
Département d’Informatique

MASTER IFA 1ère année

Vendredi 9 janvier 2009

Corrigé du contrôle terminal de Compilation

I Analyse syntaxique

1. table d’analyse LR(1) : (les règles sont numérotées selon l’ordre d’apparition dans l’énoncé
de la grammaire)

État = * id $ L R S
0 s4 s5 2 3 1
1 acc
2 s6 r5
3 r2
4 s4 s5 8 7
5 r4 r4
6 s11 s12 10 9
7 r3 r3
8 r5 r5
9 r1
10 r5
11 s11 s12 10 13
12 r4
13 r3

2. table d’analyse LaLR(1) :

État = * id $ L R S
0 s4 s5 2 3 1
1 acc
2 s6 r5
3 r2
4 s4 s5 8 7
5 r4 r4
6 s4 s5 8 9
7 r3 r3
8 r5 r5
9 r1

3. La grammaire est LR(1) et LaLR(1) puisque les tables correspondantes contiennent au plus
un élément dans chaque case.

II Traduction dirigée par la syntaxe

1 Affectations simultanées

1. Grammaire :
A −→ (L) := (R)

L −→ id | L , id

R −→ E | R , E

2

2. Schéma de traduction :

A −→ (L) := (R)

{ pour i=1 à longueur(R.temp) faire
gencode(ieme(i,R.temp) := ième(i,R.ptr)) ;

pour i=1 à longueur(R.temp) faire
gencode(ieme(i,L.ptr := ième(i,R.temp)) ; }

L −→ id

{ L.ptr = creerliste(id.ptr) }

L −→ L(1) , id

{ L.ptr = ajoute(L(1).ptr,id.ptr) }
R −→ E

{ R.temp = creeliste(newtemp()) ;
R.ptr = creeliste(E.ptr) }

R −→ R(1) , E

{ R.temp = ajoute(R(1).temp,newtemp()) ;

R.ptr = ajoute(R(1).ptr,E.ptr) }

Fonctions utilisées : - longueur([e1,e2,...,en]) = n
- ième([e1,e2,...,en],i) = ei
- ajoute([e1,e2,...,en],e) = [e1,e2,...,en,e]
- creeliste(e) = [e]

2 Commandes gardées de Djikstra

S −→ (M C)*

{ complete(C.next, M.quad) ;
S.next = creeliste() }

S −→ begin L end

{ S.next = L.next }
S −→ A

{ S.next = creeliste() }

L −→ L(1) ; M S

{ complete(L(1).next, M.quad) ;
L.next = S.next }

L −→ S
{ L.next = S.next }

C −→ B -> M S
{ complete(B.true, M.quad) ;

complete(B.false, nextquad+1) ;
complete(S.next, nextquad) ;
C.next = nextquad ;
gencode(goto _) }

C −→ C(1) [] B -> M S
{ complete(B.true, M.quad) ;

complete(B.false, nextquad+1) ;
complete(S.next, nextquad) ;

C.next = concat(C(1).next,nextquad) ;
gencode(goto _) }

M −→ ǫ

{ M.quad = nextquad }

3

III Optimisations

1. code intermédiaire :
T1 := y
T2 := x
x := T1
y := T2

code optimisé :
T2 := x
x := y
y := T2

2. code intermédiaire :
T1 := z
T2 := x
T3 := y
x := T1
y := T2
z := T3

code optimisé :
T2 := x
T3 := y
x := z
y := T2
z := T3

3. code intermédiaire :
T1 := y
T2 := z
T3 := x
x := T1
y := T2
z := T3

code optimisé :
T3 := x
x := y
y := z
z := T3

4

