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Introduction

Les architectures paralléles représentent une puissance de calcul toujours plus grande (avec
Pémergence des grilles de calcul, les ressources de calcul peuvent étre encore augmentées). Ces
architectures permettent d’envisager la résolution de problémes toujours plus complexes re-
présentant des volumes de données et de calculs considérables. Cependant, un grand défi est
de programmer ces architectures de fagon & exploiter efficacement leur puissance de calcul.

La programmation paralléle relie deux objets : un probléme dont la résolution nécessite un
certain nombre de calculs et une architecture paralléle. Le langage paralléle est 'intermédaire
utilisé par le programmeur et le compilateur pour relier ces deux objets. Cette relation est une
affaire de capacité de programmation et de techniques de compilation. Elle peut étre plus ou
moins facilement établie selon le modéle de programmation sous-jacent au langage. Si ce modéle
n’est pas suffisamment abstrait, alors le programmeur aura beaucoup de difficultés & apporter
ses connaissances du probléme, s’il est trop abstrait alors il sera difficile pour le compilateur
d’atteindre une implantation efficace sur ’architecture cible. En particulier, parmi les diffé-
rents modeéles de programmation qui ont été successivement proposés, le data-parallélisme est
d’un grand intérét pour concilier haut niveau de programmation et efficacité des implantations.

Nous pensons que la capacité de maitriser 1’efficacité des calculs peut étre obtenue en dé-
veloppant des transformations formelles d’énoncés qui s’appliquent étape par étape et ménent
avec siireté d’un énoncé de probléme & un énoncé correspondant & une implantation efficace sur
une architecture cible. Ces transformations sont les éléments constitutifs d’un raisonnement
permettant de concevoir des programmes paralléles ou d’obtenir des implantations efficaces.
Nos travaux concernent la définition de ces transformations et portent sur ces questions de mé-
thodologie et de raisonnement pour construire les programmes paralléles et leurs implantations.

A notre sens, les langages paralléles devraient étre un support de ces transformations afin
que le raisonnement puisse étre conduit par le compilateur ou/et par le programmeur. Tout
modéle de programmation établit un médium permettant au programmeur et au compilateur
d’échanger leurs connaissances respectives — dans le domaine du probléme pour le program-
meur, dans le domaine de I’architecture pour le compilateur — afin d’obtenir une implantation
efficace. A notre avis, les modéles de programmation devraient établir un haut degré de co-
opération entre programmeur et compilateur. Nous pensons que cette approche «par transfor-
mation d’énoncésy» est une bonne approche pour définir des modéles de programmation et des
langages paralléles qui répondent aux besoins des utilisateurs.

La présentation de nos travaux est organisée comme suit : le premier chapitre présente nos
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développements autour du cadre formel PEI proposé dans ma thése de doctorat et concu pour
raisonner sur les programmes paralléles et leurs implantations. Le deuxiéme chapitre présente
nos travaux relatifs au data-paralélisme et & sa définition : nous avons proposé un domaine
sémantique pour les langages data-paralléles qui est issu de notre cadre formel. Le troisiéme
et dernier chapitre présente des applications de nos travaux théoriques.



Chapitre 1

Un cadre formel pour raisonner

1.1 Introduction

Ma thése de doctorat [63] a proposé un cadre formel, nommé PEI, pour unifier deux ap-
proches classiques et complémentaires pour construire un programme paralléle par des tech-
niques de transformations :

— le raffinement étape par étape d’une spécification jusqu’a obtenir une spécification exé-

cutable selon un certain modeéle de calcul [6, 5, 51] et

— la synthése d’un programme a partir d’un systéme d’équations récurrentes [42, 54, 47].
Ces approches sont associées & des formalismes spécifiques pour supporter les transformations.

Le raffinement de spécifications adresse un éventail trés large de problémes et de modéles de
calcul. Il est appliqué dans divers travaux [38, 43] & la construction de programmes paralléles.
Les formalismes de dérivation (LINDA [32], UNITY [12], GAMMA [21], etc.) supportent un calcul
de raffinement et les spécifications sont exprimées par des prédicats. Avec cette approche, on
vise surtout la correction des programmes, mais sans traiter véritablement de leur efficacité.

L’autre approche est utilisée en parallélisation automatique. Il a été montré dans [42] qu'un
systéme d’équations récurrentes permet de formaliser des problémes «systolisables» en intro-
duisant les notions de cadencement et d’allocation des calculs. Ces idées ont été largement
développées dans la littérature qui concerne la synthése de réseaux systoliques ou la parallé-
lisation de nids de boucles [22, 48, 17|. Des formalismes ad’hoc (ALPHA [50], CRYSTAL [15],
LAcS [55], etc.) permettent ’expression des équations et de leurs transformations. Avec cette
approche, on vise évidemment les critéres d’efficacité, mais en adressant une classe relativement
restreinte de problémes.

Le cadre formel PEI [63, 69, 65] bénéficie des avantages de ces deux approches. Ce chapitre
présente ce cadre formel sur lequel s’appuie une grande partie de mes recherches et fait la
synthése des travaux que nous avons menés pour mettre en évidence son pouvoir de dérivation.

1.2 Définition de PEI

Le cadre formel PEI repose sur certaines notions mathématiques, peu nombreuses mais
puissantes. En premier lieu, la notion de multi-ensemble de valeurs. Pour que ces valeurs
puissent étre accédées, elles sont placées sur des domaines discrets et forment des objets PEI.



4 E. Violard

D’un point de vue opérationnel, de tels domaines peuvent abstraire le placement des calculs sur
un domaine espace-temps, alors que du point de vue d’une spécification, ils peuvent exprimer la
géométrie naturelle des structures de données, telles que les tableaux, par exemple. L’ensemble
des objets PEI est muni de trois opérations externes qui, soit calculent les valeurs des objets,
soit expriment des dépendances de données, soit changent les domaines discrets des objets.
Ces opérations sont les briques de base d’un calcul de raffinement permettant la dérivation
ou la transformation de programmes. En PEI, spécifications et programmes sont des systémes
d’équations non-orientées (qui connectent deux objets PEI), appelés énoncés. Ces énoncés
généralisent les systémes d’équations récurrentes.

1.2.1 Objets - Opérations

De maniére générale, nous pouvons considérer qu’un probléme est une relation entre des
multi-ensembles de valeurs en entrée et en sortie. Bien str, programmer implique de «placer»
ces valeurs d’une certaine fagon pour les organiser et les traiter. En calcul scientifique, par
exemple, on utilise des tableaux qui sont des fonctions sur des indices : I’ensemble d’indices,
qui sert de domaine de référence, est une partie de Z™. Un objet PEI est un tel multi-ensemble
de valeurs placées sur un domaine de référence discret. Etant donné un objet PEI, on peut
obtenir un autre objet PEI qui représente le méme multi-ensemble en changeant de domaine
de référence. Deux tels objets sont dits équivalents.

L’ensemble des objets PEI est muni de quatre opérations. Les trois premiéres opérations
(externes) modifient un objet PEI en utilisant une fonction partielle. La derniére opération
(interne) combine plusieurs objets PEI pour en former un seul.

le réindigcage (ou changement de base) permet de changer de domaine de référence.
Le réindicage est déterminé par une bijection A entre indices : le nouveau domaine de
référence est l'image par h de ’ancien.

le déplacement (ou opération géométrique ou encore routage) déplace les valeurs sur le do-
maine de référence.
Le déplacement est déterminé par une fonction g entre indices : la valeur placée a l'in-
dice z dans le nouvel objet est celle qui était placée a l'indice g(z) dans I’ancien.

le calcul (ou opération fonctionnelle) applique une méme fonction f sur chaque valeur.

la superposition forme des séquences de valeurs en prenant les valeurs des arguments.
La valeur placée & un certain indice dans le résultat est la séquence des valeurs placées
au méme indice dans les arguments.

1.2.2 Formalisme - Enoncés

Nous avons défini un formalisme minimal pour supporter le raisonnement formel. Le forma-
lisme inclue une notation pour les opérations et les fonctions partielles qu’elles utilisent. Cette
notation permet de construire des expressions d’objets PEI . Ces expressions sont construites
A partir de constantes, de variables et des notations d’opération.

- Notation des constantes : Un objet PEI est constant ssi toutes ses valeurs sont égales. Pour
tout élément ¢ d’un type de valeurs, ¢ note un objet PEI constant de valeurs égales a c.
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- Notation des opérations :

h X note I'application du réindicage & un objet X et une fonction h,
Xag note 'application du déplacement & un objet X et une fonction g,
f> X note 'application du calcul global & un objet X et une fonction f,

X /;/ Y note 'application de la superposition a deux objets X et Y.
- Notation des fonctions partielles : Elle est empruntée du lambda-calcul. la notation pour une
fonction partielle f de domaine de définition { x | P(x) } est Ax | (P(x)) .f(x). Pour une fonction
totale, la notation est la méme qu’en lambda-calcul. De plus, nous notons fog, la composée
de deux fonctions et f # g, une fonction définie sur deux sous-domaines disjoints. Enfin, inv(f)
note 'inverse d’une fonction injective notée f.

Le formalisme permet d’écrire des énoncés qui sont des ensembles d’équations non-orientées
avec des variables identifiées en tant que variable d’entrée et de sortie (les autres variables sont
appelées variables intermédiaires). Chaque équation connecte deux expressions d’objets PEI
. Les définitions des fonctions partielles sont reportées dans le contexte de 1’énoncé et les
parameétres indiqués entre crochets juste aprés le nom de 1’énoncé.

Un énoncé exprime une relation entre des objets PEI en entrée et en sortie.

Exemple 1 (Equation de la chaleur)
DiffHeat[n, T,r] : V. — U
{
rod :: V0=V

U < bord =0
U < thinrod = V0
U < inside = approx > (U < left /;/ U < middle /;/ U < right)

}

rod(i,]) = (1<i<nAj=0).(})

bord(i, ) = ((i=1vi=n)A0<j<T).(i,))
thinrod(i,j) = (1<i<nAj=0).(ij)

inside(i, j) = (1<i<nA0<j<T).(i,))

left(i, j) = (1<i<nA0<j<T).(i+1,j-1)
middle(i, j) = (1<i<nA0<j<T).(i,j—1)
right(i, ) = (1<i<nA0<j<T).(i-1,j-1)
approx(a;b;c) = ra+(1—2r).b+rc

Cet énoncé en PEI spécifie le probléme de la diffusion de la chaleur dans une fine tige de métal.
Il est construit de la maniére suivante :

Considérons une fine tige de métal dont les extrémités sont maintenues & 0 ° . La tempéra-
ture U(z,t) de la tige a U'instant ¢ et a la distance z d’une de ces extrémités, vérifie I’équation
différentielle suivante :

ou oU
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De facon a simuler la diffusion de la chaleur dans la tige, une solution numérique est obtenue en
discrétisant 1’équation dans le temps et 1’espace [58]. Une approximation en différences finies
de I’équation 1.1 est :

Uij=rUi—1j-1+ (1 =2r)Us j_1 +rUs151 (1.2)

ou r est une constante qui ne dépend que des paramétres de discrétisation.

En PEI, U s’exprime par un objet PEI que nous choisissons de noter U. Le domaine de
référence de U est un domaine de Z? et les valeurs de U sont placées dans le rectangle [1..n] x
[0..T] ot n et T sont les limites discrétes de ’espace et le temps discrétisés.

U < middle
U <« left U <« right
T‘77 .
£ -
S g
o . Lo
5 i
Cﬂ‘ .
& S LN
il Tigefine n U

Fia. 1.1 — Construction par superposition.

Les dépendances de ’équation 1.2 s’expriment en PEI par des déplacements. Ces déplace-
ments définissent quatre sous-domaines dans le domaine des valeurs de U (voir la figure 1.1) :
les points de la tige de métal (tels que j=0), les bords gauche et droit et le domaine intérieur
(en grisé). Les valeurs aux bords sont connues : la température initiale en chaque point de
la tige de métal et 0 sur les bords gauche et droit. Les valeurs & l'intérieur du rectangle sont
calculées & partir des valeurs des objets notés (U < left), (U < middle) et (U < right) qui
sont obtenus en décalant U respectivement en haut & gauche, en haut et en haut & droite
(selon l'orientation de la figure) : les valeurs de ces objets sont regroupées par superposition
et combinées par un calcul pour former les valeurs de U & l'intérieur du rectangle, comme
I’exprime cette équation :

U < inside = approx > (U < left /;/ U < middle /;/ U < right)

avec : inside(i,j) = (1<i<nA0<j<T).(i,j)
left(i, j) = (I1<i<nA0<j<T).(i+1,j-1)
middle(i,j) = (1<i<nA0<j<T).(ij—1)
right(i,j) = (1<i<nA0<j<T).(i-1,j-1)
et : approx(a;b;c) =r.a+ (1 — 2r).b +r.c.
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Considérons maintenant le vecteur dont les éléments sont les températures initiales de la
tige de métal. Ce vecteur est naturellement associé & un objet PEI, noté V, placé sur la ligne
[1..n] de Z. En PEI, la relation entre U et V peut s’écrire comme suit (en utilisant une variable
intermédiaire VO0) :

rod :: V0=V

U <« thinrod = V0
avec :

rod(i, j) = (1<i<nAj=0).(i)
thinrod(i,j) = (1<i<nAj=0).(i,))

La premiére équation exprime la relation entre V et VO : les valeurs de V0 sont les mémes
que celles de V mais placées sur une ligne de Z2. Cette relation s’exprime par un réindicage.
La deuxiéme équation exprime que les valeurs de VO sont celles de U sur le domaine des points
de la tige de métal.

En regroupant les équations, nous obtenons 1’énoncé précédent.
o

1.2.3 Définition mathématique - Sémantique d’un énoncé

Soit V', un ensemble de valeurs. Nous appelons placement d’un multi-ensemble M de valeurs
dans V, une fonction partielle v : Z™ — V telle que M =< v(z) | z € def(v) >. Nous appelons
domaine des valeurs, le domaine de définition def(v),

Deux placements quelconques d’'un méme multi-ensemble différent d’une bijection (d’un
domaine de valeurs vers un autre). Cela signifie que tout choix de placement définissant un
objet PEI est arbitraire et différe d’'une bijection par rapport & ce qu’on pourrait considérer
comme un placement de référence. En intégrant cette bijection & la définition des objets PEI,
on peut définir correctement la relation entre deux objets PEI qui représentent le méme multi-
ensemble : nous dirons que leur placement de référence est le méme.

Un objet PEI est donc un couple (v : o) formé d’un placement v et d’une bijection o qui
permet de retrouver le placement de référence a partir du placement v. Nous appelons domaine
de référence, le domaine de définition def(o) et placement de référence, le placement défini par
voo~! qui est valide (i.e. place toutes les valeurs) seulement si le domaine de valeur est inclus
dans le domaine de référence, i.e. def(v) C def(o).

Définition 1 (Objet PEI) Soit V', un ensemble de valeurs. Un objet PEI & valeurs dans V' est

un couple (v : o) formé d’'une fonction partielle v : Z" — V et d’une bijection o : Z® — Z™
telle que def(v) C def(o).

Comme nous ’avons mentionné en section 1.2.1, deux objets PEI sont considérés comme
équivalents s’ils représentent le méme multi-ensemble. Nous considérons que deux objets PEI
peuvent étre équivalents & deux niveaux. Au premier niveau, appelé équivalence faible, les
objets ont les mémes valeurs indépendament du placement de référence : qu’ils représentent
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ou non le méme multi-ensemble. Au second niveau, appelé équivalence forte, les objets ont les
mémes valeurs et le méme placement de référence : ils représentent le méme multi-ensemble.
Voici la définition de 1’équivalence des objets PEI :

Définition 2 (Equivalence faible) Soient X et Y, deux objets PEI. X et Y sont dits faiblement
équivalents, si et seulement si < vx(z) | z € def(vyx) > = < vy (2) | z € def(vy) >.

Définition 3 (Equivalence forte) Soient X et Y, deux objets PEL X et Y sont dits fortement
équivalents, si et seulement si vx o 0}1 =vyo 0{,1.

La définition des objets PEI conduit & ces définitions des opérations :

Définition 4 (Réindigage) Soit X = (v : 0), un objet PEL Soit h, une bijection : Z™ — Z™.
telle que def(v) C def(h). Le réindicage est l'opération qui, appliquée & X et h, résulte en
I'objet PEI (voh t:00h™1).

Définition 5 (Déplacement) Soit X = (v : 0), un objet PEL Soit g, une fonction : Z™ — Z"
telle que def(g) C def(o) et img(g) C def(v). Le déplacement est I'opération qui, appliquée a
X et g, résulte en 'objet PEI (vog: o).

