
International Journal of Parallel Programming, Vol. ??, No. ?, ??? 2006 (c©2006)

Semi-Automatic Composition of Loop
Transformations for Deep Parallelism and
Memory Hierarchies

Sylvain Girbal,1 Nicolas Vasilache,1 Cédric Bastoul,1 Albert Cohen,1

David Parello,2 Marc Sigler,1 Olivier Temam1

1 ALCHEMY Group, INRIA Futurs and LRI, Paris-Sud 11 University, France.
Email:first.last@inria.fr
2 DALI Group, LP2A, University of Perpignan, France.
Email:david.parello@univ-perp.fr

Modern compilers are responsible for translating the idealistic operational seman-
tics of the source program into a form that makes efficient useof a highly complex
heterogeneous machine. Since optimization problems are associated with huge
and unstructured search spaces, this combinational task ispoorly achieved in gen-
eral, resulting in weak scalability and disappointing sustained performance. We
address this challenge by working on the program representation itself, using a
semi-automatic optimization approach to demonstrate thatcurrent compilers of-
fen suffer from unnecessary constraints and intricacies that can be avoided in a
semantically richer transformation framework.
Technically, the purpose of this paper is threefold: (1) to show that syntactic code
representations close to the operational semantics lead torigid phase ordering and
cumbersome expression of architecture-aware loop transformations, (2) to illus-
trate how complex transformation sequences may be needed toachieve signifi-
cant performance benefits, (3) to facilitate the automatic search for program trans-
formation sequences, improving on classical polyhedral representations to better
support operation research strategies in a simpler, structured search space. The
proposed framework relies on a unified polyhedral representation of loops and
statements, using normalization rules to allow flexible andexpressive transforma-
tion sequencing. This representation allows to extend the scalability of polyhedral
dependence analysis, and to delay the (automatic) legalitychecks until the end of
a transformation sequence. Our work leverages on algorithmic advances in poly-
hedral code generation and has been implemented in a modern research compiler.

KEY WORDS: Compiler optimization, semi-automatic program transformation,
polyhedral model, automatic parallelization.

1

2 Girbal, Vasilache et al.

1. INTRODUCTION

Static compiler optimizations can hardly cope with the complex run-time
behavior and hardware components interplay of modern processor archi-
tectures. Multiple architectural phenomena occur and interact simultane-
ously; this requires the optimizer to combine multiple program transforma-
tions. Recently, processor architectures have been shifting towards coarser
grain on-chip parallelism, to avoid diminishing returns offurther extending
instruction-level parallelism; and this shift has not curbed the steady com-
plexity increase of memory hierarchies and on-chip communication net-
works. Both incremental and breakthrough architecture designs for scal-
able on-chip parallelism build on the low delay and very-high bandwidth of
on-chip communications and synchronizations. Current research propos-
als describe a wealth of fine-grain (instruction-level, vectors), mid-grain
(transactions, micro-threads, frames in grid processors)and coarse-grain
(threads, distributed agents) paradigms; these come with as many memory
models or communication primitives, including inter-cluster registers, lo-
cal memories (scratch-pads), multi-streaming DMA, networks on a chip,
and of course, non-uniform (coherent) cache hierarchies.

Although the associated programming models are often explicitly par-
allel (threads, agents, data parallelism, vectors), they always rely on ad-
vanced compiler technology to relieve the programmer from scheduling
and mapping the application, understanding the memory model and com-
munication details. Even provided with enough static information or anno-
tations (OpenMP directives, pointer aliasing, separate compilation assump-
tions), compilers have a hard time exploring the huge and unstructured
search space associated with these lower level mapping and optimization
challenges. Indeed, the task of the compiler can hardly beencalled op-
timization anymore, in the traditional meaning of loweringthe abstrac-
tion penalty of a higher-level language. Together with the run-time system
(whether implemented in software or hardware), the compiler is respon-
sible for most of the combinatorial code generation decisions to map the
simplified and idealistic operational semantics of the source program to the
highly complex and heterogeneous machine.

Unfortunately, optimizing compilers have traditionally been limited to
systematic and tedious tasks that are either not accessibleto the program-
mer (e.g., instruction selection, register allocation) orthat the programmer
in a high level language does not want to deal with (e.g., constant propaga-
tion, partial redundancy elimination, dead-code elimination, control-flow
optimizations). Generating efficient code for deep parallelism and deep
memory hierarchies with complex and dynamic hardware components is
a completely different story: the compiler (and run-time system) now has

Semi-Automatic Composition of Loop Transformations 3

to take the burden of much smarter tasks, that only expert programmers
would be able to carry. In a sense, it is not clear that these new optimiza-
tion and parallelization tasks should be called “compilation” anymore. It-
erative optimization and machine learning compilation(1–3) are part of the
answer to these challenges, building on artificial intelligence and opera-
tion research know-how to assist compiler heuristic. Iterative optimization
generalizes profile-directed approach to integrate precise feedback from
the runtime behavior of the program into optimization algorithms, while
machine learning approaches provide an automated framework to build
new optimizers from empirical optimization data. However,considering
the ability to perform complex transformations, or complexsequences of
transformations(4, 5), iterative optimization and machine learning compila-
tion will fare no better than existing compilers on top of which they are cur-
rently implemented. In addition, any operation research algorithm will be
highly sensitive to the structure of the search space it is traversing. E.g., ge-
netic algorithms are known to cope with unstructured spacesbut at a higher
cost and lower scalability towards larger problems, as opposed to mathe-
matical programming (e.g., semi-definite or linear programming) which
benefit from strong regularity and algebraic properties of the optimization
search space. Unfortunately, current compilers offer a very unstructured
optimization search space. First of all, by imposing phase ordering con-
straints(6), they lack the ability to perform long sequences of transforma-
tions. In addition, compilers embed a large collection of ad-hoc program
transformations, but they aresyntactictransformations, i.e., control struc-
tures are regenerated after each program transformation, sometimes mak-
ing it harder to apply the next transformations, especiallywhen the appli-
cation of program transformations relies on pattern-matching techniques.

Clearly, there is a need for a compiler infrastructure that can apply
complex and possibly long compositions of optimizing or parallelizing
transformations, in a rich, structured search space.

We claim that existing compilers are ill-equipped to address these chal-
lenges, because of improper program representations and inappropriate
conditioning of the search space structure.

This article does (unfortunately) not present any originalloop trans-
formation or clever combination of static and dynamic analysis. Instead,
it precisely addresses the lack of algebraic structure in traditional loop-
nest optimizers, as a small step towards bridging the gap between peak
and sustained performance in future and emerging on-chip multiproces-
sors. We present a framework to facilitate the search forcompositionsof
program transformations; this framework relies on a unifiedrepresentation
of loops and statements, and has been introduced in(7). This framework

4 Girbal, Vasilache et al.

improves on classical polyhedral representations(8–13) to support a large
array of useful and efficient program transformations (loopfusion, tiling,
array forward substitution, statement reordering, software pipelining, array
padding, etc.), as well ascompositionsof these transformations. Compared
to the attempts at expressing a large array of program transformations as
matrix operations within the polyhedral model(9, 14, 10), the distinctive as-
set of our representation lies in the simplicity of the formalism to compose
non-unimodular transformations across long, flexible sequences. Existing
formalisms have been designed for black-box optimization(8, 11, 12), and
applying a classical loop transformation within them — as proposed in
(9, 10, 3)— requires a syntactic form of the program to anchor the transfor-
mation to existing statements. Up to now, the easy composition of trans-
formations was restricted to unimodular transformations(6), with some ex-
tensions to singular transformations(15).

The key to our approach is to clearly separate the four different types
of actions performed by program transformations: modification of the it-
eration domain (loop bounds and strides), modification of the schedule of
each individual statement, modification of the access functions (array sub-
scripts), and modification of the data layout (array declarations). This sep-
aration makes it possible to provide a matrix representation for each kind
of action, enabling the easy and independent composition ofthe different
“actions” induced by program transformations, and as a result, enabling
the composition of transformations themselves. Current representations of
program transformations do not clearly separate these fourtypes of actions;
as a result, the implementation of certain compositions of program trans-
formations can be complicated or even impossible. For instance, current
implementations of loop fusion must include loop bounds andarray sub-
script modifications even though they are only byproducts ofa schedule-
oriented program transformation; after applying loop fusion, target loops
are often peeled, increasing code size and making further optimizations
more complex. Within our representation, loop fusion is only expressed
as a schedule transformation, and the modifications of the iteration do-
main and access functions are implicitly handled, so that the code com-
plexity is exactly the same before and after fusion. Similarly, an iteration
domain-oriented transformation like unrolling should have no impact on
the schedule or data layout representations; or a data layout-oriented trans-
formation like padding should have no impact on the scheduleor iteration
domain representations. Eventually, since all program transformations cor-
respond to a set of matrix operations within our representation, searching
for compositions of transformations is often (though not always) equiva-
lent to testing different values of the matrices parameters, further facilitat-

Semi-Automatic Composition of Loop Transformations 5

ing the search for compositions. Besides, with this framework, it should
also be possible to find and evaluate new sequences of transformations for
which no static model has yet been developed (e.g., array forward substi-
tution versus loop fusion as a temporal locality optimization).

This article is organized as follows. Section 2 illustrateswith a sim-
ple example the limitations of syntactic representations for transforma-
tion composition, it presents our polyhedral representation and how it can
circumvent these limitations. Revisiting classical loop transformations for
automatic parallelization and locality enhancement, Section 3 generalizes
their definitions in our framework, extending their applicability scope, ab-
stracting away most syntactic limitations to transformation composition,
and facilitating the search for compositions of transformations. Using sev-
eral SPEC benchmarks, Section 4 shows that complex compositions can be
necessary to reach high performance and how such compositions are eas-
ily implemented using our polyhedral representation. Section 5 describes
the implementation of our representation, of the associated transformation
tool, and of the code generation technique (in Open64/ORC(16)). Section 6
validates these tools through the evaluation of a dedicatedtransformation
sequence for one benchmark. Section 7 presents related works.

2. A NEW POLYHEDRAL PROGRAM REPRESENTATION

The purpose of Section 2.1 is to illustrate the limitations of the imple-
mentation of program transformations in current compilers, using a simple
example. Section 2.2 is a gentle introduction to polyhedralrepresentations
and transformations. In Section 2.3, we present our polyhedral representa-
tion, in Section 2.4 how it alleviates syntactic limitations and Section 2.5
presents normalization rules for the representation.

Generally speaking, the main asset of our polyhedral representation is
that it is semantics-based, abstracting away many implementation artifacts
of syntax-based representations, and allowing the definition of most loop
transformations without reference to any syntactic form ofthe program.

2.1. Limitations of Syntactic Transformations

In current compilers, after applying a program transformation to a code
section, a new version of the code section is generated, using abstract syn-
tax trees, three address code, SSA graphs, etc. We use the term syntactic
(or syntax-based) to refer to such transformation models. Note that this
behavior is also shared by all previous matrix- or polyhedra-based frame-
works.

6 Girbal, Vasilache et al.

2.1.1. Code size and complexity

As a result, after multiple transformations the code size and complexity
can dramatically increase.

for (i=0; i<M; i++)
S1 Z[i] = 0;

for (j=0; j<N; j++)
S2 Z[i] += (A[i][j] + B[j][i]) * X[j];

for (k=0; k<P; k++)
for (l=0; l<Q; l++)

S3 Z[k] += A[k][l] * Y[l];

Fig. 1. Introductory example

Syntactic (#lines)Polyhedral (#values)
Original code 11 78
Outer loop fusion 44 (×4.0) 78 (×1.0)
Inner loop fusion 132 (×12.0) 78 (×1.0)
Fission 123 (×11.2) 78 (×1.0)
Strip-Mine 350 (×31.8) 122 (×1.5)
Strip-Mine 407 (×37.0) 182 (×2.3)
Interchange 455 (×41.4) 182 (×2.3)

Fig. 2. Code size versus representation size

Original KAP Double FusionFull Sequence
Time (s) 26.0012.68 19.00 7.38

Fig. 3. Execution time

Consider the simple synthetic example of Figure 1, where it is prof-
itable to merge loopsi,k (the new loop is namedi), and then loopsj, l (the
new loop is namedj), to reduce the locality distance of arrayA, and then to
tile loops i and j to exploit the spatial and TLB locality of arrayB, which
is accessed column-wise. In order to perform all these transformations, the
following actions are necessary: merge loopsi, k, then merge loopsj, l ,
then split statementZ[i]=0 outside thei loop to enable tiling, then strip-
mine loop j, then strip-mine loopi and then interchangei andjj (the loop
generated from the strip-mining ofj).

Because thei and j loops have different bounds, the merging and strip-
mining steps will progressively multiply the number of loopnests versions,
each with a different guard. After all these transformations, the program
contains multiple instances of the code section shown in Figure 4. The
number of program statements after each step is indicated inFigure 2.

Semi-Automatic Composition of Loop Transformations 7

...;
if ((M >= P+1) && (N == Q) && (P >= 63))
for (ii=0; ii<P-63; ii+=64)
for (jj=0; jj<Q; jj+=64)
for (i=ii; i<ii+63; i++)
for (j=jj; j<min(Q,jj+63); j++)

Z[i] += (A[i][j] + B[j][i]) * X[j];
Z[i] += A[i][j] * Y[j];

for (ii=P-62; ii<P; ii+=64)
for (jj=0; jj<Q; jj+=64)
for (i=ii; i<P; i++)
for (j=jj; j<min(Q,jj+63); j++)

Z[i] += (A[i][j] + B[j][i]) * X[j];
Z[i] += A[i][j] * Y[j];

for (i=P+1; i<min(ii+63,M); i++)
for (j=jj; j<min(N,jj+63); j++)

Z[i] += (A[i][j] + B[j][i]) * X[j];
for (ii=P+1; ii<M; ii+=64)
for (jj=0; jj<N; jj+=64)
for (i=ii; i<min(ii+63,M); i++)
for (j=jj; j<min(N,jj+63); j++)

Z[i] += (A[i][j] + B[j][i]) * X[j];
...;

Fig. 4. Versioning after outer loop fusion

In our framework, the final generated code will be similarly compli-
cated, but this complexity does not show until code generation, and thus,
it does not hamper program transformations. The polyhedralprogram rep-
resentation consists in a fixed number of matrices associated with each
statement, and neither its complexity nor its size vary significantly, inde-
pendently of the number and nature of program transformations. The num-
ber of statements remains the same (until the code is generated), only some
matrix dimensions may increase slightly, see Figure 2. Notethat the more
complex the code, the higher the difference: for instance, if the second
loop is triangular, i.e.,(j=0; j<i; j++), the final number of source lines
of the syntactic version is 34153, while the size of the polyhedral represen-
tation is unchanged (same number of statements and matrix dimensions).

2.1.2. Breaking patterns

Compilers look for transformation opportunities using pattern-matching
rules. This approach is fairly fragile, especially in the context of complex
compositions, because previous transformations may breaktarget patterns
for further ones. Interestingly, this weakness is confirmedby the historical

8 Girbal, Vasilache et al.

evolution of the SPEC CPU benchmarks themselves, partly driven by the
need to avoid pattern-matching attacks from commercial compilers (17).

To illustrate this point we have attempted to perform the above program
transformations targeting the Alpha 21364 EV7, using KAP C (V4.1) (18),
one of the best production preprocessors available (sourceto source loop
and array transformations). Figure 3 shows the performanceachieved by
KAP and by the main steps of the above sequence of transformations (fu-
sion of the outer and inner loops, then tiling) on the synthetic example.3 We
found that KAP could perform almost none of the above transformations
because pattern-matching rules were often too limited. Even though we
did not have access to the KAP source code, we have reverse-engineered
these limitations by modifying the example source code until KAP could
perform the appropriate transformation; KAP limitations are deduced from
the required simplifications. In Section 2.4, we will show how these limi-
tations are overridden by the polyhedral representation.

