International Journal of Parallel Programming, Vol. ??, N& ??? 2006 ©2006)

Semi-Automatic Composition of Loop
Transformations for Deep Parallelism and
Memory Hierarchies

Sylvain Girbal,! Nicolas Vasilache,! Cédric Bastoul,! Albert Cohen,?
David Parello,? Marc Sigler,1 Olivier Temam?

1 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud 11 UnivessiErance.
Email:first.last@nria.fr

2 DALI Group, LP2A, University of Perpignan, France.

Email: davi d. parel | o@ini v- perp. fr

Modern compilers are responsible for translating the id&aloperational seman-
tics of the source program into a form that makes efficientaisehighly complex
heterogeneous machine. Since optimization problems aeciased with huge
and unstructured search spaces, this combinational tasloity achieved in gen-
eral, resulting in weak scalability and disappointing austd performance. We
address this challenge by working on the program representéself, using a
semi-automatic optimization approach to demonstrate dhatent compilers of-
fen suffer from unnecessary constraints and intricacies ¢an be avoided in a
semantically richer transformation framework.

Technically, the purpose of this paper is threefold: (1)Hove that syntactic code
representations close to the operational semantics le@gidgphase ordering and
cumbersome expression of architecture-aware loop tremstfions, (2) to illus-
trate how complex transformation sequences may be needachteve signifi-
cant performance benefits, (3) to facilitate the automat@ech for program trans-
formation sequences, improving on classical polyhednategentations to better
support operation research strategies in a simpler, strettsearch space. The
proposed framework relies on a unified polyhedral repreg@nmt of loops and
statements, using normalization rules to allow flexible expressive transforma-
tion sequencing. This representation allows to extenddhkability of polyhedral
dependence analysis, and to delay the (automatic) legdlégks until the end of
a transformation sequence. Our work leverages on algoiGthcivances in poly-
hedral code generation and has been implemented in a mararch compiler.

KEY WORDS: Compiler optimization, semi-automatic program transfation,
polyhedral model, automatic parallelization.

2 Girbal, Vasilache et al.

1. INTRODUCTION

Static compiler optimizations can hardly cope with the cempun-time
behavior and hardware components interplay of modern psazearchi-
tectures. Multiple architectural phenomena occur andaatesimultane-
ously; this requires the optimizer to combine multiple peog transforma-
tions. Recently, processor architectures have beenrgiiftiwards coarser
grain on-chip parallelism, to avoid diminishing returnduther extending
instruction-level parallelism; and this shift has not cedttihe steady com-
plexity increase of memory hierarchies and on-chip comication net-
works. Both incremental and breakthrough architecturegdesfor scal-
able on-chip parallelism build on the low delay and verykhibgndwidth of
on-chip communications and synchronizations. Currergae propos-
als describe a wealth of fine-grain (instruction-level, tees), mid-grain
(transactions, micro-threads, frames in grid processams) coarse-grain
(threads, distributed agents) paradigms; these come witihaany memory
models or communication primitives, including inter-dkrisregisters, lo-
cal memories (scratch-pads), multi-streaming DMA, nelgaon a chip,
and of course, non-uniform (coherent) cache hierarchies.

Although the associated programming models are often @iplpar-
allel (threads, agents, data parallelism, vectors), thewys rely on ad-
vanced compiler technology to relieve the programmer frameduling
and mapping the application, understanding the memory hasadkecom-
munication details. Even provided with enough static infation or anno-
tations (OpenMP directives, pointer aliasing, separategi@tion assump-
tions), compilers have a hard time exploring the huge andructsired
search space associated with these lower level mapping @timdization
challenges. Indeed, the task of the compiler can hardly loaded op-
timization anymore, in the traditional meaning of loweritigge abstrac-
tion penalty of a higher-level language. Together with thetime system
(whether implemented in software or hardware), the comjsleespon-
sible for most of the combinatorial code generation deosito map the
simplified and idealistic operational semantics of the seyrogram to the
highly complex and heterogeneous machine.

Unfortunately, optimizing compilers have traditionallgdm limited to
systematic and tedious tasks that are either not accessitiie program-
mer (e.g., instruction selection, register allocationjrat the programmer
in a high level language does not want to deal with (e.g.,teogropaga-
tion, partial redundancy elimination, dead-code elimomat control-flow
optimizations). Generating efficient code for deep palialie and deep
memory hierarchies with complex and dynamic hardware corapts is
a completely different story: the compiler (and run-timetsyn) now has

Semi-Automatic Composition of Loop Transformations 3

to take the burden of much smarter tasks, that only expedrammers
would be able to carry. In a sense, it is not clear that theseapimiza-
tion and parallelization tasks should be called “commlatianymore. It-
erative optimization and machine learning compilatibr) are part of the
answer to these challenges, building on artificial inteltige and opera-
tion research know-how to assist compiler heuristic. tteesoptimization
generalizes profile-directed approach to integrate peefdgedback from
the runtime behavior of the program into optimization aitfons, while
machine learning approaches provide an automated frarketwobuild
new optimizers from empirical optimization data. Howevesnsidering
the ability to perform complex transformations, or compg@quences of
transformation$*), iterative optimization and machine learning compila-
tion will fare no better than existing compilers on top of winthey are cur-
rently implemented. In addition, any operation researgo@ihm will be
highly sensitive to the structure of the search space itistsing. E.g., ge-
netic algorithms are known to cope with unstructured sphaeat a higher
cost and lower scalability towards larger problems, as epddo mathe-
matical programming (e.g., semi-definite or linear progmang) which
benefit from strong regularity and algebraic propertieshef optimization
search space. Unfortunately, current compilers offer § werstructured
optimization search space. First of all, by imposing phaskerng con-
straints®), they lack the ability to perform long sequences of tramsfor
tions. In addition, compilers embed a large collection ofhad program
transformations, but they asyntactictransformations, i.e., control struc-
tures are regenerated after each program transformationetimes mak-
ing it harder to apply the next transformations, especiaien the appli-
cation of program transformations relies on pattern-matghechniques.

Clearly, there is a need for a compiler infrastructure thancapply
complex and possibly long compositions of optimizing orapelizing
transformations, in a rich, structured search space.

We claim that existing compilers are ill-equipped to addridese chal-
lenges, because of improper program representations aagpiopriate
conditioning of the search space structure.

This article does (unfortunately) not present any origilalp trans-
formation or clever combination of static and dynamic asmlylnstead,
it precisely addresses the lack of algebraic structureaditional loop-
nest optimizers, as a small step towards bridging the gapdast peak
and sustained performance in future and emerging on-chiipraces-
sors. We present a framework to facilitate the searchcénpositionsof
program transformations; this framework relies on a unifegatesentation
of loops and statements, and has been introducéd. ifhis framework

4 Girbal, Vasilache et al.

improves on classical polyhedral representatién®® to support a large
array of useful and efficient program transformations (Idagion, tiling,
array forward substitution, statement reordering, soféng@pelining, array
padding, etc.), as well ax)mpositionmfthese transformations. Compared
to the attempts at expressing a large array of program wamsttions as
matrix operations within the polyhedral mod&f*# 1) the distinctive as-
set of our representation lies in the simplicity of the fohsm to compose
non-unimodular transformations across long, flexible es. Existing
formalisms have been designed for black-box optimizaffoh 12 and

pPIylng a classical loop transformation within them — aenmsed in

requires a syntactic form of the program to anchor the fans

mation to existing statements. Up to now, the easy compaosdf trans-
formations was restricted to unimodular transformaﬂ@hswnh some ex-
tensions to singular transformatiofis)

The key to our approach is to clearly separate the four diffetypes
of actions performed by program transformations: modificanf the it-
eration domain (loop bounds and strides), modification efd¢bhedule of
each individual statement, modification of the access fanst(array sub-
scripts), and modification of the data layout (array det¢lans). This sep-
aration makes it possible to provide a matrix representdio each kind
of action, enabling the easy and independent compositidheodlifferent
“actions” induced by program transformations, and as altesnabling
the composition of transformations themselves. Currgmtesentations of
program transformations do not clearly separate theseypes of actions;
as a result, the implementation of certain compositionsrog@mm trans-
formations can be complicated or even impossible. For itgtacurrent
implementations of loop fusion must include loop bounds amedy sub-
script modifications even though they are only byproducta e€hedule-
oriented program transformation; after applying loop dusitarget loops
are often peeled, increasing code size and making furthemzations
more complex. Within our representation, loop fusion isyoekpressed
as a schedule transformation, and the modifications of gration do-
main and access functions are implicitly handled, so thatctbde com-
plexity is exactly the same before and after fusion. Siryijan iteration
domain-oriented transformation like unrolling should éaw impact on
the schedule or data layout representations; or a datatlaymunted trans-
formation like padding should have no impact on the scheduiteration
domain representations. Eventually, since all programsfamations cor-
respond to a set of matrix operations within our represemasearching
for compositions of transformations is often (though netals) equiva-
lent to testing different values of the matrices parametersher facilitat-

Semi-Automatic Composition of Loop Transformations 5

ing the search for compositions. Besides, with this frant&wid should
also be possible to find and evaluate new sequences of traratfons for
which no static model has yet been developed (e.g., arrayafor substi-
tution versus loop fusion as a temporal locality optimiaaji

This article is organized as follows. Section 2 illustrateth a sim-
ple example the limitations of syntactic representatiomstfansforma-
tion composition, it presents our polyhedral represeataéind how it can
circumvent these limitations. Revisiting classical logmsformations for
automatic parallelization and locality enhancement, i8e@ generalizes
their definitions in our framework, extending their appbdiy scope, ab-
stracting away most syntactic limitations to transformatcomposition,
and facilitating the search for compositions of transfatiores. Using sev-
eral SPEC benchmarks, Section 4 shows that complex corigrssian be
necessary to reach high performance and how such compasdie eas-
ily implemented using our polyhedral representation. i8ach describes
the implementation of our representation, of the assatiansformation
tool, and of the code generation technique (in Open64/GRLC Section 6
validates these tools through the evaluation of a dedidatedformation
sequence for one benchmark. Section 7 presents relateg work

2. ANEW POLYHEDRAL PROGRAM REPRESENTATION

The purpose of Section 2.1 is to illustrate the limitatiorigte imple-
mentation of program transformations in current compjlassng a simple
example. Section 2.2 is a gentle introduction to polyhedyptesentations
and transformations. In Section 2.3, we present our pokdgiedpresenta-
tion, in Section 2.4 how it alleviates syntactic limitatioand Section 2.5
presents normalization rules for the representation.

Generally speaking, the main asset of our polyhedral reptason is
that it is semantics-based, abstracting away many impleten artifacts
of syntax-based representations, and allowing the defimiaf most loop
transformations without reference to any syntactic fornthef program.

2.1. Limitations of Syntactic Transformations

In current compilers, after applying a program transfoiorato a code
section, a new version of the code section is generatedy asistract syn-
tax trees, three address code, SSA graphs, etc. We use itheytetactic
(or syntax-based) to refer to such transformation modetse Nhat this
behavior is also shared by all previous matrix- or polyhdstaed frame-
works.

6 Girbal, Vasilache et al.

2.1.1. Code size and complexity

As a result, after multiple transformations the code sizé epmplexity
can dramatically increase.

for (i=0; i<M i++)

S| Zi] =0
for (j=0; j<N j++)
|Z[I] = (ATLT + BIIILIT) * X(T;

r (k=0; k<P; k++)
for(l =0; 1<Q [|++)
S ‘ | 20K 4= ALK Y YT

Fig. 1. Introductory example

Syntactic (#linegPolyhedral (#values$)

Original code 11 78

Outer loop fusion 4 (x4.0) 78 (x1.0)
Inner loop fusior 132 (x120) 78 (x1.0)
Fission 123 (x11.2) 78 (x1.0)
Strip-Mine 350 (x318) 122 (x15)
Strip-Mine 407 (x37.0) 182 (x2.3)
Interchange 455 (x414) 182 (x2.3)

Fig. 2. Code size versus representation size

Originall KAP|Double FusiopFull Sequence
[Time (s] 26.0012.69 19.00 7.38

Fig. 3. Execution time

Consider the simple synthetic example of Figure 1, where firof-
itable to merge loopg k (the new loop is hameid, and then loops,| (the
new loop is name(), to reduce the locality distance of arrAyand then to
tile loopsi and j to exploit the spatial and TLB locality of arreéB; which
is accessed column-wise. In order to perform all these toamsitions, the
following actions are necessary: merge loopk, then merge loopg, I,
then split statemer#[i] =0 outside tha loop to enable tiling, then strip-
mine loopj, then strip-mine loop and then interchangeandjj (the loop
generated from the strip-mining ¢j.

Because theandj loops have different bounds, the merging and strip-
mining steps will progressively multiply the number of loogsts versions,
each with a different guard. After all these transformadiothe program
contains multiple instances of the code section shown inrEig. The
number of program statements after each step is indicatEgyime 2.

Semi-Automatic Composition of Loop Transformations 7

if ((M>= P+1) & (N == Q && (P >= 63))
for (ii=0; ii<P-63; ii+=64)
for (jj=0; jj<Q jj+=64)

for (i=ii; i<ii+B3; i++)
for (j=jj; j<min(Qjj+63); j++)
Zi] += (AITT + B * X1
Z[i] += AT * YT
for (ii=P-62; ii<P; ii+=64)
for (jj=0; jj<Q jj+=64)
for (i=ii; i<P; i++)
for (j=jj; j<min(Qjj+63); j++)
Z[i] += (LT + BT * Xl

Z[i] += ALET[T * YD

for (i=P+1; i<min(ii+63,M; i++)

for (j=jj; j<mn(Njj+63); j++)

| Z[i] += (ALTTLG] + BLjILE]) * X(j1;
for (ii=P+l; ii<M ii+=64)

for (jj=0; jj<N jj+=64)

for (i=ii; i<mn(ii+63,M; i++)

for (j=jj; j<min(Njj+63); j++)

| Z[i] += (ALTTG] + BLjILET) * X 1s

Fig. 4. Versioning after outer loop fusion

In our framework, the final generated code will be similarynli-
cated, but this complexity does not show until code germra&nd thus,
it does not hamper program transformations. The polyhqmiadram rep-
resentation consists in a fixed number of matrices assdciaith each
statement, and neither its complexity nor its size vary ificantly, inde-
pendently of the number and nature of program transformati®he num-
ber of statements remains the same (until the code is gedgranly some
matrix dimensions may increase slightly, see Figure 2. Nuéthe more
complex the code, the higher the difference: for instantéhe second
loop is triangular, i.e.(j =0; j<i; j++), the final number of source lines
of the syntactic version is 34153, while the size of the petifal represen-
tation is unchanged (same number of statements and matnendions).

2.1.2. Breaking patterns

Compilers look for transformation opportunities usingtpat-matching
rules. This approach is fairly fragile, especially in thentaxt of complex
compositions, because previous transformations may liezgkt patterns
for further ones. Interestingly, this weakness is confirrbgdhe historical

8 Girbal, Vasilache et al.

evolution of the SPEC CPU benchmarks themselves, part\lryenil’rby the
need to avoid pattern-matching attacks from commercialpitems 7).

