
Automatic Prefetching with Binary Code Rewriting
in Object-based DSMs

Jean Christophe Beyler,1 Michael Klemm,2

Michael Philippsen,2 and Philippe Clauss1

1 Université Louis-Pasteur de Strasbourg 2 University of Erlangen-Nuremberg
ICPS-LSIIT Computer Science Department 2

Pôle API, Bd Sébastian Brant Martensstr. 3
67400 Illkirch 91058 Erlangen

France Germany
{beyler, clauss}@icps.u-strasbg.fr {klemm, philippsen}@cs.fau.de

Abstract. Dynamic optimizers modify the binary code of programs at
runtime by profiling and optimizing certain aspects of the execution. We
present a completely software-based framework that dynamically opti-
mizes programs for object-based Distributed Shared Memory (DSM) sys-
tems. In DSM systems, reducing the number of messages between nodes
is crucial. Prefetching transfers data in advance from the storage node to
the local node so that communication is minimized. Our framework uses
a profiler and a dynamic binary rewriter that monitors the access behav-
ior of the application and places prefetches where they are beneficial to
speed up the application. In addition, we adapt the number of prefetches
per request to best fit the application’s behavior. Evaluation shows that
the performance of our system is better than manual prefetching. The
number of messages sent decreases by up to 89%. Performance gains of
up to 73% can be observed on the benchmarks.

1 Introduction

The high-performance computing landscape is mainly shaped by clusters, which
make up 81% of the world’s fastest systems [1]. Clusters typically exhibit a dis-
tributed memory architecture, i. e., each node of the cluster has its own private
memory that is not directly accessible by the other nodes. Software-based Dis-
tributed Shared Memory (S-DSM) systems strive to simulate a globally shared
address space, alleviating the need to place explicit calls to a message pass-
ing library that handles communication (e. g. MPI [6]). Instead, a middleware
layer accesses remote memory and ensures memory coherence. Examples of such
S-DSM systems are JIAJIA [11], Delphi [14] or Jackal [16].

In addition to registers, L1/L2/L3 caches, and the nodes’ local memory,
the DSM adds another level (the remote memory) to the memory hierarchy.
Remote memory accesses are much more expensive than local accesses, as the
high-latency interconnection network has to be crossed. Hence, it is desirable
to direct the application’s memory accesses to the local memory as often as
possible. For applications that do not offer such locality properties, performance
drastically drops due to the high-latency remote accesses.

1

Prefetching provides a solution to this performance problem by requesting
data from the storage location before it is actually needed. Most current hard-
ware platforms (e. g. Intel Itanium, IBM POWER) offer prefetch instructions in
their instruction sets. Such instructions cause the CPU’s prefetching unit to asyn-
chronously load data from main memory into the CPU. Executing the prefetch
at the right time, data arrives just-in-time when needed by the program. Based
on heuristics, compilers statically add prefetches to the code during compilation.

This paper presents a dynamic software system that automatically profiles
and optimizes programs at runtime, outperforming manually optimized prefetch-
ing. During compilation, the Jackal DSM compiler [16] adds to the executable
monitoring code that profiles memory accesses. A profiler classifies the memory
accesses and enables prefetches if beneficial. Dynamic code rewriting keeps the
the system’s overhead low by interchanging the monitor code and the prefetch-
ing code in the executable. If prefetches are unprofitable, calls are completely
removed, avoiding a slow-down of the application. However, if profitable, the
code rewriter replaces the monitoring calls with prefetcher calls. The Esodyp+
prefetcher [10] is used as an example for our generic optimizer. It predicts mem-
ory access patterns and prefetches future memory accesses. While Esodyp+
requires manual placement of calls to its runtime functions, our system auto-
matically inserts these calls if beneficial. Additional performance is gained by
adapting the prefetching distance to the application’s memory access behavior.
For details on the implementation of the Esodyp+ predictor, refer to [10].

2 Implementation of Object-based DSMs

To understand the requirements for automatic prefetchers in an object-based
S-DSM environment, this section first describes the basic DSM features and
then explores the design space of DSM implementations.

Instead of using cache lines or memory pages for distributing data, object-
based DSMs use objects for data transfers and for memory consistency. The DSM
system checks for each object access if the accessed object is already available
locally. If not, the DSM system requests the object from its storage location. The
programming language’s memory consistency model has to be respected, which
involves invalidating or updating replicas of objects on other nodes. Testing for
object availability can either be implemented in software or hardware.

