = 0 ; j <= i ; j ++) {
i f (i == j | | j == 0)

p a s c a l [i] [j] = 1 ;
e l s e

p a s c a l [i] [j] = p a s c a l [i −1][j] + p a s c a l [i −1][j −1];
}

}
pragma endscop

f o r (i = 0 ; i < N; i ++) {
f o r (j = 0 ; j <= i ; j ++) {

p r i n t f ("%3d " , p a s c a l [i] [j]) ;
}
p r i n t f (" \ n ") ;

}

re turn 0 ;
}

Loop Initialization

Loop and if Condition

Loop Step

Array Subscript

Loop Initialization

Each loop initialization must be an assignment of the loop counter such
that the right hand side is one or several affine expressions aggregated
with max (resp. min) operators if the loop step is positive (resp. negative).

Example of Loop Initialization Diagnostic
j = 3*i + 2*N Correct
j = ceild(i + N, 10) Correct if j step is positive
j = max(i, ceild(N, 3)) Correct if j step is positive
j = min(min(N,10), 7*i) Correct if j step is negative
j = min(max(i, 1), N) Incorrect: mixed min and max

Tip: if the initialization form is too restrictive for a given program, it may
be possible to move the troublesome constraints to the loop condition or
to an external or internal if condition.

Loop and if Condition

Each loop or if condition must be a (composition of) constraint(s) on
affine expressions, and function calls.

• Supported C operators are >, >=, <, <=, ==, !=, !, && and ||.

• min and max operators can be used to aggregate expressions in >,
>=, < and <= constraints. min (resp. max) expressions must be in
the greater (resp. lower) side of the constraints.

• Constraints involving the modulo operator are possible in the fol-
lowing form: let a be an affine expression and x and y two positive
integers, then the condition (a % x == y) is accepted.

• Function calls alone can be used as valid if conditions.

Example of Condition Diagnostic
i + 2*j < N Correct
max(i, j) < floord(N, 7) Correct
N>i && !(j>0 || N!=1) Correct
((2*i+1)%3 == 1) && i>j Correct
func(A[i], b) Correct in a if condition
min(2*i, N) < 0 Incorrect: min on the lower side
i + 2 Incorrect: use (i + 2) != 0
i<N && g(a) Incorrect: function call not alone

Tip: to include data-dependent conditions, e.g., if (A[i] == 0), create
a preprocessor macro containing the condition and replace it in the SCoP
by the macro-function call, e.g., if (my_condition(A[i])).

Loop Step

Updating the loop iterator is only allowed in the loop step part. It must be
done by adding an integer to the previous iterator value. Let i be a loop
iterator and x an integer, the following forms are accepted for the loop
step part: i++, ++i, i--, --i, i += x, i -= x, i = i+x and i = i-x.

Array Subscript

Array subscripts must be either affine expressions or function calls.

Tip: to include indirections, e.g., A[B[i]], create a preprocessor macro
containing the subscript and replace it in the SCoP by the macro-function
call, e.g., A[my_subscript(B[i])].

Infinite and while Loops

Infinite for loops in the form for (;;) are supported. while loops are
supported when the condition is either 1 (infinite loop) or a function call.