To illustrate this point we have attempted to perform thevaljmogram
transformations targeting the Alpha 21364 EV7, using KAR/@.1) (),
one of the best production preprocessors available (sdarseurce loop
and array transformations). Figure 3 shows the performatéeved by
KAP and by the main steps of the above sequence of transfiomsg(fu-
sion of the outer and inner loops, then tiling) on the syrithetample® We
found that KAP could perform almost none of the above trams&bions
because pattern-matching rules were often too limited nElieugh we
did not have access to the KAP source code, we have revegsseered
these limitations by modifying the example source codel WP could
perform the appropriate transformation; KAP limitatiome deduced from
the required simplifications. In Section 2.4, we will shownhithese limi-
tations are overridden by the polyhedral representation.

The first step in the transformation sequence is the fusicextgrnal
loopsi, k: we found that KAP only attempts to merge perfectly nested
loops with matching bounds (i.e., apparently due to additiconditions
of KAP’s fusion pattern); after changing the loop bounds gplitting out
Z[i]=0, KAP could merge loops, k. In the polyhedral representation,
fusion is only impeded by semantic limitations, such as ddpaces; non-
matching bounds or non-perfectly nested loops are not am,iss more
exactly, these artificial issues simply disappear, seei@e2t4. After en-
abling the fusion of external loopsk, the second step is the fusion of in-
ternal loopsj, I. Merging loopsj, | changes the ordering of assignments to
Z[i]. KAP refuses to perform this modification (apparently aeotton-
dition of KAP’s fusion pattern); after renamirgyin the second loop and
later accumulating on both arrays, KAP could perform thesddusion.

Overall, we found out that KAP was unable to perform these two
transformations, mostly because of pattern-matchingtditioins that do
not exist in the polyhedral representation. We performediteshal experi-
ments on other modern loop restructuring compilers, sudhtakElectron
(IA64), Open64/ORC (IA64) and EKOPath (IA32, AMD64, EM64&hd
we found similar pattern-matching limitations.

2.1.3. Flexible and complex transformation composition

Compilers come with an ordered set of phases, each phasmgusome
dedicated optimizations and analyses. This phase ordé&d@sga major
drawback: it prevents transformations from being appliedesal times,

3 Parameter$/, N, P andQ are the bounds of the 400MB matricéandB.

Semi-Automatic Composition of Loop Transformations 9

after some otheenablingtransformation has modified the applicability or
adequation of further optimizations. Moreover, optimgkave rather rigid
optimization strategies that hamper the exploration oepually useful
transformations.

Consider again the example of Figure 1. As explained abov® K
was unable to split statementi] by itself, even though the last step in
our optimization sequence — tilingafter fusions — cannot be performed
without that preliminary action. KAP’s documentati€h® shows that fis-
sion and fusion are performed together (and possibly repbgtat a given
step in KAP’s optimization sequence. So while fission cowddalpoten-
tially enabling transformation for fusion (though it faillen our case for
the reasons outlined in the previous paragraph), it is netified as an
enabling transformation for tiling in KAP’s strategy, artdhiould always
fail to split to enable tiling.

Moreover, even after splitting[i] and merging loops, k and j, I,
KAP proved unable to tile loop; it is probably focusing on scalar pro-
motion and performs unroll-and-jam instead, yielding akpgarformance
of 12.35s. However, in our transformation sequence, execution tiee d
creases from 260s to 19.00s with fusion and fission, while it further de-
creases t0.88s thanks to tiling. Notice that both fusion and tiling are im-
portant performance-wise.

So KAP suffers from atoo rigid optimization strategy, anid #gxample
outlines that, in order to reach high performance, a flexddmposition
of program transformations is a key element. In Section 4ywieshow
that, for one loop nest, up to 23 program transformationsnacessary to
outperform peak SPEC performance.

2.1.4. Limitations of phase ordering

To better understand the interplay of loop peeling, loopdiusscalar
promotion and dead-code elimination, let us now considestmpler ex-
ample of Figure 5. The three loops can be fused to improve deah|o-
cality, and assuming is a local array not used outside the code fragment,
it can be replaced with a scalar Figure 6 shows the corresponding opti-
mized code. Both figures also show a graphical representafithe dif-
ferent domains, schedules and access functions for the stegements,

B andC of the original and optimized versions. Notice the middiedan
Figure 5 has a reduced domain. These optimizations maimlgistin loop
fusions which only have an impact on scheduling, the lasttien (99) in

the domain oA was removed (dead code) and the access function to array
A disappeared (scalar promotion).

10 Girbal, Vasilache et al.

B[1] =0

for (i=0; i<100; i++)
A | AT =

for (i=0; i<99; i++)
B | Bli+l] = Ali] ...
for (i=0; i<100; i++)

C | dil =8i] ...
Domains - Schedules Access functions
.. S ! /'//I
© H———aa%o—;» g W—»———W::(C) - ”
(B) —ooeo—---00— O o,—\04—>———+04—>::(8) S
(A) 00— ---000> Tl ooo——--—000o>--(A) £
orN ool ©® --- ~— - Q@
~ 0.©- i &)

Fig. 5. Original program and graphical view of its polyhddepresentation

B[1] = 0
for (i=0; i<99; i++)

A a=...;
B Bli+l] = a ...;
C JC[i]z ;

100] = B[100]
Domains - Schedules Access functions
. c | . .
(C) —o00—----00-0— GE’ " (©)

(B) —e00—---006—> O m\ ’ \m\ ®
T = A \ v [}
A) —ooo—---900— O v T (A =
orN ool © --- ~- - 2
~N®©: i)

Fig. 6. Target optimized program and graphical view

Again, we tried to optimize this example using KAP, assunihreg A
is a global array, effectively restricting ourselves tolpeeand fusion.

The reduced domain & has no impact on our framework, which suc-
ceeds in fusing the three loops and yields the code in FigurHoWwever,
to fuse those loops, syntactic transformation framewogkgiire some it-
erations of the first and third loop to be peeled and inteddavetween
the loops. Traditional compilers are able to peel the |lasation and fuse
the first two loops, as shown in Figure 8. Now, because theatepafor
loop fusion only matches consecutive loops, peeling prsviersion with
the third loop, as shown in Figure 8; we checked that neitherled de-

Semi-Automatic Composition of Loop Transformations 11

B[1] =0
for (i=0; i<99; i++)
Al = ...

Bli+1] = Ali] ...;
qi] = 8] ...;
A[100] = ...;

C[100] = B[100] ...;

B[1] = 0
for (i=0; i<99; i++)
ANi] = ...,
Bli+l] = Ali] ...;
A[100] = ...:
for (i=0; i<100; i++)
| dil =Bl

Fig. 7. Fusion of the three loops

B[1] =0
for (i=0; i<99; i++)
a=...;
Ai] = a
Bli+l] =a ...;
or (i=0; i<100; i++)
| dil =B

Fig. 8. Peeling prevents fusion

B[1] = 0
for (i=0; i<99; i++)
a=...;
Bli+l] =a ...;
or (i=0; i<100; i++)
| dil =B

Fig.9. Dead code before fusion

Fig. 10. Fusion before dead code

B[1] =0

for (i=0; i<100; i++)
A AT = AL

for (i=0; i<99; i++)
B | Bli+l] = Ali] ...

for (i=0; i<100; i++)
C | il =AiJ+B[I] ...}

B[1] =0

for (i=0; i<99; i++)

ALl = AL .

Bli+l] = Ali] ...;

qil =gl ...;

A[100] = A[1] ...;

C[100] = A[100] +B[100] ...;

Fig.11. Advanced example

B[1] =0

for (i=0; i<99; i++)
Al = AL .
Bli+1] = Ali] ...;

AL100] = A[1] ...;

for (i=0; i<100; i++)
| dil = ALiT+BLI] ...

Fig. 13. Spurious dependences

Fig. 12. Fusion of the three loops

pendence test nor an erroneous evaluation in the cost moalelhave
caused the problem. Within our transformation framewarks ipossible

to fuse loops with different domains without prior peelimgrisformations

because hoisting of control structures is delayed untieagpeheration.

12 Girbal, Vasilache et al.

Pattern matching is not the only limitation to transforroaticompo-
sition. Consider the example of Figure 11 which adds tworegfees to
the original programA[1] in statemenA andAli] in statemenC. These
references do not compromise the ability to fuse the threpdpas shown
in Figure 12. Optimizers based on more advanced rewritirgesys(®)
and most non-syntactic representatiéts2% 3 will still peel an iteration
of the first and last loops. However, peeling the last iteranf the first
loop introduces two dependences that prevent fusion witthird loop:
backward motion — flow dependence Anl] — and forward motion —
anti-dependence offi] — of the peeled iteration is now illegal. KAP
yields the partially fused code in Figure 13, whereas oun&aork may
still fuse the three loops as in Figure 12.

To address the composition issue, compilers come with agreddset
of phases. This approach is legitimate but prevents tramsfiions to be
applied several times, e.g., after some other transfoamdias modified
the appropriateness of further optimizations. We consadgin the exam-
ple of Figure 5, and we now assurés a local array only used to compute
B. KAP applies dead-code elimination before fusion: it tt@gliminateA,
but since it is used to compuR it fails. Then the compiler fuses the two
loops, and scalar promotion repladewith a scalar, as shown in Figure 9.
It is now obvious that array can be eliminated but dead-code elimination
will not be run again. Conversely, if we delayed dead-codwiehtion un-
til after loop fusion (and peeling), we would still not fusethvthe third
loop but we would eliminaté as well as the peeled iteration, as shown in
Figure 10. Clearly, both phase orderings lead to sub-optiesalts. How-
ever, if we compile the code from Figure 9 with KAP — as if we kb
the KAP sequence of transformations twice — arkagnd the peeled iter-
ation are eliminated, allowing the compiler to fuse the ¢hmops, eventu-
ally reaching the target optimized program of Figure 6.

These simple examples illustrate the artificial restricsido transfor-
mation composition and the consequences on permuting eatieg trans-
formations in current syntactic compileBeyond parameter tuning, exist-
ing compilation infrastructures may not be very appropeidbr iterative
compilation By design, it is hard to modify either phase ordering or se-
lection, and it is even harder to get any transformationgpatto match a
significant part of the code after a long sequence of tramsdtions.

2.2. Introduction to the Polyhedral Model

This section is a quick overview of the polyhedral framewarklso presents
notations used throughout the paper. A more formal presentaf the
model may be found iff* 8. Polyhedral compilation usually distinguishes

Semi-Automatic Composition of Loop Transformations 13

three steps: one first has to represent an input program ifoth@alism,
then apply a transformation to this representation, andyiganerate the
target (syntactic) code.

Consider the polynomial multiplication kernel in Figure(a It only
deals with control aspects of the program, and we refer taviloecompu-
tational statements (array assignments) through theiesggandS,. To
bypass the limitations of syntactic representations, tighedral model
is closer to the execution itself by consideristgatement instance$-or
each statement we consider titeration domain where every statement
instance belongs. The domains are described using affirstraonts that
can be extracted from the program control. For example,tdration do-
main of statemerfs;, called DSk, is the set of value§) such that 2<i <n
as shown in Figure 14(b); a matrix representation is usedgeesent such
constraints: in our exampl@)S.. is characterized by

[3578(p) =0

ism1
for (i=2; i<=2*n; i++) i }|§21i>=2, instance of S
i1 =0 i Sno_ u]
. Jozr[l(?:z. Oi’ <=n i) nr- ;Sg’lgz_n o instance of S
for (j=1, j<=n; j+4+) 2
S | | Adi4] = X0 YT 1r-
. 1 2n 2n i
(a) Syntactic form (b) Polyhedral domainsX 2)

Fig. 14. A polynomial multiplication kernel and its polyhatldomains

In this framework, a transformation is a setaifine scheduling func-
tions Each statement has its own scheduling function which maphk e
run-time statement instance to a logical execution dateufrpolynomial
multiplication example, an optimizer may notice a localisoblem and
discover a good data reuse potential over afrayen sugges® (i) = (i)

ande® < ; >: (i+j+1) to achieve better locality (see e.g2 for a method

to compute such functions). The intuition behind such fiansation is to
execute consecutively the instancesSphaving the same+ j value (thus
accessing the same array elemenf)ofind to ensure that the initialization
of each element is executed By just before the first instance & re-
ferring this element. In the polyhedral model, a transfaiorais applied
following the template formula in Figure 15(&F), wherei is the iteration

14 Girbal, Vasilache et al.

vector, iy, is the vector of constant parameters, amlthetime-vectori.e.

the vector of the scheduling dimensions. The next sectidhdetail the

nature of these vectors and the structure of@and/A matrices. Notice in
this formula, equality constraints capture schedule moatithons, and in-
equality constraints capture iteration domain modifiaagiol he resulting
polyhedra for our example are shown in Figure 15(b), withatditional
dimensiont.

BN D

—t o i

(o17) | b |50

1

ANl
olo

120 2n
(a) Transformation template formula (b) Transformed pelyta

Fig. 15. Transformation template and its application

Once transformations have been applied in the polyhedraemone
needs to (re)generate the target code. The best syntax drestruction
scheme consists in a recursive application of domain ptiojes and sepa-
rations®322), The final code is deduced from the set of constraints describ
ing the polyhedra attached to each node in the tree. In oungbea the first
step is a projection onto the first dimensigiollowed by a separation into
disjoint polyhedra, as shown on the top of Figure 16(a). Thigds the
outer loops of the target code (the loops with iteratam Figure 16(b)).
The same process is applied onto the first two dimensionsofnatf Fig-
ure 16(a)) to build the second loop level and so on. The findé ¢® shown
in Figure 16(b) (the reader may care to verify that this solumaximally
exploits temporal reuse of arrd). Note that the separation step for two
polyhedra needs three operatiod%t, — D52, D&, — DSk and D2,N DL,
thus forn statements the worst-case complexity'ls 3

Itis interesting to note that the target code, althoughiobthafter only
one transformation step, is quite different from the oragiloop nest. In-
deed, multiple classical loop transformations are be recgg0o simulate
this one-step optimization (among them, software pipetjrand skewing).
The intuition is that arbitrarily complex compositions déssical transfor-

Semi-Automatic Composition of Loop Transformations 15

Slalone SlandS2 S2alol

=2, ,1>=3 t<=2n s t=2n+1
, S1S2 S1S2/ / S2
/

Projection S1.
onto t /

Projection
onto (t,i)

(a) Projections an separations

t=2; // Such equality is a loop running once

i =2;

S || Zi] =0

for (t=3; t<=2*n; t++)

for (i=max(1,t-n-1); i<=min(t-2,n); i++)
‘ jo=t-i-1;

S || i) = X1 7 Y]
i=t;
S iZ[i]=0;
t=2*n+1,
i=n;
j=n;
S ‘ | ZLi4] 4= X YT

(b) Target code
Fig. 16. Target code generation

mations can be captured in one single transformation stepeopolyhe-
dral model. This was best illustrated by affine schedulfhdf) and par-
titioning) algorithms. Yet, because black-box, model-based optimize
fail on modern processors, we propose to step back a littlarid con-
sider again the benefits of composing classical loop transétions, but
using a polyhedral representatiomdeed, up to now, polyhedral optimiza-
tion frameworks have only considered the isolated apptinatf one arbi-
trarily complex affine transformation. The main originglaf our work is

16 Girbal, Vasilache et al.

to address theomposition of program transformations on the polyhedral
representation itselfThe next section presents the main ideas allowing to
define compositions of affine transformations without imediate code
generation steps.