In general, S-DSMs cannot use specialized hardware for the object access
checks, as it should support commodity clusters. Some S-DSMs exploit the Mem-
ory Management Unit (MMU) of processors for access checks. The Operating
System (OS) can use MMUs to protect memory pages against reading or writing.
If a restricted page is accessed, the OS triggers the S-DSM and notifies it about
the faulty access. After the S-DSM has loaded the page, the access is re-issued
and the application continues. Delphi [14] and others [3, 8, 11] use this approach
to implement a page-based DSM. However, memory protection can only be ap-
plied at the page level and, thus, renders this option unusable for object-based
S-DSMs, as it causes false faults on local objects that reside on the same page.

2

1 leaq -1308622848(% r8), %rdi
2 shrq $5, %rdi
3 movq %rdi ,%rcx
4 movq %fs:(0), %rdx
5 movq thread_local_dsm_read_bitmap@TPOFF (%rdx), %rdx
6 bt %rcx , (%rdx)
7 jc .L28961
8 movq %r8 ,%rdi
9 call shm_start_read_object@PLT

10 movq %rax ,%r8
11 .L28961:

Fig. 1. Example of an access check in assembly code, without prefetching.

Hence, for object-based S-DSMs, the access check has to be implemented in
software, which is easy to do, because it often requires only a single bit test.
Jackal [16], for example, relies on the compiler to prefix each object access with
an access check that tests the object’s availability on the local node.

We use the Jackal object-based DSM for our prototype implementation. Fig. 1
shows an assembler fragment of a read test as it is emitted by the Jackal compiler
(prefetching is switched off). Lines 1–5 compute the object’s read bit depending
on the relative offset of the object in the heap; lines 6–11 test the bit and call the
DSM runtime if the object is not locally available. As the runtime requests the
object data from the object’s home node and waits until data has arrived, each
failing object access has a runtime penalty of roughly two times the latency of a
network packet plus additional costs for object serialization and deserialization.

3 Memory Access Profiling and Dynamic Code Rewriting

Using a profiler, our automatic optimizer first needs to classify the access checks
into categories to decide which require prefetching. Only a low overhead is ac-
ceptable for profiling, as the overhead must be compensated to reduce runtime.
In addition, the optimizer adapts the number of prefetches per request message
(the so-called prefetching distance) to optimally exploit prefetches depending on
the application’s access behavior. This section first explores the design space of
such a dynamic optimizer and the profiler. It then covers the state machine of
the profiler and discusses heuristics to adapt the prefetching distance.

3.1 Design Considerations

The main part of our dynamic optimizer is a low-overhead profiler. As prefetching
is useless for access checks rarely executed or exhibiting random behavior, a
classification by the profiler is crucial for the efficiency of the optimizer. There
are several ways such a profiler can be implemented in the dynamic optimizer.

First, the monitoring code and the prefetching code could be accompanied by
conditional guards. Implemented by a switch statement that decides between
monitoring, prefetching, and no prefetching, the guards cause performance losses
that result from additional instructions, increase loads on the memory bus, and

3

Fig. 2. State evolution of the access checks.

put a higher pressure on the branch prediction unit of the CPU. Hence, this
option is expected to have a high overhead that is difficult to compensate.

With binary rewriting, the compiler prefixes access checks with monitoring
code. After profiling, the code is either replaced with prefetching code or removed
if prefetching is not beneficial. To remove code, the rewriter has to replace the
code with nops, as the subsequent binary code cannot replace the to-be-removed
code fragment (moving code implies checking and modifying most branch in-
structions). However, nops pollute the instruction cache and pipelines and, thus,
cause undesired overheads. In addition, the profiler receives the program’s local
and remote accesses, as the code is placed in front of the access checks. Hence,
the profile represents the general access behavior. Remote and local accesses
are interleaved and distinguishing access checks that need prefetching and those
that do not is impossible. An additional runtime overhead is caused, as the
instrumentation code is always executed, even if only local objects are accessed.

Replacing the original access check code, however, provides low overhead, as
only single calls must be changed to implement a state transition. It is possible to
dynamically redirect the program’s control flow without performance losses that
would result from using switch statements or nops. Furthermore, as a second
advantage, access checks can be de-instrumented and replaced by their regular
DSM counterparts. Thus, these access checks are executed without any overhead.