The first step in the transformation sequence is the fusion ofexternal
loops i, k: we found that KAP only attempts to merge perfectly nested
loops with matching bounds (i.e., apparently due to additional conditions
of KAP’s fusion pattern); after changing the loop bounds andsplitting out
Z[i]=0, KAP could merge loopsi, k. In the polyhedral representation,
fusion is only impeded by semantic limitations, such as dependences; non-
matching bounds or non-perfectly nested loops are not an issue, or more
exactly, these artificial issues simply disappear, see Section 2.4. After en-
abling the fusion of external loopsi, k, the second step is the fusion of in-
ternal loopsj, l . Merging loopsj, l changes the ordering of assignments to
Z[i]. KAP refuses to perform this modification (apparently another con-
dition of KAP’s fusion pattern); after renamingZ in the second loop and
later accumulating on both arrays, KAP could perform the second fusion.

Overall, we found out that KAP was unable to perform these two
transformations, mostly because of pattern-matching limitations that do
not exist in the polyhedral representation. We performed additional experi-
ments on other modern loop restructuring compilers, such asIntel Electron
(IA64), Open64/ORC (IA64) and EKOPath (IA32, AMD64, EM64T), and
we found similar pattern-matching limitations.

2.1.3. Flexible and complex transformation composition

Compilers come with an ordered set of phases, each phase running some
dedicated optimizations and analyses. This phase orderinghas a major
drawback: it prevents transformations from being applied several times,

3 ParametersM, N, P andQ are the bounds of the 400MB matricesA andB.

Semi-Automatic Composition of Loop Transformations 9

after some otherenablingtransformation has modified the applicability or
adequation of further optimizations. Moreover, optimizers have rather rigid
optimization strategies that hamper the exploration of potentially useful
transformations.

Consider again the example of Figure 1. As explained above, KAP
was unable to split statementZ[i] by itself, even though the last step in
our optimization sequence — tilingj after fusions — cannot be performed
without that preliminary action. KAP’s documentation(18) shows that fis-
sion and fusion are performed together (and possibly repeatedly) at a given
step in KAP’s optimization sequence. So while fission could be a poten-
tially enabling transformation for fusion (though it failed in our case for
the reasons outlined in the previous paragraph), it is not identified as an
enabling transformation for tiling in KAP’s strategy, and it would always
fail to split to enable tiling.

Moreover, even after splittingZ[i] and merging loopsi, k and j, l ,
KAP proved unable to tile loopj; it is probably focusing on scalar pro-
motion and performs unroll-and-jam instead, yielding a peak performance
of 12.35s. However, in our transformation sequence, execution time de-
creases from 26.00s to 19.00s with fusion and fission, while it further de-
creases to 7.38s thanks to tiling. Notice that both fusion and tiling are im-
portant performance-wise.

So KAP suffers from a too rigid optimization strategy, and this example
outlines that, in order to reach high performance, a flexiblecomposition
of program transformations is a key element. In Section 4, wewill show
that, for one loop nest, up to 23 program transformations arenecessary to
outperform peak SPEC performance.

2.1.4. Limitations of phase ordering

To better understand the interplay of loop peeling, loop fusion, scalar
promotion and dead-code elimination, let us now consider the simpler ex-
ample of Figure 5. The three loops can be fused to improve temporal lo-
cality, and assumingA is a local array not used outside the code fragment,
it can be replaced with a scalara. Figure 6 shows the corresponding opti-
mized code. Both figures also show a graphical representation of the dif-
ferent domains, schedules and access functions for the three statementsA,
B andC of the original and optimized versions. Notice the middle loop in
Figure 5 has a reduced domain. These optimizations mainly consist in loop
fusions which only have an impact on scheduling, the last iteration (99) in
the domain ofA was removed (dead code) and the access function to array
A disappeared (scalar promotion).

10 Girbal, Vasilache et al.

B[1] = 0
for (i=0; i<100; i++)

A A[i] = ...;
for (i=0; i<99; i++)

B B[i+1] = A[i] ...;
for (i=0; i<100; i++)

C C[i] = B[i] ...;

999897210 st
at

em
en

t

el
em

en
t

Domains

i

(C)
(B)
(A)

Schedules

i
(C)
(A)

(B)

Access functions

i

(C)
(B)
(A)

Fig. 5. Original program and graphical view of its polyhedral representation

B[1] = 0
for (i=0; i<99; i++)

A a = ...;
B B[i+1] = a ...;
C C[i] = ...;

C[100] = B[100] ...;

999897210 st
at

em
en

t

el
em

en
t(C)

(B)
(A)

Domains

i

(C)

(A)
(B)

Schedules

i

(B)

(C)

Access functions

i

Fig. 6. Target optimized program and graphical view

Again, we tried to optimize this example using KAP, assumingthatA
is a global array, effectively restricting ourselves to peeling and fusion.

The reduced domain ofB has no impact on our framework, which suc-
ceeds in fusing the three loops and yields the code in Figure 7. However,
to fuse those loops, syntactic transformation frameworks require some it-
erations of the first and third loop to be peeled and interleaved between
the loops. Traditional compilers are able to peel the last iteration and fuse
the first two loops, as shown in Figure 8. Now, because their pattern for
loop fusion only matches consecutive loops, peeling prevents fusion with
the third loop, as shown in Figure 8; we checked that neither afailed de-

Semi-Automatic Composition of Loop Transformations 11

B[1] = 0
for (i=0; i<99; i++)

A[i] = ...;
B[i+1] = A[i] ...;
C[i] = B[i] ...;

A[100] = ...;
C[100] = B[100] ...;

Fig. 7. Fusion of the three loops

B[1] = 0
for (i=0; i<99; i++)

A[i] = ...;
B[i+1] = A[i] ...;

A[100] = ...;
for (i=0; i<100; i++)

C[i] = B[i] ...;

Fig. 8. Peeling prevents fusion

B[1] = 0
for (i=0; i<99; i++)
a = ...;
A[i] = a
B[i+1] = a ...;

for (i=0; i<100; i++)
C[i] = B[i] ...;

Fig. 9. Dead code before fusion

B[1] = 0
for (i=0; i<99; i++)
a = ...;
B[i+1] = a ...;

for (i=0; i<100; i++)
C[i] = B[i] ...;

Fig. 10. Fusion before dead code

B[1] = 0
for (i=0; i<100; i++)

A A[i] = A[1] ...;
for (i=0; i<99; i++)

B B[i+1] = A[i] ...;
for (i=0; i<100; i++)

C C[i] = A[i]+B[i] ...;

Fig. 11. Advanced example

B[1] = 0
for (i=0; i<99; i++)

A[i] = A[1] ...;
B[i+1] = A[i] ...;
C[i] = B[i] ...;

A[100] = A[1] ...;
C[100] = A[100]+B[100] ...;

Fig. 12. Fusion of the three loops

B[1] = 0
for (i=0; i<99; i++)

A[i] = A[1] ...;
B[i+1] = A[i] ...;

A[100] = A[1] ...;
for (i=0; i<100; i++)

C[i] = A[i]+B[i] ...;

Fig. 13. Spurious dependences

pendence test nor an erroneous evaluation in the cost model may have
caused the problem. Within our transformation framework, it is possible
to fuse loops with different domains without prior peeling transformations
because hoisting of control structures is delayed until code generation.

12 Girbal, Vasilache et al.

Pattern matching is not the only limitation to transformation compo-
sition. Consider the example of Figure 11 which adds two references to
the original program,A[1] in statementA andA[i] in statementC. These
references do not compromise the ability to fuse the three loops, as shown
in Figure 12. Optimizers based on more advanced rewriting systems(19)

and most non-syntactic representations(10, 20, 3)will still peel an iteration
of the first and last loops. However, peeling the last iteration of the first
loop introduces two dependences that prevent fusion with the third loop:
backward motion — flow dependence onA[1] — and forward motion —
anti-dependence onA[i] — of the peeled iteration is now illegal. KAP
yields the partially fused code in Figure 13, whereas our framework may
still fuse the three loops as in Figure 12.

To address the composition issue, compilers come with an ordered set
of phases. This approach is legitimate but prevents transformations to be
applied several times, e.g., after some other transformation has modified
the appropriateness of further optimizations. We consideragain the exam-
ple of Figure 5, and we now assumeA is a local array only used to compute
B. KAP applies dead-code elimination before fusion: it triesto eliminateA,
but since it is used to computeB, it fails. Then the compiler fuses the two
loops, and scalar promotion replacesA with a scalar, as shown in Figure 9.
It is now obvious that arrayA can be eliminated but dead-code elimination
will not be run again. Conversely, if we delayed dead-code elimination un-
til after loop fusion (and peeling), we would still not fuse with the third
loop but we would eliminateA as well as the peeled iteration, as shown in
Figure 10. Clearly, both phase orderings lead to sub-optimal results. How-
ever, if we compile the code from Figure 9 with KAP — as if we applied
the KAP sequence of transformations twice — arrayA and the peeled iter-
ation are eliminated, allowing the compiler to fuse the three loops, eventu-
ally reaching the target optimized program of Figure 6.

These simple examples illustrate the artificial restrictions to transfor-
mation composition and the consequences on permuting or repeating trans-
formations in current syntactic compilers.Beyond parameter tuning, exist-
ing compilation infrastructures may not be very appropriate for iterative
compilation. By design, it is hard to modify either phase ordering or se-
lection, and it is even harder to get any transformation pattern to match a
significant part of the code after a long sequence of transformations.

2.2. Introduction to the Polyhedral Model

This section is a quick overview of the polyhedral framework; it also presents
notations used throughout the paper. A more formal presentation of the
model may be found in(14, 8). Polyhedral compilation usually distinguishes

Semi-Automatic Composition of Loop Transformations 13

three steps: one first has to represent an input program in theformalism,
then apply a transformation to this representation, and finally generate the
target (syntactic) code.

Consider the polynomial multiplication kernel in Figure 14(a). It only
deals with control aspects of the program, and we refer to thetwo compu-
tational statements (array assignments) through their names,S1 andS2. To
bypass the limitations of syntactic representations, the polyhedral model
is closer to the execution itself by consideringstatement instances. For
each statement we consider theiteration domain, where every statement
instance belongs. The domains are described using affine constraints that
can be extracted from the program control. For example, the iteration do-
main of statementS1, calledDS1

om, is the set of values(i) such that 2≤ i ≤ n
as shown in Figure 14(b); a matrix representation is used to represent such
constraints: in our example,DS1

om is characterized by

[

1 0−2
−1 2 0

]

(

i
n
1

)

≥ 0.

for (i=2; i<=2*n; i++)
S1 Z[i] = 0;

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)

S2 Z[i+j] += X[i] * Y[j]; 1

2

n
j

1 2 i

i>=1
i>=2

i<=n
j<=n

j>=1 i<=2n

S2
S1

S2
S2

S2 S1

n

instance of S1

2n

instance of S2

(a) Syntactic form (b) Polyhedral domains (n≥ 2)

Fig. 14. A polynomial multiplication kernel and its polyhedral domains

In this framework, a transformation is a set ofaffine scheduling func-
tions. Each statement has its own scheduling function which maps each
run-time statement instance to a logical execution date. Inour polynomial
multiplication example, an optimizer may notice a localityproblem and
discover a good data reuse potential over arrayZ, then suggestθS1(i) = (i)

andθS2

(

i
j

)

= (i+ j +1) to achieve better locality (see e.g.,(21) for a method

to compute such functions). The intuition behind such transformation is to
execute consecutively the instances ofS2 having the samei + j value (thus
accessing the same array element ofZ) and to ensure that the initialization
of each element is executed byS1 just before the first instance ofS2 re-
ferring this element. In the polyhedral model, a transformation is applied
following the template formula in Figure 15(a)(22), wherei is the iteration

14 Girbal, Vasilache et al.

vector,igp is the vector of constant parameters, andt is thetime-vector, i.e.
the vector of the scheduling dimensions. The next section will detail the
nature of these vectors and the structure of theΘ andΛ matrices. Notice in
this formula, equality constraints capture schedule modifications, and in-
equality constraints capture iteration domain modifications. The resulting
polyhedra for our example are shown in Figure 15(b), with theadditional
dimensiont.

(

I Θ
0 Λ

)

·









−t
i
igp

1









= 0
≥ 0

1

2

2
1

n

2n

1 2 n 2n

n

i

j

t

(a) Transformation template formula (b) Transformed polyhedra

Fig. 15. Transformation template and its application

Once transformations have been applied in the polyhedral model, one
needs to (re)generate the target code. The best syntax tree construction
scheme consists in a recursive application of domain projections and sepa-
rations(23, 22). The final code is deduced from the set of constraints describ-
ing the polyhedra attached to each node in the tree. In our example, the first
step is a projection onto the first dimensiont, followed by a separation into
disjoint polyhedra, as shown on the top of Figure 16(a). Thisbuilds the
outer loops of the target code (the loops with iteratort in Figure 16(b)).
The same process is applied onto the first two dimensions (bottom of Fig-
ure 16(a)) to build the second loop level and so on. The final code is shown
in Figure 16(b) (the reader may care to verify that this solution maximally
exploits temporal reuse of arrayZ). Note that the separation step for two
polyhedra needs three operations:DS1

om−D
S2
om,DS2

om−D
S1
om andDS2

om∩D
S1
om,

thus forn statements the worst-case complexity is 3n.
It is interesting to note that the target code, although obtained after only

one transformation step, is quite different from the original loop nest. In-
deed, multiple classical loop transformations are be necessary to simulate
this one-step optimization (among them, software pipelining and skewing).
The intuition is that arbitrarily complex compositions of classical transfor-

Semi-Automatic Composition of Loop Transformations 15

2
1

n

2n

1 2 ni

t

i<=n

i>=1

i<=t−2

i>=t−n−1

S1
i=t

2n

S1 alone

S2 alone

Projection

Projection
onto t

onto (t,i)

S2

S2

S2

S2

t=2
S1

t>=3
S1S2

t<=2n
S1S2 S2

S1 alone S1 and S2 S2 alone

t=2n+1

(a) Projections an separations

t=2; // Such equality is a loop running once
i=2;

S1 Z[i] = 0;
for (t=3; t<=2*n; t++)
for (i=max(1,t-n-1); i<=min(t-2,n); i++)

j = t-i-1;
S2 Z[i+j] += X[i] * Y[j]

i=t;
S1 Z[i] = 0;

t=2*n+1;
i=n;

j=n;
S2 Z[i+j] += X[i] * Y[j];

(b) Target code

Fig. 16. Target code generation

mations can be captured in one single transformation step ofthe polyhe-
dral model. This was best illustrated by affine scheduling(8, 10) and par-
titioning (11) algorithms. Yet, because black-box, model-based optimizers
fail on modern processors, we propose to step back a little bit and con-
sider again the benefits of composing classical loop transformations, but
using a polyhedral representation. Indeed, up to now, polyhedral optimiza-
tion frameworks have only considered the isolated application of one arbi-
trarily complex affine transformation. The main originality of our work is

16 Girbal, Vasilache et al.

to address thecomposition of program transformations on the polyhedral
representation itself. The next section presents the main ideas allowing to
define compositions of affine transformations without intermediate code
generation steps.

2.3. Isolating Transformations Effects

Let us now explain how our framework can separately and independently
represent the iteration domain, the statements schedule, the data layout
and the access functions of array references. At the same time, we will
outline why this representation has several benefits for theimplementation
of program transformations: (1) it is generic and can serve to implement
a large array of program transformations, (2) it isolates the root effects
of program transformations, (3) it allows generalized versions of classi-
cal loop transformations to be defined without reference to any syntactic
code, (4) this enables transparent composition of program transformations
because applying program transformations has no effect on the representa-
tion complexity that makes it less generic or harder to manipulate, (5) and
this eventually adds structure (commutativity, confluence, linearity) to the
optimization search space.