Définition 6 (Calcul) Soient V' et W, deux ensembles de valeurs. Soit X = (v : ), un objet
PEI & valeurs dans V. Soit f une fonction partielle : V. — W. Le calcul est I'opération qui,
appliquée a X et f, résulte en l'objet PEI (fov: o).

Dans la définition suivante, seq[V'] est ’ensemble des séquences non vides de valeurs dans V'
et a; b est la concaténation de des séquences a et b. Toute valeur scalaire est considérée comme
une séquence & un élément.

Définition 7 (Superposition) Soit V', un type de valeurs. Soit X = (v:0) et Y = (w : o),
deux objets PEI & valeurs dans le méme ensemble seq[V]. L’opération de superposition est
Popération qui, appliquée & X et Y résulte en l'objet PEI (z : o), ol x est la fonction partielle
de méme domaine et codomaine que v et w, définie par :

v(2) if z € def(v) \ def(w)
z(z) = S v(2);w(z) if z € def(v) N def(w)
w(z) if z € def(w) \ def(v).

La sémantique d’'un énoncé est induite de la sémantique d’une équation. La sémantique
d’une équation (ex : Y = X < g) est un prédicat : ce prédicat est obtenu en faisant la conjonc-
tion de : (3) toutes les conditions a vérifier pour appliquer les opérations apparaissant aux deux
membres de I’équation (ex : def(g) C def(ox) A img(g) C def(vx)), et (ii) I’égalité entre les
fonctions v et o des deux objets PEI qui sont les résultats des opérations aux deux membres
de I’équation (ex : vy = vx 0 g Aoy = o0x). Si ce prédicat est vrai, alors on dit que les objets
PEI notés par les variables liées dans cette équation vérifient 1’équation.

La sémantique d’un énoncé est la relation entre les objets PEI qui, lorsqu’ils sont notés par
les variables en entrée et en sortie, vérifient toutes les équations.
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1.2.4 Raffinement d’énoncés en PEI

Le raffinement en PEI est de deux types :

e Le raffinement, dit dénotationnel, qui consiste & restreindre la relation entre objets PEI
pour obtenir une fonction. Il fait décroitre le nombre de solution du systéme d’équation,
jusqu’a obtenir une solution unique : alors, I’énoncé devient un programme.

e Le raffinement, dit opérationnel, qui consiste & définir un certain ordre opérationnel, au
sens suivant :

Définition 8 (Ordre opérationnel) Soit <, un ordre partiel sur Z™ et (v : o), un objet
PEI ol 0 : Z™ — Z™. La relation, notée - définie par :

Vz,2' € def(v) (v(z) Fv(2) ssio(z) < a(2'))
est un ordre partiel sur def(v), appelé ordre opérationnel.

Le choix de ’ordre partiel < prédétermine la sémantique opérationnelle d’un programme.

Considérons par exemple une bijection o telle que o(z) = (p(2),%(2)), oit p : Z" — Z™*

et t: Z™ — N. Une telle définition est une facon classique de définir un cadencement et

une allocation des calculs sur un ensemble de processeurs virtuels.

— si K est tel que 0(z) K€ o(2') & t(z) < t(2'), alors la sémantique opérationnelle
induite définit seulement le cadencement des calculs,

- 81 K est tel que 0(z) € o(2') & p(z) = p(2') A t(z) < t(2), alors la sémantique
opérationnelle induite définit I'allocation sur les processeurs en plus du cadencement.

Ce type de raffinement consiste & expliciter une bijection ¢ qui introduit un ordre opé-

rationnel approprié. Il est fondé sur I’équivalence des objets PEI et les transformations

pour raffiner opérationnellement un énoncé reposent sur le réindicage.

Définition du raffinement

La définition du raffinement en PEI [33, 72] est proche de la définition de Knapp [43] pour
Unity [12], mais en restant dans la logique du premier ordre.

Nous associons & un énoncé P, une propriété sat(P) dont nous disons qu’elle est satisfaite
par P. Pour définir cette propriété, nous distinguons parmi les équations de P, les pré-équations
Pre qui lient uniquement des variables en entrée, et les post-équations Post qui sont les autres
équations de P. La propriété de satisfaction dit que pour tous les objets PEI en entrée qui
vérifient les pré-équations, la solution est formée des objets PEI en sortie qui vérifient les
post-équations, ce que nous notons sat(P) : Pre = Post.

Définition 9 (Raffinement d’énoncés) Soient P et P’, deux énoncés PEL Nous disons que P
est raffiné par P', et nous notons P C P’, si sat(P') = sat(P).

Cette définition du raffinement permet d’appliquer les procédés classiques de raffinement
comme ’affaiblissement d’une pré-équation ou le renforcement d’une post-équation. Des procé-
dés plus spécifiques, également applicables en PEI, sont ’ajout ou la suppression d’une variable
intermédiaire.

Une facon plus générale de raffiner un énoncé PEI consiste & substituer un objet équivalent a
un objet donné, au sens de I’équivalence forte ou faible. Cela peut étre réalisé en généralisant la
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définition précédente pour prendre en compte I’équivalence et en introduisant une implication
modulo I’équivalence, notée = et formellement définie dans [33, 72] :

Définition 10 (Raffinement d’énoncés) Soient P et P’, deux énoncés PEIL Nous disons que
P est raffiné par P’, et nous notons P C P’ ssi sat(P') = sat(P).

Cette définition du raffinement permet notamment d’établir la propriété suivante utilisée
pour raffiner opérationnellement un énoncé :

Propriété 1 Soient P, un énoncé PEI, X, une variable de P, et h, une bijection : Z"™ — Z™
notée h. Si le prédicat def(ox) C img(h) peut étre déduit de P, alors P est raffiné par I’énoncé
obtenu & partir de P en remplacant toutes les occurrences de X par h :: X.

Calcul de raffinement

La définition du raffinement induit un calcul de raffinement formé d’un ensemble de régles
pour raffiner un énoncé. Les régles que nous avons élaboré sont données dans [72] et leur preuve
peut étre trouvée dans [33].

Certaines régles dites algébriques correspondent & des propriétés algébriques des opérations
sur les objets PEL Elles permettent de simplifier ou plus généralement réécrire une expression
d’objets PEIL Une telle regle s’écrit E C E’, ou E et E’ sont des expressions d’objets PEI, et
signifie que I’on obtient un énoncé raffiné en substituant E’ & E dans une post-équation ou en
substituant E & E’ dans une pré-équation. Voici quelques exemples de régles algébriques :

(heeX) /5/ (heY) © ha (X /5/) (1.3)
fo(haX) C ho(fp> X) (1.4)

ha (X)) C (ho ) (1.5)
<d(gog) C X<ag ag (1.6)

Certaines régles algébriques sont assorties d'une condition d’application et s’écrivent :
E C E’ avec C. La condition C est un prédicat qui porte sur les domaines des fonctions partielles
ou les domaines des valeurs et de référence des variables. En voici un exemple :

(h=X)<g C h:: (X< (inv(h)ogoh)) (1.7)
avec def(g) Uimg(g) C img(h) A def(vx) C def(h)

La régle peut s’appliquer uniquement si la condition peut étre déduite de 1’énoncé obtenu
aprés application de la régle.

D’autres régles permettent de réécrire en méme temps les deux membres d’une équation.
Leur notation et sémantique sont similaires aux régles algébriques. Par exemple :

X=Y C ha:X=h:=:Y (1.8)
avec def(ox) Udef(oy) C def(h)
ha:X=ha:VY C X=Y (1.9)

avec def(vx) Ndef(vy) C def(h)
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Nous avons défini un procédé de déduction permettant, étant donné un énoncé en PEI,
de vérifier les conditions d’application des régles de raffinement. Ce procédé consiste en un
systéme d’inférence de type ou le type d’un objet PEI (v : o) est le couple (def(v),def(o))
formé de son domaine de valeur et de son domaine de référence. L’énoncé est bien typé si et
seulement si, pour toute expression, disons X, d’objet PEI, le domaine de valeur est inclus dans
le domaine de référence, i.e. def(vx) C def(ox), conformément & la définition d’un objet PEI.
Ce procédé est décrit dans [66].

1.3 Raisonnement en PEI

Nous présentons dans cette section les travaux visant & montrer le pouvoir de dérivation du
cadre formel PEI et comment il permet d’adapter progressivement un énoncé & des contraintes
d’ordre opérationnel.

1.3.1 Implantation efficace sur une architecture cible

Nous avons montré que les transformation en PEI généralisent les transformations en pa-
rallélisation automatique [65, 64]. Les techniques de transformations en parallélisation auto-
matique reposent sur l'application d’un changement de base pour exprimer, dans une base
espace-temps, le domaine des points de calcul parcourus par les indices d’une variable d’un
systéme d’équations recurrentes. Une fois ce changement de base effectué, le domaine décrit
une exécution parallele [54, 18, 48].

Le changement de base est une transformation intrinséque en PEI puisque les objets PEI
intégrent une bijection d’un placement arbitraire vers le placement de référence.

En PEI, un changement de base est défini par un réindicage et son application sur une
variable, disons X, d’un énoncé, consiste & utiliser la propriété (1) pour substituer (h :: X) a
X dans I’énoncé, factoriser le réindigage en utilisant un sous-ensemble confluent de régles algé-
briques (notamment la régle [1.7]) et utiliser la régle [1.9] pour obtenir une nouvelle définition
de la variable.

Un changement de base en parallélisation automatique est un cas particulier de changement
de base en PEI lorsque 1’énoncé en PEI exprime un systéme d’équations récurrentes. Alors, les
résultats en parallélisation automatique peuvent étre utilisés : ’analyse de dépendances permet
de déterminer un réindicage défini par une bijection composée d’une fonction de cadencement
et d’une fonction d’allocation des calculs. Ce réindigage définit un changement de base en PEI
dont ’application méne & un énoncé correspondant & une implantation paralléle efficace.

Exemple 2 (Transformation espacextemps d’un nid de boucles)

La transformation de nids de boucles est une technique classique en parallélisation auto-
matique (voir la littérature étendue sur ce sujet [27, 7, 47], etc.). Considérons le nid de boucles
suivant ol a;1, @ € [1..n] et a1 4, j € [1..n] sont les données en entrée :

do i=2,n
do j=2,n
a(l,J)=a(l_1,J)+a(1,J_1)
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enddo
enddo

L
]
N A

Fi1G. 1.2 — Dépendances et transformation espacextemps.

A partir d’une analyse de dépendances (voir la figure 1.2), une transformation espace x temps
affine peut s’appliquer, définie par :

()= 2) G+

Le nouvel espace d’itération peut étre parcouru par un front de calcul, a l'intérieur d’une
boucle séquentielle sur le temps. Une telle technique de compilation correspond a un change-
ment de base en PEI. Voici le méme exemple écrit en utilisant le formalisme PEI :

NestedLoop[n] : D — A
{

bord :: DO =D

A < bord = D0

A < next=add > (A < right /;/ A < up)
}

bord(i,j) =
next(i,j) =

E1<|J<n/\(” 1vj=1)).G,j)
add(a;b) = (a+ )
(
(

right(i,j) =
up(i,j) =

Considérons la bijection suivante pour le réindicage :
time__space(t,p) = ((p+t—n+1)%2 = 0) .((p+t—n+1)/2, (t—p+n+1)/2)
D’aprés la définition du réindicage en PEI, cette bijection est ’inverse de la bijection qui dé-
finit la transformation espacextemps mentionnée ci-dessus. Les conditions d’application de la
propriété (1) sont satisfaites et l'application de cette propriété meéne a ces équations :
(time_space :: A) < bord = D0
(time_space :: A) < next =add > ((time_space :: A) < right /;/ (time_space :: A) < up)
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En factorisant le réindigage (en appliquant la reégle [1.7]), les équations se réécrivent :

time_space :: (A < bord’) = D0
time_space :: (A < next’') =time_space :: (add > (A < right’ /;/ A < up'))

ou bord’, right’ et up’ sont obtenues par la transformation.
Une expression telle que (time_space :: A) < right est transformée en appliquant les regles
algébriques. Elle se réécrit time_space :: (A < right') avec :

right’ = inv(time _space) o right o time__space

En procédant de fagon similaire pour les autres fonctions, nous obtenons :

bord’(t,p) = (1 <p+t—n,t—p+n<nA(p=n—t+1Vp=t+n-1)).(t,p)
next'(t,p) = (1< p+t—n,t—p+n < 2n-1).(t,p)

right'(t,p) = (1 <p+t—n,t—p+n < 2n—1A (p+t—n+1)%2=0)) .(t—1,p—1)
up’(t,p) = (1 <p+t—n,t—p+n < 2n—=1A (p+t—n+1)%2 =0)) .(t—1, p+1)

En utilisant la régle [1.9] pour simplifier la derniére équation et l’élimination de Fourier
pour simplifier les prédicats des définitions de fonctions, nous obtenons le programme PEI
suivant :

NestedLoop[n] : D — A

{

bord” :: D1 =D

A < bord’ = D1

A < next' =add > (A < right’ /;/ A < up’)

}

bord'(t,p) = (1<t<nA(p=n—t+1Vp=t+n-1)).(t,p)

next'(t,p) = (1<t<2n—1Amax(l,n—t+2,t—n+1) <p < min(2n—1,t+n-2,3n—t—1))
(t;p)

add(a;b) = (a+b)

right'(t,p) = (1 <t<2n—1Amax(l,n—t+2,t—n+1) < p < min(2n—1,t+n—2,3n—t—1)
A (p+t—n+1)%2 =0)) .(t—1,p—1)

up’(t, p) = (1<t<2n—1Amax(l,n—t+2,t—n+1) < p < min(2n—1,t+n—2,3n—t—1)
A (p+t—n+1)%2 = 0)) .(t—1, p+1)

bord’(t,p) = (1 <t<nA(p=n—t+1Vp=t+n-1)).(p+t—n+1)/2,(t—p+n+1)/2)

A ce stade, nous considérons que le processus de raffinement est terminé. Ce programme
explicite un cadencement et une allocation des calculs : le calcul s’effectue en 2n—1 étapes sur
un réseau systolique linéaire & 2n—1 processeurs dont les liens sont définis par les déplacements
right’ et up’.

o

En parallélisation automatique, le raisonnement est basé sur la géométrie et requiert cer-
taines hypothéses sur les domaines considérés. Les formalismes ALPHA et CRYSTAL, qui font
la synthése des transformations en parallélisation automatique, répercutent ces hypothéses
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dans leur définition : en ALPHA, les variables sont dites spatiales et notent une collection de
valeurs indicées dans un domaine polyédrique convexe de Z". Les énoncés sont des systémes
d’équations récurrentes affines. De tels énoncés peuvent étre modélisés par un polytope et la
construction de programmes paralléles peut étre automatisée au sein de ce modele, appelé
polytope model [47]. En CRYSTAL, les variables sont appelées champs de données et notent des
fonctions sur des domaines qui sont des graphes munis d’'une métrique de référence.

Le cadre formel PEI permet de reldcher ces hypothéses en fournissant une abstraction de
ces domaines sous la forme d’un objet PEIL. Les objets PEI généralisent les variables en ALPHA
ou CRYSTAL dans la mesure ou la géométrie des objets PEI est seulement déterminée par une
bijection (implicite) vers un sous-ensemble de Z". Cette notion de géométrie est suffisante pour
exprimer et appliquer avec slireté une transformation qui consiste a changer de domaine de
référence pour une variable.

L’abstraction fournie par PEI permet de dépasser les contraintes en parallélisation auto-
matique. En particulier, dans [70], nous montrons que PEI permet de traiter un probléme
difficile en parallélisation automatique, le produit de Dirichlet qui présente des dépendances
non-affines. Les techniques de transformations qui reposent sur la manipulation de polyédres
convexes échouent sur un tel exemple. Dans [14], les auteurs ont souligné ce point et ont
développé un métalangage pour transformer des énoncés en CRYSTAL. Le traitement de cet
exemple en PEI montre que le formalisme PEI contient des notions suffisantes pour mener &
bien ces transformations.

1.3.2 Construction de programmes data-paralléles

Les programmes data-paralléles permettent d’exploiter certains opérateurs de communica-
tion disponibles sur certaines architectures SIMD comme par exemple la diffusion. Nous avons
montré que le calcul de raffinement en PEI permet d’introduire de tels opérateurs en rem-
placant une définition récursive correspondante & des communications point-a-point, par une
définition non-récursive correspondante & une diffusion. En PEI, I'introduction d’une diffusion
repose sur la propriété suivante dont la preuve peut étre trouvée dans [34] :

Propriété 2 (Diffusion et récursivité) Soit une fonction dont une définition récursive est
notée g =i # gos, ol i note 'identité partiellement définie et s note une quelconque fonction.
L’équation Y = X < g est raffinée par 'équation : Y =X <i /;/ Y < s.