2.3. Isolating Transformations Effects

Let us now explain how our framework can separately and iaddently
represent the iteration domain, the statements scheddeddta layout
and the access functions of array references. At the sane tim will
outline why this representation has several benefits fointipdementation
of program transformations: (1) it is generic and can seoveniplement
a large array of program transformations, (2) it isolates ot effects
of program transformations, (3) it allows generalized i@rs of classi-
cal loop transformations to be defined without referencentp syntactic
code, (4) this enables transparent composition of progranstormations
because applying program transformations has no effedterepresenta-
tion complexity that makes it less generic or harder to malaig, (5) and
this eventually adds structure (commutativity, confluetioearity) to the
optimization search space.

2.3.1. Principles

The scope of our representation is a sequence of loop netcaristant
strides and affine bounds. It includes non-rectangulardpopn-perfectly
nested loops, and conditionals with boolean expressioaffin€ inequali-
ties. Loop nests fulfilling these hypotheses are amenalalegpresentation
in the polyhedral modéf. We callStatic Control Par(SCoP) anymax-
imal syntactic program segmesttisfying these constraint®). In this
paper, we only describe analyses and transformations ezhfivithin a
given SCoP; the reader interested in techniques to extemd® $Gverage
(by preliminary transformations) or in partial solutions bow to remove
this scoping limitation ggrocedure abstractions, irreguontrol structures,
etc.) should refer t&5-35),

All variables that are invariant within a SCoP are caligdbal param-
eters e.g.,M, N, P andQ are the global parameters of the introductory
example (see Figure 1). For each statement within a SCofefiesen-
tation separates four attributes, characterized by paranmeatrices: the
iteration domain, the schedule, the data layout and thesadtmctions.
Even though transformations can still be applied to loop$utbrproce-
dures, they are individually applied to each statement.

Semi-Automatic Composition of Loop Transformations 17

2.3.2. lteration domains

Strip-mining and loop unrolling only modify the iteratiorohain — the
number of loops or the loop bounds — but they do not affect tideroin
which statement instances are executed (the program defhedthe way
arrays are accessed (the memory access functions). Tteitoéeffect of
such transformations, we define a representation of thatioer domain.

Although the introductory example contains 4 loopsj, k andl, $
andS; have a different two-dimensional iteration domain. Let assider
the iteration domain of stateme$; it is defined as follows{(i,) | 0 <
ILi<M—-10<j,j <N-1}. The iteration domain matrix has one column
for each iterator and each global parameter, here respéctivji andM,

N, P, Q. Therefore, the actual matrix representation of staterSgrgt

i] MNPQ 1

1 0]0000| 070<]
-1 0/1000|-1|i<M-1
0 1/0000| 0|0<]j
0-1/0100|-1] j<N-1

Example: implementing strip-miningAll program transformations that
only modify the iteration domain can now be expressed as afsele-
mentary operations on matrices (adding/removing rowsfools, and/or
modifying the values of matrix parameters). For instaneeus strip-mine
loop j by a factorB (a statically known integer), and let us consider the
impact of this operation on the representation of the it@natlomain of
statement,.

Two loop modifications are performed: logjpis inserted before loop
j and has a stride oB. In our representation, loop can be described
by the following iteration domain inequalitie§: < j,j <jj +B— 1. For
the non-unit strideB of loop jj, we introducelocal variablesto keep a
linear representation of the iteration domain. For insgéarice strip-mined
iteration domain ofS; is {(i,jj,J) |0<j,] < N—-1jj <j,j<j+B-
1,jj modB=0,0<1i,i <M — 1}, and after introducing local variab]p,
such thatj = B x jj,, the iteration domain becomési,jj, j) | Jjj»,0 <
jaj < N_17JJ < J7J SJJ +B_17” = ijj270§ |7| < M_1}4 and its
matrix representation is the following (with= 64, and from left to right:
columnsi, jj, j, jj», M, N, P, Q and the affine component):

4 The equatiolfj = B x jj, is simply represented by two inequalitigs B x jj, andjj < B x jj,.

18 Girbal, Vasilache et al.

gl iz MNPQ 1
100 0|0000| 07 0<i
-10 0 0/1000| -1]i<M-1

0 0 1 0/0000| 0| 0<j

0 0-1 0/0100|-1| j<N-1

0-1 1 0/0000| Ofjj<ij

0 1-1 0|0000| 63| j<jj+63

0-1 0| 640000 O jj<64xjj,
| 0 1 0|-64|/0000| O] 64xjji,<]

Notations and formal definitionGiven a statemen® within a SCoP, let
ds be the depth of, i the vector of loop indices to whic8 belongs (the
dimension ofi is dg), i,, the vector ofdy, local variables added to linearize
constraints,,, the vector ofdg, global parameters, anti® the matrix of

n linear constraints/A® hasn rows andd®+ d? + d, + 1 columns). The
iteration domain oSis defined by

DS = {i | i, ASx [i,in,ig1]' > 0}.

2.3.3. Schedules

Feautrier®, Kelly and PugH!?, proposed an encoding that characterizes
the order of execution of each statement instance withie sedtions with
multiple and non-perfectly nested loop nests. We use aaimicoding for
SCoPs. The principle is to defindime stamgor each statement instance,
using the iteration vector of the surrounding loops, e.ggcter (i, j) for
statement; in the introductory example, and the static statement daler
accommodate loop levels with multiple statements. Thiestant order is
defined for each loop level and starts to 0, e.g., the rankabéstentS; is

1 at depth 1 (it belongs to loopwhich is the second statement at depth 1
in this SCoP), 0 at depth 2 (it is the first statement in IgppAnd for each
statement, the encoding defines a schedule m@tthat characterizes the
schedule. E.g., the instan¢e j) of statementS; is executed before the
instance(k, |) of statement&; if and only if

0% x [i,j,1]' <« 0% x [k,1,1]'

(the last component in the instance vectorj,1) — term 1 — is used
for the static statement ordering term). Mat@%? is shown in Figure 17,
where the first two columns corresponditg and the last column corre-
sponds to the static statement order. The row®%finterleave statement
order and iteration order so as to implement the lexicogaprder: the
first row corresponds to depth O, the second row to the itaradrder of

Semi-Automatic Composition of Loop Transformations 19

loop i, the third row to the static statement order within lIdoghe fourth
row to the iteration order of loop, and the fifth row to the static state-
ment order within loopj. Now, the matrix of statemer®= in Figure 17
corresponds to a different loop nest with different iterato

00| 0 00| 1 00| 0

10/ 0 101/ 0 010

02 —=|00]1 0% =000 %= (001

01|0 01|0 10/ 0

00| 0 00| 0 00| 0
0000
100/ 0
. |o00]1
% =1{010|0
0000
001(0
0000

Fig. 17. Schedule matrix examples

Still, thanks to the lexicographic order, the encoding pfes a global
ordering, and we can check th@® x [i, j, 1] < ©% x [k, I,1]; in that case,
the order is simply characterized by the static statemederaxt depth O.

Because the schedule relies on loop iterators, iterationaito mod-
ifications — such as introducing a new loop (e.g., strip-mihi— will
change the® matrix of all loop statements but not the schedule itself.
Moreover, adding/removing local variables has no impac®on

We will later see that this global ordering of all statemesmsbles the
transparent application of complex transformations lad@pl fusion.

Formal definition Let AS be the matrix operating on iteration vectods,
the depth of the statement afdthe static statement ordering vector. The
schedule matrix®® is defined by

ro --- 0 BS T
Ail"' Aids 0

0O --- 0 Bf

%= | AS; - Ajs | O
sy Agsgs | O

| 0 .- O 35_

20 Girbal, Vasilache et al.

Example: implementing loop interchange and tilirys for unimodular
transformations, applying a schedule-only loop transtdram like loop
interchange simply consists in swapping two rows of ma@jx.e., really
two rows of matrix A. Consider loopisand j the introductory example; the
new matrix forS, associated with the interchangeiaind j is called®%
in Figure 17.

Now, tiling is a combination of strip-mining and loop intéenge and
it involves both an iteration domain and a schedule transébion. In our
split representation, tiling loop by a factorB simply consists in apply-
ing the iteration domain transformation in the previousagaaph (see the
strip-mining example) and the above schedule transfoonain all state-
ments within loops and j. For statemen$, the only difference with the
above loop interchange example is that strip-mining inices a new loop
iteratorjj. The transformed matrix is callé@ in Figure 17.

Extending the representation to implement more transftiona For some
statement-wise transformations like shifting (or pipelg), i.e., loop shift-
ing for one statement in the loop body but not the others,(stgtements
S and$S;, after merging loops, k and j, 1), more complex manipulations
of the statement schedule are necessary. In fact, the abbeede rep-
resentation is a simplified version of the actual schedulehvimcludes a
third matrix component calledl. It adds one column to th® matrix for
every global parameter (e.g., 4 columns for the running gtejn

2.3.4. Access functions

Privatization modifies array accesses, i.e., array sytitscriFor any array
reference, a given point in the iteration domain is mappeahtarray ele-
ment (for scalars, all iteration points naturally map tosaene element). In
other words, there is a function that maps the iteration domigany refer-
ence to array or scalar elements. A transformation likegpization modi-
fies this function: it affects neither the iteration domanos the schedules.
Consider array referendj][], in statemen§, after merging loops
i, kandj, I, and strip-mining loog. The matrix for the corresponding ac-
cess function is simply (columns airgj, j,M,N,P,Q, and the scalar com-

ponent, from left to right):
001100000
{100 0000 0}-

Formal definition For each statemei§, we define two set£>. and RS of
(A, f) pairs, each pair representing a reference to variabtethe left or

Semi-Automatic Composition of Loop Transformations 21

right hand side of the statemeriitis theaccess functiomapping iterations
in D3, to Aelements f is a function of loop iterators, local variables and
global parameters. The access functfos defined by a matrix F such that

F(i) = Fx [i,in,ign]

Example: implementing privatizatio€onsider again the example in Fig-
ure 1 and assume that, instead of splitting staterdgn}=0 to enable
tiling, we want to privatize array over dimension (as an alternative). Be-
sides modifying the declaration @f(see next section), we need to change
the subscripts of references4padding a row to each access matrix with a
1 in the column corresponding to the new dimension and zeisesvhere.

E.g., privatization ofZ yields

{(ziror0000i0))} — {(2[52] 000] o])}

2.3.5. Data layout

Some program transformations, like padding, only modity &nray decla-
rations and have no impact on the polyhedral representafistatements.
It is critical to define these transformations through a ssearepresenta-
tion of the mapping of virtual array elements to physical nogyriocation.
This paper does not bring any improvement to the existingt&ols to this
problem@9, which are sufficiently mature already to express compléa da
layout transformations.

Notice a few program transformations can affect both arraglata-
tions and array statements. For instance, array merginglfcong several
arrays into a single one) affects both the declarations aness functions
(subscripts change); this transformation is sometimed ttsgnprove spa-
tial locality. We are working on an extension of the repreéagon to ac-
commodate combined modifications of array declarationsséagments,
in the light of?9). This extension will revisit the split of the schedule matri
into independent parts with separated concerns, to faglihe expression
and the composition of data layout transformations. A sinsplit may be
applicable to access functions as well.

2.4, Putting it All Together

Our representation allows us to compose transformatiotieowi reference
to a syntactic form, as opposed to previous polyhedral nsoddlere a
single-step transformation captures the whole loop netinigation - 11)
or intermediate code generation steps are ne€utd

22 Girbal, Vasilache et al.

Let us better illustrate the advantage of expressing loapsforma-
tions as “syntax-free” function compositions, considgragain the exam-
ple in Figure 1. The polyhedral representation of the oagprogram is
the following; statements are numbergd S, andS;, with global param-
etersiy, = [M,N,P,Q]'.

Statement iteration domains

1 10000| 070<i
NS = { 1]1000 1}|g|v|—1
1 0 [0000] 070<i 1 0 [0000|070<i
AS_ |10 |1000| -1|i<M-1,s _|-10 0010|0|i<P
~| 91 |0000 o 0<j =lo0 1 oooooog;
0-1[0100 j<N—1 0 -1/0001|0]j<0
Statement schedules
10 10
. AS — [01} AS — [01}
ASl = BS = [010] BS = [110]
> = [00] rSZ_[oooo o] rS3_[0000 o]
S = (0000 0] = 10000/ 0 = 10000/ 0
0|0 000 00| 1
ie0%—|1]0 10]0 10 0
le.0% =13 o} ie.0%— |00]1 ie.0%— |00 1
01| 0 01| 0
00| 0 00| 0
Statement access functions
rx={(zg00000))} x2={ }
rz={(z [1q000cm)}
#y2={ (z.12000000)). (A [53000a|) (B [200000p)) (% [03000®]) }
re={(z [1q000cm)}
#2={ (z.2000000]). (A [530000]) (x 02000}) }

Stepl: merging loops i and RVithin the representation, merging loops
i andk only influences the schedule of statem&ti.e., ©=. No other
part of the polyhedral program representation is affecédter merging,
statemen; has the same static statement order at depth,a%., 0; its
statement order at depth 1 becomes 2 instead of 1, i.e.,dties the third
statement of merged loap

Semi-Automatic Composition of Loop Transformations 23

p% = [020]

Step2: merging loops j and Thanks to the normalization rules on the
polyhedral representation, performing the previous steg@sdot require
the generation of a fresh syntactic form to apply loop fusgain on in-
ternal loopsj andl. Although©% has been modified, its internal structure
still exhibits all opportunities for further transformatis. This is a strong
improvement on previous polyhedral representations.

Again, internal fusion of loopg and| only modifies®%. Its static
statement order at depth 2 is now 1 instead of 0, i.e., it iSduend state-
ment of merged loop.

B =011

Step3: fissionThe fission of the first loop to split-out statemetft | =0
has an impact o®% and©® since their statement order at depth 0 is now
1 instead of 04[i]=0 is now the new statement of order O at depth 0),
while their statement order at depth 1 (logps decreased by 1.

B2 =[100" p==[101

Step4: strip-mining j Strip-mining loop j only affects the iteration do-
mains of statementS; andSs: it adds a local variable and an iterator (and
thus 2 matrix columns t&% and/A) plus 4 rows for the new inequalities.
It also affects the structure of matric&? and © to take into account
the new iterator, but it does not change the sched\iteis the same as the
domain matrix forS, in Section 2.3.2, and the other matrices are:

10 0l000Q 0] 0<i
-1 0 00010-1|i<P-1
00 0000Q 0| 0<j
AS — 0 0-1 00001-1} j<Q-1
0-1 1 00000 Ofj<j
0 1-1 0000063| j<jj+63
0-1 0 640000 0| jj < 64j,
| 0 1 0-64000Q O] 64j,<jj
100 100
A2 ={010|,2=[1000"'and A== |{010| = =[1001
001 001

24 Girbal, Vasilache et al.

Step5: strip-mining iStrip-miningi has exactly the same effect for loop
and modifies the statemerfis andS; accordingly.