Directly integrating the monitor calls and prefetcher calls in access checks
has two consequences. First, applications only incur an overhead in case of failing
access checks. Therefore, if an application only accesses its local memory, there is
no overhead since the prefetcher is never called. Second, as the predictor is only
triggered during a failing access check, the created model only represents the
application’s behavior for accesses into the remote memory instead of modeling
the memory references of every accessed object. Hence, the model only predicts
the next remote accesses. If the model contained local references as well, they
need to be filtered out, which causes an additional overhead when prefetching.

3.2 Profiling State Machine

We distinguish four states that characterize the behavior of an access check.
Depending on the state, it may be beneficial to use prefetching (often executed,
non-random access behavior) or not. Fig. 2 shows the state machine.

For access checks, the Monitoring state is the initial state. If an access check
is often executed, it is sent to the Model Creation state. This is implemented with
a counter per access check and a threshold t. In the Model Creation state, a

4

mathematical model (e. g. a Markov model) determines the access behavior of an
access check. If its behavior is unpredictable (i. e., random), prefetchers cannot
correctly predict the next accesses and the access check state is changed to Wait-
ing. If predictable, the access check proceeds to the Prefetching state and the
prefetcher is enabled for this access check. Waiting represents the state in which
the original access check code of the DSM is executed. To detect changes in the
application’s behavior so that the access check might later benefit from prefetch-
ing, the access check is periodically re-instrumented by the optimizer. To reduce
the overhead and to avoid state thrashing, the time between re-instrumentations
is increased at each cycle. Prefetching is enabled in the fourth state of an access
check. As the access behavior of the access check is predictable, the prefetcher
can predict the next accesses with high accuracy and it emits prefetch commands
to prematurely request the data needed. If the prefetcher’s prediction accuracy
drops, the access check falls back to the Monitoring state for reassessment.

In the Model Creation state and the Prefetching state we use the Markov
model predictor Esodyp+ [10], which uses past events to predict future events.
It relies on the observation that events of the past are likely to repeat. Other
Markov model based predictors could have been used as well [2, 9].

The profiler needs to efficiently identify access checks, as it profiles them
separately. Since Jackal uses function calls for access checks (see Fig. 1), state
transitions rewrite these function calls. We use the call’s return address as a key
into a hash table storing the profiler’s data. In other DSM systems, the compiler
could mark the access checks with identifying labels. During the Initial state,
the hash table contains the hit counter for access checks. In the Model Creation
state, the table stores a buffer collecting the requested memory addresses. Once
the buffer overflows, the optimizer selects the most frequent access check, as it is
likely to benefit most from prefetching. The addresses are then used to construct
a model for which the expected prediction accuracy is calculated. With a high
accuracy, the access check enters the Prefetching state. If too low, the access
check enters the Waiting state. In this state, the access check is assigned an age
that determines when it will fall back to the Monitoring state again.

3.3 Dynamic Adaption of the Prefetching Distance

To reduce the number of messages of an execution, the predictor must emit bulk
prefetches that ask for several data items. The number of elements prefetched si-
multaneously is called the prefetching distance N . With an increasing prefetching
distance the number of messages may be reduced, but the prediction accuracy
generally drops and, thus, DSM protocol activity grows due to unused objects or
false sharing. Although N = 10 turned out in our measurements to be a reason-
able trade-off, a static N is not the best prefetching distance for all applications.

Hence, an automatic adjustment of the prefetching distance N is desired. The
local node sends out prefetches to remote nodes and counts how many objects
are sent back as an answer (mispredictions are possible, causing the remote node
to ignore the request). N is doubled if the number of received objects is higher
than 75% of the number of requests. It is decreased by two thirds if less than 25%

5

Fig. 3. Effect of the state-transition threshold t on runtime and message count savings.

of the objects arrive. Otherwise, the distance remains unchanged. Over time, N
stabilizes for applications with stable memory access behavior.

We tested different techniques that generally converged to the same values
but not at the same speed. We also have tested the effect of N if adjusted for
each individual access check. The proposed solution with N adjusted globally is
the one that gave the best results on average for all benchmarks. For brevity, we
only present the best solution, but omit benchmarks.

4 Performance

To evaluate the performance of our automatic optimizer, we measured the per-
formance of four benchmarks. They represent classes of applications with dif-
ferent DSM communication patterns. The selection represents applications that
use general-purpose DSMs. We evaluate the benchmarks on a cluster of Xeon
3.2 GHz nodes (2 GB memory, Linux kernel 2.6.20.14, Gigabit Ethernet).