Exemple 3 (Produit matrice-vecteur)

Considérons 1’énoncé suivant pour le calcul des produits élémentaires dans le produit
matrice-vecteur :
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MatVecl[n] : A,V — P

{

A = matrix = A

diagonale :: BO=V
B=B0 /;/ (B < rowwise)
P =prod > (A /;/ B)

}

matrix(i, ) = (0<i,j<n=-1).3i,Jj)

diagonale(i,j) = (0<j<n=-1Ai=j).(j)
rowwise(i,j) = (0<ij<n—1Ai#]) .((—1)%n,j)
prod(a; b) = (axb)

Les deux premiéres équations de cet énoncé expriment que le vecteur est placé sur la
diagonale de la matrice. La troisiéme équation exprime des communications point-a-point : les
valeurs du vecteur sont décalées a partir de la diagonale d’une position étape par étape selon la
direction des colonnes (et en considérant cette dimension torique). Ces communications point-
a-point sont exprimées par le déplacement défini par rowwise. Enfin, la quatriéme équation
exprime le calcul des produits élémentaires.

Dans I’énoncé ProdMat2 suivant, le déplacement défini par spread exprime une diffusion
du vecteur a partir de la diagonale.

MatVec2[n] : A,V — P

{

A = matrix 1 A
diagonale :: B0 =V

B = B0 <« spread

P =prod > (A /;/ B)
}

matrix(i,j) = (0<i,j <n-1).(i,j)
diagonale(i,j) = (0<j<n-1Ai=})).())
spread = A(Ia.]) ‘ (0 S 'aJ < n_l) (J:J)
prod(a; b) = (axb)

Le raisonnement en PEI permet de montrer que I’énoncé MatVec2 est raffiné par MatVecl
(ce qui traduit un raffinement opérationnel : I’énoncé MatVecl est en effet plus prescriptif dans
la mesure o il décrit une implantation particuliére de la diffusion).

D’aprés la propriété 2, la preuve consiste & montrer que spread peut se réécrire de la maniére
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suivante :
spread = A(i,j) | (0 <i,j <n-1).(j,]))
= Ai,) | (0<i,j<n=1Ai=j).(,0) # A(0,J) | (0<i,j <n=1Ai#]j).(,))
= Ai,J) [(0<i,j<n=1Ai=]).(i,J) # A(,J) | (0 <i,j <n-—1) .(j,))
o A0,J) [(0<ij<n=1Ai#]j).((i—-1)%n,])

= 1 # spread o rowwise

Les programmes data-paralléles permettent aussi de préciser la localité des données par
alignement des données sur une grille de processeurs virtuels. Dans [72], nous montrons com-
ment le raffinement en PEI peut étre utilisé pour modifier I’alignement des données afin de
réduire le volume de communications. Les transformations utilisées reposent sur ’équivalence
faible.

Nous avons illustré ce point sur le probléme du calcul de 'opération Gazpy [37] : Az +y
avec A, une matrice et = et y, deux vecteurs, dans le cas particulier ou y = x. Cette opération
est souvent itérée pour calculer A(...(A(Az + z) + z)...) + z, par exemple dans la méthode du
gradient conjugué. Le formalisme PEI permet d’exprimer deux solutions data-paralléles pour
ce probléme. Les solutions différent dans le placement du vecteur z : dans 'une des versions,
le vecteur est placé selon un axe canonique de la matrice, dans ’autre, le vecteur est placé sur
la diagonale. Ces deux solutions engendrent des diffusions et un volume de communications
différents. Le raisonnement en PEI permet de montrer que I'une peut étre déduite de 1'autre.

1.3.3 Calcul creux

Le calcul creux est opéré notamment en algébre linéaire lorsque 1’on traite des matrices
creuses. Une matrice est dite creuse lorsqu’elle contient une assez grande quantité de zéros.
De telles matrices peuvent apparaitre lors de la résolution d’équations & dérivées partielles en
utilisant les méthodes & éléments finis par exemple. Elles requiérent un traitement particulier,
étant donné que seuls les éléments non nuls ont besoin d’étre stockés et que ’on peut économiser
a la fois de ’espace mémoire et du temps de calcul [10].

Dans [74] et dans la thése de Frédérique Voisin [73], nous montrons que PEI permet de
traiter le calcul creux en adaptant un programme de fagon & respecter un stockage optimal
des structures de données creuses. Un tel stockage différe d’un accés mémoire naturel puisque
I’emplacement des éléments non nuls de la structure doit étre déterminé. En PEI, cela signifie
que le stockage optimal et la structure creuse sans les zéros sont deux objets PEI fortement
équivalents. Le réindicage d’'un objet PEI définit la facon dont les éléments non nuls de la
structure creuse sont stockés. Transformer le code consiste donc & appliquer un changement
de base au programme dense.

1.3.4 Autres stratégies de construction de programmes

Le changement de base est un exemple de schéma type de transformations constitué de
I’application successive de plusieurs régles élémentaires. De tels schémas définissent des stra-
tégies permettant de transformer un énoncé sous une certaine forme en un énoncé sous une
autre forme et démontrer leur équivalence. Sur la base des régles de raffinement en PEI, nous
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avons développé de nouvelles stratégies de transformations. Quelques unes de ces stratégies
sont présentées dans [34] et dans la thése de Stéphane Genaud [33]. Ces stratégies visent a
atteindre des objectifs particuliers comme par exemple la minimisation des mouvements de
données. Parmi ces stratégies, citons par exemple, la stratégie de simplification des commu-
nications qui vise & simplifier les déplacements en trouvant un réindigage adéquat : lorsque
que le changement de base défini par ce réindicage est appliqué, 1’énoncé obtenu présente
un schéma de communications plus simple. Cette stratégie s’applique & condition que cha-
cune des fonctions g qui définissent un déplacement puisse s’écrire sous la forme générale
(i1, yim,J) = ((114a1j+b1)%n,. .., (im+amj+bm)%mn,j—1), ce qui représente une classe
importante d’algorithmes systoliques.

1.4 Conclusion

Les techniques de programmation paralléle fiables sont fondées sur des transformations
formelles d’énoncés. Le cadre formel PEI a été concu pour appliquer ces transformations avec
slireté, pour exprimer les énoncés successifs et les régles de transformation elles-mémes.

La notion d’objet PEI, au centre du cadre formel, intégre une notion abstraite de géométrie
sous la forme d’une bijection vers un placement de référence virtuel. Cette géométrie relie le
domaine du probléme avec le domaine de I'architecture.

Cette notion d’objet permet de ménager toutes les transformations qui consistent en des
manipulations géométriques des objets du probléme. On généralise ainsi l'idée en parallélisation
automatique qui propose de substituer un domaine espace-temps au domaine de calcul initial.

Nos travaux ont montré que PEI est un bon cadre pour la conception de programmes
paralléles.
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Chapitre 2

Un domaine sémantique pour les
langages data-paralléles

2.1 Introduction

A notre sens, tout paradigme de programmation paralléle ([57] en donne une classification)
définit un certain degré de coopération entre le programmeur et le compilateur pour obtenir
une implantation efficace : & une extrémité du spectre, le passage de messages PVM ou MPI
qui laisse le programmeur en charge de tout le travail, a l'autre extrémité, la parallélisation
automatique ou le compilateur est le seul moteur du raisonnement. Entre ces deux extrémités,
le paradigme émergeant associé au standard OPENMP [56] et le data-parallélisme.

Bien que OPENMP soit plus récent que les langages data-paralléles standards C* ou HPF,
4 notre avis, il définit un degré de coopération qui n’est pas optimal, principalement parce
qu’il ne propose pas de facilité pour exprimer la localité des données. Ceci peut affecter les
performances de maniére critique sur des machines qui exhibent des temps d’accés mémoire
non uniformes. Les recherches récentes qui tendent a étendre OPENMP avec des idées héritées
du data-parallélisme [45, 13] soulignent I'importance des expressions de la localité des données.
OPENMP est plus dépendant de la machine. C’est pourquoi le programmeur OPENMP a plus
d’effort & fournir pour apporter ces connaissances au compilateur OPENMP afin d’atteindre
lefficacité des calculs. Ceci est confirmé par les travaux récents qui ont pour but de générer
du code OPENMP a partir de programmes HPF [8] ou de compiler des programmes HPF pour
des environnements d’exécution multi-threadés [4]. En quelque sorte, ces travaux montrent
que le data-parallélisme pourrait définir une meilleure coopération entre le programmeur et le
compilateur.

Le data-parallélisme posséde d’indéniables qualités en terme de facilité pour le program-
meur & concevoir un programme paralléle. Un intérét majeur du data-parallélisme est qu’il
autorise le programmeur & décrire un algorithme paralléle en choisissant un algorithme sé-
quentiel bien connu et en concentrant ses efforts sur ’expression de la localité des données. En
un sens, cela révéle que les concepts pour exprimer la localité des données sont de premiére
importance en programmation paralléle et peuvent méme étre considérés comme 1’ «essence du
parallélisme» en comparaison de la programmation séquentielle.

Cependant, restent des questions cruciales pour la définition et la maitrise du data-parallé-
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lisme : parmi ces questions comment transformer avec stireté un programme écrit dans l'un des
deux langages data-paralléles standards HpF [44] et C* [60] : il semble assez difficile de conduire
un raisonnement menant & une implantation efficace avec de tels langages impératifs. De plus,
HPF et C* utilisent des sémantiques intuitives différentes pour ’expression de la localité des
données : les concepts d’alignement en HPF et de shape en C*. Nous sommes donc en droit
de nous poser la question suivante : qu’est-ce que le data-parallélisme? [67] HPF ou C* 7 Il
est intéressant de noter que ces deux concepts introduisent un déséquilibre dans le partage
du travail entre le programmeur et le compilateur pour obtenir une implantation efficace :
en C*, le programmeur a beaucoup d’efforts & faire pour adapter un programme séquentiel
et le travail du compilateur est plus facile. En HPF, le programmeur a relativement peu de
travail en partant d’un programme séquentiel, mais beaucoup de travail reste & la charge du
compilateur.

Ces différences et ce déséquilibre justifient 'introduction d’un domaine sémantique pour les
langages data-paralléles ou les deux concepts de localité des données en HPF et C* pourraient
étre expliqués et situés 'un relativement & l'autre. Un tel domaine permettrait de répondre
aux interrogations au sujet du data-parallélisme et établirait une meilleure coopération entre le
programmeur et le compilateur. Nos recherches se sont portées sur la définition de ce domaine
sémantique sur la base de nos travaux sur les transformations d’énoncés.

Le formalisme PEI et les langages data-paralléles ont beaucoup de similitudes bien que
d’origines différentes : PEI est clairement issu d’une généralisation des techniques en paral-
lélisation automatique, tandis que les premiers langages data-paralléles ont été congus pour
programmer les machines SIMD. Nous avons étudié ces similitudes et proposé un domaine
sémantique issu de PEI ol les concepts d’alignement et de shape peuvent se rejoindre.

Nous avons montré que ce domaine sémantique est bien adapté pour donner une sémantique
aux expressions de la localité des données dans les langages data-paralléles et nous avons
développé quelques exemples visant & montrer que ce domaine sémantique permet d’établir une
meilleure coopération entre le programmeur et le compilateur que les langages data-paralléles
standards.

Nous avons également étudié la sémantique des directives telles qu’elles sont définies dans
le langage HPF. Ces directives sont de simples conseils au compilateur qui concernent seule-
ment Defficacité des calculs sans remettre en cause la correction des programmes. Nous avons
considéré l'utilisation de cette notion de directive comme un outil de programmation pour
faciliter la coopération entre le programmeur et le compilateur.

Ce chapitre présente ces travaux concernant la définition du data-parallélisme.

2.2 PEI et les langages data-paralléles

Dans [53, 52|, nous mettons en évidence que toutes les notions de PEI ont un lien avec les
primitives caractéristiques des langages data-paralléles : I’alignement de données sur une grille
de processeurs virtuels ressemble & une composition du réindicage et de la superposition, les
opérations globales sont définies par ’application d’un calcul & un objet PEI, la diffusion et
la communication par décalage ou globale sont des déplacements particuliers, la réduction est
une caractéristique intrinséque de PEI. Ces différents points sont précisés dans la suite.

Nous avons cherché & éclairer ces similitudes en étudiant le passage d'un énoncé PEI & un
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programme data-paralleéle. Un prototype de traducteur a été réalisé pour générer du code HpF
a partir de PEI [33].

2.2.1 Alignement de données

Les expressions de la localité des données sont essentielles dans les langages data-paralléles
car ce sont elles qui déterminent ’'usage de la mémoire et les communications sur 1’architecture
physique.

Exemple 4 Extrait du produit de deux matrices carrées.

ProdMat: A,B — C
{

align j = A" = A
align iz B = B

P = ...(Aa..) /5] B <a..)) ...
align_j A(
align i = X(

i,j,k) [ (1 <ik<nAj=1).(i,k)
iJ, k) |

) A <jk<nAi=1) .(kj)

Ces équations et expressions décrivent le méme placement de données que le programme HPF
ci-dessous qui utilise des directives d’alignement et un template [28]. Ce programme indique
que les deux matrices sont alignées sur deux faces d’un cube :

IHPF$ TEMPLATE CUBE(N,N,N)
DIMENSION (N,N) :: A,B

IHPF$ ALIGN A(I,K) WITH CUBE(I,1,K)
IHPF$ ALIGN B(X,J) WITH CUBE(1,J,K)

Si deux objets PEI ont leurs valeurs associées & des coordonnées dans un méme espace
géométrique (Z"), alors leur superposition exprime des collections de valeurs de méme shape
selon la terminologie C*.

Exemple 5 Somme de deux matrices carrées.
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SumMat: A)B— C

{

A = matrix :: A

B = matrix : B

C = addp> (A /;/ B)

}

matrix = A(i,j) | (1 <i,j <n).(i,])
add = A(a;b).(a+b)

L’objet (A /;/ B) représente une grille de processeurs virtuels qui stocke les valeurs locales
de A et B. Le résultat C est aligné sur la méme shape et n? additions peuvent s’éxécuter en
paralléle, comme le signifie ce code C* [60] :

shape [n] [n]matrix;
float:matrix A,B,C;

C=A+B;

2.2.2 Opérations globales

L’opération nommée «calcul» en PEI est clairement une opération globale sur tous les
éléments d’un objet PEI : il applique une fonction partielle f, notée en PEI Ax | (P(x)) .f(x),
sur tous les éléments dont le type est scalaire ou une séquence de scalaires s’ils résultent d’une
superposition. La domaine de f, défini par le prédicat P(x), exprime une sélection de la méme
fagon qu’une instruction where dans un langage data-paralléle.

Exemple 6

Sup:A,B—>C

—~—

A = wvector :: A
B = wvector :: B
C = test > (A /;/ B)
}

vector = A(i) | (1 <i
|

<n).(i)
test = A(a;b) | (@a#O0A

b # 0) .max(a, b)

En supposant que A et B sont alignés sur un tableau monodimensionnel, 1’énoncé ci-dessus est
exprimé dans un langage data-paralléle par :

where ((A'=0) && (B!'=0))
C = max(A,B);
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2.2.3 Communications et diffusions

Des exemples précédents ont mis en évidence des déplacements en PEI : certains de
ces exemples définissaient des dépendances réguliéres, telles que les translations uniformes.
D’autres présentaient des diffusions & travers des fonctions non injectives. De telles déplace-
ments apparaissent aussi dans I’exemple 1 :

P=... ((A" <t spread i) /;/ (B' < spread j)) ...

avec :
spread_j = A('aJ’ k) | (1 <ijk< n) ('a 1, k)
spread i = )‘(IaJ’k) | (1 <ijk< n) (la.lak)

Un tel déplacement non injectif est exprimé par des primitives de diffusion dans les langages
data-paralléles. Cet exemple utiliserait des notations comme [61] :

SPREAD (A,DIM=2,NCOPIES=N)
SPREAD (B,DIM=1,NCOPIES=N)

Inversement, les translations uniformes en PEI sont exprimées par des communications impli-
cites dans les langages data-paralléles. Par exemple, 1’équation :

R=D < A(,j,k) | (1 <i,j<nAl<k<n).(i,j,k+1)
peut s’exprimer par :

R = [.J[.1[.+1]D;

2.2.4 Scan et réduction

La notion de réduction est un autre concept majeur dans les langages data-paralléles.
Considérons le probléme de la somme de n nombres s = )., , a;. Une solution s’obtient en
utilisant un déplacement pour décaler les valeurs d’un objet monodimensionnel d’une position,
étape par étape.