Step6: interchanging i and jAs explained before, interchangingand j
simply consists in swapping the second and fourth row of iteg®> and
0%, i.e., the rows of & and A

[clelololololo) o)
OOORrOOOOO0O
[eclelololo] Jolole)
(el Jelololololole)

cocor
oroo
ocoro
Y=
cocoocoooOor
cocoocooorO
O0O0ORrO0O00OO
O0o0O0COrRrOOO
oOrOO0O0OO0OO0OO
RrOoOoOOOOOOR

SummaryOverall, none of the transformations has increased the runfb
statements. Only transformations which add new loops aral l@riables
increase the dimension of some statement matrices but theptdmake
the representation less generic or harder to use for conipusi since they
enforce the normalization rules.

2.5. Normalization Rules

The separation between the domain, schedule, data laydatcaess func-
tions attributes plays a major role in the compositionabfypolyhedral
transformations. Indeed, actions on different attribidespose in a triv-
ial way, e.g., strip-mining (iteration domain), interclggn(schedule) and
padding (data layout). Nevertheless, the previous defimétdo not, alone,
guarantee good compositionality properties. To achievegoal, we need
to define additional normalization rules.

A given program can have multiple polyhedral representatid his is
not harmless when the applicability of a transformatiofesebn the satis-
faction of representation prerequisites. For exampls,pioissible to merge
two statements in two loops only if these two statements @msexutive at
the loops depth; e.g., assume the statement order of thesstatements
is respectively 0 and 2 instead of 0 and 1; the statement dathet thus
the schedule) is the same but the statements are not comseantl fu-
sion seems impossible without prior transformations. Ewense, if the
two statements have identic@lvectors, fusion makes sense only if their
schedules span disjoint time iterations, which in turn delseon both their
A andl" components, as well as their iteration domains. Withoubeirig

Semi-Automatic Composition of Loop Transformations 25

strong invariants to the representation, it is hopelessefind a program
transformation uniquely from the matricédg¢ormalizingthe representation
after each transformation step is a critical contributidroar framework.
It proceeds as follows.

Schedule matrix structure. Among many encodings, we choose to parti-

tion © into three components: matrices A (for iteration reordgyiand

I" (iteration shifting), and vectof (statement reordering, fusion, fis-
sion), capturing different kinds of transformations. Thisids cross-
pollution between statement and iteration reordering oMdng expres-
siveness constraints on the combination of loop fusion wiiimodular
transformations and shifting. It allows to compose schedrdnsfor-
mations without a costly normalization to the Hermite nolrfioam.

Sequentiality. This is the most important idea that structures the whole
unified representation design. In brief, distinct statetsiear identi-
cal statements in distinct iterations, cannot have the sameestamp.
Technically, this rule is slightly stronger than that: weuee that the
A component of the schedule matrix is non-singular, thagtalements
have a differenfl vector, and that n@ vector may be the prefix of an-
other one.

This invariant brings two strong properties: (1) it supge=s schedul-
ing ambiguities at code generation time, and (2) it guaesiteat rule-
compliant transformation of the schedule and will presesguential-
ity of the whole SCoP, independently of iteration domainke Tirst

property is required to give the scheduling algorithm fuhtrol on

the generated code. The second one is a great asset fortgepéna

concerns when defining, applying or checking a transforwnatdo-

main and schedule are strictly independent, as much as wetibins

to A may ignore modifications tf and vice versa.

It is very important to understand that schedule sequéytialin no
way a limitation in the context of deeply and explicitly peharchi-
tectures. First of all, parallel affine schedules are notahly way to
express parallelism (in fact, they are mostly practicalgedatibe bulk-
synchronous parallelism), and in case they would be usegecify a
partial ordering of statement instances, it is always fsgb extend
the schedule with “spatial” dimensions to make A invertiGf,

Schedule density. Ensure that all statements at the same depth have a con-
secutivef3 ordering (no gap).

Domain density. Generation of efficient imperative code when scanning
Z-polyhedra (a.k.a. lattice polyhedra or linearly boundatides) is

26 Girbal, Vasilache et al.

known to be a hard problefd”- 21, Although not an absolute require-
ment, we try to define transformations that do not introdeoal vari-
ables in the iteration domain. In particular, we will seetie hext sec-
tion that we use a different, less intuitive and more impligfinition
of strip-mining to avoid the introduction of a local varialih the con-
straint matrix.

Domain parameters. Avoid redundant inequalities and try to reduce inte-
ger overflows in domain matrice’s by normalizing each row.

3. REVISITING CLASSICAL TRANSFORMATIONS

The purpose of this section is to review, with more detag, fibrmal defi-
nition of classical transformations in our compositionetting. Let us first
define elementary operations callednstructors Constructors make no
assumption about the representation invariants and magteithem.

Given a vectorv and matrix M with dinfv) columns and at least
rows, AddRow(M,i,v) inserts a new row at positionin M and fills it
with the value of vector, RemRow(M,i) does the opposite transforma-
tion. AddCol(M, j,v) andRemCol(M, j) play similar roles for columns.

Moving a statemen§ forward or backward is a common operation:
the constructoMove (P, Q, 0) leaves all statements unchanged except those
satisfying

VSE Scop PCBA (Q< BSVQLBY): BSim(P) - B(?im(P) +0,

whereu C v denotes thati is a prefix ofv, whereP andQ are statement
ordering prefixes.t. P C Q defining respectively the context of the move
and marking the initial time-stamp of statements to be mpaed where
offset 0 is the value to be added to the component at depth Rjinof
any statement ordering vect@P prefixed byP and following Q. If o is
positive,Move(P, Q,0) insertso free slots before all statemerpreceded
by the statement ordering pref@ at the depth oP; respectively, ifo is
negative Move(P, Q,0) deletes—o slots.

3.1. Transformation Primitives

From the earlier constructors, we define transformagiomitivesto serve
as building blocks for transformation sequences. Thesuitives do en-
force the normalization rules. Figure 18 lists typical ptiwes affecting
the polyhedral representation of a statemdptdenotes the vector filled
with zeros but elemerit set to 1, i.e.(0,...,0,1,0,...,0); likewise, 1; |
denotes the matrix filled with zeros but eleméni) set to 1.

Semi-Automatic Composition of Loop Transformations 27

Like theMove constructor, primitives do not directly operate on loops
or statements, but target a collection of statements anghealra whose
statement-ordering vectors share a common prefix P. There@prereq-
uisites on the program representation to the applicatiod aomposition
of primitives.

We also specified a number of optionallidity prerequisiteghat con-
servatively check for the semantical soundness of theftsemation, e.g.,
there are validity prerequisites to check that no deperelendolated by a
unimodular or array contraction transformation. When exply the space
of possible transformation sequences, validity preregpasisavoid wasting
time on corrupt transformations.

FusioN and FssioN best illustrate the benefit of designing loop trans-
formations at the abstract semantical level of our unifielghpexdral repre-
sentation. First of all, loop bounds are not an issue sineetkde generator
will handle any overlapping of iteration domains. For thaifig primitive,
vector (P,0) prefixes all statements concerned by the fission; and parame-
terb indicates the position where statement delaying shouldroEor the
fusion primitive, vector(P,0+ 1) prefixes all statements that should be in-
terleaved with statements prefixed @ 0). Eventually, notice that fusion
followed by fission — with the appropriate value lof— leaves the SCoP
unchanged.

The expressive power of the latter two transformations @agdneral-
ized through the very expressivedioN primitive. This transformation
can displace a block of statements prefixed?tdp a location identified by
vectorT, preserving the nesting depth of all statements and emigrodr-
malization rules. This transformation ressembles a palydie‘cut-and-
paste” operation that completely abstracts all detailhefirograms other
than statement ordering in multidimensional time. Thisnitive uses an
additional notation: pf@/,d) computes the sub-vector composed of the
firstd components of.

UNIMODULAR implements any unimodular transformation, extended
to arbitrary iteration domains and loop nesting. U denotemianodular
matrix. Notice the multiplication operates on bothafd I', effectively
updating the parametric shift along with skewing, reveesal interchange
transformations, i.e., preserving the relative shift wigéspect to the time
dimensions it was applied upon.

SHIFT implements a kind of hierarchical software pipelining oe th
source code. It is extended with parametric iteration shétg., to delay a
statement byN iterations of one surrounding loop. Matrix M implements
the parameterized shift of the affine schedule of a staterventust have
the same dimension &s

28 Girbal, Vasilache et al.

CuTtDowMm constrains a domain with an additional inequality, in the
form of a vectorc with the same dimension as a row of matfix

EXTEND inserts a new intermediate loop level at deptimitially re-
stricted to a single iteration. This new iterator will be dga following
code transformations.

ADDLOCALVAR insert a fresh local variable to the domain and to the
access functions. This local variable is typically used lwyrDowm.

PRIVATIZE and GONTRACT implement basic forms of array privati-
zation and contraction, respectively, considering direns of the array.
Privatization needs an additional paramesehe size of the additional di-
mension;sis required to update the array declaration (it cannot beriatl
in general, some references may not be affine). These prawitire simple
examples updating the data layout and array access fusction

This table is not complete (e.qg., it lacks index-set spliftand data-
layout transformations), but it demonstrates the expressiss of the uni-
fied representation.

[Syntax [Effect |
UNIMODULAR(P,U)[VS€ Scop | P C BS,AS — U.AS, TS U.I'S

SHIFT(P,M) VSE Scop | PERS, TS TS+ M

CutDowm(P,c) VS€E Scop| P T BS,AS — AddRow (AS,0,c¢/ged(cy, ... ’Cds+d|%/+dgp+l))

dS«— d5+1; AS « AddCol(AS,c,0);

BS «— AddRow(f3S,¢,0);

EXTEND(P,/,c) VSE Scop| PC RS, { AS — AddRow(AddCol(AS,c,0),4,1;);
S — AddRow(I"S,,0);

Y(AF) € L3 URS F — AddRow(F,¢,0)
ADDLOCALVAR(P) [VS€ Seop| PC BS,dy — df +1; AS — AddCol(AS,d5+ 1,0);
Y(AF) € LS URS F < AddCol(F,dS+1,0)

PRIVATIZE(A, () VS € Scop, V(AF) € LS U RS, F — AddRow(F, ¢, 1))
CONTRACT(A.f) |VSE Scop, V(AF) € LS UR,>, F — RemRow(F, /)
FusIioN(P,0) b= max{[3dsim(P)+1 [(Po)CRS}+1

Move((P,0+ 1), (P,0+ 1),h); Move(P,(P,0+ 1), 1)
FissioNP,0,b) Move(P, (P,0,b),1); Move((P,0+1),(P,o+1),—b)
MoTION(P,T) if dim(P) 4 1= dim(T) thenb = max{BdSim<P) [PCBSI+1lelseb=1
Move(pfx(T,dim(T) — 1), T,b)

VSE Seop | P T BS,BS « BS+T — pfx(P.dim(T))
Move(P,P,—1)

Fig. 18. Some classical transformation primitives

Primitives operate on program representation while maimtg the
structure of the polyhedral components (the invariant®site their fa-
miliar names, the primitives’ practical outcome on the pewg represen-
tation is widely extended compared to their syntactic cerparts. Indeed,
transformation primitives like fusion or interchange apt sets of state-

Semi-Automatic Composition of Loop Transformations 29

ments that may be scattered and duplicated at many diffeyeations in
the generated code. In addition, these transformationaarproperioop

transformations anymore, since they apply to sets of sewéiterations
that may have completely different domains and relativeiien sched-
ules. For example, one may interchange the loops surrogrulie state-
ment in a loop body without modifying the schedule of othatesnents,
and without distributing the loop first. Another example he tfusion of
two loops with different domains without peeling any itéoat

Previous encodings of classical transformations in a padydl setting
— most significantly® and 19 — use Presburger arithmetic as an ex-
pressiveoperatingtool for implementing and validating transformations.
In addition to operating on polytopes, our wogkneralizedoop trans-
formations to more abstragiolyhedral domairtransformations, without
explicitly relying on a nested loop structure with known bds and array
subscripts to define the transformation.

Instead of anchoring loop transformations to a syntacticrfof the
program, limitting ourselves to what can be expressed witlngperative
semantics, we define higher level transformations on thghedlral rep-
resentation itself, abstracting away the overhead (verisig, duplication)
and constraints of the code generation process (transiatioan impera-
tive semantics)

Naturally, this higher-level framework is beneficial foatisformation
composition. Figure 19 composes primitives into typicahsformations.
INTERCHANGE swaps the roles af andiy ; in the schedule of the match-
ing statements; it is a fine-grain extension of the classtaichange mak-
ing no assumption about the shape of the iteration domadEwsSand
REVERSE define two well known unimodular transformations, with re-
spectively the skew factos with it's coordinates(/,c), and the deptto
of the iterator to be reversedT8IPMINE introduces a new iterator to strip
the schedule and iteration domain of all statements at ththd# P into
intervals of lengthk (wherek is a statically known integgr This trans-
formation is a sequence of primitives and does not resoftearisertion
of any additional local variable, see Figure 19L8 extends the classical
loop tiling at of the two nested loops at the depthPolusingk x k blocks,
with arbitrary nesting and iteration domains. Tiling andpstnining al-
ways operate otime dimensions, hence the propagation of a line from
the schedule matrix (from A anid) into the iteration domain constraints;
it is possible to tile the surrounding time dimensions of aoifection of
statements with unrelated iteration domains and schedules

30 Girbal, Vasilache et al.

[Syntax [Effect [Comments |
swap rowso ando+ 1

INTERCHANGEP,0)|VS€ Scop | P C BS,

U=lgs—1oo—losr10r1+loor1+lor1,00
UNIMODULAR(BS,U)

SKEW(P,{,c,s) VS E Seop| P BS, add the skew factor

U= IdS+S' 1(‘70;
UNIMODULAR(BS,U)

REVERSHP,0) VSE Seop | PC BS, puta-1in (0,0)
U= Ids_z‘lo,o;
UNIMODULAR(BS,U)

STRIPMINE(PK) [VS€ Scop| P B,

c=dim(P);

EXTEND(BS, c,c); insert intermediate loop
u=dS+dy +dgp+1; constant column
CuTtDOM(BS, —k-1c+ (A3, 1,TS,) Keic <icst

CuTDOM(BS k-1 — (AS, 1,15 1) + (k= 1)1y) | fer1 <k-ig+k-1
TILE(P,0,k1,k2) VSe 5cop| (Po)C BS,

STRIPMINE((P,0),k2); strip outer loop
STRIPMINE(P K1); strip inner loop
INTERCHANGE (P,0),dim(P)) interchange

Fig. 19. Composition of transformation primitives

3.2. Implementing Loop Unrolling

In the context of code optimization, one of the most impdrteansforma-
tions is loop unrolling. A naive implementation of unroliimvith statement
duplications may result in severe complexity overheaddaihier transfor-
mations and for the code generation algorithm (its separagigorithm
is exponential in the number of statements, in the worst)cdsstead
of implementing loop unrolling in the intermediate repnesgion of our
framework, we delay it to the code generation phase and qpeffial loop
unrolling in alazyway. This strategy is fully implemented in the code gen-
eration phase and is triggered by annotations (carryinghdeformation)
of the statements whose surrounding loops need to be uaraiteolling
occurs in the separation algorithm of the code genef&®when all the
statements being printed out are marked for unrolling attireent depth.
Practically, in most cases, loop unrolling by a fackoan be imple-
mented as a combination sfrip-mining (by a factorb) andfull unrolling
(6), Strip-mining itself may be implemented in several ways polyhedral
setting. Following our earlier work iff) and callingb the strip-mining fac-
tor, we choose to model a strip-mined loop by dividing theatieon span of
the outer loop by instead of leaving the bounds unchanged and inserting
a non-unit strideb, see Figure 20.

