
P2P-MPI is an integrated development and
execution environment for message-passing
parallel programs.

The environment supports MPJ (Message
Passing for Java), the pendant of MPI for Java.
The framework allows users to register within a
network of P2P-MPI started computers.
The system is organized as a peer-to-peer
network: a user joining the network has access
to others’ CPUs and accepts to share its own
CPU for parallel program executions.

P2P-MPI
Integrated middleware

and communication library
for message passing

parallel programs

ALGORILLE Research Team

http://www.loria.fr/equipes/algorille

INRIA Nancy – Grand Est
Campus Scientifique

615 rue du jardin botanique
54600 Villers-lès-Nancy

FRANCE

http://www.inria.fr/nancy/

Communication Library

Runs Java programs (OS
independent)
MPJ compliant communication
library (passes the JavaGrande
Forum Benchmark)
Single or Multiple ports
implementations available
Fault-tolerance using replication of
processes (no checkpoint server)
Transparent file staging for
execution

Middleware

Peer-to-peer network of resources
Transparent resource selection and
allocation mechanism
Simple strategies to guide
allocation
Platform visualization tool
Failure detection in bounded time
O(log(n))

P2P-MPI
main features

depliant_algorille:depliant 8/09/08 10:01 Page 1

Fault-tolerance

The communication library implements fault-
tolerance through replication of processes. A
number of copies of each process may be
asked to run simultaneously at runtime.
So, contrarily to an MPI application that
crashes as soon as any of its processes crash,
a P2P-MPI using replication will be able to
continue as long as at least one copy of each
process is running.

Resource
Discovery

Contrarily to most MPI implementations, P2P-
MPI does not assume a static description of
resources. P2P-MPI has adopted a peer-to-
peer architecture to adapt to the volatility of
resources.
When a user joins the P2P-MPI grid its CPU
becomes available to others. At each job
request, the middleware handles a discovery of
available resources.

A subset of available resources is chosen,
possibly guided by simple strategies indicated
by the user.

Scalability

The system can scale up to hundreds of nodes,
and over geographically distributed areas.
Application deployments have been
successfully tested using up to 600 processes.

Thanks to its P2P based resource organization
the system has no single point of failures
regarding resource discovery.

The fault-detection service is based on the
principle of failure detectors (gossiping) in order
to scale. The user can choose between two
deterministic protocols (a quicker and a safer)
which both guarantee that a failure is detected
in a bounded and known time, logarithmic in
the number of processes used.

An example MPJ program for computing
an approximation of π

depliant_algorille:depliant 8/09/08 10:01 Page 2