Sum:A =S

{

A = vector :: A

T = add > (A /;/ T < pre)

S T < last

}

vector = A(i) | (1 <i<n).(i)

pre = Ai)|(1<i<n).(i-1)
last = Ai) | (i=n).(i)

add = MA(a;b).a+b
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Comme nous le verrons dans la suite, ceci est une fagon particuliére d’implanter la somme
de n nombres qui est une autre caractéristique classique des langages data-paralléles : le calcul
préfixe par une fonction scan. Cette définition s’obtient par raffinement d’une définition non-
déterministe plus générale.

De maniére générale, la réduction signifie I'implantation d’une opération n-aire en utilisant
une opération binaire. Au niveau d’une spécification ou d’une programmation haut-niveau,
'utilisateur ne devrait pas préciser le choix d’implantation. Sur notre exemple, puisque ’addi-
tion est associative et commutative, la seule chose & indiquer est que les n valeurs doivent étre
regroupées, peu importe 'ordre de la séquence pour former un objet & une seule valeur. La
fonction définissant cette sorte de regroupement n’est pas injective, mais elle doit étre définie
au moyen de fonctions injectives de facon a étre implantée : en PEI, une telle implantation
s’exprime en utilisant des déplacements.

Ainsi en PEI, une réduction est l'inverse d’un déplacement. Nous choisissons de noter son
application par g ;> X et elle forme en tout point de coordonnées z, une séquence (dans un
ordre quelconque) des valeurs de 'objet noté X associées aux points de coordonnées y telles
que z est 'image de y par la fonction notée g.

Définition 11 (Réduction) Soit X = (v : o), un objet PEIL Soit g, une fonction partielle
: Z™ — 7™ telle que img(g) C def(o) et def(g) C def(v). Une réduction de X par g est un objet
PEI (w : o) tel que :

— def(w) = g(def(v))

— w(z) est n’importe quelle séquence formée des valeurs de < v(y) | g(y) = z >.

Propriété 3 (Réduction et déplacement)
g:;> X = X < inv(g) ssi g note une fonction injective.

Les autres propriétés de la réduction se traduisent par les régles de raffinement suivantes :

X;> (gl#g2) T (X;>gl) /5/ (X5 g2)
X;> (glog2) C (X;> gl);> g2

ou gl#g2 note une fonction définie sur deux sous-domaines disjoints.

Revenons au probléme de la somme de n nombres. Ce probléme est exprimé par 1’énoncé
suivant :

Sum:A—=S
{

A = wvector :: A

S = rec_add > (gather;> A)

}

vector = A(i)|(1<i<n
i) |

A (i
gather = A(i)[(1<i<n

(n)

—~
— —
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La réduction dans la seconde équation associe au point de coordonnée 7, une séquence de
toutes les valeurs de A. Ces valeurs sont ensuite additionnées par la fonction rec add dont la
définition récursive n’est pas donnée ici.

Cet énoncé avec une réduction de A par gather peut étre raffiné en introduisant une défi-
nition récursive de la fonction gather :

gather = A(i) | (i = n) .(i) # (gather o A(i) | (1 <i < n) .(i+1))

Sachant que A(i) | (1 <i < n) .(i—1) note une fonction partielle injective dont 'inverse peut
étre notée A(i) | (1 < i< n).(i+1), nous pouvons écrire :

gather ;> A

C () [ (i=n).0);> A) /3/ ((gathero (i) | (1 <i<n).(+1) 50> A)
C (AW (=n)i;> A) /i/ (gather;> (A(D) | (1 <i<n).(i+1);5 A))
= (A QA@) [ (i=n).() /;/ (gather;> (A < A() | (1 <i<n).(i-1)))

En posant pre = A(i) | (1 <i<n).(i—1) et last = A(i) | (i =n) .(i), la derniére expression est :

(A < last) /;/ (gather ;> (A < pre))
La méme raisonnement meéne & l’expression suivante :
(A < last) /;/ ((A < pre) < last) /;/ (gather ;> (A < pre))

etc. Nous reconnaissons alors une définition récursive de I'objet A, en utilisant cette propriété :

Propriété 4 (Réduction et récursivité) Soit une fonction dont la définition récursive est no-
tée f =i # foinv(s), ou i note 'identité et s note une fonction partielle injective. L’équation
Y =1f ;> X est raffinée par les deux équations suivantes, oil T est une variable intermédiaire
définie récursivement :

Cette propriété meéne a I’énoncé suivant pour la somme de n nombres :
Sum:A—>S
= vector :: A

{

A

T = A /;/ T pre

S = rec_add > (T < last)
}
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Enfin, une addition scalaire peut étre substituée a la fonction récursive rec_add définie sur
la séquence de valeur au point de coordonnée n. Cela méne au premier programme de cette
section.

Cela termine le processus de raffinement pour transformer le programme précédent en
introduisant une réduction. Un tel procédé pourrait étre utilisé par un compilateur pour générer
du code pour de telles opérations macroscopiques. Bien siir, d’autres raffinements peuvent étre
proposés, qui peuvent exprimer d’autres implantations paralléles efficaces d’une réduction, en
définissant d’autres domaines de référence et d’autres définitions récursives.

2.3 Différentes sémantiques intuitives

Nous avons vu que le cadre formel PEI permet d’exprimer de maniére abstraite la plu-
part des caractéristiques des langages data-paralléles. Un grand intérét de PEI vis-a-vis de
ces langages est qu’il autorise un raisonnement sur les énoncés basé sur des transformations
exprimées dans le méme formalisme, et permettant d’atteindre avec streté des implantations
efficaces.

Par ailleurs, les langages data-paralléles standards HPF et C* ont différentes sémantiques
intuitives : ils utilisent différents concepts pour exprimer la localité des données. Ces concepts
sont ’alignement en HPF et la shape (ou forme) en C*. Nous avons observé ces différences
et montré qu’elles réduisaient la capacité de partage de travail entre le compilateur et le
programmeur. En voici l'illustration a travers quelques exemples en HpF et C*.

Exemple 7 (Somme de vecteurs non-alignés)

REAL A(0:7),B(0:7),C(0:7)
'HPF$ TEMPLATE X(0:14)
'HPF$ ALIGN A(I) WITH X(I+1)
'HPF$ ALIGN B(I) WITH X(2xI)

C=A+8B

ou le template X est utilisé pour définir I’alignement de la variable A relativement & la variable B.
L’alignement de la variable C est laissé & la charge du compilateur.
Le précédent programme HPF pourrait étre codé comme suit en C* :

shape [15]vector;
real: vector A,B,C;

where (pc_coord(0)<8)
C = [.+1]A + [.*2]B;

ou A, B sont «ré-indicés» dans l’affectation de facon & décrire une relation entre valeurs de
vecteur et processeurs virtuels équivalente & celle décrite par les directives d’alignement dans
le programme HPF.
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En C*, les communications (virtuelles) entre processeurs virtuels sont exprimeées expli-
citement par le biais de 'affectation. De plus 1’«alignement» de C ainsi que les indices des
valeurs qui sont affectées sont définis par le programmeur qui doit aussi préciser quel sont les
processeurs virtuels actifs.

La traduction de cet exemple simple de HPF vers C* révele quelques unes des difficultés
a surmonter & la fois par le compilateur de HPF pour obtenir un code efficace et par le pro-
grammeur en C* pour écrire son programme.

o

Exemple 8 (Produit de matrices)

Voici un autre programme HPF typique d’une certaine facon de programmer en HPF car
directement inspiré d’'un code séquentiel :

REAL A(0:7,0:7),B(0:7,0:7),C(0:7,0:7)
'HPF$ ALIGN A(I,*) WITH C(I,*)
'HPF$ ALIGN B(*,J) WITH C(*,J)

DO K=0,7
FORALL (I=0:7,J=0:7)
C(I,J) = A(I,K)*B(K,J) + C(I,J)
END FORALL
END DO

Les directives de ce programme conseillent le compilateur de placer tous les éléments de la
ligne I de la matrice A et tous les éléments de la colonne J de la matrice B sur le méme processeur
virtuel que 1’élément C(I,J). Il s’agit d’un cas particulier d’alignement appelé collapsing.

Dans cet exemple, étant donné que 1’alignement est défini pour tout élément de C, toute
ligne I de A est répliquée sur tout processeur virtuel correspondant & un élément de la ligne
I de C. De facon similaire toute colonne J de B est répliquée sur tout processeur virtuel
correspondant & un élément de la colonne J de C. Donc ce placement implique une grande
quantité de répliguations : si le compilateur suit ces directives aucune communication ne sera
réalisée. Cependant cela entrainera un usage mémoire probablement excessif en raison de la
répliquation de toutes les lignes et colonnes, & moins qu’une directive DISTRIBUTE soit insérée
qui peut réduire ’espace mémoire nécessaire sur ’architecture physique. L’usage de telles
directives peut devenir vraiment délicat pour le programmeur puisqu’elles peuvent avoir de
lourdes conséquences sur le comportement du programme selon la fagon dont elles interagissent
ou la fagon dont le compilateur les implante.

Sans plus d’aide de la part du programmeur, il est trés difficile pour le compilateur de
trouver un bon compromis entre communications et usage mémoire. En effet cela exige d’ana-
lyser, non seulement les directives d’alignement, mais aussi l’ordre de calcul de la somme des
produits en utilisant la commutativité et 1’associativité de 1’addition.

Le programmeur peut toutefois aider un peu plus le compilateur en insérant une directive
INDEPENDENT juste avant la boucle dans le programme. Cela indiquera au compilateur que les
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pas de la boucle peuvent étre exécutés dans n’importe quel ordre. Méme si cette directive est
ajoutée, beaucoup de travail reste & faire pour le compilateur afin de produire un code ou les
données sont distribuées au mieux.

Considérons maintenant la fagon dont le langage C* peut aider & construire un programme
performant pour le produit de matrices et quel partage du travail entre programmeur et com-
pilateur il définit.

Le collapsing n’existe pas en C* mais le programmeur est responsable de 1'usage mémoire
et les communications sont explicites : le choix d’une forme pour les matrices induit un com-
portement du programme. Par exemple, pour calculer les produits localement, les matrices
peuvent étre placées dans une forme tridimensionnelle : leurs éléments diffusés aux bonnes po-
sitions et les produits calculés en place sans d’autres communications. Un autre choix possible
correspond & l’algorithme de Cannon [46], et méne au programme suivant ou les matrices sont
placées dans une forme bidimensionnelle :

shape [8,8]matrix;
real: matrix A, B, C

A-; [.,(.+pc_coord(0))%%4814;
B = [(.+pc_coord(1))%%8,.1B;

for (k=0;k<8;k++)

{

A= [.,(.-1)%%81A;
B = [(.-1)%%8,.1B;
C += AxB;

}

Le programme ci-dessus décrit une version du produit de matrices oil la mémoire est utilisée
efficacement. Rappelons briévement cet algorithme : les éléments de A et B sont préalablement
réarrangés de facon a ce que les éléments A(T, (I+J)%8) et B((I+J)%8,J) soient placés sur le
méme processeur virtuel. Cet arrangement est réalisé en décalant tous les éléments de A de I
positions en suivant la dimension torique des colonnes et de fagon similaire, en décalant tous
les éléments de B de J positions en suivant la dimension torique des lignes. Puis, & chaque
itération, les éléments de A (resp. B) sont déplacés d’une position selon la méme direction mais
dans le sens contraire de fagon a ce que les produits soient effectués localement.

Beaucoup de travail doit étre accompli par le programmeur pour construire ce programme
et particuliérement pour prouver sa correction. D’autre part, 1’équilibrage de charge a été
réalisé de tel sorte que la compilateur peut facilement produire un code efficace.

Cet exemple met clairement en évidence différents niveaux de coopération entre le program-
meur et le compilateur. Maintenant la question est : est-ce que le programmeur est capable
de transformer le programme HPF précédent de fagon a ce que le compilateur puisse décou-
vrir I’algorithme de Cannon 7 Cela supposerait que HPF autorise des alignements non-linéaires
afin qu’il soit possible d’exprimer l'arrangement initial des éléments des matrices A et B. Le
programme pourrait alors se réécrire ainsi :

REAL A(0:7,0:7),B(0:7,0:7),C(0:7,0:7)
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'HPF$ ALIGN A(I,J) WITH C(I,MODULO(J-I,8))
'HPF$ ALIGN B(I,J) WITH C(MODULO(I-J,8),J)

DO K=0,7
FORALL (I=0:7,J=0:7)
C(I,J) = A(I,MODULO(I+J-K,8))*B(MODULO(I+J-K,8),J) + C(I,J)
END FORALL
END DO

ol les pseudo-directives ALIGN spécifient le bon arrangement initial des éléments de matrices.
Au-dela des différences syntaxiques entre HPF et C* et considérant 1'utilisation d’alignements
non-linéaires, en HPF elle supposerait de définir de nouvelles techniques de compilation [3]
et par conséquent une difficulté accrue pour le compilateur, tandis qu’en C* elle impliquerait
plus d’investissement de la part du programmeur pour écrire son programme.

o

2.4 Notre domaine sémantique

Trés peu de travaux sont consacrés a la sémantique des langages data-paralléles : nous
pouvons mentionner le langage £ [11] et sa sémantique qui définit un modeéle pour les langages
tels que C*. Nous pouvons également citer le modeéle des structures concrétes distribuées [39] et
le BSA-calcul [49] qui définissent des notions de localité plus concrétes au sens d’un placement
explicite des données sur les processeurs.

Les différences sémantiques des standards data-paralleles HPF et C* justifient I'introduc-
tion d’'un domaine sémantique ol ces différences pourraient étre expliquées et se rejoindre.
Nous pensons que ce domaine sémantique établira une meilleur coopération entre le program-
meur et le compilateur.

Nous avons proposé un tel domaine sémantique pour les expressions de la localité de
données. Nous l'avons défini en reprenant le cadre formel PEI qui permet d’exprimer une
certaine notion de localité. Nous montrons ci-aprés que PEI ne suffit pas & définir ce domaine
sémantique car la notion de localité qu’il définit n’est pas suffisamment abstraite pour expliquer
celle de HpF.

2.4.1 Vers une notion de localité plus abstraite

Le cadre formel PEI ne permet pas d’exprimer un certain type d’alignement en HPF :
I’alignement avec répliquation.

Exemple 9 Considérons ces directives d’alignements en HPF pour le produit de matrices :

IHPF$ TEMPLATE CUBE(N,N,N)
DIMENSION (N,N) :: A,B

'HPF$ ALIGN A(I,K) WITH CUBE(I,*,K)
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'HPF$ ALIGN B(K,J) WITH CUBE(*,J,K)

Les matrices A et B sont répliquées dans un cube de coté n, de sorte que les éléments A(I,K)
et B(K,J) se trouvent alignés i.e. en méme position dans le cube. Cet alignement est tel que
le calcul des produits élémentaires A(I,K) x B(K,J) ne requiert aucune communication.

Le cadre formel PEI ne permet pas d’exprimer un tel alignement. En effet, cet aligne-
ment implique que 1’élément A(I,K) est aligné avec plusieurs éléments de B : tous les élements
B(K,J) pour J € 1..N. Or, en PEI, il n’est pas possible d’aligner une valeur d’un objet, disons
A, avec plusieurs valeurs d’un autre objet, disons B. Cela supposerait que plusieurs valeurs de
B aient le méme indice. Or, chaque valeur d’un objet PEI a un indice unique dans le domaine
de référence de ’objet.

o

Notre domaine sémantique définit une notion de localité plus abstraite que celle de PEI.

2.4.2 Des objets «mis en forme»

Afin de définir une notion de localité plus abstraite que celle de PEI, notre domaine sé-
mantique inclue une notion d’objets, appelés objets mis en forme qui généralisent les objets
PEL

Considérant un objet PEI, chacune de ces valeurs est associée a un nuplet d’entiers. On peut
distinguer deux connotations pour un tel nuplet : celle d’indice : sorte d’étiquette permettant
de référencer une valeur de maniére unique, et celle de position : coordonnées d’un point dans
un espace géométrique discret muni d’un repére.

En un certain sens, en PEI, ces deux connotations peuvent étre séparées : le nuplet z associé
a la valeur par le placement arbitraire joue le role d’indice et le nuplet o(z) associé a la valeur
par le placement de référence joue le role de position. Dans ce sens, la relation entre indices
et positions d’un objet PEI est définie par une bijection — la bijection o — et une valeur admet
donc une seule position.