Semi-Automatic Composition of Loop Transformations 31

for(i=0(x); i<=u(x); i++) I stripline(b)

for(tl:V—(bx—)J; 11<:H0i)J; t1++)
for(t2=max(((x), b*t1); t2<=mn(u(x), b*t1+b-1); t2++)

Fig. 20. Generic strip-mined loop after code generation

This particular design preserves the convexity of the pedlyh repre-
senting the transformed code, alleviating the need foripatride recog-
nition mechanisms (based, e.g., on the Hermite normal form)

In Figure 21(b) we can see how strip-mining the original coti€ig-
ure 21(a) by a factor of 2 yields an internal loop with noriad bounds.

It can be very useful to unroll the innermost loop to exhiligister reuse
(a.k.a. register tiling), relax scheduling constraintd diminish the impact

of control on useful code. However, unrolling requires to ttie domains

so thatmi n andmax constraints disappear from loop bounds. Our method
is presented in more detail i#f); it intuitively boils down to finding condi-
tionals (lower bound and upper boursi)ch that their difference is a non-
parametric constanthe unrolling factor. Hoisting these conditionals actu-
ally amounts to splitting the outer strip-mined loop intoesirkel part where
the inner strip-mined loop will be fully unrolled, and a reimger part (not
unrollable) spanning at most as many iterations as the-stiiypng fac-

tor. In our example, the conditions associated with a congtgp-count
(equal to 2) ard 2>=2*t 1 andt 2<=2*t 1+1 and are associated with the
kernel, separated from the prologue wh2té 1<Mand from the epilogue
where2*t 1+1>N. This separation leads to the more desirable form of Fig-
ure 21(c).

Finally, instead of implementing loop unrolling in the ineediate rep-
resentation of our framework, we delay it to the code germrgihase and
perform full loop unrolling in a lazy way, avoiding the add@gkponential)
complexity on the separation algorithm. This approactesetin a prelim-
inary strip-mine step that determines the amount of pautiablling.

3.3. Parallelizing Transformations

Most parallelizing compilers rely on loop transformatioiosextract and
expose parallelism, from vector and instruction-levelhi@ad-level forms
of parallelism(39-42.18,43-46) The most common strategy is to compose
loop transformations to extract parallelo@l |) or pipeline foacr oss)
loops Y. The main transformations include privatizati@f 48 32for de-

32 Girbal, Vasilache et al.

for(tl=M t1<=N t1++)
SI(i = t1);

(a) Original code

for(t1=M2; t1<=N2; t1l++)
for(t2=max(M 2*t1);
t2<=min(N, 2*t 1+1); t2++)
SI(i =1t2);

(b) Strip-mining of 2

i f (MR==1)
Si(i = M;
for(tl=(M1)/2; t1<=(N-1)/2; t1l++)
SI(i = 2*t1);
SI(i = 2*t1+1);
i f (NoR==0)
SI(i = N);

(c) §eparati0n & unrolling

Fig. 21. Strip-mining and unrolling transformation

pendence removal and unimodular transformations or nolitérgpto re-
arrange dependencé$:),

Many academic approaches to automatic parallelizatioe haed the
polyhedral model — and partially ordered affine schedulgsaiticular —
to describe fine grain vectdt 85D or systolic®2 53 parallelism. Affine
schedules have also been applied to the extraction andatéazation of
bulk-synchronous parallelisitt! 36:13) Array expansion is a generaliza-
tion of privatization that leverages on the precision ofawdeg)endence
analysis in the polyhedral moder5533) Array contraction® %) and its
generalization called storage mapping optimizaff§m®allows to control
the overhead due to expansion techniques.

Our work does not aim at characterizing parallel executidth \ar-
tially ordered affine schedules. In this sense, we prefemibee general
and decoupled approach followed by traditional paralilegjzcompilers
where parallelism is a separate concern. Loop transfoomstexpressed
on the schedule parts of the representation are seenasingtransfor-
mations to extract parallel loops or independent instamstiin loop bodies.
These enabling transformations are associated with agereélgpendence

Semi-Automatic Composition of Loop Transformations 33

analysis to effectively allow to generate code with pataiecution anno-
tations, using e.g., OpenMP.

Recent works are indeed suggesting that parallelism isf@tpressed
as a result of sophisticated analyses and annotations gmrdgeam than
using rigid partial orders defined by multi-dimensional rafischedules.
For example, a modernized version of Polaris has been ugédlli) au-
tomatically extract vast amounts of effectively exploleparallelism in
scientific codes, usingybrid analysis a combination of static, dynamic
and speculative dependence té&5 Yet these results uset prior loop
transformation to enhance scalability through additiomerallelism ex-
traction or to coarsen its grainAlthough we cannot show any empirical
evidence yet, we believe the same reason why our framewagrkowves on
single-threaded optimizations (flexibility to express @bex transforma-
tion sequences) will bring more scalability and robustriegkese promis-
ing hybrid parallelization techniques.

3.4. Facilitating the Search for Compositions

To conclude this section, we study how our polyhedral regaresgtion with
normalization rules for compositionality can further féeie the search
for complex transformation sequences.

We have seen that applying a program transformation simplyuets
to recomputing the matrices of a few statements. This is @niagrease
in flexibility, compared to syntactic approaches where thaieccomplexity
increases with each transformation. It is still the casepfefetching and
strip-mining, where, respectively, a statement is addetraatrix dimen-
sions are increased; but the added complexity is fairly maddeand again
the representation is no less generic.

3.4.1. Transformation Space

Commutativity properties are additional benefits of theasafion into four
representation aspects and the normalization rules. lergendata and
control transformations commute, as well as statementlegiog and it-
eration reordering. For example, loop fusion commutes JWatp inter-
change, statement reordering, loop fission and loop fusseif. In the ex-
ample detailed in Section 2.4, swapping fusion and fissiemloeeffect on
the resulting representation; the first row®¥ectors below shows double
fusion followed by fission, while the second row shows fisdioliowed
by double fusion.

5we implemented an exact one when all array accesses are @ffingraceful degradations
exist for the general cas®” 1) but are not supported yet.

34 Girbal, Vasilache et al.

B> =[00] p%=[00] 2 =[00]
B2 =[010 — P2 =[010] — p%2=[010]
B =[100 p®=[020 pS=[011]
p> =l[00] B> =[00] Sl:l[oo]
B2 =100 — B2 =[100] — p2 =[010]
B =[200 p®=[110 pS=[011]

Confluence properties are also available: outer loop ungoknd fu-
sion (unroll-and-jam) is strictly equivalent to strip-mmyg, interchange and
full unrolling. The latter sequence is the best way to immetrunroll-and-
jam in our framework, since it does not require statementicaipon in the
representation itself but relies on lazy unrolling. In gehestrip-mining
leads to confluent paths when combined with fusion or fission.

Such properties are useful in the context of iterative dezsdecause
they may significantly reduce the search space, and theyrajsove the
understanding of its structure, which in turn enables mdfieient search
strategied?.

Strip-mining and shifting dmot commute. However applying shifting
after strip-mining amounts to intra-tile pipelining (thast iteration of a
tile stays in that tile), whereas the whole iteration spagapelined across
tiles when applying strip-mining after shifting (the lagtration of a tile
being shifted towards the first iteration of the next tile).

3.4.2. When changing a sequence of transformations simply means
changing a parameter

Finally, the code representation framework also opens upnaapproach
for searching compositions of program transformationsc&imany pro-
gram transformations have the only effect of modifying thetmx param-
eters, an alternative is ttirectly search the matrix parameters themselves
In some cases, changing one or a few parameters is equitalpatform-
ing a sequence of program transformations, making thiskeaauch sim-
pler and more systematic.

For instance, consider th®% matrix of Section 2.3.3 and now as-
sume we want to systematically search schedule-orienéedftsrmations.
A straightforward approach is to systematically search@fematrix pa-
rameters themselves. Let us assume that, during the searcandomly
reach the following matrix:

Semi-Automatic Composition of Loop Transformations 35

eSS —

(el leolele)
OO OoOrOo
RPOROO

This matrix has 7 differences with the origin@% matrix of Sec-
tion 2.3.3, and these differences actually correspond éocttimposition
of 3 transformations: loop interchange (lodpandl), outer loop fusion
(loopsi andk) and inner loop fusion (loopgandl). In other words, search-
ing the matrix parameters is equivalent to searching formmsitions of
transformations.

Furthermore, assuming that a full polyhedral dependenaphghas
been computed,it is possible to characterize thexact set of all sched-
ule, domain and access matrices associated with legal foamstion se-
guences This can be used to quickly filter out or correct any violgtin
transformation®3, or even better, using the Farkas lemma as proposed
by Feautrief®), to recast this implicit characterization into an explicit
of domains (of Farkas multipliers) enclosing the very valoéall matrix
coefficients associated with legal transformations. Seagcfor a proper
transformation within this domain would be amenable to reatatical
tools, like linear programming, promising better scaldpithan genetic
algorithms on plain transformation sequences. This idedeis/ed from
the “chunking” transformation for automatic locality opiization (¢4 63}
it is the subject of active ongoing work.

4. HIGHER PERFORMANCE REQUIRES COMPOSITION

We have already illustrated the need for long sequencesabosed trans-
formations and the limitations of syntactic approacheshersynthetic ex-
ample of Section 2.1. This section provides similar emplr&vidence on
realistic benchmarks, focusing on single-thread perforweaand locality
optimizations although it also applies to automatic petathtion.

We manuallyoptimized 12 SPECfp2000 benchmarks (out of 14) and
were able to outperform the peak SPEC performafieék (obtained in
choosing the most appropriate compiler flags) for 9 of th&rh We detail
below the composition sequences for 4 of these benchmaskassociated
syntactic limitations and how we override them.

6 our tool performs on-demand computation, with lists of pegra capturing the (exact)
instance-wise dependence information between pairs efaetes.

7 The 3 other benchmarks could not be optimized manually irrasonable” amount of time,
following the empirical methodology presentedth

36 Girbal, Vasilache et al.

4.1. Manual Optimization Results

Our experiments were conducted on an HP AlphaServer ES43z Kb
pha 21264C EV68 (1 processor enabled) with 8MB L2 cache ari®l &G
memory. We will compare our optimized versions with tieseSPEC per-
formance, i.e., the output of the HP Fortran (V5.4) and C 4Y6ompiler
(-arch ev6 -fast -Cb ONESTEP) using the KAP Fortran preprocessor
(V4.3). We will also compare with theeakSPEC performance. Figure 22
summarizes the speedup with respect to the base SPEC parfoem

4.1.1. Methodology

Our approach follows an empirical methodology fehole programop-
timization, taking all architecture components into actowsing the HP
EV68 processor simulator. Even though this optimizatiarcpss is out of
the scope of this article, we briefly describe it in the nextagsaphs.

Peak SPEIanud| Peak SPE®Ianual
swim 1.00 1.61galgel 1.04 1.39
wupwise 1.20 2.90applu 1.47 2.18
apsi 1.07 1.23mesa 1.04 1.42
ammp 1.18 1.40equake 2.65 3.22
mesa 1.12 1.17)mgrid 1.59 1.45
fma3d 1.32 1.09art 1.22 1.07

Fig. 22. Speedup for 12 SPECfp2000 benchmarks

This methodology is captured in a decision tree: we itedsteamic
analysisphases of the program behavior, using HP’s cycle-accuraie-s
lator, decisionphases to choose the next analysis or transformation to per-
form, and program transformation phases to address a gidarmance
issue. After each transformation, the performance is nredson the real
machine to evaluate the actual benefits/losses, then wemaw analysis
phase to decide whether it is worth iterating the processapmilying a
new transformation. Though this optimization process isiuad it is also
systemati@nd iterative, the path through the decision tree beingeglimy
increasingly detailed performance metrics. Except forcizedy locating
target code sections and checking the legality of programstormations,
it could almost perform automatically.

From a program transformation point of view, our methodglog-
sults in a structured sequence of transformations apptiadtious code
sections. In the examples below, for each program, we focusne to
three code sections where multiple transformations aratitely applied,
i.e., composed. We make the distinction betweenténget transforma-
tions identified through dynamic analysis, e.g., loop glio reduce TLB

Semi-Automatic Composition of Loop Transformations 37

misses, and thenablingtransformations to apply the target transforma-
tions themselves, e.q., privatization for dependence vamo

4.1.2. Transformation sequences

In the following, we assume an aggressive inlining of allqedure calls
within loops (performed by KAP in most cases). The exampfe&ig-
ures 26, 24 and 23 show a wide variability in transformatiequences
and ordering. Each analysis and transformation phase istddms a gray
box, showing the time difference when executing tihk benchmark(in
seconds, a negative number is a performance improvembathase exe-
cution time for each benchmark is also indicated in the cap&ach trans-
formation phase, i.e., each gray box, is then broken downtiaiditional
transformations, i.e., white boxes.

All benchmarks benefited from complex compositions of tfamsa-
tions, with up to 23 individual loop and array transformagoon the same
loop nest forgalgel. Notice that some enabling transformations actually
degrade performance, like (A2) galgel.

A1: -3s A2: -2s A3: -1s
|| Fission ||| Peeling Fusion | Softwgre
Pipelining
B1: -31s Software
Pipelining
Privatization
B2: -1s B3: -1s
Privatization Interchange Fission S_oftv_va}re
Pipelining
Fission
C1: -11s
Privatization
—|Privatization Interchange
Fission

Fig. 23. Optimizingapsi (base 378s)

38 Girbal, Vasilache et al.

A: -29s
Full Float. point Scalar
Unrolling Reordering Promotion
G: -11s
B1: -4s
Fusion B2: -18s
.
Instruction Fission | Full
Splitting Unrolling
Fig. 24. Optimizingapplu (base 214s)
A1: -19s A2: -45s A3: 11s
. S Full Ll Full Array S .
Fusion Unrolling Unrolling Contraction Scheduling

Fig. 25. Optimizingvupwise (base 236s)

Fig. 26. Optimizinggalgel (base 1715s)

4.2. Polyhedral vs. Syntactic Representations

Section 2 presented the main assets of our new polyhednaseptation.
We now revisit these properties on the 4 chosen benchmarks.

4.2.1. Code size and complexity

The manual application of transformation sequences lemdddrge code
size increase, let aside the effect of function inliningisTis due to code
duplication when unrolling loops, but also to iteration jpag and loop
versioning when applying loop tiling and strip-mining. Tgal cases are
phases (A) inapplu and (A2) wupwise (unrolling), and (A5) ingalgel
(unroll-and-jam).