2.3.1. Principles

The scope of our representation is a sequence of loop nests with constant
strides and affine bounds. It includes non-rectangular loops, non-perfectly
nested loops, and conditionals with boolean expressions ofaffine inequali-
ties. Loop nests fulfilling these hypotheses are amenable toa representation
in the polyhedral model(24). We callStatic Control Part(SCoP) anymax-
imal syntactic program segmentsatisfying these constraints(25). In this
paper, we only describe analyses and transformations confined within a
given SCoP; the reader interested in techniques to extend SCoP coverage
(by preliminary transformations) or in partial solutions on how to remove
this scoping limitation (procedure abstractions, irregular control structures,
etc.) should refer to(26–35).

All variables that are invariant within a SCoP are calledglobal param-
eters; e.g.,M, N, P andQ are the global parameters of the introductory
example (see Figure 1). For each statement within a SCoP, therepresen-
tation separates four attributes, characterized by parameter matrices: the
iteration domain, the schedule, the data layout and the access functions.
Even though transformations can still be applied to loops orfull proce-
dures, they are individually applied to each statement.

Semi-Automatic Composition of Loop Transformations 17

2.3.2. Iteration domains

Strip-mining and loop unrolling only modify the iteration domain — the
number of loops or the loop bounds — but they do not affect the order in
which statement instances are executed (the program schedule) or the way
arrays are accessed (the memory access functions). To isolate the effect of
such transformations, we define a representation of the iteration domain.

Although the introductory example contains 4 loops,i, j, k and l , S2
andS3 have a different two-dimensional iteration domain. Let us consider
the iteration domain of statementS2; it is defined as follows:{(i, j) | 0≤
i, i ≤M−1,0≤ j, j ≤N−1}. The iteration domain matrix has one column
for each iterator and each global parameter, here respectively i, j andM,
N, P, Q. Therefore, the actual matrix representation of statementS2 is





i
1

j
0

M
0

N
0

P
0

Q
0

1
0

−1 0 1 0 0 0 −1
0 1 0 0 0 0 0
0−1 0 1 0 0 −1





0≤ i
i ≤M−1
0≤ j
j ≤ N−1

Example: implementing strip-miningAll program transformations that
only modify the iteration domain can now be expressed as a setof ele-
mentary operations on matrices (adding/removing rows/columns, and/or
modifying the values of matrix parameters). For instance, let us strip-mine
loop j by a factorB (a statically known integer), and let us consider the
impact of this operation on the representation of the iteration domain of
statementS2.

Two loop modifications are performed: loopjj is inserted before loop
j and has a stride ofB. In our representation, loopj can be described
by the following iteration domain inequalities:jj ≤ j, j ≤ jj + B− 1. For
the non-unit strideB of loop jj , we introducelocal variables to keep a
linear representation of the iteration domain. For instance, the strip-mined
iteration domain ofS2 is {(i, jj , j) | 0≤ j, j ≤ N− 1, jj ≤ j, j ≤ jj + B−
1, jj modB = 0,0≤ i, i ≤M−1}, and after introducing local variablejj2
such thatjj = B× jj2, the iteration domain becomes{(i, jj , j) | ∃jj2,0 ≤
j, j ≤ N− 1, jj ≤ j, j ≤ jj + B− 1, jj = B× jj2,0≤ i, i ≤ M− 1}4 and its
matrix representation is the following (withB = 64, and from left to right:
columnsi, jj , j, jj2, M, N, P, Q and the affine component):

4 The equationjj = B× jj2 is simply represented by two inequalitiesjj ≥B× jj2 andjj ≤B× jj2.

18 Girbal, Vasilache et al.



















i
1

j
0

jj
0

jj2
0

M
0

N
0

P
0

Q
0

1
0

−1 0 0 0 1 0 0 0 −1
0 0 1 0 0 0 0 0 0
0 0−1 0 0 1 0 0 −1
0−1 1 0 0 0 0 0 0
0 1−1 0 0 0 0 0 63
0−1 0 64 0 0 0 0 0
0 1 0 −64 0 0 0 0 0



















0≤ i
i ≤M−1
0≤ j
j ≤ N−1
jj ≤ j
j ≤ jj +63
jj ≤ 64× jj2
64× jj2 ≤ jj

Notations and formal definitionGiven a statementS within a SCoP, let
dS be the depth ofS, i the vector of loop indices to whichS belongs (the
dimension ofi is dS), i lv the vector ofdlv local variables added to linearize
constraints,igp the vector ofdgp global parameters, andΛS the matrix of
n linear constraints (ΛS hasn rows anddS+ dS

lv + dgp + 1 columns). The
iteration domain ofS is defined by

DS
om =

{

i | ∃i lv,ΛS×
[

i, i lv, igp,1
]t
≥ 0
}

.

2.3.3. Schedules

Feautrier(8), Kelly and Pugh(10), proposed an encoding that characterizes
the order of execution of each statement instance within code sections with
multiple and non-perfectly nested loop nests. We use a similar encoding for
SCoPs. The principle is to define atime stampfor each statement instance,
using the iteration vector of the surrounding loops, e.g., vector (i, j) for
statementS2 in the introductory example, and the static statement orderto
accommodate loop levels with multiple statements. This statement order is
defined for each loop level and starts to 0, e.g., the rank of statementS2 is
1 at depth 1 (it belongs to loopj which is the second statement at depth 1
in this SCoP), 0 at depth 2 (it is the first statement in loopj). And for each
statement, the encoding defines a schedule matrixΘ that characterizes the
schedule. E.g., the instance(i, j) of statementS2 is executed before the
instance(k, l) of statementS3 if and only if

ΘS2×
[

i, j,1
]t
≪ΘS3×

[

k, l ,1
]t

(the last component in the instance vector(i, j,1) — term 1 — is used
for the static statement ordering term). MatrixΘS2 is shown in Figure 17,
where the first two columns correspond toi, j and the last column corre-
sponds to the static statement order. The rows ofΘS2 interleave statement
order and iteration order so as to implement the lexicographic order: the
first row corresponds to depth 0, the second row to the iteration order of

Semi-Automatic Composition of Loop Transformations 19

loop i, the third row to the static statement order within loopi, the fourth
row to the iteration order of loopj, and the fifth row to the static state-
ment order within loopj. Now, the matrix of statementΘS3 in Figure 17
corresponds to a different loop nest with different iterators.

ΘS2 =









0 0 0
1 0 0
0 0 1
0 1 0
0 0 0









ΘS3 =









0 0 1
1 0 0
0 0 0
0 1 0
0 0 0









ΘS′2 =









0 0 0
0 1 0
0 0 1
1 0 0
0 0 0









ΘS′′2 =















0 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 0















Fig. 17. Schedule matrix examples

Still, thanks to the lexicographic order, the encoding provides a global
ordering, and we can check thatΘS2× [i, j,1]≪ΘS3× [k, l ,1]; in that case,
the order is simply characterized by the static statement order at depth 0.

Because the schedule relies on loop iterators, iteration domain mod-
ifications — such as introducing a new loop (e.g., strip-mining) — will
change theΘ matrix of all loop statements but not the schedule itself.
Moreover, adding/removing local variables has no impact onΘ.

We will later see that this global ordering of all statementsenables the
transparent application of complex transformations like loop fusion.

Formal definition Let AS be the matrix operating on iteration vectors,dS

the depth of the statement andβS the static statement ordering vector. The
schedule matrixΘs is defined by

ΘS =





















0 · · · 0 βS
0

AS
1,1 · · · AS

1,dS 0

0 · · · 0 βS
1

AS
2,1 · · · AS

2,dS 0
...

.. .
...

...

AS
dS,1
· · · AS

dS,dS 0

0 · · · 0 βS
dS





















20 Girbal, Vasilache et al.

Example: implementing loop interchange and tilingAs for unimodular
transformations, applying a schedule-only loop transformation like loop
interchange simply consists in swapping two rows of matrixΘ, i.e., really
two rows of matrix A. Consider loopsi and j the introductory example; the
new matrix forS2 associated with the interchange ofi and j is calledΘS′2

in Figure 17.
Now, tiling is a combination of strip-mining and loop interchange and

it involves both an iteration domain and a schedule transformation. In our
split representation, tiling loopj by a factorB simply consists in apply-
ing the iteration domain transformation in the previous paragraph (see the
strip-mining example) and the above schedule transformation on all state-
ments within loopsi and j. For statementS2, the only difference with the
above loop interchange example is that strip-mining introduces a new loop
iterator jj . The transformed matrix is calledΘS′′2 in Figure 17.

Extending the representation to implement more transformations For some
statement-wise transformations like shifting (or pipelining), i.e., loop shift-
ing for one statement in the loop body but not the others (e.g., statements
S2 andS3, after merging loopsi, k and j, l), more complex manipulations
of the statement schedule are necessary. In fact, the above schedule rep-
resentation is a simplified version of the actual schedule which includes a
third matrix component calledΓ. It adds one column to theΘ matrix for
every global parameter (e.g., 4 columns for the running example).

2.3.4. Access functions

Privatization modifies array accesses, i.e., array subscripts. For any array
reference, a given point in the iteration domain is mapped toan array ele-
ment (for scalars, all iteration points naturally map to thesame element). In
other words, there is a function that maps the iteration domain of any refer-
ence to array or scalar elements. A transformation like privatization modi-
fies this function: it affects neither the iteration domainsnor the schedules.

Consider array referenceB[j][i], in statementS2 after merging loops
i, k and j, l , and strip-mining loopj. The matrix for the corresponding ac-
cess function is simply (columns arei, jj , j,M,N,P,Q, and the scalar com-
ponent, from left to right):

[

0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0

]

.

Formal definition For each statementS, we define two setsLS
hs andR S

hs of
(A, f) pairs, each pair representing a reference to variableA in the left or

Semi-Automatic Composition of Loop Transformations 21

right hand side of the statement;f is theaccess functionmapping iterations
in DS

om to A elements.f is a function of loop iterators, local variables and
global parameters. The access functionf is defined by a matrix F such that

f (i) = F×
[

i, i lv , igp,1
]t

.

Example: implementing privatizationConsider again the example in Fig-
ure 1 and assume that, instead of splitting statementZ[i]=0 to enable
tiling, we want to privatize arrayZ over dimensionj (as an alternative). Be-
sides modifying the declaration ofZ (see next section), we need to change
the subscripts of references toZ, adding a row to each access matrix with a
1 in the column corresponding to the new dimension and zeroeselsewhere.
E.g., privatization ofLS2

hs yields
{(

Z, [1 0 0 0 0 0 0]
)}

−→
{(

Z,
[

1 0 0 0 0 0 0
0 1 0 0 0 0 0

])}

.

2.3.5. Data layout

Some program transformations, like padding, only modify the array decla-
rations and have no impact on the polyhedral representationof statements.
It is critical to define these transformations through a separate representa-
tion of the mapping of virtual array elements to physical memory location.
This paper does not bring any improvement to the existing solutions to this
problem(20), which are sufficiently mature already to express complex data
layout transformations.

Notice a few program transformations can affect both array declara-
tions and array statements. For instance, array merging (combining several
arrays into a single one) affects both the declarations and access functions
(subscripts change); this transformation is sometimes used to improve spa-
tial locality. We are working on an extension of the representation to ac-
commodate combined modifications of array declarations andstatements,
in the light of(20). This extension will revisit the split of the schedule matrix
into independent parts with separated concerns, to facilitate the expression
and the composition of data layout transformations. A similar split may be
applicable to access functions as well.

2.4. Putting it All Together

Our representation allows us to compose transformations without reference
to a syntactic form, as opposed to previous polyhedral models where a
single-step transformation captures the whole loop nest optimization (8, 11)

or intermediate code generation steps are needed(9, 10).

22 Girbal, Vasilache et al.

Let us better illustrate the advantage of expressing loop transforma-
tions as “syntax-free” function compositions, considering again the exam-
ple in Figure 1. The polyhedral representation of the original program is
the following; statements are numberedS1, S2 andS3, with global param-
etersigp = [M,N,P,Q]t.

Statement iteration domains

ΛS1 =
[

1 0000 0
−1 1000 −1

]

0≤ i
i ≤M−1

ΛS2 =





1 0 0000 0
−1 0 1000 −1
0 1 0000 0
0 −1 0100 −1





0≤ i
i ≤M−1
0≤ j
j ≤ N−1

ΛS3 =





1 0 0000 0
−1 0 0010 0
0 1 0000 0
0 −1 0001 0





0≤ i
i ≤ P
0≤ j
j ≤Q

Statement schedules

AS1 = [1]

βS1 = [00]t

ΓS1 = [0000 0]

i.e. ΘS1 =

[

0 0
1 0
0 0

]

AS2 =
[

10
01

]

βS2 = [010]t

ΓS2 =
[

0000 0
0000 0

]

i.e.ΘS2 =









00 0
10 0
00 1
01 0
00 0









AS3 =
[

10
01

]

βS3 = [110]t

ΓS3 =
[

0000 0
0000 0

]

i.e. ΘS3 =









00 1
10 0
00 1
01 0
00 0









Statement access functions

L
S1
hs=

{(

Z, [100000]
)}

R
S1

hs =
{ }

L
S2
hs =

{(

Z, [1000000]
)}

R
S2

hs =
{(

Z, [1000000]
)

,
(

A,
[

1000000
0100000

])

,
(

B,
[

0100000
1000000

])

,
(

X, [0100000]
)}

L
S3
hs =

{(

Z, [1000000]
)}

R
S3

hs =
{(

Z, [1000000]
)

,
(

A,
[

1000000
0100000

])

,
(

X, [0100000]
)}

Step1: merging loops i and kWithin the representation, merging loops
i andk only influences the schedule of statementS3, i.e., ΘS3. No other
part of the polyhedral program representation is affected.After merging,
statementS3 has the same static statement order at depth 0 asS2, i.e., 0; its
statement order at depth 1 becomes 2 instead of 1, i.e., it becomes the third
statement of merged loopi.

Semi-Automatic Composition of Loop Transformations 23

βS3 = [0 2 0]t

Step2: merging loops j and lThanks to the normalization rules on the
polyhedral representation, performing the previous step does not require
the generation of a fresh syntactic form to apply loop fusionagain on in-
ternal loopsj andl . AlthoughΘS3 has been modified, its internal structure
still exhibits all opportunities for further transformations. This is a strong
improvement on previous polyhedral representations.

Again, internal fusion of loopsj and l only modifiesΘS3. Its static
statement order at depth 2 is now 1 instead of 0, i.e., it is thesecond state-
ment of merged loopj.

βS3 = [0 1 1]t

Step3: fissionThe fission of the first loop to split-out statementZ[i]=0
has an impact onΘS2 andΘS3 since their statement order at depth 0 is now
1 instead of 0 (Z[i]=0 is now the new statement of order 0 at depth 0),
while their statement order at depth 1 (loopi) is decreased by 1.

βS2 = [1 0 0]t βS3 = [1 0 1]t

Step4: strip-mining j Strip-mining loop j only affects the iteration do-
mains of statementsS2 andS3: it adds a local variable and an iterator (and
thus 2 matrix columns toΛS2 andΛS3) plus 4 rows for the new inequalities.
It also affects the structure of matricesΘS2 andΘS3 to take into account
the new iterator, but it does not change the schedule.ΛS2 is the same as the
domain matrix forS′2 in Section 2.3.2, and the other matrices are:

ΛS3 =

























1 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 1 0−1

0 0 1 0 0 0 0 0 0
0 0−1 0 0 0 0 1−1
0−1 1 0 0 0 0 0 0
0 1−1 0 0 0 0 0 63
0−1 0 640 0 0 0 0
0 1 0−640 0 0 0 0

























0≤ i
i ≤ P−1
0≤ j
j ≤Q−1
jj ≤ j
j ≤ jj +63
jj ≤ 64jj2
64jj2≤ jj

AS2 =

[

1 0 0
0 1 0
0 0 1

]

,βS2 = [1 0 0 0]t and AS3 =

[

1 0 0
0 1 0
0 0 1

]

,βS3 = [1 0 0 1]t

24 Girbal, Vasilache et al.

Step5: strip-mining iStrip-mining i has exactly the same effect for loopi
and modifies the statementsS2 andS3 accordingly.