The state-transition threshold t represents the number of executions of an
access check required before a decision is made. Fig. 3 shows the effect of t on
runtimes and message counts, printing relative savings compared to the unin-
strumented 4-node execution. For brevity, we only show results for Blur2D. Small
thresholds increase message counts and runtimes, as access checks pollute the
prediction model when sent to Prefetching too early; many transitions also cause
runtime penalties. Increasing t, speed-ups are observed as only beneficial access
checks are prefetched. Further increases of the threshold deteriorate performance,
as the profiler promotes fewer access checks to Prefetching. We use t = 100 for
the evaluation, since it is the best solution.

Table 1 shows how many access checks are in the codes. Only a few of
them actually reach the Prefetching state, i. e., the profiling code is replaced
by prefetches. In two benchmarks, no access checks were sent to Waiting, be-
cause they were not executed often enough.

Table 2 lists runtimes and message counts. It shows unmodified benchmarks
(w/o), with manually added prefetches, with dynamic optimization (DyCo), and
with automatic distance adjustment (DynN). The runtimes of DynN are best
in most cases. Otherwise they closely match the results of manual prefetching.

SOR iteratively solves discrete Laplace equations on a 2D grid by averaging
four neighboring points for a grid point’s new value (5,000×5,000 points, 50 iter-
ations). The threads receive contiguous partitions of grid rows and communicate

6

Table 1. Number of access checks in various states.

No. of access No. of access No. of access
Total number of checks that once checks that once checks that once

access checks have reached the have reached the have reached the
Model Creation state Prefetching state Waiting state

SOR 10 4 4 0
Water 75 32 27 6
Blur2D 9 3 2 1
Ray 6 2 2 0

Table 2. Runtimes and message counts for the benchmarks (best in bold).

Runtime (in seconds) Messages (in thousands)
Nodes w/o manual DyCo Dyn. N w/o manual DyCo Dyn. N

SOR

2 24.3 24.2 25.5 23.3 27.6 6.0 10.4 5.1
4 14.4 13.5 13.9 13.8 83.6 17.7 31.6 14.8
6 13.1 12.1 11.6 11.4 139.7 30.2 53.3 26.0
8 12.0 11.0 11.1 10.2 195.8 42.3 74.2 34.4

Water

2 122.6 110.4 99.8 90.4 1696.1 1024.7 1079.4 852.4
4 73.0 66.82 63.0 56.9 2909.3 1748.7 1774.1 1354.1
6 71.7 56.76 55.8 48.7 3639.9 2194.8 2147.9 1567.8
8 66.6 53.47 53.2 46.0 4248.0 2543.3 2530.7 1804.5

Blur2D

2 10.3 3.5 4.6 4.7 224.2 33.5 129.2 129.2
4 6.9 4.1 4.6 2.5 386.3 100.3 134.9 46.2
6 8.3 5.3 4.1 2.4 484.0 166.1 146.5 51.5
8 10.1 8.3 4.8 2.7 583.2 233.2 166.0 60.6

Ray

2 44.8 45.3 44.7 44.9 9.1 5.9 4.7 3.1
4 22.7 22.6 22.7 22.4 27.3 17.1 14.1 9.3
6 15.6 15.4 15.6 15.8 45.6 28.6 23.6 15.6
8 13.1 13.0 12.4 12.9 64.3 46.3 33.5 22.1

reading boundary points of another thread, forming a well-formed, regular data
access pattern. Although compilers for array-based languages could statically
add prefetches to the compiled code, it is instructive to investigate SOR.

SOR’s threads access a small working-set; only four of ten access checks
qualify for prefetching. Our automatic system roughly saves 82% of the messages
for eight nodes and is slightly better than manual prefetching. Because of the
small working-set, a prefetcher cannot improve performance much. Comparing to
DyCo, the dynamic adaptation of the prefetching distance reduces the message
count by 50%. Although all three setups reduce the message count by at least
62% compared to the setup without optimization, runtime is not significantly
improved. SOR’s computation clearly dominates the average message latency,
so that saving messages does not actually pay off in a runtime reduction.

Water is part of the SPLASH benchmark suite [17] and was ported to an
object-oriented Java version. Water performs an n-body, n-square simulation of
1,728 water molecules, which are represented by objects that hold the velocity
and acceleration vectors. The work is divided by assigning molecules to different

7

threads. Threads repeatedly simulate a single time step of ten (by computing new
velocity and acceleration vectors for their molecules) and publish new molecule
states by means of a simultaneous update at a collective synchronization point.