Les objets mis en forme généralisent les objets PEI au sens ol la relation entre indices et
positions d’un objet mis en forme est définie par une fonction quelconque de I’ensemble des
positions vers ’ensemble des indices, de sorte qu’une valeur peut admettre plusieurs positions.
Chaque valeur posséde un ou plusieurs représentant(s) en chacune de ses positions (cf. figure
2.1(a)).

Un objet mis en forme peut étre vu comme un conteneur de données (les représentants).
Dans cette interprétation, les indices servent & accéder aux données (ou représentants) qui
se trouvent en certaines positions. Un indice permet d’accéder a plusieurs représentants de
la méme valeur. Dans la littérature, un conteneur sans ses données est appelé shape [41] (ou
forme). L’originalité de nos objets est leur forme particuliére définie par une relation entre
deux ensembles : les indices et les positions (cf. figure 2.1(b)).

2.4.3 Définition mathématique

Un objet mis en forme détaché de ses positions est une collection de valeurs indicées. Une
telle collection est parfois appelée champ de données [15, 50, 40]. Un objet mis en forme est
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&~ indice

ﬁ position

(a) L’objet (b) La forme

Fi1Gc. 2.1 — Un objet mis en forme et sa forme.

donc un champ de données associé & une forme.
Soit I = UpenZ™, 'ensemble de tous les nuplets d’entiers.

Définition 12 (Forme) Une forme o est une fonction partielle : I — I. L’ensemble img(c) est
son ensemble d’indices. L’ensemble def(o) est son ensemble de positions. Tout indice z est lié a
Pensemble des positions [ telles que o(l) = z. Chaque position est liée & exactement un indice
et un indice est lié & une ou plusieurs position(s). Soit S, I’ensemble de toutes les formes.

Définition 13 (Champ de données) Soit V, un ensemble de valeurs. Un champ de données
v & valeurs dans V est une fonction partielle : I — V. Soit DF(V'), I'ensemble de tous les
champs de données & valeurs dans V.

Un objet mis en forme est un champ de données v «associé a» une forme o. Cette association
signifie que v associe & chacune de ses valeurs, un indice de o : autrement dit def(v) C img(o).
De facon & définir proprement cette association, un objet mis en forme est défini en utilisant
une fonction partielle :

Définition 14 (Objet mis en forme) Soit V', un type de données. Un objet mis en forme a
valeurs dans V est une fonction partielle : S — DF (V) constante, qui & toute forme ¢ de son
domaine de définition, associe un méme champ de données v tel que def(v) C img(o).

Opérations

Les opérations sur les objets mis en forme sont les extensions naturelles des opérations sur
les objets PEI, excepté le calcul et la superposition que nous combinons pour définir une seule
opération appelée opération globale.

Définition 15 (Réindigage) Soit X, un objet mis en forme. Soit A, une fonction partielle de

I dans I. Le réindicage est ’opération, qui appliquée & X et h, résulte en ’objet mis en forme
Y défini par : Y (o) = X(hoo)oh.
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Le réindigage modifie la forme d’un objet PEI tout en préservant les valeurs et leurs positions
(cf. figure 2.2).

Fi1G. 2.2 — Un ezemple de réindigage.

Définition 16 (Déplacement) Soit X, un objet mis en forme. Soit g, une fonction partielle
de I dans I. Le déplacement est l'opération, qui appliquée a X et g, résulte en I’'objet mis en
forme Y défini, pour toute forme o telle que def(X (o) o g) C img(o), par Y (o) = X (o) o g.

Le déplacement laisse la forme inchangée et modifie le champ de donnée en affectant
d’autres indices & des valeurs dans le méme ensemble de valeurs. Il induit un changement de
la position des valeurs avec éventuelle copie ou suppression de valeurs.

FiG. 2.3 — Un exemple de déplacement.

Définition 17 (Opération globale) Soit X et Y, deux objets mis en forme & valeurs dans
V et W respectivement. Soit @, une opération binaire (fonction totale) de V' x W dans V.
L’opération globale est 'opération qui, appliquée & X et Y résulte en ’objet mis en forme Z
défini par : Z(0) = X(0) @ Y (o) ou X(0) @ Y (o) est le champ de données de I dans V', défini
par : def(X (o0) P Y (o)) = def(X (o)) Ndef(Y (o)) et (X(0) P Y (0))(2) = X(0)(z) @Y (0)(2).

Définition 18 (Enoncé) Nous appelons énoncé tout systéme d’équations dont les variables
sont des objets mis en forme.

Notation mathématique : Nous introduisons un minimum de notations mathématiques
pour les objets conformes et leur opérations afin de formuler la sémantique des expressions de
la localité des données dans les langages data-paralléles.
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Les opérations globales sur les objets mis en forme sont notées de la méme fagon que les
opérations arithmétiques et logiques sur les scalaires (ex : A+ B).

De fagon a simplifier les notations, 'application d’un réindicage et ’application d’un dé-
placement sur un objet mis en forme X sont notées uniformément X.f, ou f est une paire
(h,g) de fonctions partielles : h définissant un réindicage et g, un déplacement, et X.f est
I’application sur X du réindicage suivi du déplacement.

Enfin, pour les fonctions partielles : id est 'identité de I dans I, Az.e(z) est la fonction
qui & tout z associe I'expression e(x) et J\p est la restriction de la fonction f au domaine D.

2.5 Adéquation du domaine sémantique

Nous donnons quelques exemples pour montrer 'adéquation entre notre domaine séman-
tique et les sémantiques intuitives des expressions de la localité des données dans les langages
data-paralléles.

Exemple 10 (Somme de vecteurs non-alignés)

Reprenons ’exemple 7 page 26 : la dépendance entre les tableaux A(0:7), B(0:7) et
C(0:7) est définie par Vi € [0..7] (C[:] = A[i] + B[:]). Elle est exprimée C = A + B en HPF
indépendamment du placement des valeurs. Dans notre domaine sémantique, elle est définie
par 1’énoncé :

C = A.idi + B.idsy

ou id; = (h1,¢91) et ide = (ha, g2) sont des paires de fonctions partielles dont la composition est
égale a I'identité restreinte a ’ensemble [0..7]. Ces paires de fonctions définissent un placement
particulier des valeurs des tableaux. Par exemple, le placement des tableaux dans le programme
HPF page 26 revient & écrire les définitions suivantes :

hi=g7" g1=X.i+lp
hg = 92_1 g = Ai.QXi\D

ou D =[0..7]. Ce placement est décrit figure 2.4.
o

Le rapport entre notre domaine sémantique et les langages data-paralléles est assez évident
puisque notre domaine sémantique définit des variables paralléles, des positions de données,
des opérations globales et des communications. L’exemple qui suit utilise notre domaine sé-
mantique pour expliquer un point délicat dans les langages data-paraléles : la sémantique des
indices d’une variable paralléle.

Dans des langages comme HPF, les indices sont des indices de tableaux sans référence
au placement des données. En conséquence, si un programme exprime qu’une valeur en un
certain indice dépend d’une valeur & un autre indice, cela peut vouloir dire n’importe qu’elle
relation entre les positions des données, ce qui implique ou non une communication : dans
un tel langage, les communications sont cachées ou implicites. De plus, 1’association entre
indices et positions est quelconque : elle peut ne pas étre injective, i.e. un indice de tableau
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FiG. 2.4 — Placements relatifs des valeurs des trois tableauz.

peut correspondre & plusieurs positions. C’est un cas particulier d’alignement de données en
utilisant des directives.

Dans d’autres langages comme C*, les indices référencent directement des processeurs
virtuels : un indice de variable paralléle est un numéro de processeur virtuel et X[¢] désigne
une valeur locale au i-iéme processeur virtuel. L’association entre indices et positions est
donc injective et toute dépendance entre une valeur & un certain indice et une valeur & un
autre, entraine une dépendance similaire entre les positions correspondantes. C’est pourquoi,
les variables paralléles sont distribuées sur 1’architecture physique et les communications sont
explicites.

Exemple 11 (Produit de matrices)

Considérons le calcul des produits A[i, k1 xB[k, 71, pour tout 1<i, 7, k<n, placés sur un
tableau P tridimensionnel cubique. Voici la définition de ce probléme dans notre domaine
sémantique ol ’on utilise des déplacements :

P = A.spread, x B.spreads

ou spread; = (h,g1) et spreads = (h,g2), et
~ h=id,
- g1 = )\(’L,], k)(IL?k)\D et g2 = )\(’L,], k)(ka])\D

ou D = [l..n] x [1..n] x [L..n].

Les objets mis en forme A et A.spread; ont la méme forme : cette forme associe les indices
de la matrice et du cube & des positions.
De plus, puisque des indices différents ne peuvent pas étre associés a la méme position de la
forme, un indice du cube ne peut pas étre associé & la méme position qu’un indice de la matrice.
En conséquence, la forme de ces objets mis en forme peut étre une correspondance injective
entre indices et positions. Ces explications sont illustrées par la figure 2.5. Cet énoncé peut
donc étre interprété dans les différentes sémantiques intuitives des langages data-paralléles,
par exemple celle de C*.
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indices

‘V /?‘ V‘ V positions ﬂ V‘ (] positions

(a) L’objet A (b) L’objet A.spread
F1G. 2.5 — Deuz objets de méme forme.
Considérons maintenant un autre énoncé pour le méme probléme en utilisant un réindicage
a la place d’un déplacement :
P = A.spreads x B.spready
ou spreads = (hg, g) et spready = (hy,g), et

- g=1d,
— hg =gy et hy = go.

indices

indices

/< positions /‘} v positions

(a) L’objet A (b) L'objet A.spreads

FiG. 2.6 — Deuz objets de formes différentes.

Les objets mis en forme A et A.spreads ont deux formes différentes mais les mémes valeurs
associées aux mémes positions. Puisque chaque indice sur une ligne verticale du cube (cf.
figure 2.6) est lié & au moins une position et que les valeurs accédées par un indice de cette
ligne sont des valeurs accédées par un unique indice dans A, alors cela signifie que tout indice
de A est forcément lié & toutes les positions qui sont associés aux indices sur la ligne. Cela
implique que la forme de A ne peut pas étre une correspondance injective entre indices et
positions.

Cet énoncé définit donc des indices virtuels dans un tableau qui sont associés a différentes
positions sur une machine. C’est ce qui exprimé par un alignement de données en HPF en uti-



36 E. Violard

lisant une directive ALIGN. L’énoncé spécifie un algorithme différent puisque les dépendances,
qui entrainent des communications dans 1’énoncé précédent, ont été modifiées : elles concernent
maintenant les positions et entrainent un alignement des données.

o

2.6 Un bon équilibre

Nous venons de voir que notre domaine sémantique offre une notion de localité qui fait la
jonction entre celle de HPF et celle de C*.

Nous montrons ici qu’il définit un bon degré de coopération entre le programmeur et le
compilateur afin obtenir une implantation efficace. Le raisonnement pour obtenir un énoncé
correspondant & une implantation efficace s’appuie sur un systéme de preuve et une séman-
tique opérationnelle associés aux énoncés considérés. Le systéme de preuve permet de prouver
la correction des énoncés, tandis que la sémantique opérationnelle permet de mesurer son effi-
cacité. Ces différents éclairages de notre domaine sémantique sont associés 4 un sous-ensemble
des énoncés que nous appelons énoncés bien formés.

Les énoncés bien formés, le systéme de preuve ainsi que la sémantique opérationnelle ont
été formellement définis dans [36, 67]. Nous en rappelons les principes essentiels ici. Un énoncé
bien formé est un énoncé a assignation unique et tel que la forme de chacune des variables peut
étre inférée & partir de la forme d’une seule d’entre elles, appelée template. Etant donné un
énoncé bien formé, une procédure automatisable détermine une forme pour chaque variable,
de sorte & déterminer pour chaque variable, un domaine d’indices, un domaine de positions et
les positions de chaque valeur. Ainsi, chaque équation d’un énoncé peut étre vue soit comme
une relation entre champs de données utilisée par le systéme de preuve, soit comme une régle
de transition faisant partie de la sémantique opérationnelle. En particulier, voici ce que définit
la sémantique opérationnelle :

— D’espace de processeurs virtuels,

— la position des données sur les processeurs virtuels,

— les calculs & réaliser par chacun des processeurs virtuels,

— les communications (virtuelles) entre processeurs virtuels,

I’ordre dans lequel les calculs doivent étre réalisés.

Ces concepts opérationnels trés abstraits sont suffisants pour refléter une certaine notion d’ef-
ficacité en terme de communications et d’usage mémoire et sont congus pour permetre au
programmeur de choisir une transformation plutét qu’une autre. En cela, notre objectif est
différent du modéle BSP introduit par Valiant [62] qui vise & permettre au programmeur de
prédire la performance de son programme sur une large variété d’architectures.

Nous reprenons l'exemple du produit de matrice pour montrer que notre domaine sémantique
aide & résoudre les difficultés rencontrées par le programmeur et le compilateur en HPF et
en C*. Un autre exemple est donnée dans [36] est conduit

Exemple 12 (Produit de matrices)
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Nous définissons un premier énoncé pour ce probléme, & partir du systéme d’équations
récurrentes suivant :

tij1 = 0 pour 0 < 4,j < n—1
tijk = GigXbgj+tije—1 pour0<i,j,k<n-1
tijn-1 = Cij pour 0 <4,5 <n—1

ou les variables indicées a, b et c identifient les matrices nxn, et ¢ est une variable intermédiaire
indicée sur [0..n—1]x[0..n—1]x[—1..n—1].

Voici notre premier énonceé :

T.init =0
T.current = A.spread, X B.spready + T.prec
T.term = C(l.expand

— ou A, B, C et T correspondent aux variables du systéme d’équations récurrentes précé-
dent, et init, current et term définissent des déplacements qui partitionnent 7" en trois
parties. Ils sont définis ainsi :

init = (Zd,A(Z,], k)(zajak)\D_1)
current = (id, A(1, J, k)-(iajak)\D)
term = (id, A(3,5,%)-(4 5, k\D,_,)

e D ;=[0.n—-1x[0.n—1] x {1}
D =1[0.n—1] x[0.n — 1] x [0.n — 1]
Dyp_1 =[0.n—1] x [0..n — 1] x {n — 1}

— ou spreadq = (ha, ga), spready = (hy, gp), prec = (hp, gp) et expand = (he, g.) définissent
les dépendances du systéme d’équations récurrentes et sont tels que :

haoga = )‘(i,ja k)(z,k)\D
hyogy = >‘(7',.75 k)(ka])\D
hpogy = A(i,7], k).(’i,j,k—l)\D
heoge = A(i’ja k)'(i’j)\Dn—l

De telles dépendances déterminent le cadencement des calculs. Sans d’autres précisions,
la sémantique de 1’énoncé précédent pourrait étre celle du programme suivant qui reprend la
syntaxe de HPF :

:N-1) ,B(0:N-1,0:N-1),C(0:N-1,0:N-1)
:N-1,-1:N-1)
FORALL (I=0:N-1,J=0:N-1)
DO K=0,N-1
T(I,J,K)=A(I,K)*B(K,J)+T(I,J,K-1)
END DO
END FORALL
FORALL (I=0:N-1,J=0:N-1)
C(1,J3)=T(I,J,N-1)
END FORALL
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Ce programme explicite 'ordre partiel des calculs, mais laisse indéterminée la relation
entre indices de tableaux et processeurs virtuels. Notons que ce n’est pas un programme HpPF
syntaxiquement correct puisqu’il est interdit de placer une boucle DO & l'intérieur d’un FORALL
dans un programme HPF. Cette interdiction est évidemment liée aux difficultés rencontrées
par le compilateur.

Instancier (hq,9q), (ho,95), (hp,gp) €t (he, ge) en choisissant des paires de fonctions parti-
culiéres a pour effet d’attacher a I’énoncé des propriétés opérationnelles supplémentaires, tout
en préservant sa correction. Cette sorte de raffinement opérationnel est tout & fait comparable
a l'ajout d’une directive d’alignement dans un programme HPF, mais en considérant les di-
rectives obligatoirement respectées par le compilateur. Nous reviendrons sur cette notion de
directives dans la section suivante entiérement dédiée.

Un énoncé tel que le précédent peut étre transformé étape par étape soit par le program-
meur, soit par le compilateur, par exemple pour définir un meilleur compromis entre volume
de communications et usage mémoire. Certaines de ces transformations peuvent consister en la
substitution d’une paire de fonctions, disons (A, ¢’), & une autre paire, disons (h, g), & condi-
tion que h' o ¢’ = h o g. L’énoncé ainsi transformé exprime toujours les mémes dépendances,
donc demeure correct, mais une relation différente entre les indices et les positions, donc est
attaché & une signification opérationnelle différente.