Step6: interchanging i and jAs explained before, interchangingi and j
simply consists in swapping the second and fourth row of matricesΘS2 and
ΘS3, i.e., the rows of AS2 and AS3

AS2 = AS3 =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



−→ΘS2 =





















0 0 0 0 1
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0





















−→ΘS3 =





















0 0 0 0 1
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1





















SummaryOverall, none of the transformations has increased the number of
statements. Only transformations which add new loops and local variables
increase the dimension of some statement matrices but they do not make
the representation less generic or harder to use for compositions, since they
enforce the normalization rules.

2.5. Normalization Rules

The separation between the domain, schedule, data layout and access func-
tions attributes plays a major role in the compositionalityof polyhedral
transformations. Indeed, actions on different attributescompose in a triv-
ial way, e.g., strip-mining (iteration domain), interchange (schedule) and
padding (data layout). Nevertheless, the previous definitions do not, alone,
guarantee good compositionality properties. To achieve our goal, we need
to define additional normalization rules.

A given program can have multiple polyhedral representations. This is
not harmless when the applicability of a transformation relies on the satis-
faction of representation prerequisites. For example, it is possible to merge
two statements in two loops only if these two statements are consecutive at
the loops depth; e.g., assume the statement order of these two statements
is respectively 0 and 2 instead of 0 and 1; the statement order(and thus
the schedule) is the same but the statements are not consecutive and fu-
sion seems impossible without prior transformations. Evenworse, if the
two statements have identicalβ vectors, fusion makes sense only if their
schedules span disjoint time iterations, which in turn depends on both their
A andΓ components, as well as their iteration domains. Without enforcing

Semi-Automatic Composition of Loop Transformations 25

strong invariants to the representation, it is hopeless to define a program
transformation uniquely from the matrices.Normalizingthe representation
after each transformation step is a critical contribution of our framework.
It proceeds as follows.

Schedule matrix structure. Among many encodings, we choose to parti-
tion Θ into three components: matrices A (for iteration reordering) and
Γ (iteration shifting), and vectorβ (statement reordering, fusion, fis-
sion), capturing different kinds of transformations. Thisavoids cross-
pollution between statement and iteration reordering, removing expres-
siveness constraints on the combination of loop fusion withunimodular
transformations and shifting. It allows to compose schedule transfor-
mations without a costly normalization to the Hermite normal form.

Sequentiality. This is the most important idea that structures the whole
unified representation design. In brief, distinct statements, or identi-
cal statements in distinct iterations, cannot have the sametime stamp.
Technically, this rule is slightly stronger than that: we require that the
A component of the schedule matrix is non-singular, that allstatements
have a differentβ vector, and that noβ vector may be the prefix of an-
other one.

This invariant brings two strong properties: (1) it suppresses schedul-
ing ambiguities at code generation time, and (2) it guarantees that rule-
compliant transformation of the schedule and will preservesequential-
ity of the whole SCoP, independently of iteration domains. The first
property is required to give the scheduling algorithm full control on
the generated code. The second one is a great asset for separating the
concerns when defining, applying or checking a transformation; do-
main and schedule are strictly independent, as much as modifications
to A may ignore modifications toβ and vice versa.

It is very important to understand that schedule sequentiality is in no
way a limitation in the context of deeply and explicitly parallel archi-
tectures. First of all, parallel affine schedules are not theonly way to
express parallelism (in fact, they are mostly practical to describe bulk-
synchronous parallelism), and in case they would be used to specify a
partial ordering of statement instances, it is always possible to extend
the schedule with “spatial” dimensions to make A invertible(36).

Schedule density. Ensure that all statements at the same depth have a con-
secutiveβ ordering (no gap).

Domain density. Generation of efficient imperative code when scanning
Z-polyhedra (a.k.a. lattice polyhedra or linearly bounded lattices) is

26 Girbal, Vasilache et al.

known to be a hard problem(37, 21). Although not an absolute require-
ment, we try to define transformations that do not introduce local vari-
ables in the iteration domain. In particular, we will see in the next sec-
tion that we use a different, less intuitive and more implicit definition
of strip-mining to avoid the introduction of a local variable in the con-
straint matrix.

Domain parameters. Avoid redundant inequalities and try to reduce inte-
ger overflows in domain matricesΛ by normalizing each row.

3. REVISITING CLASSICAL TRANSFORMATIONS

The purpose of this section is to review, with more detail, the formal defi-
nition of classical transformations in our compositional setting. Let us first
define elementary operations calledconstructors. Constructors make no
assumption about the representation invariants and may violate them.

Given a vectorv and matrix M with dim(v) columns and at leasti
rows, AddRow(M, i,v) inserts a new row at positioni in M and fills it
with the value of vectorv, RemRow(M, i) does the opposite transforma-
tion. AddCol(M, j,v) andRemCol(M, j) play similar roles for columns.

Moving a statementS forward or backward is a common operation:
the constructorMove(P,Q,o) leaves all statements unchanged except those
satisfying

∀S∈ Scop,P⊑ βS∧ (Q≪ βS∨Q⊑ βS) : βS
dim(P)← βS

dim(P) +o,

whereu⊑ v denotes thatu is a prefix ofv, whereP andQ arestatement
ordering prefixess.t.P⊑ Q defining respectively the context of the move
and marking the initial time-stamp of statements to be moved, and where
offset o is the value to be added to the component at depth dim(P) of
any statement ordering vectorβS prefixed byP and following Q. If o is
positive,Move(P,Q,o) insertso free slots before all statementsSpreceded
by the statement ordering prefixQ at the depth ofP; respectively, ifo is
negative,Move(P,Q,o) deletes−o slots.

3.1. Transformation Primitives

From the earlier constructors, we define transformationprimitivesto serve
as building blocks for transformation sequences. These primitives do en-
force the normalization rules. Figure 18 lists typical primitives affecting
the polyhedral representation of a statement.1k denotes the vector filled
with zeros but elementk set to 1, i.e.,(0, . . . ,0,1,0, . . . ,0); likewise, 1i, j
denotes the matrix filled with zeros but element(i, j) set to 1.

Semi-Automatic Composition of Loop Transformations 27

Like theMove constructor, primitives do not directly operate on loops
or statements, but target a collection of statements and polyhedra whose
statement-ordering vectors share a common prefix P. There are no prereq-
uisites on the program representation to the application and composition
of primitives.

We also specified a number of optionalvalidity prerequisitesthat con-
servatively check for the semantical soundness of the transformation, e.g.,
there are validity prerequisites to check that no dependence is violated by a
unimodular or array contraction transformation. When exploring the space
of possible transformation sequences, validity prerequisites avoid wasting
time on corrupt transformations.

FUSION and FISSION best illustrate the benefit of designing loop trans-
formations at the abstract semantical level of our unified polyhedral repre-
sentation. First of all, loop bounds are not an issue since the code generator
will handle any overlapping of iteration domains. For the fission primitive,
vector(P,o) prefixes all statements concerned by the fission; and parame-
terb indicates the position where statement delaying should occur. For the
fusion primitive, vector(P,o+1) prefixes all statements that should be in-
terleaved with statements prefixed by(P,o). Eventually, notice that fusion
followed by fission — with the appropriate value ofb — leaves the SCoP
unchanged.

The expressive power of the latter two transformations can be general-
ized through the very expressive MOTION primitive. This transformation
can displace a block of statements prefixed byP to a location identified by
vectorT, preserving the nesting depth of all statements and enforcing nor-
malization rules. This transformation ressembles a polyhedral “cut-and-
paste” operation that completely abstracts all details of the programs other
than statement ordering in multidimensional time. This primitive uses an
additional notation: pfx(V,d) computes the sub-vector composed of the
first d components ofV.

UNIMODULAR implements any unimodular transformation, extended
to arbitrary iteration domains and loop nesting. U denotes aunimodular
matrix. Notice the multiplication operates on both Aand Γ, effectively
updating the parametric shift along with skewing, reversaland interchange
transformations, i.e., preserving the relative shift withrespect to the time
dimensions it was applied upon.

SHIFT implements a kind of hierarchical software pipelining on the
source code. It is extended with parametric iteration shifts, e.g., to delay a
statement byN iterations of one surrounding loop. Matrix M implements
the parameterized shift of the affine schedule of a statement. M must have
the same dimension asΓ.

28 Girbal, Vasilache et al.

CUTDOM constrains a domain with an additional inequality, in the
form of a vectorc with the same dimension as a row of matrixΛ.

EXTEND inserts a new intermediate loop level at depthℓ, initially re-
stricted to a single iteration. This new iterator will be used in following
code transformations.

ADDLOCALVAR insert a fresh local variable to the domain and to the
access functions. This local variable is typically used by CUTDOM.

PRIVATIZE and CONTRACT implement basic forms of array privati-
zation and contraction, respectively, considering dimension ℓ of the array.
Privatization needs an additional parameters, the size of the additional di-
mension;s is required to update the array declaration (it cannot be inferred
in general, some references may not be affine). These primitives are simple
examples updating the data layout and array access functions.

This table is not complete (e.g., it lacks index-set splitting and data-
layout transformations), but it demonstrates the expressiveness of the uni-
fied representation.

Syntax Effect

UNIMODULAR(P,U) ∀S∈ Scop | P⊑ βS,AS← U.AS; ΓS← U.ΓS

SHIFT(P,M) ∀S∈ Scop | P⊑ βS,ΓS← ΓS+M
CUTDOM(P,c) ∀S∈ Scop | P⊑ βS,ΛS← AddRow

(

ΛS,0,c/gcd(c1, . . . ,cdS+dS
lv+dgp+1)

)

EXTEND(P,ℓ,c) ∀S∈ Scop | P⊑ βS,























dS← dS+1; ΛS← AddCol(ΛS,c,0);
βS← AddRow(βS,ℓ,0);
AS← AddRow(AddCol(AS,c,0),ℓ,1ℓ);
ΓS← AddRow(ΓS,ℓ,0);
∀(A,F) ∈ LS

hs∪R
S

hs,F← AddRow(F,ℓ,0)

ADDLOCALVAR(P) ∀S∈ Scop | P⊑ βS,dS
lv ← dS

lv +1; ΛS← AddCol(ΛS,dS+1,0);
∀(A,F) ∈ LS

hs∪R
S

hs,F← AddCol(F,dS+1,0)

PRIVATIZE(A,ℓ) ∀S∈ Scop,∀(A,F) ∈ LS
hs∪R

S
hs,F← AddRow(F,ℓ,1ℓ)

CONTRACT(A,ℓ) ∀S∈ Scop,∀(A,F) ∈ LS
hs∪R

S
hs,F← RemRow(F,ℓ)

FUSION(P,o) b = max{βS
dim(P)+1 | (P,o)⊑ βS}+1

Move((P,o+1),(P,o+1),b); Move(P,(P,o+1),−1)
FISSION(P,o,b) Move(P,(P,o,b),1); Move((P,o+1),(P,o+1),−b)

MOTION(P,T) if dim(P)+1= dim(T) thenb = max{βS
dim(P)

| P⊑ βS}+1 elseb = 1
Move(pfx(T,dim(T)−1),T,b)
∀S∈ Scop | P⊑ βS,βS← βS+T−pfx(P,dim(T))
Move(P,P,−1)

Fig. 18. Some classical transformation primitives

Primitives operate on program representation while maintaining the
structure of the polyhedral components (the invariants). Despite their fa-
miliar names, the primitives’ practical outcome on the program represen-
tation is widely extended compared to their syntactic counterparts. Indeed,
transformation primitives like fusion or interchange apply to sets of state-

Semi-Automatic Composition of Loop Transformations 29

ments that may be scattered and duplicated at many differentlocations in
the generated code. In addition, these transformations arenot properloop
transformations anymore, since they apply to sets of statement iterations
that may have completely different domains and relative iteration sched-
ules. For example, one may interchange the loops surrounding one state-
ment in a loop body without modifying the schedule of other statements,
and without distributing the loop first. Another example is the fusion of
two loops with different domains without peeling any iteration.

Previous encodings of classical transformations in a polyhedral setting
— most significantly(9) and (10) — use Presburger arithmetic as an ex-
pressiveoperatingtool for implementing and validating transformations.
In addition to operating on polytopes, our workgeneralizesloop trans-
formations to more abstractpolyhedral domaintransformations, without
explicitly relying on a nested loop structure with known bounds and array
subscripts to define the transformation.

Instead of anchoring loop transformations to a syntactic form of the
program, limitting ourselves to what can be expressed with an imperative
semantics, we define higher level transformations on the polyhedral rep-
resentation itself, abstracting away the overhead (versioning, duplication)
and constraints of the code generation process (translation to an impera-
tive semantics).

Naturally, this higher-level framework is beneficial for transformation
composition. Figure 19 composes primitives into typical transformations.
INTERCHANGEswaps the roles ofio andio+1 in the schedule of the match-
ing statements; it is a fine-grain extension of the classicalinterchange mak-
ing no assumption about the shape of the iteration domain. SKEW and
REVERSE define two well known unimodular transformations, with re-
spectively the skew factors with it’s coordinates(ℓ,c), and the deptho
of the iterator to be reversed. STRIPM INE introduces a new iterator to strip
the schedule and iteration domain of all statements at the depth of P into
intervals of lengthk (wherek is a statically known integer). This trans-
formation is a sequence of primitives and does not resort to the insertion
of any additional local variable, see Figure 19. TILE extends the classical
loop tiling at of the two nested loops at the depth ofP, usingk×k blocks,
with arbitrary nesting and iteration domains. Tiling and strip-mining al-
ways operate ontime dimensions, hence the propagation of a line from
the schedule matrix (from A andΓ) into the iteration domain constraints;
it is possible to tile the surrounding time dimensions of anycollection of
statements with unrelated iteration domains and schedules.

30 Girbal, Vasilache et al.

Syntax Effect Comments

INTERCHANGE(P,o) ∀S∈ Scop | P⊑ βS,
swap rowso ando+1

{

U = IdS−1o,o−1o+1,o+1+1o,o+1+1o+1,o;
UNIMODULAR(βS,U)

SKEW(P,ℓ,c,s) ∀S∈ Scop | P⊑ βS,
add the skew factor

{

U = IdS +s·1ℓ,c;
UNIMODULAR(βS,U)

REVERSE(P,o) ∀S∈ Scop | P⊑ βS,
put a -1 in (o,o)

{

U = IdS−2·1o,o;
UNIMODULAR(βS,U)

STRIPM INE(P,k) ∀S∈ Scop | P⊑ βS,






















c = dim(P);
EXTEND(βS,c,c);
u = dS+dS

lv +dgp+1;
CUTDOM(βS,−k ·1c +(AS

c+1,Γ
S
c+1));

CUTDOM(βS,k ·1c− (AS
c+1,Γ

S
c+1)+(k−1)1u)

insert intermediate loop
constant column
k · ic ≤ ic+1
ic+1 ≤ k · ic +k−1

T ILE(P,o,k1,k2) ∀S∈ Scop | (P,o)⊑ βS,






STRIPM INE((P,o),k2);
STRIPM INE(P,k1);
INTERCHANGE((P,0),dim(P))

strip outer loop
strip inner loop
interchange

Fig. 19. Composition of transformation primitives

3.2. Implementing Loop Unrolling

In the context of code optimization, one of the most important transforma-
tions is loop unrolling. A naive implementation of unrolling with statement
duplications may result in severe complexity overhead for further transfor-
mations and for the code generation algorithm (its separation algorithm
is exponential in the number of statements, in the worst case). Instead
of implementing loop unrolling in the intermediate representation of our
framework, we delay it to the code generation phase and perform full loop
unrolling in alazyway. This strategy is fully implemented in the code gen-
eration phase and is triggered by annotations (carrying depth information)
of the statements whose surrounding loops need to be unrolled; unrolling
occurs in the separation algorithm of the code generator(22) when all the
statements being printed out are marked for unrolling at thecurrent depth.