In our framework, none of these transformations perform siaje-
ment duplication, only strip-mining has a slight impact be size of do-
main matrices, as explained in Section 2.3. In general, tie duplica-

Semi-Automatic Composition of Loop Transformations 39

tion comes from parameter versioning and from intrinsiabgle-bloating
schedules resulting from intricate transformation segaenThis “moral’
observation allows to blame the transformation sequeniteerahan the
polyhedral transformation infrastructure, yet it does paivide an intu-
itive characterization of the “good” transformation seqces that do not
yield code-bloating schedules; this is left for future work

Interestingly, it is also possible to control the aggresssess of the
polyhedral code generator, focusing its code-duplicatpgmizations to
the hottest kernels only, yielding sub-optimal but very paat code in the
rest of the program. Again, the design of practical hewssto drive these
technique is left for future work.

4.2.2. Breaking patterns

On the introductory example, we already outlined the difficto merge
loops with different bounds and tile non-perfectly nestedpls. Beyond
non-matching loop bounds and non-perfect nests, loopritisi@lso in-
hibited by loop peeling, loop shifting and versioning froneyious phases.
For examplegalgel shows multiple instances of fusion and tiling transfor-
mations after peeling and shifting. KAP’s pattern-matghmiles fail to
recognize any opportunity for fusion or tiling on these exdées.
Interestingly, syntactic transformations may also introel some spu-
rious array dependences that hamper further optimizatieos example,
phase (A3) ingalgel splits a complex statement with 8 array references,
and shifts part of this statement forward by one iteratiait(gare pipelin-
ing) of a loopL;. Then, in one of the fusion boxes of phase (A4), we wish
to mergel.; with a subsequent lodp,. Without additional care, this fusion
would break dependencgsorrupting the semantics of the code produced
after (A3). Indeed, some values flow from the shifted statenel; to
iterations ofL,; merging the loops would consume these values before
producing them. Syntactic approaches lead to a dead-etisicase; the
only way to proceed is to undo the shifting step, increasikegetion time
by 24 seconds. Thanks to the commutation properties of odeinae can
make the dependence between the loops compatible witmfbgishifting
the loopL, forward by one iteration, before applying the fusion.

4.2.3. Flexible and complex compositions of transformations

The manual benchmark optimizations exhibit wide variagionthe com-
position of control, access and layout transformatigiagyel is an extreme
case where KAP does not succeed in optimizing the code, eitartive

best hand-tuned combination of switches, i.e., when dicktd apply some

40 Girbal, Vasilache et al.

transformations with explicit optimization switches (ge8PEC). Nev-
ertheless, our (long) optimization sequence yields a Baamt speedup
while only applying classical transformations. A closeokaat the code
shows only uniform dependences and constant loop boundsddition
to the above-mentioned syntactic restrictions and pattesmatches, our
sequence of transformations shows the variability and dexity of en-
abling transformations. For example, to implement the teligbp fusions
in Figure 26, strip-mining must be applied to convert lageds ofN? iter-
ations into nested loops &f iterations, allowing subsequent fusions with
other loops oN iterations.

applu stresses another important flexibility issue. Optimizagion two
independent code fragments follow an opposite directiG).and (A) tar-
get locality improvements: they implement loop fusion aaodlar promo-
tion; conversely, (B1) and (B2) follow a parallelism-enbeng strategy
based on the opposite transformations: loop fission andfation. Since
the appropriate sequence is not the same in each case, imalogitategy
must be flexible enough to select either option.

Finally, any optimization strategy has an important impacthe or-
der in which transformations are identified and applied. Woptimizing
applu andapsi, our methodology focused on individual transformations on
separate loop nests. Only in the last step, dynamic anahdisated that,
to further improve performance, these loop nests must fe@snbrged be-
fore applying performance-enhancing transformationsc@ifrse, this is
very much dependent on the strategy driving the optimizagpimcess, but
an iterative feedback-directed approach is likely to becast as demand-
ing as a manual methodology, since it can potentially examrinch longer
transformation sequences.

5. IMPLEMENTATION

The whole infrastructure is implemented as a free (GPL) adde the
Open64/ORC/EKOPath family of compilef: 6. Optimization is per-
formed in two runs of the compiler, with one intermediate ofrour tool,
using intermediate dumps of the intermediate representdthe. N files)
as shown in Figure 27. It thus natively supports the germranf IA64
code. The whole infrastructure compiles with GCC3.4 andoisgatible
with PathScale EKOPafff) native code generator for AMD64 and I1A32.
Thanks to third-party tools based on Open64, this frameveoports
source-to-source optimization, using the robust C unpavtderkeley
UPC©7), and planning a port of the Fortran90 unparser from Oper64/S
(68)_ |t contains 3 main tools in addition to Open64: WRaP-IT viahixx-
tracts SCoPs and build their polyhedral representationJKIRhich per-

Semi-Automatic Composition of Loop Transformations 41

forms program transformations in the polyhedral represt@on, and UR-
GenT the code generator associated with the polyhedraéseptatiof.

open64 - PHASE: p=on: | =of f : w=of f: c=of f i nput.c
- open64 - PHASE: p=on: | =on: w=on: c=on out put. N
input.c

our
optimisation
framework

output.bin

Fig. 27. Optimisation process

5.1. WRaP-IT: WHIRL Represented as Polyhedra — Interface To ol

WRaP-IT is an interface tool built on top of Open64 which cems the
WHIRL — the compiler’s hierarchical intermediate represgion — to an
augmented polyhedral representation, maintaining a spordence be-
tween matrices in SCoP descriptions with the symbol tabkk mtax
tree. Although WRaP-IT is still a prototype, it proved to lmbust; the
whole source-to-polyhedra-to-source conversion (withemy intermedi-
ate loop transformation) was successfully applied in 34ds in average
per benchmark on a 512MB 1GHz Pentium Il machine.

Implemented within the modern infrastructure of Open64, aRRT
benefits from interprocedural analysis and pre-optimirapihases such as
function inlining, interprocedural constant propagatitwop normaliza-
tion, integer comparison normalization, dead-code gotd elimination,
and induction variable substitution. Our tool extractgéand represen-
tative SCoPs for SPECfp2000 benchmarks: on average, 88be citate-
ments belong to a SCoP containing at least one 88p

To refine these statistics, Figures 28 and 29 describe thé ®ak-
down for each benchmark with respect to instruction cout rwaximal
loop nesting depth, respectively. These numbers confirrtetieal impor-
tance of code that can be represented in our model, and sét defieed
scalability target for the (most of the time exponentialjypedral compu-
tations associated with program analyses and transfarmsati

8 These tools can be downloaded frart p://www I ri.fr/~girbal/site wapit.

42 Girbal, Vasilache et al.

1104
1004
904 [] 168.wupwise [183.equake
[] 171.swim [187.facerec
504 [172.mgrid B 188.ammp
" [173.applu W 191.fma3d
DO_ O 177.mesa B 200.sixtrack
o ™ I 179.art W 301lapsi
n
Y—
O 60
I
()
o}
£ 501
>
=z
40
304
204
| ML.“I J
ol 1 |. n I -
0-2 3-4 5-8 9-16 17-32 33-64 65-128 129-256 257+
Fig. 28. SCoP size (instructions)
10004
Qu.’ [] 168.wupwise [l 183.equake
[e] [] 171.swim [l 187.facerec
8 1004 [172.mgrid B 188.ammp
— -] 173.applu W 191.fma3d
S O 177.mesa B 200 sixtrack
8 10 H 179.art W 30L.apsi
S
>
zZ
1- | H
1 2 3 4 5 6

Fig. 29. SCoP depth

To refine this coverage study, we computed the SCoP breakddtiin
respect to effective execution time. We conducted stedistiampling mea-

Semi-Automatic Composition of Loop Transformations 43

surements, using thepr of i | e portable performance monitoring frame-
work. Figure 30 gather the execution time percentage assativith each
consecutive block of source statements (over 2.5% exatctitiee). The
penultimate column, #SCoPs, gives the number of SCoPs ingvtris
code block: the lower the better. The last column shows thenrel loop
nesting depth in those SCoPs and the actual loop nestinb trettite pro-
cedure; when the two numbers differ, some enclosing loopsetrconsid-
ered static control. In many casessingle full-deptiSCoP is sufficient to
cover the whole block of “hot” instructions, showing thatyeedral trans-
formations will be fully applicable to this code block. Tleesesults are
very encouraging, yet far from sufficient in the context ohgeal-purpose
applications. This motivates further research in extegdire applicability
of polyhedral technigues to “sparsely irregular’ codeinimg was dis-
abled to isolate SCoP coverage in each source code furfction.

5.2. URUK: Unified Representation Universal Kernel

URUK is the key software component: it performs program sfarma-
tions within the WRaP (polyhedral) representation. A gamip language,
defines transformations and enables the composition of revgforma-
tions. Each transformation is built upon a set of elementatyons, the
constructorgSee Section 3).

Figure 31 shows the definition of tiove constructor, and Figure 32
defines the F5sioN transformation based on this constructor. This syntax
is preprocessed to overloaded C++ code, offering a higéksmantics to
manipulate the polyhedral representation. It takes lems ¢ime hour for an
URUK expert to implement a complex transformation likengjiof imper-
fectly nested loops with prolog/epilog generation and liggahecks, and
to have this transformation work on real benchmarks witlestars.

Transformation composition is very natural in the URUK syatFig-
ure 33 shows how simple it is to implement tiling from the carsition of
strip-mining and interchange primitives, hiding all thetalls associated
with remainder loop management and legality checking.

5.3. URDeps: URUK Dependence Analysis

An important feature of URUK is the ability to perform transhations
without mandatory intermediate validity checks, and with@ference to
the syntactic programThis allows to compute dependence information

9 We left out 6 SPECfp2000 benchmarks due to the (current) ¢daupport in our analyzer
for function pointers and pointer arithmetic.

44 Girbal, Vasilache et al.

File Function |Source LinefoTime#SCoP ;§COP Depth /
ctual Depth
168.wupwis¢zaxpy.f zaxpy 11-32 | 20.6% 2 1/1
zcopy.f zcopy 11-24 83% 1 1/1
zgemm.f zgemm 236-271 | 47.5% 7 3/3
171.swim [swim.f main 114-119 | 5.6% 1 22
swim.f calcl 261-269 | 26.394 1 2/2
swim.f calc2 315-325 [36.894 1 2/2
swim.f calc3 397-405 | 29.294 1 2/2
172.mgrid [mgrid.f psinv 149-166 | 27.19%4 1 3/3
mgrid.f resid 189-206 | 62.19¢ 1 3/3
magrid.f rprj3 230-250 | 4.3% 1 3/3
mgrid.f interp 270-314 | 3.4% 1 3/3
173.applu |applu.f blts 553-624 | 1559 1 6/6
applu.f buts 659-735 | 21.894 1 6/6
applu.f jacld 1669-2013| 17.3% 1 3/3
applu.f jacu 2088-2336| 12.6%4 1 3/3
applu.f rhs 2610-3068| 20.2% 1 4/4
183.equake |quake.c main 435-478 99% 4 2/3
187 .facerec |cffth.f90 passh4 266-310 | 35.6% 1 22
gaborRoutines.fd@aborTrafg 102-132 | 19.29% 2 212
graphRoutines.f9@ocalMove| 392-410 | 18.79% 2 0/4
graphRoutines.f90opCostFct 451-616 | 8.23% 1 0/0
200.sixtrack|thin6d.f thinéd 180-186 | 15.294 1 1/3
thinéd.f thinéd 216-227 | 3.7% 1 1/3
thin6d.f thinéd 230-244 | 8.9% 3 1/3
thin6d.f thinéd 267-287 | 8.2% 2 1/3
thin6d.f thinéd 465-477 | 6.3% 1 1/3
thin6d.f thinéd 560-588 | 54.894 1 2/4
301.apsi apsi.f dcdtz 1326-1354| 4.3% 1 3/3
apsi.f dtdtz 1476-1499| 4.3% 1 1/3
apsi.f dudtz 1637-1688| 4.5% 1 3/3
apsi.f dvdtz 1779-1833| 4.5% 1 3/3
apsi.f wcont 1878-1889| 7.5% 1 1/3
apsi.f trid 3189-3205| 5.9% 1 1/1
apsi.f smth 3443-3448| 3.7% 1 1/1
apsi.f radb4 5295-5321| 6.6% 2 2/2
apsi.f radbg 5453-5585| 9.0%4 3 3/3
apsi.f radf4 5912-5938| 3.2% 2 2/2
apsi.f radfg 6189-6287| 5.1% 2 3/3
apsi.f dkzmh 6407-6510| 11.4% 8 1/3

Fig. 30. Execution time breakdown

and to perform validity checks on demand. Our dependendgsasi@om-
putes arexactinformation whenever possible, i.e., whenever array refer
ences are affine (control structures are assumed affine iPSCH list

of convex polyhedra is computed for each pair of statememdsfer each
depth,considering the polyhedral representation qrilg., without refer-
ence to the initial syntactic program. This allows @re-time dependence

Semi-Automatic Composition of Loop Transformations 45

% ransformation nove
Yparam BetaPrefix P, Q
Yparam Offset o
Y%rereq P<=Q

Y%ode

foreach Sin SCoP
if (P<=S.Beta && Qx=S.Beta)
S. Beta(P. dinm))+=o;
else if (P<=S.Beta && Qx<S.Beta)

Y% ransformation fission
Ypar am Bet aPrefix P
Yparam Offset o, b
Y%ode
{
UrukVector Q=P;
Q enqueue(0); Q enqueue(b);
UrukVector R=P;
R enqueue(o+1);
UT_nove(P, Q 1). appl y(SCoP);

S. Beta(P. dinm))+=o; UT_nove(R R -1). appl y(SCoP);

} }

Fig. 31.Move constructor

Yransformation tile
Y%ar am Bet aPrefix P
Y%param | nteger kil
Yar am | nt eger k2
Y%prereq k1>0 && k2>0
Y%ode

Fig. 32. HSSION primitive

Q=P. encl ose();

UT_stri pm ne(P, k2). appl y(SCoP);

UT_stripm ne(Q k1). appl y(SCoP);

UT_i nt er change(Q . appl y(SCoP);
}

Fig. 33. TiLE primitive

analysisbefore applying the transformation sequence, ame-time check
at the very end, before code generation.

Let us briefly explain how this is achieved. Considering tvistidct
references to the same array in the program, at least onesof being a
write, there is a dependence between them if their accessidus coin-
cide on some array element. Multiple refinement of this aloton have
been proposed, including dependence directions, distaaeetors and in-
tervals(® to improve the precision about the localization of the alctiea
pendences between run-time statement instances. In tyiegoioal model,
it is possible to refine this definition further and to compatesxactde-
pendence information, as soon as all array references fame @f). Exact
dependences are classically captured by a system of afégeatities over
iteration vectors; when considering a syntactic loop néspendences at
depth p between access functions Bnd F in statementS and T are

46 Girbal, Vasilache et al.

exactly captured by the following union of polyhedra:
DX DEn N {G517) [F3(i%) = FT(iT) AiS <"},

where<,, stands for the ordering of iteration vectors at depife., equal
component-wise up to depth— 1 and different at deptb).