Par exemple, considérons les cas suivants ol nous étudions la position des valeurs de
la matrice a relativement a celles de ¢. Dans chacun des cas, le placement des données est
déterminé par une instance particuliére de (hg, ga)-

Nous illustrons chaque cas par une figure qui montre les positions de ’objet T'. De fagon a
simplifier la figure, une position de T est confondue avec I'indice auquel elle est liée par la forme
de T'. L’ensemble des positions de A qui est un sous-ensemble des positions de T, est repré-
senté en grisé. Enfin, une fléche entre deux positions représente une communication (virtuelle).

1. Répliquation (Fig.2.7). En choisissant ces définitions :

ha = )\(i,j, k)(z’k)\D
9o = id

Nous exprimons que la valeur a;j est située en toutes les positions ou se situe une
valeur quelconque parmi les t; j, j € [0..n—1]. En conséquence, il n’est pas nécessaire
de communiquer les valeurs de la matrice a pour calculer les produits. En contrepartie
chaque valeur a;j est (virtuellement) stockée n fois.

L

Fi1G. 2.7 — Répliquation de matrice.
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2. Diffusion (Fig.2.8). En choisissant ces définitions :
he =1id
9o = )‘(Zaj, k‘)(‘l, k)\D

Nous exprimons que la valeur a;; a sa position propre, différente des positions ou les
valeurs de ¢ sont situées. En conséquence, chaque valeur a;j est diffusée en toutes les
positions ot une quelconque valeur t; ; 1, j € [0..n—1] se situe.

Fi1G. 2.8 — Diffusion de matrice.

3. Alignement et diffusion (Fig.2.9). En choisissant ces définitions :

ha = (3, J, k)- (4, E)\[0.n—1]x {0} x[0..n—1]
9a = A4, 5, k).(4,0, k)\D

Nous exprimons que la valeur a; ;, est placée a la méme position que #; g ;. Comme dans le
cas précédent, la valeur a; ;. est diffusée en toutes les positions ot une valeur quelconque
tijk, J € [0..n—1] se situe.

FiG. 2.9 — Alignement et diffusion de matrice.
4. Algorithme de Cannon’s (Fig.2.11).

Les configurations précédentes peuvent ne pas étre suffisamment prescriptives pour le
compilateur, par exemple si la diffusion ne peut pas étre implantée efficacement en raison
des spécificités de D'architecture. Dans de tels cas, le programmeur peut étre d’une aide
précieuse en indiquant au compilateur qu’il peut changer I’ordre dans lequel les produits
sont calculés et accumulés. Le compilateur peut exploiter cette indication pour trouver
un meilleur compromis entre communications et place mémoire. Cette indication pour-
rait étre donnée en utilisant une notation proche de la syntaxe HPF, en insérant une
directive DO INDEPENDENT dans le programme précédent.
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La sémantique du nouveau programme est donnée par I’énoncé qui comporte ces défini-
tions :

ha © ga = A(3, 3, k)-(3; hi i (K)\D

hb Cgp = )‘(za.ja k)(h’t,] (k)a.])\D

ot hjj, i,j € [0..n—1], est une permutation quelconque de [0..n—1].

Considérons & nouveau le placement de A. Comme nous ’avons vu précédemment, il est
possible de séparer les dépendances en un alignement et une diffusion.

Un cas intéressant est le cas ou la dépendance autorise les valeurs de a a étre d’abord
alignées avec les valeurs ¢; o, puis diffusées le long de I'axe k, comme le montre la
figure 2.10. Dans ce cas, la diffusion peut étre réalisée en méme temps que le somme

FiG. 2.10 — Alignement et diffusion de matrice selon un certain aze.
des produits. Un tel alignement est permis ssi A(¢, 5).(2, ki ;(0)) et A(¢, 5).(hi ;(0), ) sont
deux permutations de [0..n—1]x[0..n—1]. Ce raisonnement peut étre conduit soit par le
programmeur, soit le le compilateur et peut mener a la définition suivante pour h; ; :
hi j(k) = (i+j—Fk)%mn

Cette définition induit un énoncé équivalent o la paire (hg,gq) est définie comme suit :

ha = A(4, 5, k)- (i, (i45) %m)\ (0. 1] x (0.7 1] x {0}
Ga = ’\(i,ja k)(za (j_k)%na O)\D

La fonction h, définit le placement initial de I’algorithme de Cannon, tandis que g, ex-
prime les communications a réaliser.

A partir de cet énoncé, le compilateur peut utiliser une technique classique appelée
uniformisation pour rendre les communications uniformes (Fig.2.11) et implanter ces
communications en utilisant les liens d’une architecture paralléle réguliére.

FiG. 2.11 — Communications uniformes.
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Appliquer les méme transformations a ’objet B, c’est-a-dire définir (hy, gp) comme suit :

by = A(3, 5, k)-((i+3) %n, 5)\[0.n—1]x[0.n—1]x {0}
9 = A(%]a k)((’b—k)%n,], O)\D

méne 3 'algorithme de Cannon.

2.7 De l'utilisation des directives comme outil de coopération

Une spécificité des langages paralléles industriels actuels HPF et OPENMP est la définition
de directives. Ces directives sont un indéniable confort pour le programmeur qui lui donne la
possibilité de préciser incrémentalement la sémantique opérationnelle de son programme tout
en préservant sa correction (sauf pour certaines directives OPENMP). L'utilisation de directives
est certainement une approche prometteuse pour une programmation paralléle de haut niveau.
Toutefois elle pose certaines questions sémantiques : en particulier un probléme se pose lorsque
les directives ne sont pas obligatoirement respectées par le compilateur. C’est le cas en HpPF
ou il est donc difficile de connaitre la sémantique opérationnelle réelle du programme.

L’objet de la thése de Philippe Gerner [35] est I’étude théorique de la notion de directive
afin d’éclaircir leur sémantique et dans le but de se servir des directives comme un véritable
outil de programmation.

Cette étude vise & montrer comment il est possible d’établir formellement la sémantique
des directives. Elle est appliquée au cas du data-parallélisme, et en particulier au langage
industriel HpF. Elle conduit & distinguer deux sémantiques opérationnelles pour un langage :
la sémantique officielle, qui sert & expliquer le langage et la sémantique effective, qui définit
ce & quoi est tenu un compilateur du langage. La sémantique effective est importante dans
cette étude car c’est elle qui donne un sens aux directives. La somme des deux sémantiques
est appelée sémantique de référence et constitue une norme du langage auquelle programmeur
et compilateur peuvent se référer.

Philippe Gerner propose une méthode pour décrire formellement la sémantique opéra-
tionnelle des langages. L’introduction de cette méthode spécifique est motivée par le fait que
parmi les méthodes existantes exposées dans I’état de 1’art, aucune n’est congue pour exposer
conjointement plusieurs sémantiques pour un méme langage, et les relier entre elles. Dans cette
méthode, chacune des sémantiques (officielle, effective) associe un graphe d’exécution & tout
programme. Un compilateur doit respecter la sémantique effective, mais peut contraindre cette
sémantique afin de 'adapter au mieux & 'architecture cible. Ceci correspond a un raffinement
de la sémantique effective. Cette notion de raffinement est formellement définie comme 1’ajout
d’états intermédiaires dans les graphes d’exécution correspondant & la sémantique effective des
programmes.

La méthode est appliquée pour donner une sémantique aux directives. Cette sémantique
est une relation d’ordre qui exprime la préférence de 'utilisateur du langage quant au respect
ou non d’une directive par le compilateur.

Ces travaux montrent comment pourrait étre construit un langage & directives établissant
un contrat clair entre programmeur et compilateur. Un tel contrat permet de concevoir un
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langage qui «prend de l’avance» sur les capacités du compilateur & traiter les directives. Du
point de vue de la coopération programmeur-compilateur, il est évidemment souhaitable que
la plupart des directives puissent étre traitées par le compilateur. Autrement dit, le contrat ne
doit pas étre trop en défaveur du compilateur.

2.8 Conclusion

La définition du data-parallélisme doit inclure une notion de localité des données ou les
notions intuitives différentes des principaux langages data-paralléles standards HpPF et C*
peuvent se rejoindre.

Nous avons proposé un domaine sémantique, issu de PEI, définissant une notion de localité
qui fait la jonction entre les notions de shape en C* et d’alignement en HPF.

Nous avons congu ce domaine sémantique dans 'optique de définir un médium idéal entre
le programmeur et le compilateur établissant un meilleur partage du travail en vue d’obte-
nir un programme paralléle efficace. En comparaison avec la notion d’alignement en HPF, le
travail du compilateur est moins important car un énoncé & notre sens définit plus précisé-
ment le placement des données. En comparaison avec la notion de shape en C*, le travail du
programmeur est simplifié car un énoncé peut étre plus facilement transformé.

Nous pensons que ce domaine sémantique peut aider & la fois le programmeur et le com-
pilateur & transformer le programme de maniére & atteindre des implantations efficaces.



Chapitre 3

Applications et perspectives

3.1 Introduction

Les travaux qui sont présentés dans ce chapitre concernent d’une part I'implantation sur
architectures paralléles des méthodes numériques de résolution d’équations aux dérivées par-
tielles (EDP) et d’autre part 'utilisation des grilles de calcul.

Ces recherches constituent des prolongements concrets de mes travaux antérieurs dans le
domaine de la construction de programmes data-paralléles par des techniques de transforma-
tions. J’ai mené ces recherches avec l'objectif d’appliquer mes résultats théoriques.

Mes recherches sur 'implantation des méthodes numériques ont été effectuées en collabora-
tion avec Eric Sonnendriicker, Professeur 4 I'ULP, membre de 'IRMA (Institut de Recherche
Mathématique Avancé, UMR 7501 ULP-CNRS) et Francis Filbet, chargé de recherche CNRS,
tous deux mathématiciens appliqués. Ces travaux sont poursuivis dans le cadre du projet IN-
RIA CALVI [2]. Mes recherches sur 1'utilisation des grilles de calcul s’inscrivent dans le cadre
du projet TAG [1] mis en place dans ’équipe ICPS du laboratoire LSIIT & Strasbourg.

La résolution numérique d’EDP constitue un domaine d’application important du parallé-
lisme. Les EDP tiennent une place de plus en plus grande dans la modélisation de systémes
physiques. La simulation numérique de ces systémes permet des avancées en sciences physiques
avec des implications importantes dans le futur. Bien stir, obtenir des simulations réalistes et
en temps interactif suppose d’utiliser efficacement les ressources de calcul disponibles.

Beaucoup de recherches sont & mener dans ce domaine pour permettre de concilier les
méthodes numériques de résolution avec les techniques de parallélisation de fagon & concevoir
des algorithmes paralléles qui utilisent les ressources disponibles de maniére optimale.

La simulation numérique de certains systémes physiques présente une grande difficulté du
fait de la grande taille du systéme et le grand nombre de dimensions de ’espace physique consi-
déré. L’obtention d’une approximation suffisante de la solution requiert alors des ressources
de calcul considérables que seule une grille de calcul peut offrir.

Les progrés en matieére d’uniformisation et de transparence d’accés aux composants per-
mettent d’agréger des machines hétérogénes en les connectant par un réseau lui-méme hété-
rogéne. L’utilisation de tels agrégats, nommeés grilles de calcul, est rendu possible par 1’émer-
gence d’infrastructures logicielles permettant d’exécuter un code sur une telle architecture (par
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exemple GLOBUS |[31] interfacé avec MPI [30]). Les grilles de calcul représentent un potentiel
de calcul inépuisable [29].

Cependant, beaucoup de progrés restent a faire pour les exploiter efficacement, particulie-
rement en matiére de programmation. Les codes paralléles congus pour une machine paralléle
homogéne sont peu performants lorsqu’on les exécute sur une grille de calcul. A cela, il y a
principalement deux raisons : la premiére est que les processeurs de la grille sont hétérogénes
et la charge de travail allouée aux processeurs est donc souvent déséquilibrée, la deuxiéme est
que les liens réseaux sont de plusieurs ordres plus lents sur une grille que sur une machine
paralléle. L’équilibrage de charge est un objectif majeur dans ce contexte. Cependant, peu de
recherches concernent des stratégies d’équilibrage de charge spécifiquement guidées par le code
a exécuter. Le projet AppLeS [9] utilise des informations au sujet du code afin d’ordonnancer
I’exécution des processus, mais il ne modifie pas le code source pour améliorer son exécution.

Nos résultats sont basés sur 1’étude d’une application en physique des plasmas. Cette
application est un solveur de I’équation de Vlasov par la méthode PFC [26].

Une partie de ces résultats concernent I'implantation de cette méthode sur une architecture
paralléle homogeéne. Cette méthode induit un algorithme paralléle simple avec des phases de
calcul et de communication bien distinctes. Nous avons congu un algorithme plus performant
qui se déduit du premier algorithme en appliquant un changement de base qui optimise le
recouvrement des communications par les calculs.

Une autre partie concerne l'utilisation des grilles de calcul. Nous avons défini une trans-
formation de code applicable & une classe étendue de codes MPI congus pour une machine
paralléle homogéne. Cette transformation permet d’obtenir un code plus adapté a la grille de
calcul. Elle vise a équilibrer la charge sur les processeurs hétérogénes de la grille.

Ce chapitre présente ces différents travaux en commencant par une présentation de 1’ap-
plication qui nous a servi & valider les transformations que nous avons défini.

3.2 Une application en physique des plasmas

Notre application est un solveur de ’équation de Vlasov. La résolution de ’équation de
Vlasov est habituellement réalisée par des méthodes numeériques particulaires (Particle-In-
Cell) qui approximent le plasma par un nombre fini de particules. Ces méthodes ménent & des
résultats satisfaisants avec un relativement petit nombre de particules. Cependant, il est bien
connu que le bruit numérique qui accompagne une méthode particulaire devient dans certains
cas trop important pour obtenir une description fiable de la fonction de distribution.

La méthode de résolution utilisée dans notre application est une méthode non particu-
laire, nommée PFC (Positive and Flux Conservative method) [26]. Une autre méthode non-
particulaire est la méthode semi-Lagrangienne [25]. Les méthodes non particulaires discrétisent
I’équation de Vlasov sur ’espace des phases, i.e. ’espace des positions et des vitesses. De telles
méthodes sont d’'un grand intérét pour obtenir une bonne description de 1’évolution du plasma
ou du faisceau de particules. En particulier, la méthode PFC garantit la conservation de cer-
taines caractéristiques de la fonction de distribution. Cependant, ces méthodes impliquent un
grand volume de données et de calculs, parce que 'inconnue est calculée en tout point de
I’espace des phases.
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3.2.1 Equation de Vlasov - Schéma de résolution

L’ensemble de particules est décrit par une densité de particules f(t,x,v) qui dépend de
I'instant ¢, de la position x et de la vitesse v. La fonction f, appelée fonction de distribution,
est I'inconnue de I’équation de Vlasov. L’évolution de la densité de particules f(t,x,v)dxdv
dans I’espace des phases, (x,v) € R? x R? d = 1,..,3, est donnée par I’équation de Vlasov
normalisée :

of

ot + divx(v f) + divy(E(t,x) f) = 0. (3.1)
ou le champ électrique E est défini par (en utilisant I’équation de Poisson) :
E(t,x) = =Vxoé(t,x), —Axd(t,x)=p(t, x), (3.2)

ou la densité de charge p est définie par :

p(t,x) = ft,x,v)dv. (3.3)
Rd

3.2.2 La méthode PFC

La méthode PFC ainsi que la méthode semi-Lagrangienne résolvent une équation différen-
tielle de la forme :
of

s +dive(U(t,x) f) = 0 (3.4)

Ces méthodes peuvent s’appliquer & la résolution de I’équation de Vlasov aprés une discré-
tisation dans le temps basée sur le découpage de 1’équation de Vlasov en deux équations de
la forme (3.4). Les méthodes semi-Lagrangienne et PFC ne différent que dans la facon de ré-
soudre ces équations. Les équations obtenues aprés découpage de 1’équation de Vlasov sont des
équations de transport également appelées advections, en x et en v. La discrétisation dans le
temps résulte en la procédure suivante sur At = [t",#" 1] connaissant une solution approchée
f™ a l'instant ¢".

1. Résoudre sur At 'advection en x :
af®

ot

FO0,%,v) = f"(x,v).