Practically, in most cases, loop unrolling by a factorb an be imple-
mented as a combination ofstrip-mining(by a factorb) andfull unrolling
(6). Strip-mining itself may be implemented in several ways in apolyhedral
setting. Following our earlier work in(7) and callingb the strip-mining fac-
tor, we choose to model a strip-mined loop by dividing the iteration span of
the outer loop byb instead of leaving the bounds unchanged and inserting
a non-unit strideb, see Figure 20.

Semi-Automatic Composition of Loop Transformations 31

for(i=ℓ(x); i<=u(x); i++) strip-mine(b)
−→

for(t1=
⌊

ℓ(x)
b

⌋

; t1<=
⌊

u(x)
b

⌋

; t1++)

for(t2=max(ℓ(x),b*t1); t2<=min(u(x),b*t1+b-1); t2++)

Fig. 20. Generic strip-mined loop after code generation

This particular design preserves the convexity of the polyhedra repre-
senting the transformed code, alleviating the need for specific stride recog-
nition mechanisms (based, e.g., on the Hermite normal form).

In Figure 21(b) we can see how strip-mining the original codeof Fig-
ure 21(a) by a factor of 2 yields an internal loop with non-trivial bounds.
It can be very useful to unroll the innermost loop to exhibit register reuse
(a.k.a. register tiling), relax scheduling constraints and diminish the impact
of control on useful code. However, unrolling requires to cut the domains
so thatmin andmax constraints disappear from loop bounds. Our method
is presented in more detail in(38); it intuitively boils down to finding condi-
tionals (lower bound and upper bound)such that their difference is a non-
parametric constant: the unrolling factor. Hoisting these conditionals actu-
ally amounts to splitting the outer strip-mined loop into a kernel part where
the inner strip-mined loop will be fully unrolled, and a remainder part (not
unrollable) spanning at most as many iterations as the strip-mining fac-
tor. In our example, the conditions associated with a constant trip-count
(equal to 2) aret2>=2*t1 andt2<=2*t1+1 and are associated with the
kernel, separated from the prologue where2*t1<M and from the epilogue
where2*t1+1>N. This separation leads to the more desirable form of Fig-
ure 21(c).

Finally, instead of implementing loop unrolling in the intermediate rep-
resentation of our framework, we delay it to the code generation phase and
perform full loop unrolling in a lazy way, avoiding the added(exponential)
complexity on the separation algorithm. This approach relies on a prelim-
inary strip-mine step that determines the amount of partialunrolling.

3.3. Parallelizing Transformations

Most parallelizing compilers rely on loop transformationsto extract and
expose parallelism, from vector and instruction-level to thread-level forms
of parallelism (39–42, 18, 43–46). The most common strategy is to compose
loop transformations to extract parallel (doall) or pipeline (doacross)
loops(41). The main transformations include privatization(47, 48, 32)for de-

32 Girbal, Vasilache et al.

for(t1=M; t1<=N; t1++)
S1(i = t1);

(a) Original code

for(t1=M/2; t1<=N/2; t1++)
for(t2=max(M,2*t1);

t2<=min(N,2*t1+1); t2++)
S1(i = t2);

(b) Strip-mining of 2

if(M%2==1)
S1(i = M);

for(t1=(M+1)/2; t1<=(N-1)/2; t1++)
S1(i = 2*t1);
S1(i = 2*t1+1);

if(N%2==0)
S1(i = N);

(c) Separation & unrolling

Fig. 21. Strip-mining and unrolling transformation

pendence removal and unimodular transformations or node splitting to re-
arrange dependences(49, 6).

Many academic approaches to automatic parallelization have used the
polyhedral model — and partially ordered affine schedules inparticular —
to describe fine grain vector(50, 8, 51)or systolic(52, 53) parallelism. Affine
schedules have also been applied to the extraction and characterization of
bulk-synchronous parallelism(11, 36, 13). Array expansion is a generaliza-
tion of privatization that leverages on the precision of array dependence
analysis in the polyhedral model(54, 55, 33). Array contraction(6, 13) and its
generalization called storage mapping optimization(56–58)allows to control
the overhead due to expansion techniques.

Our work does not aim at characterizing parallel execution with par-
tially ordered affine schedules. In this sense, we prefer themore general
and decoupled approach followed by traditional parallelizing compilers
where parallelism is a separate concern. Loop transformations expressed
on the schedule parts of the representation are seen asenablingtransfor-
mations to extract parallel loops or independent instructions in loop bodies.
These enabling transformations are associated with a precise dependence

Semi-Automatic Composition of Loop Transformations 33

analysis to effectively allow to generate code with parallel execution anno-
tations, using e.g., OpenMP.5

Recent works are indeed suggesting that parallelism is better expressed
as a result of sophisticated analyses and annotations on theprogram than
using rigid partial orders defined by multi-dimensional affine schedules.
For example, a modernized version of Polaris has been used to(fully) au-
tomatically extract vast amounts of effectively exploitable parallelism in
scientific codes, usinghybrid analysis: a combination of static, dynamic
and speculative dependence tests(62). Yet these results usedno prior loop
transformation to enhance scalability through additionalparallelism ex-
traction or to coarsen its grain. Although we cannot show any empirical
evidence yet, we believe the same reason why our framework improves on
single-threaded optimizations (flexibility to express complex transforma-
tion sequences) will bring more scalability and robustnessto these promis-
ing hybrid parallelization techniques.

3.4. Facilitating the Search for Compositions

To conclude this section, we study how our polyhedral representation with
normalization rules for compositionality can further facilitate the search
for complex transformation sequences.

We have seen that applying a program transformation simply amounts
to recomputing the matrices of a few statements. This is a major increase
in flexibility, compared to syntactic approaches where the code complexity
increases with each transformation. It is still the case forprefetching and
strip-mining, where, respectively, a statement is added and matrix dimen-
sions are increased; but the added complexity is fairly moderate, and again
the representation is no less generic.

3.4.1. Transformation Space

Commutativity properties are additional benefits of the separation into four
representation aspects and the normalization rules. In general, data and
control transformations commute, as well as statement reordering and it-
eration reordering. For example, loop fusion commutes withloop inter-
change, statement reordering, loop fission and loop fusion itself. In the ex-
ample detailed in Section 2.4, swapping fusion and fission has no effect on
the resulting representation; the first row ofβ vectors below shows double
fusion followed by fission, while the second row shows fissionfollowed
by double fusion.

5 We implemented an exact one when all array accesses are affine(59); graceful degradations
exist for the general case(60, 61)but are not supported yet.

34 Girbal, Vasilache et al.

βS1 = [0 0]
βS2 = [0 1 0]
βS3 = [1 0 0]

→
βS1 = [0 0]
βS2 = [0 1 0]
βS3 = [0 2 0]

→
βS1 = [0 0]
βS2 = [0 1 0]
βS3 = [0 1 1]

↓ ↓
βS1 = [0 0]
βS2 = [1 0 0]
βS3 = [2 0 0]

→
βS1 = [0 0]
βS2 = [1 0 0]
βS3 = [1 1 0]

→
βS1 = [0 0]
βS2 = [0 1 0]
βS3 = [0 1 1]

Confluence properties are also available: outer loop unrolling and fu-
sion (unroll-and-jam) is strictly equivalent to strip-mining, interchange and
full unrolling. The latter sequence is the best way to implement unroll-and-
jam in our framework, since it does not require statement duplication in the
representation itself but relies on lazy unrolling. In general, strip-mining
leads to confluent paths when combined with fusion or fission.

Such properties are useful in the context of iterative searches because
they may significantly reduce the search space, and they alsoimprove the
understanding of its structure, which in turn enables more efficient search
strategies(2).

Strip-mining and shifting donot commute. However applying shifting
after strip-mining amounts to intra-tile pipelining (the last iteration of a
tile stays in that tile), whereas the whole iteration space is pipelined across
tiles when applying strip-mining after shifting (the last iteration of a tile
being shifted towards the first iteration of the next tile).

3.4.2. When changing a sequence of transformations simply means
changing a parameter

Finally, the code representation framework also opens up a new approach
for searching compositions of program transformations. Since many pro-
gram transformations have the only effect of modifying the matrix param-
eters, an alternative is todirectly search the matrix parameters themselves.
In some cases, changing one or a few parameters is equivalentto perform-
ing a sequence of program transformations, making this search much sim-
pler and more systematic.

For instance, consider theΘS3 matrix of Section 2.3.3 and now as-
sume we want to systematically search schedule-oriented transformations.
A straightforward approach is to systematically search theΘS3 matrix pa-
rameters themselves. Let us assume that, during the search we randomly
reach the following matrix:

Semi-Automatic Composition of Loop Transformations 35

ΘS′3 =









0 0 0
0 1 0
0 0 1
1 0 0
0 0 1









This matrix has 7 differences with the originalΘS3 matrix of Sec-
tion 2.3.3, and these differences actually correspond to the composition
of 3 transformations: loop interchange (loopsk and l), outer loop fusion
(loopsi andk) and inner loop fusion (loopsj andl). In other words, search-
ing the matrix parameters is equivalent to searching for compositions of
transformations.

Furthermore, assuming that a full polyhedral dependence graph has
been computed,6 it is possible to characterize theexact set of all sched-
ule, domain and access matrices associated with legal transformation se-
quences. This can be used to quickly filter out or correct any violating
transformation(63), or even better, using the Farkas lemma as proposed
by Feautrier(8), to recast this implicit characterization into an explicitlist
of domains (of Farkas multipliers) enclosing the very values of all matrix
coefficients associated with legal transformations. Searching for a proper
transformation within this domain would be amenable to mathematical
tools, like linear programming, promising better scalability than genetic
algorithms on plain transformation sequences. This idea isderived from
the “chunking” transformation for automatic locality optimization (64, 63);
it is the subject of active ongoing work.

4. HIGHER PERFORMANCE REQUIRES COMPOSITION

We have already illustrated the need for long sequences of composed trans-
formations and the limitations of syntactic approaches on the synthetic ex-
ample of Section 2.1. This section provides similar empirical evidence on
realistic benchmarks, focusing on single-thread performance and locality
optimizations although it also applies to automatic parallelization.

We manuallyoptimized 12 SPECfp2000 benchmarks (out of 14) and
were able to outperform the peak SPEC performance(65) (obtained in
choosing the most appropriate compiler flags) for 9 of them(5).7 We detail
below the composition sequences for 4 of these benchmarks, the associated
syntactic limitations and how we override them.

6 Our tool performs on-demand computation, with lists of polyhedra capturing the (exact)
instance-wise dependence information between pairs of references.

7 The 3 other benchmarks could not be optimized manually in a “reasonable” amount of time,
following the empirical methodology presented in(5).

36 Girbal, Vasilache et al.

4.1. Manual Optimization Results

Our experiments were conducted on an HP AlphaServer ES45, 1GHz Al-
pha 21264C EV68 (1 processor enabled) with 8MB L2 cache and 8GB of
memory. We will compare our optimized versions with thebaseSPEC per-
formance, i.e., the output of the HP Fortran (V5.4) and C (V6.4) compiler
(-arch ev6 -fast -O5 ONESTEP) using the KAP Fortran preprocessor
(V4.3). We will also compare with thepeakSPEC performance. Figure 22
summarizes the speedup with respect to the base SPEC performance.

4.1.1. Methodology

Our approach follows an empirical methodology forwhole programop-
timization, taking all architecture components into account, using the HP
EV68 processor simulator. Even though this optimization process is out of
the scope of this article, we briefly describe it in the next paragraphs.

Peak SPECManual Peak SPECManual
swim 1.00 1.61 galgel 1.04 1.39
wupwise 1.20 2.90 applu 1.47 2.18
apsi 1.07 1.23 mesa 1.04 1.42
ammp 1.18 1.40 equake 2.65 3.22
mesa 1.12 1.17 mgrid 1.59 1.45
fma3d 1.32 1.09 art 1.22 1.07

Fig. 22. Speedup for 12 SPECfp2000 benchmarks

This methodology is captured in a decision tree: we iteratedynamic
analysisphases of the program behavior, using HP’s cycle-accurate simu-
lator, decisionphases to choose the next analysis or transformation to per-
form, and program transformation phases to address a given performance
issue. After each transformation, the performance is measured on the real
machine to evaluate the actual benefits/losses, then we run anew analysis
phase to decide whether it is worth iterating the process andapplying a
new transformation. Though this optimization process is manual, it is also
systematicand iterative, the path through the decision tree being guided by
increasingly detailed performance metrics. Except for precisely locating
target code sections and checking the legality of program transformations,
it could almost perform automatically.

From a program transformation point of view, our methodology re-
sults in a structured sequence of transformations applied to various code
sections. In the examples below, for each program, we focus on one to
three code sections where multiple transformations are iteratively applied,
i.e., composed. We make the distinction between thetarget transforma-
tions identified through dynamic analysis, e.g., loop tiling to reduce TLB

Semi-Automatic Composition of Loop Transformations 37

misses, and theenabling transformations to apply the target transforma-
tions themselves, e.g., privatization for dependence removal.

4.1.2. Transformation sequences

In the following, we assume an aggressive inlining of all procedure calls
within loops (performed by KAP in most cases). The examples in Fig-
ures 26, 24 and 23 show a wide variability in transformation sequences
and ordering. Each analysis and transformation phase is depicted as a gray
box, showing the time difference when executing thefull benchmark(in
seconds, a negative number is a performance improvement); the base exe-
cution time for each benchmark is also indicated in the caption. Each trans-
formation phase, i.e., each gray box, is then broken down into traditional
transformations, i.e., white boxes.

All benchmarks benefited from complex compositions of transforma-
tions, with up to 23 individual loop and array transformations on the same
loop nest forgalgel. Notice that some enabling transformations actually
degrade performance, like (A2) ingalgel.

B 1 : - 3 1 s

B 2 : - 1 s B 3 : - 1 s

C 1 : - 1 1 s

A 1 : - 3 s A 2 : - 2 s A 3 : - 1 s

G : - 2 7 s P r i v a t i z a t i o n

P r i v a t i z a t i o n

F i s s i o n

I n t e r c h a n g e S o f t w a r e
P i p e l i n i n gF i s s i o n

P r i v a t i z a t i o n

P r i v a t i z a t i o n

F i s s i o n

I n t e r c h a n g e

F i s s i o n F u s i o nP e e l i n g

S o f t w a r e
P i p e l i n i n g

S o f t w a r e
P i p e l i n i n g

D a t a
L a y o u t

Fig. 23. Optimizingapsi (base 378s)

38 Girbal, Vasilache et al.

G : - 1 1 s

A : - 2 9 s

B 1 : - 4 s
B 2 : - 1 8 s

F u l l
U n r o l l i n g

S c a l a r
P r o m o t i o n

F l o a t . p o i n t
R e o r d e r i n g

I n s t r u c t i o n
S p l i t t i n g F i s s i o n

P r i v a t i z a t i o n
F u s i o n

F u l l
U n r o l l i n g

P r i v a t i z a t i o n

Fig. 24. Optimizingapplu (base 214s)

A 1 : - 1 9 s A 3 : - 1 1 sA 2 : - 4 5 s
F u l l

U n r o l l i n g
F u l l

U n r o l l i n gF u s i o n S c h e d u l i n gA r r a y
C o n t r a c t i o n

Fig. 25. Optimizingwupwise (base 236s)

A 2 : + 2 4 s

A 1 : - 1 4 s
A 5 : - 6 s

A 4 : - 5 s

A 3 : - 2 4 s
F u s i o n

S c a l a r
P r o m o t i o nI n t e r c h a n g e

S t r i p - M i n i n g

S t r i p - M i n i n g
S h i f t i n gI n s t r u c t i o n

S p l i t i n g F i s s i o n S t r i p - M i n i n g

F i s s i o n
F i s s i o n
F u s i o n

F u s i o n

S h i f t i n g A r r a y C o p y
P r o p a g a t i o n

S c a l a r
P r o m o t i o n
F u s i o n

F u s i o nS t r i p - M i n i n g

H o i s t i n g R e g i s t e r
P r o m o t i o n

U n r o l l
a n d J a m

F u s i o n

F u s i o n

F u s i o n

L 1

L 1 - L 2 L 2

Fig. 26. Optimizinggalgel (base 171s)

4.2. Polyhedral vs. Syntactic Representations

Section 2 presented the main assets of our new polyhedral representation.
We now revisit these properties on the 4 chosen benchmarks.