Yet this characterization needs to be adapted to programpotyhe-
dral representation, where no reference to a syntactic imawailable, and
where multiple schedule and domain transformations ma&eléifinition
and tracking of the dependence information difficult. Westheplace the
ordering on iteration vectors by the schedule-induced rardgeand split
the constraints according to the decomposition of the sdkad our for-
malism. Two kinds of dependences at depttan be characterized.

— Loop-carried dependence:
Bo.p 1= B0.p 1 and(AS)% < (AT, I
— Intra-loop dependence:

B%0..p— 1] =BT[0.p—1],
((AS,T9)i%)0.p-1 = ((AT,TT)i")o.p-1 andpy < Bp.

Both kinds lead to a union of polyhedra that is systemaidatiilt, before
any transformation is applied, for all pairs of referendedlie same array)
and for all depths (common to these references).

To solve the dependence tracking problem, we keep track wicalifi-
cations to thestructureof the time and domain dimensions. In other words,
we record any extension (dimension insertion, to implemery., strip-
mining) and any domain restriction (to implement, e.g.exdet splitting)
into a work list, and we eventually traverse this list aftértiensforma-
tions have been applied to update dependence polyhedredamgip. This
scheme guarantees that the iteration domains and time diomsncorre-
spond, after transformations, in the precomputed depeadefiormation
and in the modified polyhedral program representation.

Dependence checking is implemented by intersecting evepert
dence polyhedron with theeversedschedule of the transformed repre-
sentation. If any such intersection is non-empty, the tegupolyhedron
captures thexact set of dependence violatioiiis step allows to derive
the exact set of iteration vector pairs associated with a#ysonstraints
violations. Based on this strong property, our implemeoitateports any

Semi-Automatic Composition of Loop Transformations a7

dependence violation as a list of polyhedra; this reporéiy useful for au-
tomatic filtering of transformations in an iterative optaation framework,
and as an optimization aid for the interactive user of URUK.
Interestingly, our formalism allows both dependence caman and
checking to be simplified, relying on scalar comparisonsh&fitvectors
to short-circuit complex polyhedral operations on innepttis. This opti-
mization yields impressive speedups, due to the bloclcitrad nature of
most real-world schedules. The next section will explorehsaireal-world
example and show a good scalability of this aggressive aisaly

5.4. URGenT: URUK Generation Tool

After polyhedral transformations, the (re)generation mipéerative loop
structures is the last step. It has a strong impact on thettaade qual-
ity: we must ensure that no redundant guard or complex loamécpoils
performance gains achieved thanks to polyhedral transtooms. We used
the Chunky Loop Generator (CL00G), a recent Quilleré et aithmd (@3
with some additional improvements to guarantee the absefrehgplicated
control @2, to generate efficient control for full SPECfp2000 benchkaar
and for SCoPs with more than 1700 statements. Polyhedradftiama-
tions make code generation particularly difficult becahsy treate a large
set of complex overlapping polyhedra that need to be scawnigddo-
loops (70:23.21.22) Because of the added complexity introduced, we had
to design URGenT, a major reengineering of CLooG taking athge of
the normalization rules of our representation to bring exgial improve-
ments to execution time and memory usage. The generatedstzzeland

uality greatly improved, making it better than typicallsirtd-tuned code.
(38) details how URGenT succeeds in producing efficient code fenbs-
tic optimization case-study in a few seconds only.

6. SEMI-AUTOMATIC OPTIMIZATION

Let us detail the application of our tools to the semi-autticnaptimiza-

tion of theswim benchmark, to show the effectiveness of the approach and
the performance of the implementation on a representatdrechimark.

We target a 32bit and a 64bit architecture: an AMD Athlon XFO@8
(Barton) at 2.08GHz with 512KB L2 cache and 512MB singlercte
DDR SDRAM (running Mandriva Linux 10.1, kernel version B8%.and

a AMD Athlon 64 3400+ (ClawHammer) at 2.2GHz zith 1MB L2 cache
and single-channel 1GB DDR SDRAM (running Debian GNU/Lirgig,
kernel version 2.6.11). Thewim benchmark was chosen because it easily
illustrates the benefits of implementing a sequence of foamstions in

48 Girbal, Vasilache et al.

our framework, compared to manual optimization of the paogtext, and
because it presents a reasonably large SCoP to evaluatgtnebs (after
fully inlining the three hot subroutines).

Figure 34 shows the transformation sequencesfom, implemented
as a script for URUK. Syntactic compilation frameworks liRathScale
EKOPath, Intel ICC and KAP implement a simplified form of ttrensfor-
mation sequence awim, missing the fusion with the nested loops in sub-
routine cal ¢3, which requires a very complex combination of loop peel-
ing, code motion and three-level shifting. In addition, Is@csequence is
highly specific taswim and cannot be easily adapted, extended or reordered
to handle other programs: due to syntactic restrictionsdividual trans-
formations, the sequence has to be considered as a whoethmeffect
of any of its components can hamper the application and phility of the
entire sequence. Conversely, within our semi-automadiméwork, the se-
guence can be built without concern about the impact of astoamation
on the applicability of subsequent ones. We demonstrasetiinough the
dedicated transformation sequence in Figure 34.

This URUK script operates on tissi m Nfile, a persistent store of the
compiler’s intermediate representation, dumped by EK@Réter inter-
procedural analysis and pre-optimization. At this stepCEtath is directed
to inline the three dominant functions of the benchmasgkc1, cal c2 and
cal ¢3 (passing these function names to thélL| NE optimization switch).
WRaP-IT processes the resulting file, extracting severalF¥Cthe sig-
nificant one being a section of 421 lines of code — 112 inswustin
the polyhedral representation — in consecutive loop negtémthenai n
function. Transformations in Figure 34 apply to this SCoP.

Labels of the formCxLy denote statementof procedurecal cx. Given
a vectorv and an integer < dimv, encl ose(v, r) returns the prefix of
length dimv—r of vectorv (r is equal to 1 if absent). The primitives in-
volved are the followingmot i on translates th§d component (of a set of
statements)shi ft translates thd matrix; peel splits the domain of a
statement according to a given constraint and creates tvatslavith suf-
fixes_1 and_2; stripm ne andi nt er change are self-explanatory; and
ti me-prefixed primitives mimic the effect of their iteration dam coun-
terparts on time dimensions. Loop fusion is a special casheafot i on
primitive. Tiling is decomposed into double strip-miningdainterchange.
Loop unrolling € ul I unrol ') is delayed to the code generation phase.

Notice the script is quite concise, although the generabel@ s much
more complex than the originalvim benchmark (due to versioning, peel-
ing, strip-mining and unrolling). In particular, loop fusi is straightfor-

Semi-Automatic Composition of Loop Transformations 49

ward, despite the fused loops domains differ by one or twaditens (due
to peeling), and despite the additional multi-level shitsteps.

Avoi d spurious versioning

addCont ext (CLL1, ' | TMAX>=9")

addCont ext (CLL1, ' dol oop_ub>=| TMAX')
addCont ext (CLL1, ' dol oop_ub<=I TMAX')
addCont ext (CLL1, ' N>=500")
addCont ext (C1L1, " M>=500")
addCont ext (CLL1, ' MNM N>=500")
addCont ext (CLL1, " MM N<=M)
addCont ext (CLL1, ' M\M N<=N')
addCont ext (CLL1, " Mk=N')
addCont ext (C1L1, " M>=N')

Move and shift cal ¢c3 backwards
shift(enclose(C3L1),{"1",'0",’0"})

shift(enclose(C3L10),{'1",'0"})
shift(encl ose(C3L11),{' 1", 0'})
shift(C3L12,{'1'})
shift(C3L13,{"1'})
shift(C3L14,{"1'})
shift(C3L15,{'1'})
shift(C3L16,{"1'})
shift(C3L17,{'1'})

mot i on(encl ose(C3L1), BLOOP)
mot i on(encl ose(C3L10), BLOOP)
mot i on(encl ose(C3L11), BLOOP)

(

(

mot i on(C3L12, BLOOP)
mot i on(C3L13, BLOOP)
mot i on(C3L14, BLOOP)
mot i on(C3L15, BLOOP)
mot i on(C3L16, BLOOP)
mot i on(C3L17, BLOOP)

Peel and shift to enable fusion
peel (encl ose(C3L1, 2),"’ 3’)

peel (encl ose(C3L1_2,2), N-3")

peel (enclose(C3L1_2_1,1),'3")

peel (enclose(C3L1_2_1 2,1),"M3")

peel (encl ose(CLLL, 2),"2")

peel (enclose(ClL1_2,2)," N-2")

peel (enclose(ClL1_2_1,1),'2")

peel (enclose(ClL1_2 1 2,1),"M2")

peel (encl ose(C2L1,2),"'1")

peel (enclose(C2L1_2,2),"N-1")

peel (enclose(C2L1_2_1,1),'3")

peel (enclose(C2L1_2 1 2,1)," M3")
shift(enclose(ClL1 2 1 2 1),{'0",'1,'1})
shift(enclose(C2L1 2 1 2 1),{'0",'2","2"})

Doubl e fusion of the three nests
motion(encl ose(C2L1 2 1 2 1), TARGET

212
motion(enclose(ClL1_2 1 2 1),C2L1 2 1 2 1)
motion(enclose(C3L1 2 1 2 1),ClL1 2.1 2 1)

Regi ster blocking and unrolling (factor 2)
stripmne(enclose(C3L1 2 1 2 1,2),2,2)
stripmne(enclose(C3L1_2_1 2 1,1),4,2)

i nterchange(enclose(C3L1 2.1 2 1,2))
fullunroll(enclose(C3L1_2_1 2 1,2))
fullunroll (enclose(C3L1_2 1 2 1,1))

Fig. 34. URUK script to optimizewim

The application of this script is fully automatic; it prodegca signif-
icantly larger code of 2267 lines, roughly one third of thesing naive
scalar copies to map schedule iterators to domain oneg diithinated by
copy-propagation in the subsequent run of EKOPath or Opéilriéd is not
surprising since most transformations in the script regjdiomain decom-
position, either explicitly (peeling) or implicitly (shihg prolog/epilog, at
code generation). It takes 39s to apply the whole transfbomaequence
up to native code generation on a 2.08GHz AthlonXP. Transébion time
is dominated by back-end compilation (22s). Polyhedralecgeneration
takes only 4s. Exact polyhedral dependence analysis (catigpu and
checking) is acceptable (12s). Applying the transfornmatiequence itself
is negligible. These execution times are very encouragjivggn the com-

50 Girbal, Vasilache et al.

plex overlap of peeled polyhedra in the code generationghasd since
the full dependence graph captures the exact dependermenatfon for
the 215 array references in the SCoP at every loop depth (mami5 af-
ter tiling), yielding a total of 441 dependence matricese Tasult of this
application is a new intermediate representation file, selEKOPath or
Open64 for further scalar optimizations and native codesggion.

Compared to thgeak performance attainable by the best available
compiler PathScale EKOPath (V2.1) with the best optimization ff&gs,
our tool achieves32% speedup on Athlon XP and 38% speedup on
Athlon 64. Compared to thease SPE@erformance numbers,our op-
timization achieve$1% speedup on Athlon XP and 92% speedup on
Athlon 64. We are not aware of any other optimization effort — manual
or automatic — that broughtvim to this level of performance on x86 pro-
cessors?

We do not have results on 1A64 yet, due to back-end instghsi
sues in Open64 (with large basic blocks). We expect an additievel of
tiling and more aggressive unrolling will be profitable (do¢he improved
TLB management, better load/store bandwitdh and largastexgfile on
[tanium 2 processors).

Additional transformations need to be implemented in UROKutho-
rize semi-automatic optimization of a larger range of benarks. In ad-
dition, further work on the iterative optimization drivex being conducted
to make this process more automatic and avoid the manuatimggitation
of an URUK script. Yet the tool in its current state is of greae for the
optimization expert who wishes to quickly evaluate comgeguences of
transformations.

7. RELATED WORK

The most topical works associated with each technical isswkcontri-
bution have been discussed in the relevant specific sectitere, we will
only survey the former efforts in designing an advanced loegt transfor-
mation infrastructure and representation framework.

Most loop restructuring compilers introduced syntax-loas®dels and
intermediate representations. ParaSc8feand Polaris“?) are depen-

10 Athlon XP:-n82 - Cfast - OPT:ro=2: 0 i mit=0: di v_split=on:alias=typed
-LNO fusi on=2: prefetch=2 -fno-math-errno; Athlon 64 (in 64 bits mode):
-mar ch=at hl on64 - LNO fusi on=2: prefetch=2 -n64 -Cfast -nsse2 -|npath;
pat hf 90 always outperformed Intel ICC by a small percentage.
11 with optimization flag- Of ast .
12 Notice we consider the SPEC 2000 versiorswim, much harder to optimize through loop
fusion than the SPEC 95 version.

Semi-Automatic Composition of Loop Transformations 51

dence based, source-to-source parallelizers for ForkaR. (18 is closely
related to these academic tools.

SUIF ¥2) is a platform for implementing advanced compiler proto-
types. Although some polyhedral works have been built onFSUt 13),
they do not address the composition issue and rely on a weaklergen-
eration method. PIP8Y is one of the most complete loop restructuring
compiler, implementing polyhedral analyses and transétions (includ-
ing affine scheduling) and interprocedural analyses (aggipns, alias). It
uses a syntax tree extended with polyhedral annotations)dia unified
polyhedral representation.

Closer to our work, the MARS compilét® has been applied to itera-
tive optimization(’2); this compiler’s goal is to unify classical dependence-
based loop transformations with data storage optimizatiétowever, the
MARS intermediate representation only captures part ofdabp-specific
information (domains and access functions): it lacks tteatterization of
iteration orderings through multidimensional affine sakled. Recently,
a similar unified representation has been applied to themigdtion of
compute-intensive Java programs, combining machine itlggemd itera-
tive optimization®; again, despite the unification of multiple transforma-
tions, the lack of multidimensional affine schedules hampee ability to
perform long sequences of transformations and complidhtesharacter-
ization and traversal of the search space, ultimately iimgiperformance
improvements.

To date, the most thorough application of the polyhedralesgntation
was the Petit dependence analyzer and loop restructuroig'®, based
on the Omega librar{/?. It provides space-time mappings for iteration re-
ordering, and it shares our emphasis on per-statemenfdraregions, but
it is intended as a research tool for small kernels only. @presentation
— whose foundations were g)resenteéizﬁ%— improves on the polyhedral
representation proposed by’, and this paper explains how and why it is
the first one that enables the composition of polyhedral igdizations of
classical loop transformations, decoupled from any syigtdorm of the
program. We show how classical transformations like loagpdn or tiling
can be composed in any order and generalized to imperfaesyed loops
with complex domains, without intermediate translatioa gyntactic form
(which leads to code size explosion). Eventually, we useda generation
technique suitable to a polyhedral representation thagagasignificantly
more robust than the code generation proposed in the Ontagayif?2).

52 Girbal, Vasilache et al.

8. CONCLUSIONS

The ability to perform numerous compositions of programsfarmations
is driven by the development of iterative optimization eomments, and
motivated through the manual optimization of standard migakbench-
marks. From these experiments, we show that current coragle chal-
lenged by the complexity of aggressive loop optimizatiogusmces. We
believe that little improvements can be expected withodesgning the
compilation infrastructure for compositionality and rézhsearch space
structure.