2. Calculer le champ électrique E(t"+1/2,x) a I'instant ¢"+/2 en substituant f(1)(At,x,v)
dans I’équation de Poisson et dans (3.3).
3. Résoudre sur At I’advection en v :

af@
ot

-+&w(vﬂ”)=0 (3.5)

+divy (B(t"172,%) 1) =0,

£(0,%,v) = fO(AL,x,v).

et poser f(t"*1 x,v) = fA)(At,x,v).
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Cette procédure nous raméne a la résolution des équations (3.5) et (3.6) sur un maillage de
I’espace des phases. Considérons le cas d = 2, i.e. (x,v) € R* et introduisons un ensemble fini
de points de Iespace des phases (%; = (Zi,¥i))ic{0,...,nx} € (Vi = (Vaj,Vy;))jefo,..,n,}- Notons
Ax = ;11 — ; = Yiy1 — Y; le pas de position et Av = vgj11 — vgj = Vyj+1 — Vy; le pas
de vitesse. En supposant que les valeurs de la fonction de distribution f, stockées dans la
matrice (Fi’fj)i,j, sont connues a l'instant ¢" = n At. Nous trouvons les nouvelles valeurs de f a
I'instant "1 en résolvant (3.5) et (3.6) sur chaque volume [x;,%;41] X [v;, vj11] de 'instant "
a l'instant ¢"*!. En utilisant le schéma PFC donné en [26], nous obtenons une approximation

de I’équation (3.5) dont la solution Fz(j) est calculée a partir des valeurs de Fj"; en utilisant un

opérateur discret Q(Al))(, Av -
1 1
F) = 1QR) s (B Py s Pty )i (3.7)

Notons que la valeur Fz(j) ne dépend que des valeurs sur la ligne 1 de F™. A partir de ces nou-

velles valeurs, nous approximons le champ électrique sur le maillage de I'espace des positions
n+1/2
i
mée de Fourier (FFT). Finalement, nous obtenons la solution & 'instant
l’équation (3.6) :

=Av) FZ-(;-) et en utilisant une transfor-
g tn—}-l

(Xi)ie{0,...,n} & partir de la charge discréte p
en approximant

e (0] AR (e e oY (3.8)

2,y —1

On remarque que la valeur Fi’,‘]ﬂ ne dépend que des valeurs sur la colonne j de F(.

3.2.3 L’algorithme induit

Lorsque les valeurs de la fonction de distribution sont stockées dans une matrice (Fit‘j)i,j, ol
1 et j représentent une position et une vitesse, le découpage de I’équation de Vlasov en deux
advections introduit deux phases de calcul des éléments de la matrice : durant la premiére
phase, chaque élément ne dépend que des éléments sur la méme ligne et durant la seconde
phase, chaque élément ne dépend que des éléments sur la méme colonne.

Cette propriété induit un algorithme paralléle performant décrit dans [20] pour la méthode
semi-Lagrangienne et dans [26] pour la méthode PFC. Bien entendu, I’obtention d’algorithmes
paralléles plus efficaces requiert une analyse plus fine des dépendances : par exemple, pour la

méthode PFC, cela signifierait de prendre en compte la définition des opérateurs Qg))(’ Ay €t

Q(AQ))(, Ay Dropres a cette méthode. L’intérét de cet algorithme tient en sa généricité et sa sim-
plicité. Nous rappelons cet algorithme ci-aprés pour la méthode PFC. Il décrit des opérations
globales impliquant tous les processeurs utilisés :

Algorithme 1 :

Initialement la matrice F™ est distribuée par blocs de lignes.
Pour chaque étape de temps At

1. Calculer la matrice F(!) en utilisant I'opérateur Q1) a partir des valeurs de F™.
(Cette phase ne requiert aucune communication)
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2. Redistribuer la matrice F(!) de facon a obtenir une matrice (F(I)T) distribuée par blocs
de colonnes.

T . .
3. Sommer les colonnes de F(U" pour obtenir la charge discréte p et calculer le champ
électrique F.
(Sans communication)

. - . T
4. Calculer la matrice F**+'7 en utilisant 'opérateur Q) a partir des valeurs de F(D” .

(Cette phase ne requiert aucune communication)

5. Redistribuer la matrice F™"+1" de facon a obtenir une matrice (F"+1) distribuée par
blocs de lignes, avant d’aborder 1’étape suivante.

Cet algorithme a été implanté par Francis Filbet en C++ avec appels & MPI. Le nom du code
est VADOR.

3.3 Recouvrement des communications par les calculs

L’algorithme 1 décrit précédemment contient des phases de calcul sans communication
et des phases de communication sans calcul. Les phases de communication de 1’algorithme 1
consistent en une transposition par bloc c’est-a-dire un échange global des données qui est une
opération cotiteuse. Il est nécessaire d’améliorer cet algorithme.

Une approche pour améliorer le code consiste & optimiser les communications, par exemple,
dans [59, 16], les auteurs décrivent une implantation efficace de la transposition. Nous choisis-
sons une autre approche qui consiste a modifier I’algorithme de facon a exploiter une propriété
de ’algorithme 1 : la séparation des calculs et des communications en phases bien distinctes.
Il devient clair que le seul mécanisme qui peut étre utilisé pour améliorer le code de maniére
significative est le recouvrement des communications par des calculs [19]. Ce mécanisme peut
étre utilisé durant les étapes (1)-(2) et (4)-(5) de ’algorithme 1 afin que des données soient
calculées pendant que d’autres s’échangent.

Considérons les étapes (1)-(2) et une subdivision de la matrice F!) en p x p blocs (B, )k,
de méme taille ol p est le nombre de processeurs utilisés. Le processeur k calcule d’abord
les blocs (Bgg)ks, | = 0,..,p — 1, puis envoie le bloc (By,)k,; au processeur [, pour tout
I € {0,..,p — 1} \ {k}. Ces taches peuvent étre effectuées dans n’'importe quel ordre a la
seule condition qu’un bloc soit calculé avant d’étre envoyé. Le recouvrement dépend de ’ordre
dans lequel ces taches sont accomplies. Nous souhaitons obtenir un code qui implante un
recouvrement optimal.

En utilisant nos développements théoriques et le cadre formel PEI , ce probléme peut étre
modélisé comme suit : les blocs de la matrice sont des valeurs placées dans un domaine de
référence qui est un carré [0..p— 1] x [0..p— 1] de Z? : chaque valeur est naturellement associée &
un couple (k,I) formé des coordonnées d'un point de Z?2. Le probléme consiste & expliciter une
bijection o qui induit un ordre opérationnel approprié. En posant o(k,l) = (alloc(k,l),t(k,1))
avec alloc : [0.p—1]x[0..p—1] = [0..p—1] et ¢ : [0..p—1] X [0..p—1] — [0..p—1], et en choisis-
sant ’ordre partiel < tel que o(z) < o(2) si alloc(z) = alloc(z') At(z) < t(2'), nous définissons
de facon classique une allocation et un cadencement des calculs. Une analyse de dépendances,
nous donne alloc(k,l) = k et t(k,l) = hg(l) ou hy est une permutation quelconque de [0..p—1].
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Maximiser le recouvrement revient & maximiser le minimum des délais entre I'instant auquel la
valeur d’indice (k,[) doit étre regue et I'instant auquel cette valeur peut étre envoyée. Le pro-
bléme revient donc a trouver les hy, qui maximisent min{p—hy(l) | 0 <k, I <p—1Ak#1},
soit & minimiser maz{ hg(l) | 0 < k,l <p—1Ak #1}. Les permutations hy solutions du pro-
bléme sont celles qui vérifient hy(l) = p — 1 pour k = [. Par exemple, hi(l) = (I —k+p—1)%p
est une solution du probléme. A condition de modéliser le probléme dans le cadre formel PEI,
le raisonnement menant & cette solution peut étre conduit aussi bien par le compilateur que
par le programmeur. Il repose sur une transformation d’énoncé qui raffine opérationnellement
I’énoncé initial : plus précisément, cette transformation explicite le cadencement des calculs.
Cette transformation est un changement de base défini par le réindicage déterminé par une
bijection qui & (k, 1) associe (k, (I—k+p—1)%p). L’énoncé raffiné correspond a un code paralléle
que nous avons obtenu en réécrivant le code VADOR. Dans ce nouveau code, I’envoi d’un bloc
commence juste aprés son calcul et le calcul du bloc By, est réalisé en dernier conformément
a algorithme que voici :

Algorithme 2 :

Pour chaque étape de temps At ; pour chaque processeur k

1. Pour tout [ =1,..,p — 1,

- calculer le bloc By, (x41)%, de la matrice FM en appliquant Q) & partir des valeurs
de F™.

- envoyer le bloc By, (414)%, au processeur (k + 1) %p.
(Cette communication sera recouverte par le calcul du prochain bloc By (x4141)%p)-

- initialiser la réception du bloc By _j)9, . provenant du processeur (k —1)%p.

fin.

Calculer le bloc By, ; de la matrice F(1),

. T . .
2. Les blocs recus sont stockés dans la matrice F()™ | qui est sommée pour obtenir la charge
discréte p. Le champ électrique E est calculé & partir de p.

3. Pourtoutl=1,..,p—1, .
- calculer le bloc By, (x11y%, de la matrice Ft1% en appliquant Q@ a partir des valeurs

de FOOT
- envoyer le bloc By, (4%, au processeur (k + 1)%p.
(Cette communication sera recouverte par le calcul du prochain bloc By (x4141)%p)-

- initialiser la réception du bloc B9, provenant du processeur (k — 1)%p.
fin.

Calculer le bloc By, de la matrice Fn+17 .

Les résultats expérimentaux [71] montrent que ’algorithme 2 permet de réduire de maniére
significative les temps d’exécution du code VADOR.
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3.4 Adaptation & une grille de calcul

Le code VADOR décrit un volume de données et de calcul considérable : il est donc un
bon candidat pour les grilles de calcul. L’étude de ce code nous a permis de proposer une
transformation de code pour adapter un code MPI congu pour une machine paralléle & une
grille de calcul.

Cette transformation est présentée dans [68, 23]. Elle a pour but d’équilibrer la charge
de calcul sur les processeurs hétérogénes de la grille de calcul de fagon & réduire le temps
d’exécution total. Elle permet de modifier la répartition de la charge décrite par le code
initial. Un intérét de cette transformation est qu’elle est applicable & une large classe de codes
paralléles.

Le principe de cette transformation est issue des idées suivantes : une solution naive pour
équilibrer la charge consiste & faire en sorte que le systéme exécute plusieurs processus sur les
processeurs les plus rapides. Evidemment, cette solution entraine un surcott systéme d aux
mécanismes de temps partagé et a la gestion des communications entre processus. L’idée que
nous avons suivie est de réécrire le code de facon a ce qu’un seul processus soit exécuté sur
chaque processeur : en d’autres termes, le processus du code transformé «émule» (ou sérialise)
I’exécution paralléle de plusieurs processus du code initial.

Nous avons validé cette transformation en ’appliquant au code VADOR et avec une grille
test de quelques machines hétérogénes. Les résultats expérimentaux montrent qu’elle améliore
sensiblement les performances du code initial sur la grille méme en utilisant un modéle de
performance trés simple basé uniquement sur la vitesse des processeurs.

Cette transformation est décrite en deux étapes : nous donnons les conditions que doit
vérifier le code MPI pour que la tranformation puisse s’appliquer, puis nous indiquons quelles
sont les modifications syntaxiques & apporter au code.

3.4.1 Conditions d’application de la transformation

Notre transformation s’applique & un code SPMD qui respecte les conditions suivantes :
(i) le code peut s’exécuter avec un nombre quelconque de processeurs, (ii) la charge de travail
est répartie équitablement entre les processeurs et (iii) la charge de travail dépend seulement
du nombre de données a traiter.

3.4.2 Modifications du code

Notre transformation est résumée par la figure 3.1. Elle consiste & modifier le code de fagon
& ce qu’un processus du code transformé émule plusieurs processus du code initial. Puisque
le code initial est SPMD, il se décompose en une succession de phases de calcul et de phases
de communication. Nous appelons ici phase de communication une séquence d’appels & des
fonctions de communication MPI. Puisque le méme code est exécuté par chaque processus,
tout processus du code initial exécute une instance de ces phases successives. A gauche de
la figure sont représentées les phases successives de deux processus du code initial : chacun
des deux processus comporte quatre phases. A droite de la figure sont représentées les phases
successives du processus qui émule les deux processus du code initial : les phases de calcul
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sont regroupées ensemble et de méme pour les phases de communication. Les appels a MPI

Un processus
Deuz processus émulés

DE’II/E processus
‘CmnpAl ‘ ‘Cm'n,pA2 ‘
‘ Comppg | ‘ ‘ Comppg, ‘ Compp,
Gy
Code initial Code transformé

FiG. 3.1 — Transformation de code.

dans les phases de communication ont été modifiés de fagon & remplacer les références aux
processus émulés par les références aux processus réels et réaliser des copies mémoires plutot
que des communications lorsque la source et la destination sont le méme processus du code
transformé.

De plus, les communications point-a-point bloquantes (e.g. MPI_Send) ont été remplacées
par leur version non-bloquante (e.g. MPI_Isend). Ceci a pour effet de laisser le systéme gérer
les communications de fagon & éviter les situations d’interblocage. Les doublons d’appel a
une méme communication collective doivent étre supprimés : lorsqu’un processus du code
initial fait appel & une communication collective, alors un processus du code transformé qui
émule plusieurs processus ne doit faire qu'un seul appel & cette communication collective.
Certaines communications collectives tel qu'un appel a MPI_Barrier ne requierent aucune
autre modification, alors que d’autres nécessitent plus de modification du code. Par exemple,
un appel a MPI_Scatter qui distribue & chacun des autres processus des morceaux de méme
taille d’'un tableau de données, doit étre remplacé par un appel & MPI_Scatterv qui permet
une distribution inégale entre les processus du code transformé de facon & donner & chacun
des autres processus du code transformé un morceau de taille correspondante au nombre de
processus qu’il émule.

Exemple 13 Cet exemple expose plus en détail 'application de notre transformation de
code. Nous considérons un morceau du code VADOR qui correspond au calcul d’un bloc de
matrice suivi de sa transmission pour réaliser la transposition globale par bloc. Nous utilisons
du pseudo-code pour décrire le contenu des processus.

Contenu d’un processus de rang r; (¢ = 1..2) du code initial :

/* phase de calcul */
compute (4;) ;

/* phase de communication */
MPI_Isend(..., A;, dest;, ...);
MPI_Irecv(..., B;, src;, ...);

Contenu d’un processus de rang r du code transformé :



Habilitation a diriger des recherches 51

/* phase de calcul */
for (1 =1.2)
compute (4;) ;

/* phase de communication */
for (1 =1..2) {

if (proc_of(dest;) # r) MPI_Isend(..., A;, proc_of(dest;), ...);
else skip;
if (proc_of(src;) # r) MPI_Irecv(..., B;, proc_of(sr¢;), ...);

else B; = Age, 3

La phase de communication consiste & examiner la destination (resp. la source) des messages
qui ont été envoyés (resp. regus) par 'un des processus émulés. Si la source ou la destination
est un processus émulé par le processus courant (r), alors une copie mémoire est réalisée (B;
= Asre;)- Sila source ou la destination est un processus émulé par un autre processus que r,
disons ' (proc_of (dest;) # r), alors une communication est réalisée entre r et /. ©

Répartition de la charge : Le code transformé est paramétré par une répartition de la
charge qui doit étre connue au démarrage du code. Une répartition de la charge est définie par
un p-uplet (7;);e[1.p) d’entiers ot n; est le nombre de processus émulés qui doivent étre alloués
au processeur p;, ¢ € [1..p]. Nous devons fournir au code transformé une répartition telle que
le temps d’exécution total soit approximativement le méme sur tous les processeurs.

3.5 Perspectives

Mes travaux futurs concerneront entre autres l'implantation des méthodes numeériques
adaptatives : les méthodes numériques adaptatives procédent par discrétisation des équations
sur un maillage de ’espace physique et sont capables de raffiner le maillage en fonction de
critéres mathématiques d’estimation de la solution. Ces méthodes permettent d’obtenir une
efficacité optimale sur des machines séquentielles pour la plupart des familles d’EDP. Mais
I'implantation effective de ces méthodes sur des architectures paralléles demeure un probléme
difficile. En effet, ’adaptivité de ces méthodes apporte de nouvelles complications : I'utilisation
de maillages irréguliers et le fait que ces méthodes introduisent ou réduisent des degrés de
liberté rendent 1’équilibrage de charge plus difficile & réaliser.

L’implantation efficace de méthodes numériques complexes et adaptatives sur des architec-
tures elles-mémes complexes et adaptatives nécessite 1'utilisation de concepts de programma-
tion permettant de raisonner & différents niveaux d’abstraction et associés a des principes de
structuration permettant de constituer des modules réutilisables et ainsi réduire la complexité
grandissante lorsqu’il s’agit de simuler numériquement des systémes physiques de plus en plus
complexes.

Le data-parallélisme est un cadre naturellement approprié a la parallélisation des méthodes
adaptatives puisque ces méthodes consistent essentiellement & appliquer un méme traitement
sur tous les éléments d’une structure de données globale.