4.2.1. Code size and complexity

The manual application of transformation sequences leads to a large code
size increase, let aside the effect of function inlining. This is due to code
duplication when unrolling loops, but also to iteration peeling and loop
versioning when applying loop tiling and strip-mining. Typical cases are
phases (A) inapplu and (A2) wupwise (unrolling), and (A5) ingalgel
(unroll-and-jam).

In our framework, none of these transformations perform anystate-
ment duplication, only strip-mining has a slight impact on the size of do-
main matrices, as explained in Section 2.3. In general, the only duplica-

Semi-Automatic Composition of Loop Transformations 39

tion comes from parameter versioning and from intrinsicly code-bloating
schedules resulting from intricate transformation sequences. This “moral”
observation allows to blame the transformation sequence rather than the
polyhedral transformation infrastructure, yet it does notprovide an intu-
itive characterization of the “good” transformation sequences that do not
yield code-bloating schedules; this is left for future work.

Interestingly, it is also possible to control the aggressiveness of the
polyhedral code generator, focusing its code-duplicatingoptimizations to
the hottest kernels only, yielding sub-optimal but very compact code in the
rest of the program. Again, the design of practical heuristics to drive these
technique is left for future work.

4.2.2. Breaking patterns

On the introductory example, we already outlined the difficulty to merge
loops with different bounds and tile non-perfectly nested loops. Beyond
non-matching loop bounds and non-perfect nests, loop fusion is also in-
hibited by loop peeling, loop shifting and versioning from previous phases.
For example,galgel shows multiple instances of fusion and tiling transfor-
mations after peeling and shifting. KAP’s pattern-matching rules fail to
recognize any opportunity for fusion or tiling on these examples.

Interestingly, syntactic transformations may also introduce some spu-
rious array dependences that hamper further optimizations. For example,
phase (A3) ingalgel splits a complex statement with 8 array references,
and shifts part of this statement forward by one iteration (software pipelin-
ing) of a loopL1. Then, in one of the fusion boxes of phase (A4), we wish
to mergeL1 with a subsequent loopL2. Without additional care, this fusion
would break dependences, corrupting the semantics of the code produced
after (A3). Indeed, some values flow from the shifted statement in L1 to
iterations ofL2; merging the loops would consume these values before
producing them. Syntactic approaches lead to a dead-end in this case; the
only way to proceed is to undo the shifting step, increasing execution time
by 24 seconds. Thanks to the commutation properties of our model, we can
make the dependence between the loops compatible with fusion by shifting
the loopL2 forward by one iteration, before applying the fusion.

4.2.3. Flexible and complex compositions of transformations

The manual benchmark optimizations exhibit wide variations in the com-
position of control, access and layout transformations.galgel is an extreme
case where KAP does not succeed in optimizing the code, even with the
best hand-tuned combination of switches, i.e., when directed to apply some

40 Girbal, Vasilache et al.

transformations with explicit optimization switches (peak SPEC). Nev-
ertheless, our (long) optimization sequence yields a significant speedup
while only applying classical transformations. A closer look at the code
shows only uniform dependences and constant loop bounds. Inaddition
to the above-mentioned syntactic restrictions and patternmismatches, our
sequence of transformations shows the variability and complexity of en-
abling transformations. For example, to implement the eight loop fusions
in Figure 26, strip-mining must be applied to convert large loops ofN2 iter-
ations into nested loops ofN iterations, allowing subsequent fusions with
other loops ofN iterations.

applu stresses another important flexibility issue. Optimizations on two
independent code fragments follow an opposite direction: (G) and (A) tar-
get locality improvements: they implement loop fusion and scalar promo-
tion; conversely, (B1) and (B2) follow a parallelism-enhancing strategy
based on the opposite transformations: loop fission and privatization. Since
the appropriate sequence is not the same in each case, the optimal strategy
must be flexible enough to select either option.

Finally, any optimization strategy has an important impacton the or-
der in which transformations are identified and applied. When optimizing
applu andapsi, our methodology focused on individual transformations on
separate loop nests. Only in the last step, dynamic analysisindicated that,
to further improve performance, these loop nests must first be merged be-
fore applying performance-enhancing transformations. Ofcourse, this is
very much dependent on the strategy driving the optimization process, but
an iterative feedback-directed approach is likely to be at least as demand-
ing as a manual methodology, since it can potentially examine much longer
transformation sequences.

5. IMPLEMENTATION

The whole infrastructure is implemented as a free (GPL) add-on to the
Open64/ORC/EKOPath family of compilers(16, 66). Optimization is per-
formed in two runs of the compiler, with one intermediate runof our tool,
using intermediate dumps of the intermediate representation (the.N files)
as shown in Figure 27. It thus natively supports the generation of IA64
code. The whole infrastructure compiles with GCC3.4 and is compatible
with PathScale EKOPath(66) native code generator for AMD64 and IA32.
Thanks to third-party tools based on Open64, this frameworksupports
source-to-source optimization, using the robust C unparser of Berkeley
UPC (67), and planning a port of the Fortran90 unparser from Open64/SL
(68). It contains 3 main tools in addition to Open64: WRaP-IT which ex-
tracts SCoPs and build their polyhedral representation, URUK which per-

Semi-Automatic Composition of Loop Transformations 41

forms program transformations in the polyhedral representation, and UR-
GenT the code generator associated with the polyhedral representation8.

input.c

PreOPT

LNO

WOPT

CG

PreOPT

LNO

WOPT

CG

output.bin

input.N

output.N

our
optimisation
framework

open64 -PHASE:p=on:l=off:w=off:c=off input.c
open64 -PHASE:p=on:l=on:w=on:c=on output.N

Fig. 27. Optimisation process

5.1. WRaP-IT: WHIRL Represented as Polyhedra — Interface To ol

WRaP-IT is an interface tool built on top of Open64 which converts the
WHIRL — the compiler’s hierarchical intermediate representation — to an
augmented polyhedral representation, maintaining a correspondence be-
tween matrices in SCoP descriptions with the symbol table and syntax
tree. Although WRaP-IT is still a prototype, it proved to be robust; the
whole source-to-polyhedra-to-source conversion (without any intermedi-
ate loop transformation) was successfully applied in 34 seconds in average
per benchmark on a 512MB 1GHz Pentium III machine.

Implemented within the modern infrastructure of Open64, WRaP-IT
benefits from interprocedural analysis and pre-optimization phases such as
function inlining, interprocedural constant propagation, loop normaliza-
tion, integer comparison normalization, dead-code andgoto elimination,
and induction variable substitution. Our tool extracts large and represen-
tative SCoPs for SPECfp2000 benchmarks: on average, 88% of the state-
ments belong to a SCoP containing at least one loop(69).

To refine these statistics, Figures 28 and 29 describe the SCoP break-
down for each benchmark with respect to instruction count and maximal
loop nesting depth, respectively. These numbers confirm thelexical impor-
tance of code that can be represented in our model, and set a well defined
scalability target for the (most of the time exponential) polyhedral compu-
tations associated with program analyses and transformations.

8 These tools can be downloaded fromhttp://www.lri.fr/~girbal/site_wrapit.

42 Girbal, Vasilache et al.

10

20

30

40

50

60

70

80

90

100

110

N
um

be
r

of
S

C
oP

s

0-2 3-4 5-8 9-16 17-32 33-64 65-128 129-256 257+

168.wupwise

171.swim

172.mgrid

173.applu

177.mesa

179.art

183.equake

187.facerec

188.ammp

191.fma3d

200.sixtrack

301.apsi

Fig. 28. SCoP size (instructions)

1

10

100

1000

N
um

be
r

of
S

C
oP

s

1 2 3 4 5 6

168.wupwise

171.swim

172.mgrid

173.applu

177.mesa

179.art

183.equake

187.facerec

188.ammp

191.fma3d

200.sixtrack

301.apsi

Fig. 29. SCoP depth

To refine this coverage study, we computed the SCoP breakdownwith
respect to effective execution time. We conducted statistical sampling mea-

Semi-Automatic Composition of Loop Transformations 43

surements, using theoprofile portable performance monitoring frame-
work. Figure 30 gather the execution time percentage associated with each
consecutive block of source statements (over 2.5% execution time). The
penultimate column, #SCoPs, gives the number of SCoPs covering this
code block: the lower the better. The last column shows the maximal loop
nesting depth in those SCoPs and the actual loop nesting depth in the pro-
cedure; when the two numbers differ, some enclosing loops are not consid-
ered static control. In many cases,a single full-depthSCoP is sufficient to
cover the whole block of “hot” instructions, showing that polyhedral trans-
formations will be fully applicable to this code block. These results are
very encouraging, yet far from sufficient in the context of general-purpose
applications. This motivates further research in extending the applicability
of polyhedral techniques to “sparsely irregular” code. Inlining was dis-
abled to isolate SCoP coverage in each source code function.9

5.2. URUK: Unified Representation Universal Kernel

URUK is the key software component: it performs program transforma-
tions within the WRaP (polyhedral) representation. A scripting language,
defines transformations and enables the composition of new transforma-
tions. Each transformation is built upon a set of elementaryactions, the
constructors(See Section 3).

Figure 31 shows the definition of theMove constructor, and Figure 32
defines the FISSION transformation based on this constructor. This syntax
is preprocessed to overloaded C++ code, offering a high-level semantics to
manipulate the polyhedral representation. It takes less than one hour for an
URUK expert to implement a complex transformation like tiling of imper-
fectly nested loops with prolog/epilog generation and legality checks, and
to have this transformation work on real benchmarks withouterrors.

Transformation composition is very natural in the URUK syntax. Fig-
ure 33 shows how simple it is to implement tiling from the composition of
strip-mining and interchange primitives, hiding all the details associated
with remainder loop management and legality checking.

5.3. URDeps: URUK Dependence Analysis

An important feature of URUK is the ability to perform transformations
without mandatory intermediate validity checks, and without reference to
the syntactic program. This allows to compute dependence information

9 We left out 6 SPECfp2000 benchmarks due to the (current) lackof support in our analyzer
for function pointers and pointer arithmetic.

44 Girbal, Vasilache et al.

File Function Source Lines%Time #SCoPs
SCoP Depth /
Actual Depth

168.wupwisezaxpy.f zaxpy 11–32 20.6% 2 1/1
zcopy.f zcopy 11–24 8.3% 1 1/1
zgemm.f zgemm 236–271 47.5% 7 3/3

171.swim swim.f main 114–119 5.6% 1 2/2
swim.f calc1 261–269 26.3% 1 2/2
swim.f calc2 315–325 36.8% 1 2/2
swim.f calc3 397–405 29.2% 1 2/2

172.mgrid mgrid.f psinv 149–166 27.1% 1 3/3
mgrid.f resid 189–206 62.1% 1 3/3
mgrid.f rprj3 230–250 4.3% 1 3/3
mgrid.f interp 270–314 3.4% 1 3/3

173.applu applu.f blts 553–624 15.5% 1 6/6
applu.f buts 659–735 21.8% 1 6/6
applu.f jacld 1669–2013 17.3% 1 3/3
applu.f jacu 2088–2336 12.6% 1 3/3
applu.f rhs 2610–3068 20.2% 1 4/4

183.equake quake.c main 435–478 99% 4 2/3
187.facerec cfftb.f90 passb4 266–310 35.6% 1 2/2

gaborRoutines.f90GaborTrafo 102–132 19.2% 2 2/2
graphRoutines.f90LocalMove 392–410 18.7% 2 0/4
graphRoutines.f90TopCostFct 451–616 8.23% 1 0/0

200.sixtrack thin6d.f thin6d 180–186 15.2% 1 1/3
thin6d.f thin6d 216–227 3.7% 1 1/3
thin6d.f thin6d 230–244 8.9% 3 1/3
thin6d.f thin6d 267–287 8.2% 2 1/3
thin6d.f thin6d 465–477 6.3% 1 1/3
thin6d.f thin6d 560–588 54.8% 1 2/4

301.apsi apsi.f dcdtz 1326–1354 4.3% 1 3/3
apsi.f dtdtz 1476–1499 4.3% 1 1/3
apsi.f dudtz 1637–1688 4.5% 1 3/3
apsi.f dvdtz 1779–1833 4.5% 1 3/3
apsi.f wcont 1878–1889 7.5% 1 1/3
apsi.f trid 3189–3205 5.9% 1 1/1
apsi.f smth 3443–3448 3.7% 1 1/1
apsi.f radb4 5295–5321 6.6% 2 2/2
apsi.f radbg 5453–5585 9.0% 3 3/3
apsi.f radf4 5912–5938 3.2% 2 2/2
apsi.f radfg 6189–6287 5.1% 2 3/3
apsi.f dkzmh 6407–6510 11.4% 8 1/3

Fig. 30. Execution time breakdown

and to perform validity checks on demand. Our dependence analysis com-
putes anexactinformation whenever possible, i.e., whenever array refer-
ences are affine (control structures are assumed affine in SCoPs). A list
of convex polyhedra is computed for each pair of statements and for each
depth,considering the polyhedral representation only, i.e., without refer-
ence to the initial syntactic program. This allows forone-time dependence

Semi-Automatic Composition of Loop Transformations 45

%transformation move
%param BetaPrefix P, Q
%param Offset o
%prereq P<=Q
%code
{

foreach S in SCoP
if (P<=S.Beta && Q<=S.Beta)

S.Beta(P.dim())+=o;
else if (P<=S.Beta && Q<<S.Beta)

S.Beta(P.dim())+=o;
}

Fig. 31.Move constructor

%transformation fission
%param BetaPrefix P
%param Offset o, b
%code
{

UrukVector Q=P;
Q.enqueue(o); Q.enqueue(b);
UrukVector R=P;
R.enqueue(o+1);
UT_move(P,Q,1).apply(SCoP);
UT_move(R,R,-1).apply(SCoP);

}

Fig. 32. FISSION primitive
%transformation tile
%param BetaPrefix P
%param Integer k1
%param Integer k2
%prereq k1>0 && k2>0
%code
{

Q=P.enclose();
UT_stripmine(P,k2).apply(SCoP);
UT_stripmine(Q,k1).apply(SCoP);
UT_interchange(Q).apply(SCoP);

}

Fig. 33. TILE primitive

analysisbefore applying the transformation sequence, andone-time check
at the very end, before code generation.