Our system selects 32 out of 75 access checks for model creation; only 27
are suited for prefetching. The additional messages (manual vs. DyCo) remain
mostly unnoticed in the runtimes. When our optimizer automatically selects the
prefetching distance (N = 70 instead of N = 10), the in-transit messages are
reduced by roughly 57% on eight nodes, giving a speed-up of almost 31%.

Blur2D softens a picture of 400×400 points over 20 iterations. The picture
is stored as a 2D array of doubles describing the pixels’ gray values. Similar to
an SOR stencil, a pixel’s value is averaged over the old value and the values of
eight neighboring pixels. Prefetching is difficult because the work distribution
does not fit the DSM’s data distribution scheme. While Jackal favors row-wise
distribution schemes, Blur2D uses a column-wise work distribution. Hence, false
sharing and irregular access patterns make Blur2D highly network-bound.

This is directly reflected by Blur2D’s poor speed-up behavior. The runtime
increases if the node count exceeds four nodes. Blur2D has a very small working-
set that makes monitoring access checks difficult. Hence, the manual placement
wins for small node counts both in terms of message counts and runtime. For
larger node counts the optimizer beats the manual setup. With increasing node
counts, Blur2D causes more and more false sharing and the optimizer gathers
more data about failing access checks. Thus, it is able to turn off the ones that
are too costly. This results in a runtime gain of roughly 73% on eight nodes.

Ray is a simple raytracing application that renders a 3D scene with 2,000
randomly placed spheres. The image is stored as a 2D array of 500×500 RGB
values and is divided into distinct areas that are assigned to the threads. As
raytracing is embarrassingly parallel, no communication occurs except for the
initial distribution of the scenery and the final composition of the finished image.
Because of the absence of communication, prefetching should not help much.

Ray’s working-set is large enough to allow for message savings. The optimizer
identifies two access checks, enabling prefetching for them. This results in a
reduction of messages of roughly 65% (48% without adaptation of the prefetching
distance). However, this reduction again does not gain any speed-up, as the
computational effort completely hides the savings of a few thousands of messages.

5 Related Work

Let us focus dynamic optimizers and prefetching solutions. For brevity, we skip
related work in the field of DSM implementation techniques.

Lu et al. [12, 13] implemented a dynamic optimizer that inserts prefetching
instructions into the instruction stream. Using Itanium performance counters,
the system works on available hot trace information and detects delinquent loads
in loop nests. Our implementation detects hot traces automatically as it starts
from monitoring access checks and only replaces access checks that are likely to
benefit from prefetching; explicit hot trace information is not needed.

8

Dynamic frameworks such as DynamoRIO [4] interpret the application code
at runtime, search for hot traces, and optimize the application. UMI [18] uses
DynamoRIO to implement a lightweight system that profiles and optimizes pro-
grams. DynamoRIO selects program traces and UMI gathers memory reference
profiles. The profiles are used to simulate the cache behavior and to selects
delinquent loads. UMI also integrates a simple stride prefetching solution into
the framework. Since these optimization systems are trace-based systems, an
optimization leads to modifications of a set of basic blocks. In contrast, our
system handles each access check independently. This enables our system to
de-instrument individual access checks that are not profitable and to avoid per-
formance losses due to monitoring single, unprofitable access checks.

Chilimbi/Hirzel’s framework [5] samples the program’s execution to decide
what portions of the code should be optimized. Using the Vulcan [15] editor for
IA-32 binaries, it creates two versions of each function. While both contain the
original code, one also contains instrumented code and the other is augmented
with instrumentation checks. A state machine decides the state of functions at
runtime. To lower the overhead, states are globally frozen. We also use state
freezing to avoid thrashing of access checks by keeping states fixed over time.
We employ state machines to switch between different types of access checks,
but we consider each access check independently. This gives finer control over
which access checks undergo state transitions and which states are kept fixed.

Finally, being a well-known technique, we only cover a short selection of
prefetching techniques for S-DSMs. Adaptive++ [3] and JIAJIA [11] use lists of
past memory accesses to predict, while Delphi [14] uses as a prediction table a
hash over the last three accesses. An inspector/executor pattern determines fu-
ture accesses in an OpenMP DSM [8]. These predictors prefetch asynchronously,
which gives not enough overlap to hide the high network latencies in object-
based DSMs. Stride predictors [7] do not fit either, as they cannot handle the
complex memory access patterns of object-based DSMs (which also is a prob-
lem for page-based predictors). In contrast to our system, the predictors cannot
temporarily be turned off if the prediction accuracy drops.