We presented a polyhedral framework that enables the cadtigroef
long sequences of program transformations. Coupled witbbast code
generator, our method avoids the typical restrictions adloat of long
compositions of program transformations. These techsifpaee been im-
plemented in the Open64/ORC/EKOPath compiler and appiueswim
benchmark automatically. We have also shown that our fraoniewpens
up new directions for searching for complex transformasequences for
automatic or semi-automatic optimization or parallelizat

ACKNOWLEDGMENTS

This work is supported by a grant from the French Ministry &sRarch
(RNTL COP) and INRIA, CEA and HP France fellowships. We as®dh-

debted to many people who helped building the tool set, dictySaurabh
Sharma who initiated the implementation, Roy Ju and Sun Gioam In-

tel, John Mellor-Crummey and Nathan Tallent from Rice Ursity, Greg
Lindahl and Fred Chow from PathScale, and the UPC team at tineetd

sity of California Berkeley.

REFERENCES

1. T. Kisuki, P. Knijnenburg, M. O'Boyle, and H. Wijshoff dtative compilation in program
optimization,Proc. CPC’10 (Compilers for Parallel Computergp. 35—44 (2000).

2. K.D. Cooper, D. Subramanian, and L. Torczon, Adaptivénoging compilers for the 21st
century,J. of Supercomputin(2002).

3. S. Long and M. O'Boyle, Adaptive java optimisation usingtance-based learnin\CM
Intl. Conf. on Supercomputing (ICS’'Q4)p. 237-246, St-Malo, France (June 2004).

4. D. Parello, O. Temam, and J.-M. Verdun, On Increasing Recture Awareness in Pro-
gram Optimizations to Bridge the Gap between Peak and Sest&rocessor Performance?
Matrix-Multiply Revisited, SuperComputing’02Baltimore, Maryland (November 2002).

5. D. Parello, O. Temam, A. Cohen, and J.-M. Verdun, Towar8ystematic, Pragmatic and
Architecture-Aware Program Optimization Process for CtergProcessorsACM Super-
computing’04 p. 15, Pittsburgh, Pennsylvania (November 2004),

Semi-Automatic Composition of Loop Transformations 53

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

M. J. Wolfe High Performance Compilers for Parallel Computj#ddison-Wesley (1996).

. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, andvkilache, Facilitating the

Search for Compositions of Program Transformati@k@M Intl. Conf. on Supercomputing
(ICS’05), pp. 151-160, Boston, Massachusetts (June 2005),

. P. Feautrier, Some Efficient Solutions to the Affine ScliaduProblem, Part Il, multidi-

mensional timelntl. J. of Parallel Programming21(6):389—420 (December 1992), see also
Part I, one dimensional time, 21(5):315-348.

. M. E. Wolf, Improving Locality and Parallelism in Nested Logg2h.D. thesis, Stanford

University (August 1992), published as CSL-TR-92-538.

W. Kelly, Optimization within a Unified Transformation Framewpflechnical Report CS-
TR-3725, University of Maryland (1996).

A.W. Limand M. S. Lam, Communication-Free Paralleli@atiia Affine Transformations,
24hacMm Symp. on Principles of Programming Languaggs 201-214, Paris, France (jan
1997).

N. Ahmed, N. Mateev, and K. Pingali, Synthesizing tramsftions for locality enhance-
ment of imperfectly-nested loop nestsCM Supercomputing’0(May 2000).

A. W. Lim, S.-W. Liao, and M. S. Lam, Blocking and array tm@tion across arbitrarily
nested loops using affine partitionilyCM Symp. on Principles and Practice of Parallel
Programming (PPoPP’01)pp. 102-112 (2001).

W. Pugh, Uniform techniques for loop optimizatidxCM Intl. Conf. on Supercomputing
(ICS'91), pp. 341-352, Cologne, Germany (June 1991).

W. Li and K. Pingali, A singular loop transformation framork based on non-singular
matricesntl. J. of Parallel Programming22(2):183—-205 (April 1994).

Open Research Compilét,t p: / /i pf - orc. sour cef or ge. net .

A. Phansalkar, A. Joshi, L. Eeckhout, and L. Jdfour generations of SPEC CPU bench-
marks: what has changed and what has, A@ichnical Report TR-041026-01-1, University
of Texas Austin (2004).

KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for DiditaNIX, htt p: // ww.
hp. con t echsever s/ sof t war e/ kap. htm .

E. Visser, Stratego: A Language for Program Transfaondiased on Rewriting Strategies.
System Description of Stratego 0.5, A. Middeldorp (eR¢writing Techniques and Appli-
cations (RTA'01)Lecture Notes in Computer Sciendl. 2051, pp. 357-361, Springer-
Verlag (May 2001).

M. O’Boyle, MARS: a Distributed Memory Approach to Shar®lemory Compilation,
Proc. Language, Compilers and Runtime Systems for Scalaisteouting Springer-Verlag,
Pittsburgh (May 1998).

C. Bastoul, Efficient code generation for automatic fpelization and optimization|S-
PDC'2 IEEE International Symposium on Parallel and Distried ComputingLjubjana,
Slovenia (October 2003).

C. Bastoul, Code Generation in the Polyhedral Model EdEahan You ThinkParallel
Architectures and Compilation Techniques (PACT,®¥jtibes, France (September 2004).

54

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

Girbal, Vasilache et al.

F. Quilleré, S. Rajopadhye, and D. Wilde, Generationffafient nested loops from poly-
hedra,Intl. J. of Parallel Programming28(5):469—-498 (October 2000).

G.-R. Perrin and A. Darte (edsljhe Data Parallel Programming Modehumber 1132 in
LNCS, Springer-Verlag (1996).

A. Cohen, S. Girbal, and O. Temam, A Polyhedral Approackdse the Composition of
Program Transformationguro-Par'04 number 3149 in LNCS, pp. 292—-303, Springer-
Verlag, Pisa, Italy (August 2004),

R. Triolet, P. Feautrier, and P. Jouvelot, Automati@pelization of Fortran programs in the
presence of procedure calRroc. of the ?tEuropean Symp. on Programming (ESOP;86)
number 213 in LNCS, pp. 210-222, Springer-Verlag (March@)98

M. Griebl and J.-F. Collard, Generation of Synchronoosdéfor Automatic Parallelization
of whi | e Loops, S. Haridi, K. Ali, and P. Magnusson (ed&jroPar'95 LNCS Vol. 966,
pp. 315-326, Springer-Verlag (1995).

J.-F. Collard, Automatic parallelization of While-Ls®using speculative executidntl. J.
of Parallel Programming23(2):191-219 (April 1995).

D. G. WonnacottConstraint-Based Array Dependence Analy§ik.D. thesis, University
of Maryland (1995).

B. Creusillet,Array Region Analyses and ApplicationBh.D. thesis, Ecole Nationale
Supérieure des Mines de Paris (ENSMP), France (Decembé).199

D. Barthou, J.-F. Collard, and P. Feautrier, Fuzzy Aataflow Analysis,J. of Parallel
and Distributed Computingt0:210-226 (1997).

L. Rauchwerger and D. Padua, The LRPD Test: Speculative-Rme Parallelization
of Loops with Privatization and Reduction Parallelizatid8EE Transactions on Paral-
lel and Distributed Systems, Special Issue on CompilersLamgjuages for Parallel and
Distributed Computersl0(2):160-180 (1999).

D. Barthou, A. Cohen, and J.-F. Collard, Maximal Stat&nsion,Intl. J. of Parallel
Programming 28(3):213-243 (June 2000),

A. CohenProgram Analysis and Transformation: from the Polytope Bldd Formal Lan-
guages PhD Thesis, Université de Versailles, France (Decemb@@)9

J.-F. CollardReasoning About Program Transformatip&pringer-Verlag (2002).

A. Darte, Y. Robert, and F. Vivieigcheduling and Automatic ParallelizatioBirkhatser,
Boston (2000).

A. Darte and Y. Robert, Mapping uniform loop nests onsriiuted memory architectures,
Parallel Computing20(5):679—710 (1994).

N. Vasilache, C. Bastoul, and A. Cohen, Polyhedral Codee@tion in the Real World,
Proceedings of the International Conference on CompilensBwuction (ETAPS CC’06)
LNCS, Springer-Verlag, Vienna, Austria (March 2006), tpear.

J. Allen and K. Kennedy, Automatic Translation of FartRrograms to Vector ForrA\CM
Trans. on Programming Languages and Syst&{#:491-542 (October 1987).

Semi-Automatic Composition of Loop Transformations 55

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. Mckin J. M. Mellor-Crummey,
L. Torczon, and S. K. Warren, The ParaScope Parallel PragiaghEnvironmentProceed-
ings of the IEEE81(2):244-263 (1993).

W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. HoeflinBeiPadua, P. Petersen, W. Pot-
tenger, L. Rauchwerger, P. Tu, and S. Weatherford, PaBliejramming with Polaris,
IEEE Computer29(12):78-82 (December 1996).

M. Hall et al., Maximizing Multiprocessor Performancéttwthe SUIF Compiler|EEE
Computey 29(12):84-89 (December 1996).

S. Carr, C. Ding, and P. Sweany, Improving Software Ripegj With Unroll-and-JamPro-
ceedings of the 29th Hawaii Intl. Conf. on System SciencE33H'96) Volume 1: Software
Technology and ArchitecturdEEE Computer Society (1996).

A.J. C. Bik, M. Girkar, P. M. Grey, and X. Tian, Automatittla-Register Vectorization for
the Intel Architecturelntl. J. of Parallel Programming30(2):65-98 (2002).

D. Naishlos, Autovectorization in GCroceedings of the 2004 GCC Developers Summit
pp. 105-118 (2004ht t p: / / wwv. gccsummi t. or g/ 2004,

A. E. Eichenberger, P. Wu, and K. O'Brien, Vectorizatfon SIMD architectures with
alignment constraint$CM Symp. on Programming Language Design and Implementatio
(PLDI '04), pp. 82-93 (2004).

D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, Array Datefinalysis and its Use in
Array Privatization,ZOthACM Symp. on Principles of Programming Languaggs 2—15,
Charleston, South Carolina (January 1993).

P. Tu and D. Padua, Automatic Array PrivatizatiﬁW,Workshop on Languages and Com-
pilers for Parallel Computingnumber 768 in LNCS, pp. 500-521, Portland, Oregon (Au-
gust 1993).

U. BanerjeeDependence Analysis for Supercomputiiduwer Academic Publishers,
Boston (1988).

W. Pugh, The Omega test: a fast and practical integergmuging algorithm for de-
pendence analysi\CM/IEEE Conf. on Supercomputingp. 4-13, Albuquerque (August
1991).

J. Xue, Automating non-unimodular loop transformagifor massive parallelisniRarallel
Computing 20(5):711-728 (1994).

A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhyaddl. Risset, Hardware Design
Methodology with the Alpha LanguagePL’'01, Lyon, France (September 2001).

R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. MahlkeABraham, and G. SnideHigh-
level synthesis of nonprogrammable hardware acceleratbeshnical report, Hewlett-
Packard (May 2000).

P. Feautrier, Array ExpansioACM Intl. Conf. on Supercomputingp. 429-441, St. Malo,
France (July 1988).

D. Barthou, A. Cohen, and J.-F. Collard, Maximal Stabi«pﬁwsion,ZSthACM Symp. on
Principles of Programming Languages (PoPL'98p. 98-106, San Diego, California (Jan-
uary 1998),

56

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

70.

71.

Girbal, Vasilache et al.

V. Lefebvre and P. Feautrier, Automatic Storage Managefor Parallel Program®&aral-
lel Computing 24(3):649-671 (1998).

M. M. Strout, L. Carter, J. Ferrante, and B. Simon, Sclethdependant Storage Map-
ping for Loops,ACM Symp. on Architectural Support for Programming Langsagnd
Operating Systems (ASPLOS’98)(1998).

F. Quilleré and S. Rajopadhy@ptimizing Memory Usage in the Polyhedral Mgdegchni-
cal Report 1228, Institut de Recherche en Informatique sté®yes Aléatoires, Université
de Rennes, France (January 1999).

P. Feautrier, Dataflow Analysis of Scalar and Array Rafees|ntl. J. of Parallel Program-
ming 20(1):23-53 (February 1991).

J.-F. Collard, D. Barthou, and P. Feautrier, Fuzzy adataflow analysisACM Symp. on
Principles and Practice of Parallel Programmingp. 92-102, Santa Barbara, CA (July
1995).

D. Wonnacott and W. Pugh, Nonlinear array dependencgsaséProc. Third Workshop
on Languages, Compilers and Run-Time Systems for Scalabi@@erg1995), troy, New
York.

S. Rus, D. Zhang, and L. Rauchwerger, The Value Evol@i@ph and its Use in Memory
Reference AnalysisRarallel Architectures and Compilation Techniques (PA@), IEEE
Computer Society, Antibes, France (2004).

C. Bastoul and P. Feautrier, More Legal Transformationkocality, Euro-Par'10, number
3149 in LNCS, pp. 272-283, Pisa (August 2004).

C. Bastoul and P. Feautrier, Improving data locality byriking, CC Intl. Conf. on Com-
piler Construction number 2622 in LNCS, pp. 320-335, Warsaw, Poland (apriB200

Standard Performance Evaluation Cohpt,p: / / ww. spec. or g.

F. Chow, Maximizing application performance througterprocedural optimization with
the PathScale EKO compiler suitbttp: //ww. pat hscal e. conf whi t epapers. ht n
(August 2004).

C. Bell, W.-Y. Chen, D. Bonachea, and K. Yelick, EvalngtSupport for Global Address
Space Languages on the Cray XXCM Intl. Conf. on Supercomputing (ICS'0§t-Malo,
France (June 2004).

C. Coarfa, F. Zhao, N. Tallent, J. Mellor-Crummey, anBdtsenko, Open-source Compiler
Technology for Source-to-Source Optimizatidm,t p: // ww. cs. ri ce. edu/ ~j ohnnt/
research. htm (project page).

C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temauiting Polyhedral Loop
Transformations to Work\Workshop on Languages and Compilers for Parallel Computing
(LCPC’03), LNCS, pp. 23-30, Springer-Verlag, College Station, Tetastober 2003),

C. Ancourt and F. Irigoin, Scanning Polyhedra with DO ppACM Symp. on Principles
and Practice of Parallel Programming (PPoPP’9Dp. 39-50 (June 1991).

F. Irigoin, P. Jouvelot, and R. Triolet, Semantical tptecedural Parallelization: An
Overview of the PIPS ProjecACM Intl. Conf. on Supercomputing (ICS’9Qologne, Ger-
many (June 1991).

Semi-Automatic Composition of Loop Transformations 57

72. T. Kisuki, P. Knijnenburg, K. Gallivan, and M. O'Boyleh& Effect of Cache Models on
Iterative Compilation for Combined Tiling and UnrollinBarallel Architectures and Com-
pilation Techniques (PACT'0Q)EEE Computer Society (October 2001).

73. W. Kelly, W. Pugh, and E. Rosser, Code generation for iplalmappingsFrontiers’95
Symp. on the frontiers of massively parallel computatMoLean (1995).