Let us briefly explain how this is achieved. Considering two distinct
references to the same array in the program, at least one of them being a
write, there is a dependence between them if their access functions coin-
cide on some array element. Multiple refinement of this abstraction have
been proposed, including dependence directions, distances, vectors and in-
tervals(6) to improve the precision about the localization of the actual de-
pendences between run-time statement instances. In the polyhedral model,
it is possible to refine this definition further and to computean exactde-
pendence information, as soon as all array references are affine (59). Exact
dependences are classically captured by a system of affine inequalities over
iteration vectors; when considering a syntactic loop nest,dependences at
depth p between access functions FS and FT in statementsS and T are

46 Girbal, Vasilache et al.

exactly captured by the following union of polyhedra:

DS
om×D

T
om∩

{

(iS, iT) | FS(iS) = FT(iT)∧ iS≪p iT
}

,

where≪p stands for the ordering of iteration vectors at depthp (i.e., equal
component-wise up to depthp−1 and different at depthp).

Yet this characterization needs to be adapted to programs ina polyhe-
dral representation, where no reference to a syntactic formis available, and
where multiple schedule and domain transformations make the definition
and tracking of the dependence information difficult. We thus replace the
ordering on iteration vectors by the schedule-induced ordering, and split
the constraints according to the decomposition of the schedule in our for-
malism. Two kinds of dependences at depthp can be characterized.

– Loop-carried dependence:

βS
0..p−1 = βT

0..p−1 and(AS,ΓS)iS≪p (AT ,ΓT)iT .

– Intra-loop dependence:

βS[0..p−1] = βT [0..p−1],

((AS,ΓS)iS)0..p−1 = ((AT ,ΓT)iT)0..p−1 andβS
p < βT

p.

Both kinds lead to a union of polyhedra that is systematically built, before
any transformation is applied, for all pairs of references (to the same array)
and for all depths (common to these references).

To solve the dependence tracking problem, we keep track of all modifi-
cations to thestructureof the time and domain dimensions. In other words,
we record any extension (dimension insertion, to implement, e.g., strip-
mining) and any domain restriction (to implement, e.g., index-set splitting)
into a work list, and we eventually traverse this list after all transforma-
tions have been applied to update dependence polyhedra accordingly. This
scheme guarantees that the iteration domains and time dimensions corre-
spond, after transformations, in the precomputed dependence information
and in the modified polyhedral program representation.

Dependence checking is implemented by intersecting every depen-
dence polyhedron with thereversedschedule of the transformed repre-
sentation. If any such intersection is non-empty, the resulting polyhedron
captures theexact set of dependence violations. This step allows to derive
the exact set of iteration vector pairs associated with causality constraints
violations. Based on this strong property, our implementation reports any

Semi-Automatic Composition of Loop Transformations 47

dependence violation as a list of polyhedra; this report is very useful for au-
tomatic filtering of transformations in an iterative optimization framework,
and as an optimization aid for the interactive user of URUK.

Interestingly, our formalism allows both dependence computation and
checking to be simplified, relying on scalar comparisons on theβ vectors
to short-circuit complex polyhedral operations on inner depths. This opti-
mization yields impressive speedups, due to the block-structured nature of
most real-world schedules. The next section will explore such a real-world
example and show a good scalability of this aggressive analysis.

5.4. URGenT: URUK Generation Tool

After polyhedral transformations, the (re)generation of imperative loop
structures is the last step. It has a strong impact on the target code qual-
ity: we must ensure that no redundant guard or complex loop bound spoils
performance gains achieved thanks to polyhedral transformations. We used
the Chunky Loop Generator (CLooG), a recent Quilleré et al. method(23)

with some additional improvements to guarantee the absenceof duplicated
control (22), to generate efficient control for full SPECfp2000 benchmarks
and for SCoPs with more than 1700 statements. Polyhedral transforma-
tions make code generation particularly difficult because they create a large
set of complex overlapping polyhedra that need to be scannedwith do-
loops (70, 23, 21, 22). Because of the added complexity introduced, we had
to design URGenT, a major reengineering of CLooG taking advantage of
the normalization rules of our representation to bring exponential improve-
ments to execution time and memory usage. The generated codesize and
quality greatly improved, making it better than typically hand-tuned code.
(38) details how URGenT succeeds in producing efficient code for arealis-
tic optimization case-study in a few seconds only.

6. SEMI-AUTOMATIC OPTIMIZATION

Let us detail the application of our tools to the semi-automatic optimiza-
tion of theswim benchmark, to show the effectiveness of the approach and
the performance of the implementation on a representative benchmark.
We target a 32bit and a 64bit architecture: an AMD Athlon XP 2800+
(Barton) at 2.08GHz with 512KB L2 cache and 512MB single-channel
DDR SDRAM (running Mandriva Linux 10.1, kernel version 2.6.8), and
a AMD Athlon 64 3400+ (ClawHammer) at 2.2GHz zith 1MB L2 cache
and single-channel 1GB DDR SDRAM (running Debian GNU/LinuxSid,
kernel version 2.6.11). Theswim benchmark was chosen because it easily
illustrates the benefits of implementing a sequence of transformations in

48 Girbal, Vasilache et al.

our framework, compared to manual optimization of the program text, and
because it presents a reasonably large SCoP to evaluate robustness (after
fully inlining the three hot subroutines).

Figure 34 shows the transformation sequence forswim, implemented
as a script for URUK. Syntactic compilation frameworks likePathScale
EKOPath, Intel ICC and KAP implement a simplified form of thistransfor-
mation sequence onswim, missing the fusion with the nested loops in sub-
routinecalc3, which requires a very complex combination of loop peel-
ing, code motion and three-level shifting. In addition, such a sequence is
highly specific toswim and cannot be easily adapted, extended or reordered
to handle other programs: due to syntactic restrictions of individual trans-
formations, the sequence has to be considered as a whole since the effect
of any of its components can hamper the application and profitability of the
entire sequence. Conversely, within our semi-automatic framework, the se-
quence can be built without concern about the impact of a transformation
on the applicability of subsequent ones. We demonstrate this through the
dedicated transformation sequence in Figure 34.

This URUK script operates on theswim.N file, a persistent store of the
compiler’s intermediate representation, dumped by EKOPath after inter-
procedural analysis and pre-optimization. At this step, EKOPath is directed
to inline the three dominant functions of the benchmark,calc1, calc2 and
calc3 (passing these function names to the-INLINE optimization switch).
WRaP-IT processes the resulting file, extracting several SCoPs, the sig-
nificant one being a section of 421 lines of code — 112 instructions in
the polyhedral representation — in consecutive loop nests within themain
function. Transformations in Figure 34 apply to this SCoP.

Labels of the formCxLy denote statementy of procedurecalcx. Given
a vectorv and an integerr ≤ dimv, enclose(v,r) returns the prefix of
length dimv− r of vectorv (r is equal to 1 if absent). The primitives in-
volved are the following:motion translates theβ component (of a set of
statements),shift translates theΓ matrix; peel splits the domain of a
statement according to a given constraint and creates two labels with suf-
fixes _1 and_2; stripmine andinterchange are self-explanatory; and
time-prefixed primitives mimic the effect of their iteration domain coun-
terparts on time dimensions. Loop fusion is a special case ofthemotion
primitive. Tiling is decomposed into double strip-mining and interchange.
Loop unrolling (fullunroll) is delayed to the code generation phase.

Notice the script is quite concise, although the generated code is much
more complex than the originalswim benchmark (due to versioning, peel-
ing, strip-mining and unrolling). In particular, loop fusion is straightfor-

Semi-Automatic Composition of Loop Transformations 49

ward, despite the fused loops domains differ by one or two iterations (due
to peeling), and despite the additional multi-level shifting steps.

Avoid spurious versioning
addContext(C1L1,’ITMAX>=9’)
addContext(C1L1,’doloop_ub>=ITMAX’)
addContext(C1L1,’doloop_ub<=ITMAX’)
addContext(C1L1,’N>=500’)
addContext(C1L1,’M>=500’)
addContext(C1L1,’MNMIN>=500’)
addContext(C1L1,’MNMIN<=M’)
addContext(C1L1,’MNMIN<=N’)
addContext(C1L1,’M<=N’)
addContext(C1L1,’M>=N’)

Move and shift calc3 backwards
shift(enclose(C3L1),{’1’,’0’,’0’})
shift(enclose(C3L10),{’1’,’0’})
shift(enclose(C3L11),{’1’,’0’})
shift(C3L12,{’1’})
shift(C3L13,{’1’})
shift(C3L14,{’1’})
shift(C3L15,{’1’})
shift(C3L16,{’1’})
shift(C3L17,{’1’})
motion(enclose(C3L1),BLOOP)
motion(enclose(C3L10),BLOOP)
motion(enclose(C3L11),BLOOP)
motion(C3L12,BLOOP)
motion(C3L13,BLOOP)
motion(C3L14,BLOOP)
motion(C3L15,BLOOP)
motion(C3L16,BLOOP)
motion(C3L17,BLOOP)

Peel and shift to enable fusion
peel(enclose(C3L1,2),’3’)
peel(enclose(C3L1_2,2),’N-3’)
peel(enclose(C3L1_2_1,1),’3’)
peel(enclose(C3L1_2_1_2,1),’M-3’)
peel(enclose(C1L1,2),’2’)
peel(enclose(C1L1_2,2),’N-2’)
peel(enclose(C1L1_2_1,1),’2’)
peel(enclose(C1L1_2_1_2,1),’M-2’)
peel(enclose(C2L1,2),’1’)
peel(enclose(C2L1_2,2),’N-1’)
peel(enclose(C2L1_2_1,1),’3’)
peel(enclose(C2L1_2_1_2,1),’M-3’)
shift(enclose(C1L1_2_1_2_1),{’0’,’1’,’1’})
shift(enclose(C2L1_2_1_2_1),{’0’,’2’,’2’})

Double fusion of the three nests
motion(enclose(C2L1_2_1_2_1),TARGET_2_1_2_1)
motion(enclose(C1L1_2_1_2_1),C2L1_2_1_2_1)
motion(enclose(C3L1_2_1_2_1),C1L1_2_1_2_1)

Register blocking and unrolling (factor 2)
stripmine(enclose(C3L1_2_1_2_1,2),2,2)
stripmine(enclose(C3L1_2_1_2_1,1),4,2)
interchange(enclose(C3L1_2_1_2_1,2))
fullunroll(enclose(C3L1_2_1_2_1,2))
fullunroll(enclose(C3L1_2_1_2_1,1))

Fig. 34. URUK script to optimizeswim

The application of this script is fully automatic; it produces a signif-
icantly larger code of 2267 lines, roughly one third of them being naive
scalar copies to map schedule iterators to domain ones, fully eliminated by
copy-propagation in the subsequent run of EKOPath or Open64. This is not
surprising since most transformations in the script require domain decom-
position, either explicitly (peeling) or implicitly (shifting prolog/epilog, at
code generation). It takes 39s to apply the whole transformation sequence
up to native code generation on a 2.08GHz AthlonXP. Transformation time
is dominated by back-end compilation (22s). Polyhedral code generation
takes only 4s. Exact polyhedral dependence analysis (computation and
checking) is acceptable (12s). Applying the transformation sequence itself
is negligible. These execution times are very encouraging,given the com-

50 Girbal, Vasilache et al.

plex overlap of peeled polyhedra in the code generation phase, and since
the full dependence graph captures the exact dependence information for
the 215 array references in the SCoP at every loop depth (maximum 5 af-
ter tiling), yielding a total of 441 dependence matrices. The result of this
application is a new intermediate representation file, sentto EKOPath or
Open64 for further scalar optimizations and native code generation.

Compared to thepeak performance attainable by the best available
compiler, PathScale EKOPath (V2.1) with the best optimization flags,10

our tool achieves32% speedup on Athlon XP and 38% speedup on
Athlon 64. Compared to thebase SPECperformance numbers,11 our op-
timization achieves51% speedup on Athlon XP and 92% speedup on
Athlon 64. We are not aware of any other optimization effort — manual
or automatic — that broughtswim to this level of performance on x86 pro-
cessors.12

We do not have results on IA64 yet, due to back-end instability is-
sues in Open64 (with large basic blocks). We expect an additional level of
tiling and more aggressive unrolling will be profitable (dueto the improved
TLB management, better load/store bandwitdh and larger register file on
Itanium 2 processors).

Additional transformations need to be implemented in URUK to autho-
rize semi-automatic optimization of a larger range of benchmarks. In ad-
dition, further work on the iterative optimization driver is being conducted
to make this process more automatic and avoid the manual implementation
of an URUK script. Yet the tool in its current state is of greatuse for the
optimization expert who wishes to quickly evaluate complexsequences of
transformations.

7. RELATED WORK

The most topical works associated with each technical issueand contri-
bution have been discussed in the relevant specific sections. Here, we will
only survey the former efforts in designing an advanced loopnest transfor-
mation infrastructure and representation framework.

Most loop restructuring compilers introduced syntax-based models and
intermediate representations. ParaScope(40) and Polaris(41) are depen-

10 Athlon XP:-m32 -Ofast -OPT:ro=2:Olimit=0:div_split=on:alias=typed
-LNO:fusion=2:prefetch=2 -fno-math-errno; Athlon 64 (in 64 bits mode):
-march=athlon64 -LNO:fusion=2:prefetch=2 -m64 -Ofast -msse2 -lmpath;
pathf90 always outperformed Intel ICC by a small percentage.
11 With optimization flag-Ofast.
12 Notice we consider the SPEC 2000 version ofswim, much harder to optimize through loop

fusion than the SPEC 95 version.

Semi-Automatic Composition of Loop Transformations 51

dence based, source-to-source parallelizers for Fortran.KAP (18) is closely
related to these academic tools.

SUIF (42) is a platform for implementing advanced compiler proto-
types. Although some polyhedral works have been built on SUIF (11, 13),
they do not address the composition issue and rely on a weakercode gen-
eration method. PIPS(71) is one of the most complete loop restructuring
compiler, implementing polyhedral analyses and transformations (includ-
ing affine scheduling) and interprocedural analyses (arrayregions, alias). It
uses a syntax tree extended with polyhedral annotations, but not a unified
polyhedral representation.

Closer to our work, the MARS compiler(20) has been applied to itera-
tive optimization(72); this compiler’s goal is to unify classical dependence-
based loop transformations with data storage optimizations. However, the
MARS intermediate representation only captures part of theloop-specific
information (domains and access functions): it lacks the characterization of
iteration orderings through multidimensional affine schedules. Recently,
a similar unified representation has been applied to the optimization of
compute-intensive Java programs, combining machine learning and itera-
tive optimization(3); again, despite the unification of multiple transforma-
tions, the lack of multidimensional affine schedules hampers the ability to
perform long sequences of transformations and complicatesthe character-
ization and traversal of the search space, ultimately limiting performance
improvements.

To date, the most thorough application of the polyhedral representation
was the Petit dependence analyzer and loop restructuring tool (10), based
on the Omega library(73). It provides space-time mappings for iteration re-
ordering, and it shares our emphasis on per-statement transformations, but
it is intended as a research tool for small kernels only. Our representation
— whose foundations were presented in(25) — improves on the polyhedral
representation proposed by(10), and this paper explains how and why it is
the first one that enables the composition of polyhedral generalizations of
classical loop transformations, decoupled from any syntactic form of the
program. We show how classical transformations like loop fusion or tiling
can be composed in any order and generalized to imperfectly-nested loops
with complex domains, without intermediate translation toa syntactic form
(which leads to code size explosion). Eventually, we use a code generation
technique suitable to a polyhedral representation that is again significantly
more robust than the code generation proposed in the Omega library (22).

52 Girbal, Vasilache et al.

8. CONCLUSIONS

The ability to perform numerous compositions of program transformations
is driven by the development of iterative optimization environments, and
motivated through the manual optimization of standard numerical bench-
marks. From these experiments, we show that current compilers are chal-
lenged by the complexity of aggressive loop optimization sequences. We
believe that little improvements can be expected without redesigning the
compilation infrastructure for compositionality and richer search space
structure.