Une partie de nos travaux pourra consisté en 1’élaboration de transformations pour construire
un programme paralléle en partant de problémes exprimés & un haut niveau d’abstraction,
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idéalement sous la forme d’un systéme d’équations différentielles enrichi de directives relatives
au calcul par ’expertise du physicien ; Une autre partie & la généralisation des techniques de
transformation aux cas irréguliers, architecture irréguliére (architectures évolutives de type
grilles de calcul) (en interaction avec le projet TAG), ou structures de données irréguliéres
(structures creuses ou hiérarchiques).

Mes idées pour atteindre ces objectifs seront empruntées de mon cadre formel : la notion de
changement de base pour exprimer la localité des données — I’expression de la localité des don-
nées constituant pour moi ’essence du parallélisme —, la géométrie support des transformations
d’énoncés, la structuration basée sur la géométrie des objets, etc.

Plus précisément, 1’idée directrice est que les techniques de parallélisation et en particulier
celles associées aux méthodes adaptatives (notamment pour le partitionnement du maillage)
reposent essentiellement sur des manipulations géométriques de domaines ou changements
de base. La synthése d’un algorithme paralléle consiste essentiellement en la définition de
changements de base entre des domaines géométriques : le domaine des fonctions d’accés aux
données du probléme (le maillage dans le cas des méthodes adaptatives) et le domaine de
I’architecture. Le raffinement du maillage définit lui aussi un changement de base. Une idée
est donc de paramétrer tous les composants des méthodes adaptatives par un changement de
base afin de ménager toutes les manipulations géométriques possibles. Cela peut étre aussi une
réponse complémentaire aux besoins de modularité et qui ne sacrifie pas a 'efficacité.
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Annexe 1

Contexte ou collaborations

e Mes activités de recherche de nature théorique ont donné lieu & des échanges réguliers
avec les meilleurs équipes francaises du domaine dans le cadre de ’opération inter PRC
(C3 et ANM) ParaDigme, du GDR PRS (Parallélisme, Réseau et Systémes) rebaptisé
ARP (Architecture, Réseaux et systémes, Parallélisme) et d’'une ASP du MESR sur la
programmation data-paralléle.

e Mes recherches sur 1'utilisation des grilles de calcul s’inscrivent dans le cadre du projet
TAG [1] mis en place dans l’équipe ICPS du laboratoire LSIIT. J’ai participé au lan-
cement de ce projet. Stéphane Genaud est le coordinateur de ce projet qui est devenu
officiellement un projet de 'ACI (Action Concertée Incitative du Ministére de la re-
cherche) GRID (Globalisation des Ressources Informatiques et des Données). Ce projet
est un projet pluridisciplinaire qui regroupe actuellement une équipe constituée de 2 in-
génieurs, 2 doctorants, 2 maitres de conférences, 2 professeurs et 1 chargé de recherches
CNRS. Les laboratoires participants sont le LSIIT, 'TRMA, 'TPGS et I'ICS, tous ces
laboratoires étant localisés a Strasbourg. Le projet TAG a pour objectif de proposer des
techniques et outils permettant d’améliorer les performances des applications paralléles
sur les grilles de calcul. Le projet repose sur l'idée de définir des transformations de
code et de mesurer leur impact sur les performances. L’approche utilisée pour définir ces
transformations est de considérer des applications réelles (dans différentes disciplines :
en géophysique, physique des plasmas et chimie) et des codes MPI réels congus pour
des machines paralléles, et de valider ces transformations sur une grille test réaliste. J’ai
proposé le code VADOR comme objet d’étude car il décrit un volume de calcul considé-
rable et est un bon candidat pour la grille de calcul.

e Mes travaux sur 'implantation des méthodes numériques ont été effectués en collabo-
ration avec Eric Sonnendriicker, Professeur 4 I'ULP, membre de 'IRMA (Institut de
Recherche Mathématique Avancé, UMR 7501 ULP-CNRS) et Francis Filbet, chargé de
recherche CNRS, tous deux mathématiciens appliqués. Ces travaux sont poursuivis dans
le cadre du projet INRIA CALVI [2]. J’ai participé au lancement de ce projet dans le-
quel je suis fortement impliqué et dont le responsable est Eric Sonnendriicker. Ce projet
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vise & faire interagir des mathématiciens appliqués et des informaticiens spécialistes de
la visualisation et du calcul paralléle autour du théme de la simulation numérique de
systémes physiques complexes et qui évoluent au cours du temps (ex. I’évolution d’un
plasma dans un tokamak). Ces systémes sont modélisés par des équations & dérivées
partielles. Les systémes physiques considérés ont en commun la trés grande quantité de
calculs nécessaire 4 leur simulation compte tenu : de la présence d’échelles multiples, du
trés grand nombre de points du maillage qui sont & traiter afin d’obtenir une précision
acceptable, et du grand nombre de dimensions de ’espace considéré pour des résultats
réalistes. Il est bien siir nécessaire de recourir au parallélisme et & des environnements
d’exécution de grande échelle pour obtenir la meilleure efficacité et faire face & 1’enri-
chissement des modéles pour inclure des effets toujours plus réalistes. Nous envisageons
I'utilisation de grilles de calcul pour répondre aux besoins en puissance de calcul.



Annexe 2

Activités d’encadrement

A ce jour, mes activités d’encadrement consistent en :

e lencadrement de 4 stages de TER (Travail d’Etude et de Recherche) en Maitrise :
— 3, en 2000-2001 dont 1 sur un théme autour de la théorie PEI :
«résolution de contraintes de placement de données
sur une grille de processeurs virtuels».
— 1, cette année, sur le theme
«modéle de performance des versions paralléles du code VADOR>.

e ’encadrement de 2 stages de DESS en collaboration avec le CEA en 1994-1995 sur le
théme programmation paralléle de problémes industriels en utilisant PEI. Ce travail a
montré 'intérét pratique de PEI pour développer du code pour matrices creuses, il a été
poursuivi et a mené & 2 publications dont 1 en revue internationale.

e l’encadrement de 4 stages de DEA :
— 1, en 1995-1996, sur le théme
«étude comparative de PEI et CRYSTALSY.
— 1 (stagiaire Philippe Gerner), en 1996-1997, sur le théme
«sémantique opérationnelle des énoncés en PEI».
— 1 (stagiaire Arnaud Giersch), en 1999-2000, sur le théme
«preuve de programmes data-parallélesy.
— 1, en 2001-2002, sur le théme
«automatisation des régles de transformations en BMF (Bird-Merteens Formalism)».

e le co-encadrement de la theése de Stéphane Genaud soutenue le 9 janvier 1997 sur le
théme «transformations de programmes PEI et application au parallélisme de données».

e le co-encadrement au début de la thése d’Arnaud Giersch (actuellement en 3éme année
de thése) sur le théme de 1’adaptation de codes MPI 4 la grille de calcul. Ces recherches

s’'inscrivent dans le cadre du projet TAG.
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e l’encadrement de la thése de Philippe Gerner soutenue le 20 décembre 2002 sur le

théme spécification de la coopération entre programmeur et compilateur. Ph. Gerner
a étudié les rapports entre la sémantique opérationnelle «officielle» des programmes et
leur exécution une fois compilés. Dans sa thése, il considére en particulier le cas de
langages paralléles & directives comme HPF oul les directives ne sont pas nécessairement
respectées par le compilateur. Il propose un cadre pour exprimer et étudier le contrat né-
cessaire entre programmeur et compilateur. Ce cadre est appliqué & 1’étude des langages
data-paralléles. Une partie de ces travaux concernant la sémantique opérationnelle des
langages data-paralléles ont donné lieu & une publication en conférence internationale.

Philippe Gerner poursuit ses travaux de recherche dans le cadre d’un post-doctorat au
laboratoire VERIMAG & Grenoble sous la direction de J. Sifakis toujours sur le théme
de la prise en compte et la représentation de contraintes d’exécution, mais dans le cadre
des systémes embarqués temps réel encore plus riche en contraintes.



Annexe 3
Liste des publications d’Eric Violard

Revues internationales

E. Violard et G.-R. Perrin. «PEI : a language and its refinement calculus for parallel program-
ming» Parallel Computing, Vol.18, 1167-1184 (1992)

E. Violard. «A mathematical theory and its environment for parallel programming» Parallel
Processing Letters, Vol.4(3), 313-328 (1994)

E. Violard et G.-R. Perrin. «PEI : a simple unifying model to design parallel programs» Future
Generation Computer Systems, 10 (1994) 269-272, Elsevier.

E. Violard. «A Semantic Framework To Adress Data Locality in Data Parallel Languages» a
paraitre dans Parallel Computing (2003).

Conférences internationales (avec comité de lecture et actes publiés)
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rallel Architecture and Languages Europe, PARLE’93, Munich, LNCS 694 (1993), 500-516,
Springler-Verlag.
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In proceedings of the 50th meeting (1997), 25 pages, Chapman & Hall Eds.

E. Violard. «Typechecking of PEI expressionsy, Third International EURO-PAR Conference,
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Ph. Gerner et E. Violard. «A Theoretical Framework of Data Parallelism and its Operational
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(2000), 668-677, Springer-Verlag.

E. Violard et F. Filbet. «Parallelization of a Vlasov Solver by Communication Overlapping»
The 2002 International Conference on Parallel and Distributed Processing Techniques and Ap-
plications, PDPTA’2002, Las Vegas, 1049-1055, CSREA Press.

E. Violard, R. David et B. Schwarz. «Experiments in Load Balancing Across the Grid via
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Séminaires internationaux sur invitation

Dagstuhl Seminar 9325 on Parallelization Techniques for Uniform Algorithms (Juin 1993)

Dagstuhl Seminar 9708 on Theory and Practice of Higher-Order Parallel Programming (Fé-
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Communications
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Communication & RenPar’5, Brest (Mai 1993)
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grammingy» Communication au Workshop Franco-Britanique «Data-parallel Languages and
Compilers", Lille (Avril 1994)

Rédaction de projets de recherche

Participation a la rédaction du projet TAG [1] (actuellement projet ACI GRID).
Participation & la rédaction du projet CALVI [2] (actuellement projet INRIA).
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Présentations, posters, séminaires

Présentation de ’environnement PEI & Sophia-Antipolis, Nice (1993)

Forum des Recherches en Informatique - Ecole Polytechnique, Paris (02-03 Juin 1993)
Poster 4 HPCN, Amstersdam (1993)

Présentation du projet TAG & EDF Recherche & Développement & Clamart

dans le cadre du séminaire «Calcul Scientifique Distribué et Grid computing»

(20 mars 2002).

Séminaire interne LSIIT-ICPS «Parallélisation d'un code en Physique des Plasmas»
(8 mars 2002).

Rapports de recherche

E. Violard. «Data-parallelism vs Functional Programming : the contribution of PEI» (1995)
E. Violard. «Asynchronous Parallel Programming in PEI» (1997)

E. Violard. «A formal semantics of data parallel languages» (1998)

G.-R. Perrin et E. Violard. «Data Parallelism and PEI Equational Language» (1999)

E. Violard. «What Really is Data Parallel Programming ?» (2000)

Réalisations

Environnement PEI pour la conception de programmes paralléles mis en oeuvre en CENTAUR
(CENTAUR est un produit INRIA).

Un controleur de type pour le langage PEI, mis en oeuvre en CAML en utilisant la librarie
OMEGA (de William Pugh).

Développement de plusieurs versions du code VADOR en C++/MPI pour machines paralléles
et pour grilles de calcul.
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Publications sur PEI

(par d’autres auteurs)

Revue internationale

F. Voisin et G.-R. Perrin. «Sparse Computation with PEI», International Journal of Founda-
tions of Computer Science, Vol 10(4), 425-444 (1999).

Revues nationales

S. Genaud. «Transformations d’énoncés PEI», Technique et Science Informatiques, Vol. 15(5),
601-618, Hermes (1996).

Théses ou chapitres de thése

S. Genaud. «Transformations de programmes PEI : applications au parallélisme de données»,
Université Louis Pasteur (Janvier 1997).

F. Voisin. «Etude d’outils logiciels pour la parallélisation et la transformation de programmes
dans les applications de calculs numériquesy, Université Louis Pasteur (Juillet 2001).

Ph. Gerner. «La sémantique des directives au compilateur : application au parallélisme de
donnéesy, Université Louis Pasteur (Décembre 2002).
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Communications

S. Genaud. «Techniques de transformations d’énoncés PEI pour la production de programmes
data-parallélesy, Communication & RenPar’7, Mons (Belgique) (Mai 1995).

F. Voisin. «Minimisation des communications dans une résolution distribuée des équations de
Navier-Stokesy, Comunication & Renpar’10, Strasbourg (Juin 1998).

F. Voisin et G.-R. Perrin. «Sparse Computation with PEI» , 6th International Workshop on
Solving Irregularly Structured Problems in Parallel, San Juan (Puerto Rico), In proceedings
of IPPS/SPDP’99 Workshops, LNCS 1586 (1999), Springer-Verlag.

Réalisations

Visual PEI - Un outil de conception graphique d’énoncés PEI
réalisé par Stéphane Genaud.

Un translateur PEI - HPF écrit en CAML
réalisé par Stéphane Genaud.

Un interpréteur PEI écrit en CAML
réalisé par Philippe Gerner.
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Curriculum-Vitae

Eric Violard
né le 23 décembre 1966 & Montbéliard (Doubs)
Vit maritalement, 1 enfant

Formation :

1984 Baccalauréat série C & Montbéliard (25).

1984 DEUG option Maths, Université de Franche-Comté, Besancon.

1987 Licence Informatique, mention bien, Université de Franche-Comté, Besancon.

1988 Maitrise d’informatique mention bien, Université de Franche-Comté, Besancon.

1988 DEA Automatique, Informatique et Robotique mention bien, Université de Franche-
Comté, Besancon.

1992 Theése de Doctorat en informatique mention trés honorable soutenue le 26 octobre
1992, Université de Franche-Comté, Besancon. Titre : Une théorie unificatrice pour la
construction de programmes paralléle par des techniques de transformations. Directeur de
thése : Guy-René Perrin. Jury : Patrice Quinton (président), Pascal Gribomont (rappor-
teur), Daniel Le Métayer (rapporteur), Didier Arqués (examinateur), Guy-René Perrin
(examinateur).

Prises de fonction :
— Maitre de conférences a 1’Université de Franche-Comté (Besangon) de 1993 a 1995.
— Maitre de conférences a I"Université Louis Pasteur (Strasbourg) depuis 1995.

Responsabilités collectives :
— Responsable de la filiere IUP 1ére année depuis 2001.
— Membre titulaire de la CS section 27 de 'ULP depuis 2002. Membre suppléant en 2001.
— Membre titulaire de la CS section 27 de I’Ecole des Mines de Nancy (INPL) depuis 2000.

Activités d’enseignement :
— Cours de programmation paralléle en DESS informatique.
— Cours de dérivation de programmes paralléles en DEA informatique.
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— Cours de spécifications formelles et preuves de programmes en Maitrise d’informatique.
— Cours, TD et TP d’algorithmique et programmation impérative en ITUP GMI 1ére année.
— TD de programmation fonctionnelle en Licence et Maitrise d’informatique.
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Publications jointes

Dans cette annexe se trouvent quelques publications résumant mes travaux :

E. Violard. «A Semantic Framework to Adress Data Locality in Data Parallel Languagesy a
paraitre dans Parallel Computing (2003).

E. Violard. «A mathematical theory and its environment for parallel programming» Parallel
Processing Letters, Vol.4(3), 313-328 (1994)

E. Violard, S. Genaud et G.-R. Perrin. «Refinement of data parallel programms in PEI»,
Working Conference on Algorithmic Languages and Calculi, IFIP-WG 2.1, Le Bischenberg
(France), In proceedings of the 50th meeting (1997), 25 pages, Chapman & Hall Eds.

E. Violard et F. Filbet. «Parallelization of a Vlasov Solver by Communication Overlapping»
The 2002 International Conference on Parallel and Distributed Processing Techniques and Ap-
plications, PDPTA’2002, Las Vegas, 1049-1055, CSREA Press.

E. Violard, R. David et B. Schwarz. «Experiments in Load Balancing Across the Grid via
a Code Transformation». Fourth Austrian-Hungarian Workshop on Distributed and Parallel
Systems, DAPSYS’2002, Linz, 66-73, Kluwer.

Ph. Gerner et E. Violard. «A Theoretical Framework of Data Parallelism and its Operational

Semanticsy, 6th International EURO-PAR Conference, EUROPAR’2000, Munich, LNCS 1900
(2000), 668677, Springer-Verlag.
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