6 Conclusions

We have shown that it is worthwhile to integrate an automatic dynamic optimizer
into object-based S-DSMs. With binary rewriting techniques, superfluous or un-
profitable monitoring or prefetching calls can be removed. Measurements show
that, on average, performance improves by 18% when binary rewriting based on
a state machine is used to automatically place the prefetching access checks; the
message count drops by 52%. The dynamic adjustment of the prefetching dis-
tance saves 26% of the runtime and decreases the number of messages by 70%. In
total, we have achieved runtime improvements of up to 73% on the benchmarks.

We are currently working on an automatic system that automates every
prefetching aspect, from the choice of the predictor to the values of the prefetch
distance and the threshold value, thus becoming totally transparent to the user.

9

References

1. TOP500 List. http://www.top500.org/, November 2007.
2. R. Begleiter, R. El-Yaniv, and G. Yona. On Prediction Using Variable Order

Markov Models. Journal of Artificial Intelligence Research, 22:385–421, 2004.
3. R. Bianchini, R. Pinto, and C.L. Amorim. Data Prefetching for Software DSMs.

In Intl. Conf. on Supercomputing, pages 385–392, Melbourne, Australia, July 1998.
4. D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastructure for Adaptive

Dynamic Optimization. In Intl. Symp. on Code Generation and Optimization,
pages 265–275, San Francisco, CA, March 2003.

5. T.M. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Prefetching for General-
Purpose Programs. In ACM SIGPLAN 2002 Conf. on Programming Language
Design and Implementation, pages 199–209, Berlin, Germany, June 2002.

6. MPI Forum. MPI-2: Extensions to the Message-Passing Interface. Technical report,
MPI Forum, July 1997.

7. J.W.C. Fu, J.H. Patel, and B.L. Janssens. Stride Directed Prefetching in Scalar
Processors. SIGMICRO Newsletter, 23(1-2):102–110, 1992.

8. W.-C. Jeun, Y.-S. Kee, and S. Ha. Improving Performance of OpenMP for SMP
Clusters through Overlapping Page Migrations. In Intl. Workshop on OpenMP,
Reims, France, June 2006. CD-ROM.

9. D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. IEEE Trans-
actions on Computers, 48(2):121–133, 1999.

10. M. Klemm, J.C. Beyler, R.T. Lampert, M. Philippsen, and P. Clauss. Esodyp+:
Prefetching in the Jackal Software DSM. In Proc. of Euro-Par 2007, pages 563–573,
Rennes, France, August 2007.

11. H. Liu and W. Hu. A Comparison of Two Strategies of Dynamic Data Prefetching
in Software DSM. In 15th Intl. Parallel & Distributed Processing Symp., pages
62–67, San Francisco, CA, April 2001.

12. J. Lu, H. Chen, R. Fu, W. Hsu, B. Othmer, P. Yew, and D. Chen. The Performance
of Runtime Data Cache Prefetching in a Dynamic Optimization System. In 36th
Ann. IEEE/ACM Intl. Symp. on Microarchitecture, pages 180–190, San Diego, CA,
December 2003.

13. J. Lu, H. Chen, P.-C. Yew, and W.-C. Hsu. Design and Implementation of a
Lightweight Dynamic Optimization System. Journal of Instruction-Level Paral-
lelism, 6, April 2004. Online.

14. E. Speight and M. Burtscher. Delphi: Prediction-Based Page Prefetching to Im-
prove the Performance of Shared Virtual Memory Systems. In Intl. Conf. on
Parallel and Distributed Processing Techniques and Applications, pages 49–55, Las
Vegas, NV, June 2002.

15. A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary Transformation in a Dis-
tributed Environment. Technical Report MSR-TR-2001-50, Microsoft Research,
April 2001.

16. R. Veldema, R.F.H. Hofman, R.A.F. Bhoedjang, and H.E. Bal. Runtime Optimiza-
tions for a Java DSM Implementation. In ACM-ISCOPE Conf. on Java Grande,
pages 153–162, Palo Alto, CA, June 2001.

17. S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2 Pro-
grams: Characterization and Methodological Considerations. In 22nd Intl. Symp.
on Computer Architecture, pages 24–36, St. Margherita Ligure, Italy, June 1995.

18. Q. Zhao, R. Rabbah, S. Amarasinghe, L. Rudolph, and W.-F. Wong. Ubiquitous
Memory Introspection. In Intl. Symp. on Code Generation and Optimization, pages
299–311, San Jose, CA, March 2007.

10