We presented a polyhedral framework that enables the composition of
long sequences of program transformations. Coupled with a robust code
generator, our method avoids the typical restrictions and code bloat of long
compositions of program transformations. These techniques have been im-
plemented in the Open64/ORC/EKOPath compiler and applied to theswim
benchmark automatically. We have also shown that our framework opens
up new directions for searching for complex transformationsequences for
automatic or semi-automatic optimization or parallelization.

ACKNOWLEDGMENTS

This work is supported by a grant from the French Ministry of Research
(RNTL COP) and INRIA, CEA and HP France fellowships. We are also in-
debted to many people who helped building the tool set, including Saurabh
Sharma who initiated the implementation, Roy Ju and Sun Chanfrom In-
tel, John Mellor-Crummey and Nathan Tallent from Rice University, Greg
Lindahl and Fred Chow from PathScale, and the UPC team at the Univer-
sity of California Berkeley.

REFERENCES

1. T. Kisuki, P. Knijnenburg, M. O’Boyle, and H. Wijshoff, Iterative compilation in program
optimization,Proc. CPC’10 (Compilers for Parallel Computers), pp. 35–44 (2000).

2. K. D. Cooper, D. Subramanian, and L. Torczon, Adaptive optimizing compilers for the 21st
century,J. of Supercomputing(2002).

3. S. Long and M. O’Boyle, Adaptive java optimisation using instance-based learning.,ACM
Intl. Conf. on Supercomputing (ICS’04), pp. 237–246, St-Malo, France (June 2004).

4. D. Parello, O. Temam, and J.-M. Verdun, On Increasing Architecture Awareness in Pro-
gram Optimizations to Bridge the Gap between Peak and Sustained Processor Performance?
Matrix-Multiply Revisited,SuperComputing’02, Baltimore, Maryland (November 2002).

5. D. Parello, O. Temam, A. Cohen, and J.-M. Verdun, Towards aSystematic, Pragmatic and
Architecture-Aware Program Optimization Process for Complex Processors,ACM Super-
computing’04, p. 15, Pittsburgh, Pennsylvania (November 2004),

Semi-Automatic Composition of Loop Transformations 53

6. M. J. Wolfe,High Performance Compilers for Parallel Computing, Addison-Wesley (1996).

7. A. Cohen, S. Girbal, D. Parello, M. Sigler, O. Temam, and N.Vasilache, Facilitating the
Search for Compositions of Program Transformations,ACM Intl. Conf. on Supercomputing
(ICS’05), pp. 151–160, Boston, Massachusetts (June 2005),

8. P. Feautrier, Some Efficient Solutions to the Affine Scheduling Problem, Part II, multidi-
mensional time,Intl. J. of Parallel Programming, 21(6):389–420 (December 1992), see also
Part I, one dimensional time, 21(5):315–348.

9. M. E. Wolf, Improving Locality and Parallelism in Nested Loops, Ph.D. thesis, Stanford
University (August 1992), published as CSL-TR-92-538.

10. W. Kelly,Optimization within a Unified Transformation Framework, Technical Report CS-
TR-3725, University of Maryland (1996).

11. A. W. Lim and M. S. Lam, Communication-Free Parallelization via Affine Transformations,
24thACM Symp. on Principles of Programming Languages, pp. 201–214, Paris, France (jan
1997).

12. N. Ahmed, N. Mateev, and K. Pingali, Synthesizing transformations for locality enhance-
ment of imperfectly-nested loop nests,ACM Supercomputing’00(May 2000).

13. A. W. Lim, S.-W. Liao, and M. S. Lam, Blocking and array contraction across arbitrarily
nested loops using affine partitioning,ACM Symp. on Principles and Practice of Parallel
Programming (PPoPP’01), pp. 102–112 (2001).

14. W. Pugh, Uniform techniques for loop optimization,ACM Intl. Conf. on Supercomputing
(ICS’91), pp. 341–352, Cologne, Germany (June 1991).

15. W. Li and K. Pingali, A singular loop transformation framework based on non-singular
matrices,Intl. J. of Parallel Programming, 22(2):183–205 (April 1994).

16. Open Research Compiler,http://ipf-orc.sourceforge.net.

17. A. Phansalkar, A. Joshi, L. Eeckhout, and L. John,Four generations of SPEC CPU bench-
marks: what has changed and what has not, Technical Report TR-041026-01-1, University
of Texas Austin (2004).

18. KAP C/OpenMP for Tru64 UNIX and KAP DEC Fortran for Digital UNIX, http://www.
hp.com/techsevers/software/kap.html.

19. E. Visser, Stratego: A Language for Program Transformation based on Rewriting Strategies.
System Description of Stratego 0.5, A. Middeldorp (ed.),Rewriting Techniques and Appli-
cations (RTA’01), Lecture Notes in Computer Science, Vol. 2051, pp. 357–361, Springer-
Verlag (May 2001).

20. M. O’Boyle, MARS: a Distributed Memory Approach to Shared Memory Compilation,
Proc. Language, Compilers and Runtime Systems for ScalableComputing, Springer-Verlag,
Pittsburgh (May 1998).

21. C. Bastoul, Efficient code generation for automatic parallelization and optimization,IS-
PDC’2 IEEE International Symposium on Parallel and Distributed Computing, Ljubjana,
Slovenia (October 2003).

22. C. Bastoul, Code Generation in the Polyhedral Model Is Easier Than You Think,Parallel
Architectures and Compilation Techniques (PACT’04), Antibes, France (September 2004).

54 Girbal, Vasilache et al.

23. F. Quilleré, S. Rajopadhye, and D. Wilde, Generation of efficient nested loops from poly-
hedra,Intl. J. of Parallel Programming, 28(5):469–498 (October 2000).

24. G.-R. Perrin and A. Darte (eds.),The Data Parallel Programming Model, number 1132 in
LNCS, Springer-Verlag (1996).

25. A. Cohen, S. Girbal, and O. Temam, A Polyhedral Approach to Ease the Composition of
Program Transformations,Euro-Par’04, number 3149 in LNCS, pp. 292–303, Springer-
Verlag, Pisa, Italy (August 2004),

26. R. Triolet, P. Feautrier, and P. Jouvelot, Automatic parallelization of Fortran programs in the
presence of procedure calls,Proc. of the 1stEuropean Symp. on Programming (ESOP’86),
number 213 in LNCS, pp. 210–222, Springer-Verlag (March 1986).

27. M. Griebl and J.-F. Collard, Generation of Synchronous Code for Automatic Parallelization
of while Loops, S. Haridi, K. Ali, and P. Magnusson (eds.),EuroPar’95, LNCS, Vol. 966,
pp. 315–326, Springer-Verlag (1995).

28. J.-F. Collard, Automatic parallelization of While-Loops using speculative execution,Intl. J.
of Parallel Programming, 23(2):191–219 (April 1995).

29. D. G. Wonnacott,Constraint-Based Array Dependence Analysis, Ph.D. thesis, University
of Maryland (1995).

30. B. Creusillet,Array Region Analyses and Applications, Ph.D. thesis, École Nationale
Supérieure des Mines de Paris (ENSMP), France (December 1996).

31. D. Barthou, J.-F. Collard, and P. Feautrier, Fuzzy ArrayDataflow Analysis,J. of Parallel
and Distributed Computing, 40:210–226 (1997).

32. L. Rauchwerger and D. Padua, The LRPD Test: Speculative Run–Time Parallelization
of Loops with Privatization and Reduction Parallelization, IEEE Transactions on Paral-
lel and Distributed Systems, Special Issue on Compilers andLanguages for Parallel and
Distributed Computers, 10(2):160–180 (1999).

33. D. Barthou, A. Cohen, and J.-F. Collard, Maximal Static Expansion,Intl. J. of Parallel
Programming, 28(3):213–243 (June 2000),

34. A. Cohen,Program Analysis and Transformation: from the Polytope Model to Formal Lan-
guages, PhD Thesis, Université de Versailles, France (December 1999),

35. J.-F. Collard,Reasoning About Program Transformations, Springer-Verlag (2002).

36. A. Darte, Y. Robert, and F. Vivien,Scheduling and Automatic Parallelization, Birkhaüser,
Boston (2000).

37. A. Darte and Y. Robert, Mapping uniform loop nests onto distributed memory architectures,
Parallel Computing, 20(5):679–710 (1994).

38. N. Vasilache, C. Bastoul, and A. Cohen, Polyhedral Code Generation in the Real World,
Proceedings of the International Conference on Compiler Construction (ETAPS CC’06),
LNCS, Springer-Verlag, Vienna, Austria (March 2006), to appear.

39. J. Allen and K. Kennedy, Automatic Translation of Fortran Programs to Vector Form,ACM
Trans. on Programming Languages and Systems, 9(4):491–542 (October 1987).

Semi-Automatic Composition of Loop Transformations 55

40. K. D. Cooper, M. W. Hall, R. T. Hood, K. Kennedy, K. S. McKinley, J. M. Mellor-Crummey,
L. Torczon, and S. K. Warren, The ParaScope Parallel Programming Environment,Proceed-
ings of the IEEE, 81(2):244–263 (1993).

41. W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua, P. Petersen, W. Pot-
tenger, L. Rauchwerger, P. Tu, and S. Weatherford, ParallelProgramming with Polaris,
IEEE Computer, 29(12):78–82 (December 1996).

42. M. Hall et al., Maximizing Multiprocessor Performance with the SUIF Compiler,IEEE
Computer, 29(12):84–89 (December 1996).

43. S. Carr, C. Ding, and P. Sweany, Improving Software Pipelining With Unroll-and-Jam,Pro-
ceedings of the 29th Hawaii Intl. Conf. on System Sciences (HICSS’96) Volume 1: Software
Technology and Architecture, IEEE Computer Society (1996).

44. A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian, Automatic Intra-Register Vectorization for
the Intel Architecture,Intl. J. of Parallel Programming, 30(2):65–98 (2002).

45. D. Naishlos, Autovectorization in GCC,Proceedings of the 2004 GCC Developers Summit,
pp. 105–118 (2004),http://www.gccsummit.org/2004.

46. A. E. Eichenberger, P. Wu, and K. O’Brien, Vectorizationfor SIMD architectures with
alignment constraints,ACM Symp. on Programming Language Design and Implementation
(PLDI ’04), pp. 82–93 (2004).

47. D. E. Maydan, S. P. Amarasinghe, and M. S. Lam, Array Dataflow Analysis and its Use in
Array Privatization,20thACM Symp. on Principles of Programming Languages, pp. 2–15,
Charleston, South Carolina (January 1993).

48. P. Tu and D. Padua, Automatic Array Privatization,6thWorkshop on Languages and Com-
pilers for Parallel Computing, number 768 in LNCS, pp. 500–521, Portland, Oregon (Au-
gust 1993).

49. U. Banerjee,Dependence Analysis for Supercomputing, Kluwer Academic Publishers,
Boston (1988).

50. W. Pugh, The Omega test: a fast and practical integer programming algorithm for de-
pendence analysis,ACM/IEEE Conf. on Supercomputing, pp. 4–13, Albuquerque (August
1991).

51. J. Xue, Automating non-unimodular loop transformations for massive parallelism,Parallel
Computing, 20(5):711–728 (1994).

52. A.-C. Guillou, F. Quilleré, P. Quinton, S. Rajopadhye, and T. Risset, Hardware Design
Methodology with the Alpha Language,FDL’01, Lyon, France (September 2001).

53. R. Schreiber, S. Aditya, B. Rau, V. Kathail, S. Mahlke, S.Abraham, and G. Snider,High-
level synthesis of nonprogrammable hardware accelerators, Technical report, Hewlett-
Packard (May 2000).

54. P. Feautrier, Array Expansion,ACM Intl. Conf. on Supercomputing, pp. 429–441, St. Malo,
France (July 1988).

55. D. Barthou, A. Cohen, and J.-F. Collard, Maximal Static Expansion,25thACM Symp. on
Principles of Programming Languages (PoPL’98), pp. 98–106, San Diego, California (Jan-
uary 1998),

56 Girbal, Vasilache et al.

56. V. Lefebvre and P. Feautrier, Automatic Storage Management for Parallel Programs,Paral-
lel Computing, 24(3):649–671 (1998).

57. M. M. Strout, L. Carter, J. Ferrante, and B. Simon, Schedule-Independant Storage Map-
ping for Loops,ACM Symp. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’98), 8 (1998).

58. F. Quilleré and S. Rajopadhye,Optimizing Memory Usage in the Polyhedral Model, Techni-
cal Report 1228, Institut de Recherche en Informatique et Systèmes Aléatoires, Université
de Rennes, France (January 1999).

59. P. Feautrier, Dataflow Analysis of Scalar and Array References,Intl. J. of Parallel Program-
ming, 20(1):23–53 (February 1991).

60. J.-F. Collard, D. Barthou, and P. Feautrier, Fuzzy arraydataflow analysis,ACM Symp. on
Principles and Practice of Parallel Programming, pp. 92–102, Santa Barbara, CA (July
1995).

61. D. Wonnacott and W. Pugh, Nonlinear array dependence analysis, Proc. Third Workshop
on Languages, Compilers and Run-Time Systems for Scalable Computers(1995), troy, New
York.

62. S. Rus, D. Zhang, and L. Rauchwerger, The Value EvolutionGraph and its Use in Memory
Reference Analysis,Parallel Architectures and Compilation Techniques (PACT’04), IEEE
Computer Society, Antibes, France (2004).

63. C. Bastoul and P. Feautrier, More Legal Transformationsfor Locality, Euro-Par’10, number
3149 in LNCS, pp. 272–283, Pisa (August 2004).

64. C. Bastoul and P. Feautrier, Improving data locality by chunking,CC Intl. Conf. on Com-
piler Construction, number 2622 in LNCS, pp. 320–335, Warsaw, Poland (april 2003).

65. Standard Performance Evaluation Corp.,http://www.spec.org.

66. F. Chow, Maximizing application performance through interprocedural optimization with
the PathScale EKO compiler suite,http://www.pathscale.com/whitepapers.html
(August 2004).

67. C. Bell, W.-Y. Chen, D. Bonachea, and K. Yelick, Evaluating Support for Global Address
Space Languages on the Cray X1,ACM Intl. Conf. on Supercomputing (ICS’04), St-Malo,
France (June 2004).

68. C. Coarfa, F. Zhao, N. Tallent, J. Mellor-Crummey, and Y.Dotsenko, Open-source Compiler
Technology for Source-to-Source Optimization,http://www.cs.rice.edu/~johnmc/
research.html (project page).

69. C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam, Putting Polyhedral Loop
Transformations to Work,Workshop on Languages and Compilers for Parallel Computing
(LCPC’03), LNCS, pp. 23–30, Springer-Verlag, College Station, Texas(October 2003),

70. C. Ancourt and F. Irigoin, Scanning Polyhedra with DO Loop, ACM Symp. on Principles
and Practice of Parallel Programming (PPoPP’91), pp. 39–50 (June 1991).

71. F. Irigoin, P. Jouvelot, and R. Triolet, Semantical Interprocedural Parallelization: An
Overview of the PIPS Project,ACM Intl. Conf. on Supercomputing (ICS’91), Cologne, Ger-
many (June 1991).

Semi-Automatic Composition of Loop Transformations 57

72. T. Kisuki, P. Knijnenburg, K. Gallivan, and M. O’Boyle, The Effect of Cache Models on
Iterative Compilation for Combined Tiling and Unrolling,Parallel Architectures and Com-
pilation Techniques (PACT’00), IEEE Computer Society (October 2001).

73. W. Kelly, W. Pugh, and E. Rosser, Code generation for multiple mappings,Frontiers’95
Symp. on the frontiers of massively parallel computation, McLean (1995).

